高中物理 第1章 动量守恒研究 2 动量守恒定律(2)课件 鲁科版选修3-5.pptx
- 格式:pptx
- 大小:369.12 KB
- 文档页数:26
第2节动量守恒定律1.理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围.2.会用动量定理和牛顿第三定律推导出动量守恒定律.3.能用动量守恒定律解释有关现象,会处理碰撞、爆炸之类中两个相互作用问题(只限于一维情况)4.培养学生严谨的科学态度和实事求是的精神,体会物理学对科技、生活、社会的影响.●教学地位美国的载人航天成就是人类探测太空历史的奇葩,其中发射载人飞船的航天火箭一度扮演着至关重要的角色.按照NASA(美国国家航空航天局)的计划,航天飞机已在2010年全部退役,已经启动的新一代航天工程“星座计划”则包含了载人登月等一系列目标,旨在2015年开始将宇航员送达国际空间站,然后2020年再次载人登月.计划中,战神系列火箭是新一代运输火箭,并在整个工程中居于进度的前列.按照分工定位的不同,战神系列火箭共包括三个型号:战神-1、战神-4和战神-5.“星座计划”是人员货物分运制,这体现在战神各型号火箭的分工上:战神-1是载人航天载具,用于发射新一代载人探索航天器——猎户座飞船,取代NASA 当前使用的航天飞机.战神-4既可以用来发射货物也可以用来发射飞船,送月球着陆器或猎户座飞船进入正确轨道.战神-5目前的定位是货物运载火箭,运载牵牛星号登月舱,以后火星探测计划中其功能将得到进一步扩展,可能将用于人员运输.由于战神系列火箭各个型号在发动机等诸多方面具备通用性,因此战神-1的开发实际上就是后面其他型号的研制前奏.你想知道“战神”系列的工作原理吗?请同学们认真学习本节课内容.●新课导入建议动量守恒定律成立的条件是一个系统不受外力或者系统所受外力的矢量和为0,考虑的是由多个物体组成的系统,因此在应用时需注意区分内力和外力.本节在了解系统、内力和外力的基础上,以一维情况下两个相互作用的小球为例,根据牛顿第二定律和牛顿第三定律,导出具体的动量守恒定律的表达式.这样的处理,使学生对动量守恒定律的理解更深刻,同时也使学生对知识间的联系有了更深入的理解.运用动量守恒定律解决实际问题,只考虑物体相互作用前后的动量,不考虑相互作用过程中各个瞬间细节,即使在牛顿定律适用范围内,它也能解决许多由于相互作用力难以确定而不能直接应用牛顿定律解决的问题.这正是动量守恒定律的特点和优点,同时又为我们解决力学问题提供了一种新的方法和思路.动量守恒定律并不是由牛顿运动定律导出的,而是一条独立的实验定律,它比牛顿运动定律适用范围广泛,是自然界客观存在的基本规律之一.从物理学发展史看,动量守恒的思想早于牛顿运动定律的发现.动量守恒定律的应用是教学的重点高考的热点.●教学流程设计课前预习安排:1.看教材2.填写【课前自主导学】同学之间可进行讨论⇒步骤1:导入新课,本节教学地位分析⇒步骤2:老师提问,检查预习效果可多提问几个学生⇒步骤3:师生互动完成“探究1”除例1外可再变换命题角度,补充一个例题以拓展学生思路⇓步骤7:完成“探究4”让学生进一步体会建模的思想方法和重要性⇐步骤6:完成“探究3”⇐步骤5:师生互动完成“探究2”方式同完成探究1相同⇐步骤4:让学生完成【迁移应用】,检查完成情况并点评⇓步骤8:指导学生完成【当堂双基达标】,验证学习情况⇒步骤8:先由学生自己总结本节的主要知识,教师点评,安排学生课下完成【课后知能检测】课标解读重点难点1.知道牛顿运动定律和动量守恒定律的关系,能用牛顿运动定律推导动量守恒定律.2.理解动量守恒定律的确切含义和表达式.3.知道什么是反冲运动,了解它在实际中的简单应用.4.了解火箭的飞行原理和主要用途.1.理解并掌握动量守恒定律.(重点)2.知道动量守恒定律的运用条件和适用范围.(重点)3.会用动量守恒定律解决简单的实际问题.(难点)动量守恒定律1.(1)动量守恒定律的内容:一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变.(2)动量守恒定律的成立条件①系统不受外力的作用.②系统受外力作用,但合外力为零.③系统受外力的作用,合外力也不为零,但合外力远小于内力.这种情况严格地说只是动量近似守恒,但却是最常见的情况.(3)动量守恒定律的表达式①p=p′(系统相互作用前的总动量p等于相互作用后的总动量p′).②Δp1=-Δp2(相互作用的两个物体组成的系统,一个物体动量的变化量与另一个物体动量的变化量大小相等、方向相反.)③Δp=0(系统总动量的增量为零).④m1v1+m2v2=m1v1′+m2v2′(相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和).2.思考判断(1)如果系统的机械能守恒,则动量也一定守恒.(×)(2)只要系统内存在摩擦力,动量不可能守恒.(×)(3)只要系统受外力做的功为零,动量就守恒.(×)3.探究交流动量守恒定律可由牛顿运动定律和运动学公式(或动量定理)推导出来,那么二者的适用范围是否一样?【提示】牛顿运动定律适用于宏观物体、低速运动(相对光速而言),而动量守恒定律适用于任何物体,任何运动.反冲运动与火箭1.(1)反冲根据动量守恒定律,一个静止的物体在内力的作用下分裂为两个部分,一部分向某一个方向运动,另一部分向相反方向运动的现象.(2)反冲现象的防止及应用①防止:枪身的反冲、高压水枪的反冲等.②应用:喷灌装置、火箭等.(3)火箭①原理:火箭的飞行应用了反冲的原理,靠喷出气流的反冲作用来获得巨大速度.②影响火箭获得速度大小的因素:一是喷气速度,喷气速度越大火箭能达到的速度越大.二是燃料质量越大,负荷越小,火箭能达到的速度也越大.2.思考判断(1)宇航员利用喷气装置实现太空行走是利用反冲的原理.(√)(2)火箭发射时,其速度大小只与喷出气体的质量有关.(×)3.探究交流假如在月球上建一飞机场,应配置喷气式飞机还是螺旋浆飞机呢?【提示】应配置喷气式飞机.喷气式飞机利用反冲原理,可以在真空中飞行,而螺旋桨飞机是靠转动的螺旋浆与空气的相互作用力飞行的,不能在真空中飞行.两物体相互作用前后总动量是否守恒【问题导思】1.教材用气垫导轨探究动量守恒需要哪些实验器材?2.实验探究的基本步骤有哪些?1.实验器材气垫导轨、滑块(3块)、天平、光电门、数字毫秒表等2.实验步骤(1)将两个质量相等的滑块装上相同的挡光板,放在光滑气垫导轨的中部.两滑块靠在一起,压缩其间的弹簧,并用细线栓住,使滑块处于静止状态.烧断细线,两滑块被弹开并朝相反的方向通过光电门,记录挡光板通过光电门的时间,表示出滑块的速度,求出两滑块的总动量p =mv 1-mv 2,如图1-2-1所示.图1-2-1实验结果:两滑块的总动量p =0.(2)增加一滑块,质量与前两块相同,使弹簧一侧滑块的质量是另一侧的2倍,重复(1)步骤,求出两侧滑块的总动量p =mv 1-2mv 2.实验结果:两侧滑块的总动量p =0.(3)把气垫导轨的一半覆盖上牛皮纸,并用胶带固定后,用两块质量相等的滑块重复(1)步骤,求出滑块的总动量p =mv 1-mv 2.实验结果:两滑块的总动量p ≠0.3.实验结论(1)在光滑气垫导轨上无论两滑块质量是否相等,它们被弹开前的总动量为零,分开后的总动量也为零.(2)两滑块构成的系统受到牛皮纸的摩擦力后,两滑块的总动量发生了变化.在用气垫导轨验证动量守恒的实验中,为了减小误差应该将气垫导轨调整到水平,确保两滑块分开后均做匀速直线运动.图1-2-2(2013·莆田检测)如图1-2-2所示,在实验室用两端带竖直挡板C 、D 的气垫导轨和有固定挡板的质量都是M 的滑块A 、B 做“验证动量守恒定律”的实验,实验步骤如下:(1)把两滑块A 、B 紧贴在一起,在A 上放质量为m 的砝码,置于导轨上,用电动卡销卡住A 、B ,在A 、B 的固定挡板间放入一弹簧,使弹簧在水平方向上处于压缩状态.(2)按下电钮使电动卡销放开,同时启动记录两滑块运动时间的电子计时器,在滑块A 、B 与挡板C 、D 碰撞的同时,电子计时器自动停止计时,记下A 至C 的运动时间t 1和B 至D 的运动时间t 2.(3)将两滑块A 、B 仍置于原位置,重复几次上述实验,并对多次实验记录的t 1、t 2分别取平均值.①在调整气垫导轨时,应注意_____________________________________________. ②应测量的数据还有__________________________________________________. ③只要满足关系式________,即可验证动量守恒.【审题指导】 (1)滑块和气垫导轨的摩擦很小可忽略不计.(2)滑块在气垫导轨上的速度可通过距离和时间计算.【解析】 由于滑块和气垫导轨间的摩擦力很小,可以忽略不计,可认为滑块在导轨上做匀速直线运动,因此两滑块作用后的速度可分别表示为:v A =L 1t 1 ,v B =L 2t 2.(L 1为A 至C 板的距离,L 2为B 至D 板的距离) 若(M +m )L 1t 1=M L 2t 2成立, 则(M +m )v A =mv B 成立,即动量守恒.【答案】 (3)①用水平测量仪使导轨水平②A 至C 板的距离L 1,B 至D 板的距离L 2③(M +m )L 1t 1=M L 2t 21.(2013·琼海检测)某同学设计了一个用打点计时器验证两物体碰撞前后总动量是否守恒的实验:在小车A 的前端粘有橡皮泥,推动小车A 使之做匀速直线运动.然后与原来静止在前方的小车B 相碰并粘合成一体,继续做匀速直线运动,他设计的具体装置如图1-2-3所示.在小车A 后连着纸带,电磁打点计时器所用电源频率为50 Hz ,长木板下垫着小木片用以平衡摩擦力.图1-2-3(1)若已得到打点纸带如图1-2-4所示,并将测得的各计数点间距离标在图上,A 点是运动起始的第一点,则应选________段来计算小车A 的碰前速度,应选________段来计算小车A 和小车B 碰后的共同速度.(以上两空填“AB ”或“BC ”或“CD ”或“DE ”)图1-2-4(2)已测得小车A 的质量m A =0.40 kg ,小车B 的质量m B =0.20 kg ,由以上测量结果可得:碰前m A v A +m B v B =________ kg·m/s;碰后m A v A ′+m B v B ′=________ kg·m/s.并比较碰撞前后两个小车质量与速度的乘积之和是否相等.【解析】 (1)因小车做匀速直线运动,纸带上应取打点均匀的一段来计算速度,碰前BC 段点距相等,碰后DE 段点距相等,故取BC 段、DE 段分别计算碰前小车A 的速度和碰后小车A 和小车B 的共同速度.(2)碰前小车A 的速度v A =S BC T =10.50×10-20.02×5m/s =1.05 m/s ,其动量p =m A v A =0.40×1.05 kg·m/s=0.420 kg·m/s,小车B 的速度为零,动量也为零.碰后小车A 和B 的共同速度v A ′=v B ′=v ′=S DE T =6.95×10-20.02×5m/s =0.695 m/s.碰后总动量p ′=(m A +m B )v ′=(0.40+0.20)×0.695 kg·m/s=0.417 kg·m /s.从上面的计算可知:在实验误差允许的范围内,碰撞前后总动量不变.动量守恒定律的理解 1.光滑水平面上,一小球与另一固定小球相碰并反弹,小球的动量守恒吗?2.光滑水平面上,一小球与另一静止小球相碰,碰后两小球系统动量守恒吗?3.光滑水平面上,一小球与另一小球碰后粘在一起运动系统动量守恒吗?1.研究对象:相互作用的物体组成的系统.2.“总动量保持不变”是指系统在整个过程中任意两个时刻的总动量相等.3.动量守恒定律的“五性”(1)矢量性:定律的表达式是一个矢量式.①该式说明系统的总动量在任意两个时刻不仅大小相等,而且方向也相同.②在求系统的总动量p =p 1+p 2+…时,要按矢量运算法则计算.(2)相对性:动量守恒定律中,系统中各物体在相互作用前后的动量,必须相对于同一惯性系,各物体的速度通常均为对地的速度.(3)条件性:动量守恒是有条件的,应用时一定要首先判断系统是否满足守恒条件. ①系统不受外力或所受外力的矢量和为零,系统的动量守恒.②系统受外力,但在某一方向上合外力为零,则系统在这一方向上动量守恒.(4)同时性:动量守恒定律中p 1、p 2……必须是系统中各物体在相互作用前同一时刻的动量,p 1′、p 2′……必须是系统中各物体在相互作用后同一时刻的动量.(5)普遍性:动量守恒定律不仅适用于两个物体组成的系统,也适用于多个物体组成的系统.不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统.(2012·上海高考)A 、B 两物体在光滑水平地面上沿一直线相向而行,A 质量为5 kg ,速度大小为10 m/s ,B 质量为2 kg ,速度大小为5 m/s ,它们的总动量大小为______ kg·m/s;两者相碰后,A 沿原方向运动,速度大小为4 m/s ,则B 的速度大小为______ m/s.【审题指导】 (1)动量是矢量,运算要规定正方向.(2)根据条件判断是否守恒并列方程求解.【解析】 以A 物体的速度方向为正方向.则v A =10 m/s v B =-5 m/s p =p A +p B =5×10 kg·m/s+2×(-5) kg·m/s=40 kg·m/s 碰撞后,由动量守恒定律得p =m A v A ′+m B v B ′ v B ′=10 m/s ,与A 原来的速度方向相同.【答案】 40 10应用动量守恒定律解题的基本步骤1.分析题意,合理地选取研究对象,明确系统是由哪几个物体组成的.2.分析系统的受力情况,分清内力和外力,判断系统的动量是否守恒.3.确定所研究的作用过程.选取的过程应包括系统的已知状态和未知状态,通常为初态到末态的过程,这样才能列出对解题有用的方程.4.对于物体在相互作用前后运动方向都在一条直线上的问题,设定正方向,各物体的动量方向可以用正、负号表示.5.建立动量守恒方程,代入已知量求解.2.(2013·乌鲁木齐检测)图1-2-5如图1-2-5所示,一人站在静止于冰面的小车上,人与车的总质量M =70 kg ,当它遇到一个质量m =20 kg 、以速度v 0=5 m/s 迎面滑来的木箱后,立即以相对于冰面v ′=2 m/s 的速度逆着木箱原来滑行的方向推出(不计冰面阻力).问小车获得的速度是多大?方向如何?【解析】 以v 0方向为正方向,设推出木箱后小车的速度为v ,由动量守恒定律得mv 0=Mv -mv ′v =m v 0+v ′M =20×5+270m/s =2 m/s 与木箱的初速度v 0方向相同.对反冲的进一步理解 1.反冲运动中物体一定不受外力吗?2.反冲运动中,相互作用的两部分动量守恒吗?3.反冲运动的速度是相互作用的两物体的相对速度吗?1.反冲运动的特点(1)物体的不同部分在内力作用下向相反方向运动.(2)反冲运动中,相互作用的内力一般情况下远大于外力,所以可以用动量守恒定律来处理.(3)反冲运动中,由于有其他形式的能转变为机械能,所以系统的总动能增加.2.讨论反冲运动时应注意的问题(1)相对速度问题:在讨论反冲运动时,有时给出的速度是相互作用的两物体的相对速度.由于动量守恒定律中要求速度为对同一参考系的速度(通常为对地的速度),应先将相对速度转换成对地速度后,再列动量守恒定律的方程.(2)变质量问题:在讨论反冲运动时,还常遇到变质量物体的运动,如在火箭的运动过程中,随着燃料的消耗,火箭本身的质量不断减小,此时必须取火箭本身和在相互作用的短时间内喷出的所有气体为研究对象,取相互作用的这个过程为研究过程来进行研究.1.内力的存在不会影响系统的动量守恒. 2.内力做的功往往会改变系统的总动能.图1-2-6(2012·福建高考)如图1-2-6,质量为M 的小船在静止水面上以速率v 0向右匀速行驶,一质量为m 的救生员站在船尾,相对小船静止.若救生员以相对水面速率v 水平向左跃入水中,则救生员跃出后小船的速率为( )A .v 0+mMv B .v 0-m M vC .v 0+m M (v 0+v )D .v 0+m M (v 0-v ) 【审题指导】 解此题的关键是规定正方向和判断人跳出的速度,由于水静止,相对水面的速度即为相对地的速度.【解析】 以向右为正方向,据动量守恒定律有(M +m )v 0=-mv +Mv ′,解得v ′=v 0+m M(v 0+v ),故选C.【答案】 C3.(2013·江苏高考)如图1-2-7所示,进行太空行走的宇航员A 和B 的质量分别为80 kg 和100 kg ,他们携手远离空间站,相对空间站的速度为0.1 m/s.A 将B 向空间站方向轻推后,A 的速度变为0.2 m/s ,求此时B 的速度大小和方向.图1-2-7【解析】 根据动量守恒定律,(m A +m B )v 0=m A v A +m B v B ,代入数值解得v B =0.02 m/s ,离开空间站方向.综合解题方略——人船模型的分析方法(2013·三亚检测)长为L 、质量为M 的小船停在静水中,一个质量为m 的人站立在船头,若不计水的阻力,在人从船头走到船尾的过程中,船和人对地面的位移各是多少?【规范解答】 选人和船组成的系统为研究对象,因系统在水平方向不受外力,所以水平方向动量守恒,人未走时系统的总动量为零,当人走动时,船同时后退;当人速度为零时,船速度也为零.设某时刻人对地的速度为v 1,船对地的速度为v 2,根据动量守恒得mv 1-Mv 2=0①因为在人从船头走到船尾的整个过程中动量守恒,对①式两边同乘以Δt ,得ms 1-Ms 2=0②②式为人对地的位移和船对地的位移关系.由图所示还可看出:s 1+s 2=L ③联立②③两式得⎩⎪⎨⎪⎧ s 1=M M +m Ls 2=m M +m L 【答案】 船对地的位移为m M +m L 人对地的位移为MM +mL1.“人船模型”问题的特征两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.2.处理“人船模型”问题的关键(1)利用动量守恒定律,确定两物体速度关系,再确定两物体通过的位移的关系.用动量守恒定律求位移的题目大都是系统原来处于静止状态,动量守恒表达式经常写成m 1v 1-m 2v 2=0的形式,式中v 1、v 2是m 1、m 2末状态时的瞬时速率.如果两物体相互作用时间为t ,在这段时间内两物体的位移大小分别为s 1和s 2,则有m 1s 1t -m 2s 2t=0,即m 1s 1-m 2s 2=0.(2)解题时要画出各物体的位移关系草图,找出它们各自相对地面的位移的关系.3.处理“人船模型”问题的两点注意(1)“人船模型”问题中,两物体的运动特点是“人”走“船”行,“人”停“船”停.(2)问题中的“船长”通常理解为“人”相对“船”的位移.而在求解过程中应讨论的是“人”及“船”相对地的位移,即相对于同一参照物的位移【备课资源】(教师用书独具)反冲运动的演示(1)用火箭筒演示拿一个空摩丝瓶,在其底部用大号缝衣针钻一小洞,这样就制成了一个简易的火箭筒.图教1-2-1如图教1-2-1所示,在铁支架的立柱顶端装上顶轴,在旋转臂的两侧各装一只火箭筒,再把旋转系统放在顶轴上.往火箭筒内注入约4 mL的酒精,并在火箭筒下方的棉球上注少量酒精,点燃酒精棉球,片刻火箭筒内的酒精蒸气从尾孔中喷出,并被点燃.这时可以看到火箭旋转起来,带着长长的火舌,并伴随有呼呼的声响.注意棉球上的酒精不要太多,下方的桌上不要放易燃物品.实验完毕,应将筒内剩余的酒精烧尽或倒出.(2)用水火箭演示水火箭用空可乐瓶制作.用一段吸管和透明胶带在瓶上固定一个导向管.瓶口塞一橡皮塞,在橡皮塞上钻一个孔.在塞上固定一只自行车车胎上的进气阀门,并在气门芯内装上小橡皮管(如图教1-2-2).图教1-2-2 实验时,瓶中先注入约13体积的水,用橡皮塞把瓶口塞严.将尼龙线穿过可乐瓶上的导向管,使线的一端拴在门的上框上,另一端拴在板凳腿上,要把线拉直.将瓶的进气阀与打气筒相接,向筒内打气到一定程度时,瓶塞脱开,水从瓶口喷出,瓶向反方向飞去.1.在利用气垫导轨探究碰撞中的不变量时,下列哪些因素可导致实验误差( )A .导轨安放不水平B .小车上挡光片倾斜C .两小车质量不相等D .两小车碰后连在一起【解析】 导轨安放不水平,小车速度将受重力的影响,从而导致实验误差;挡光片倾斜会导致挡光片宽度不等于挡光阶段小车通过的位移,使计算速度出现误差.【答案】 AB2.(2013·海口检测)运送人造地球卫星的火箭开始工作后,火箭做加速运动的原因是( )A .燃料推动空气,空气的反作用力推动火箭B .火箭发动机将燃料燃烧产生的气体向后排出,气体的反作用力推动火箭C .火箭吸入空气,然后向后排出,空气对火箭的反作用力推动火箭D .火箭燃料燃烧发热,加热周围空气,空气膨胀推动火箭【解析】 火箭的工作原理是利用反冲运动,是火箭燃料燃烧产生的高温高压燃气从尾喷管迅速喷出时,使火箭获得反冲速度,故正确答案为B.【答案】 B3.(2012·厦门检测)一个静止的质量为M 的不稳定原子核,当它以速度v 放出一个质量为m 的粒子后,剩余部分的速度为( )A .-vB .-mv /(M -m )C .mv /(M -m )D .-mv /(M +m )【解析】 由动量守恒:mv +(M -m )v ′=0,v ′=-mM -m v ,负号表示与v 的方向相反. 【答案】 B4.(2013·福建高考)将静置在地面上,质量为M (含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( ) A.m M v 0 B.M m v 0C.MM -m v 0 D.m M -m v 0 【解析】 应用动量守恒定律解决本题,注意火箭模型质量的变化.取向下为正方向,由动量守恒定律可得:0=mv 0-(M -m )v ′故v ′=mv 0M -m,选项D 正确. 【答案】 D5.如图1-2-8所示,一质量为M 、长为L 的长方形木板B 放在光滑的水平地面上,其右端放一质量为m 的小木块A (可看成质点),m <M .现以地面为参考系,给A 和B 以大小相等、方向相反的初速度,使A 开始向左运动,B 开始向右运动,最后A 刚好没有滑离B 板.若已知A和B的初速度大小为v0,求它们最后的速度大小和方向.图1-2-8【解析】取水平向右为正方向,设它们最后的共同速度为v,依据动量守恒定律:Mv0-mv0=(M+m)v,解得:v =M-m v0 M+m,方向为水平向右(与木板B方向一致).【答案】M-m v0M+m向右11。
实验验证动量守恒定律一、实验目的验证碰撞中的动量守恒.二、实验原理1.质量为m1和m2的两个小球发生正碰,假设碰前m1运动,m2静止,根据动量守恒定律应有:m1v1=m1v1′+m2v2′.2.因小球从斜槽上滚下后做平抛运动,由平抛运动知识可知,只要小球下落的高度相同,在落地前运动的时间就相同.那么小球的水平速度假设用飞行时间作时间单位,在数值上就等于小球飞出的水平距离.所以只要测出小球的质量及两球碰撞前后飞出的水平距离,代入公式,即m1OP=m1OM+m2ON.假设在实验误差允许X围内成立,就验证了两小球组成的系统碰撞前后总动量守恒.式中OP、OM和ON的意义如下图.三、实验器材斜槽,大小相等质量不同的小钢球两个,重垂线一条,白纸,复写纸,天平一台,刻度尺,圆规,三角板.四、实验步骤1.用天平测出两小球的质量,并选定质量大的小球为碰撞球.2.按照图所示安装实验装置,调整固定斜槽,调整时应使斜槽末端水平.3.白纸在下,复写纸在上且在适当位置铺放好,记下重垂线所指的位置O.4.不放被碰小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次,用圆规画尽量小的圆把所有的小球落点圈在里面.圆心P就是小球落点的平均位置.5.把被碰小球放在槽口上,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤4的方法,标出碰后入射小球落点的平均位置M和被碰小球落点的平均位置N,如下图.6.连接ON,测量线段OP、OM、ON的长度,将测量数据填入表中,最后代入m1OP=m1OM +m2ON,看在误差允许的X围内是否成立.五、须知1.斜槽轨道末端的切线必须水平,判断是否水平的方法是将小球放在斜槽轨道平直部分任一位置,假设小球均能保持静止,那么说明斜槽末端已水平.2.入射小球每次都必须从斜槽轨道同一位置由静止释放,可在斜槽适当高度处固定一挡板,使小球靠着挡板,然后释放小球.3.入射球的质量应大于被碰球的质量.4.实验过程中确保实验桌、斜槽、记录所用的白纸的位置要始终保持不变.5.在计算时一定要注意m1、m2与OP、OM和ON的对应关系.6.应尽可能的在斜槽较高的地方由静止释放入射小球.六、误差分析1.小球落点位置确定的是否准确是产生误差的一个原因,因此在确定落点位置时,应严格按步骤中的4、5去做.2.入射小球每次是否从同一高度无初速度滑下是产生误差的另一原因.3.两球的碰撞假设不是对心正碰那么会产生误差.4.线段长度的测量产生误差.5.入射小球释放的高度太低,两球碰撞时内力较小也会产生误差.实验的操作与数据处理如图,用“碰撞实验器〞可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系.(1)实验中,直接测定小球碰撞前后的速度是不容易的,但是,可以通过仅测量________(填选项前的序号),间接地解决这个问题.A .小球开始释放高度hB .小球抛出点距地面的高度HC .小球做平抛运动的射程(2)图中O 点是小球抛出点在地面上的垂直投影.实验时,先让入射球m 1多次从斜轨上S 位置静止释放,找到其平均落地点的位置P ,测量平抛射程OP .然后,把被碰小球m 2静置于轨道的水平部分,再将入射球m 1从斜轨上S 位置静止释放,与小球m 2相碰,并多次重复.接下来要完成的必要步骤是________.(填选项前的符号)A .用天平测量两个小球的质量m 1、m 2B .测量小球m 1开始释放的高度hC .测量抛出点距地面的高度HD .分别找到m 1、m 2相碰后平均落地点的位置M 、NE .测量平抛射程OM 、ON(3)假设两球相碰前后的动量守恒,其表达式可表示为______________________________(用(2)中测量的量表示);假设碰撞是弹性碰撞,那么还应满足的表达式为________________(用(2)中测量的量表示).(4)经测定,m 1=45.0 g ,m 2=7.5 g ,小球落地点的平均位置距O 点的距离如下图.碰撞前、后m 1的动量分别为p 1与p 1′,那么p 1∶p 1′=________∶11;假设碰撞结束时m 2的动量为p 2′,那么p 1′∶ p 2′=11∶________.实验结果说明,碰撞前、后总动量的比值p 1p 1′+p 2′为________. (5)有同学认为,在上述实验中仅更换两个小球的材质,其他条件不变,可以使被碰小球做平抛运动的射程增大,请你用(4)中的数据,分析和计算出被碰小球m 2平抛运动射程ON 的最大值为________cm .[思路点拨] 此题可根据平抛运动、能量守恒定律等知识求解.[解析] (1)该实验是验证动量守恒定律,也就是验证两球碰撞前后动量是否相等,即验证m 1v 1=m 1v 1′+m 2v 2′,由题图中装置可以看出,不放被碰小球m 2时,m 1从抛出点下落高度与放上m 2两球相碰后下落的高度H 相同,即在空中做平抛运动的下落时间t 相同,故有v 1=OP t ,v 1′=OM t ,v 2′=ON t,代入m 1v 1=m 1v 1′+m 2v 2′,可得m 1·OP =m 1·OM +m 2·ON ,只需验证该式成立即可,在实验中不需测出速度,只需测出小球做平抛运动的水平位移即可. (2)需先找出落地点才能测量小球的水平位移,测量小球的质量无先后之分. (3)假设是弹性碰撞,还应满足能量守恒, 即12m 1v 21=12m 1v 1′2+12m 2v 2′2, 即m 1·OP 2=m 1·OM 2+m 2·ON 2.(4)p 1p 1′=m 1·OP m 1·OM =OP OM =44.835.2=14∶11. p 1′p 2′=m 1·OM m 2·ON =45.0×35.207.5×55.68=11∶2.9. p 1p 1′+p 2′=m 1·OP m 1·OM +m 2·ON=45.0×44.8045.0×35.20+7.5×55.68≈1(1~1.01均可). (5)当两球发生弹性碰撞时,碰后m 2的速度最大,射程最大,由m 1·OP =m 1·OM +m 2·ON 与m 1·OP 2=m 1·OM 2+m 2·ON 2可解出ON 的最大值为76.8 cm .[答案] (1)C (2)ADE 或DEA 或DAE(3)m 1·OM +m 2·ON =m 1·OPm 1·OM 2+m 2·ON 2=m 1·OP 2 (4)14 2.9 1(1~1.01均可)(5)76.8实验的改进与创新如下图为气垫导轨上两个滑块A 、B 相互作用后运动过程的频闪照片,频闪的频率为10 Hz .开始时两个滑块静止,它们之间有一根被压缩的轻弹簧,滑块用绳子连接,绳子烧断后,两个滑块向相反方向运动.滑块A 、B 的质量分别为200 g 、300 g ,根据照片记录的信息,A 、B 离开弹簧后,A 滑块做________运动,其速度大小为________m /s ,本实验中得出的结论是________________________________________________________________________________________________________________________________________________.[解析] 由题图可知,A 、B 离开弹簧后,均做匀速直线运动,开始时v A =0,v B =0,A 、B 被弹开后,v A ′=0.09 m /s ,v B ′=0.06 m /s ,m A v A ′=0.2×0.09 kg ·m /s =0.018 kg ·m /sm B v B ′=0.3×0.06 kg ·m /s =0.018 kg ·m /s 由此可得:m A v A ′=m B v B ′,即0=m B v B ′-m A v A ′结论:两滑块组成的系统在相互作用过程中质量与速度乘积的矢量和守恒.[答案] 匀速直线 0.09 两滑块组成的系统在相互作用过程中质量与速度乘积的矢量和守恒1.(多项选择)在利用气垫导轨探究碰撞中的不变量实验中,哪些因素可导致实验误差( )A .导轨安放不水平B .小车上挡光板倾斜C .两小车质量不相等D .两小车碰后连在一起解析:选AB .选项A 中,导轨不水平,小车速度将受重力的影响,从而导致实验误差;选项B 中,挡光板倾斜会导致挡光板宽度不等于挡光阶段小车通过的位移,使计算速度出现误差,所以答案应为A 、B .2.(多项选择)在做利用悬线悬挂等大的小球探究碰撞中的不变量的实验中,以下说法正确的选项是( )A .悬挂两球的细线长度要适当且等长B .由静止释放小球以便较准确地计算小球碰前的速度C .两小球必须都是刚性球且质量相同D .两小球碰后可以粘合在一起共同运动解析:选ABD .两线等长能保证两球正碰,也就是对心碰撞,以减小实验误差,所以A正确.由于计算碰撞前速度时用到了mgh =12mv 2-0,即初速度为0时碰前的速度为v =2gh ,B 正确.本实验中对小球的材质性能无要求,C 错误.两球正碰后,有各种运动情况,所以D 正确.3.(多项选择)在用打点计时器做“探究碰撞中的不变量〞实验时,以下哪些操作是正确的( )A .相互作用的两车上,一个装上撞针,一个装上橡皮泥,是为了改变两车的质量B .相互作用的两车上,一个装上撞针,一个装上橡皮泥,是为了碰撞后粘在一起C .先接通打点计时器的电源,再释放拖动纸带的小车D .先释放拖动纸带的小车,再接通打点计时器的电源 解析:选BC .车的质量可以用天平测量,没有必要一个用撞针而另一个用橡皮泥配重.这样做的目的是为了碰撞后两车粘在一起有共同速度,选项B 正确;打点计时器的使用原那么是先接通电源,C 项正确.4.在利用平抛运动做“探究碰撞中的不变量〞实验中,安装斜槽轨道时,应让斜槽末端的切线保持水平,这样做的目的是( )A .入射球得到较大的速度B .入射球与被碰球对心碰撞后速度均为水平方向C .入射球与被碰球碰撞时动能无损失D .入射球与被碰球碰撞后均能从同一高度飞出解析:选B .实验中小球能水平飞出是实验成功的关键,只有这样才能使两个小球在空中运动时间相等.5.“探究碰撞中的不变量〞的实验中,入射小球质量m 1=15 g ,原来静止的被碰小球质量m 2=10 g ,由实验测得它们在碰撞前后的x -t 图象如下图,由图可知,入射小球碰撞前的m 1v 1是________,入射小球碰撞后的m 1v ′1是________,被碰小球碰撞后的m 2v ′2是________.由此得出结论________________________________________________________________________.解析:由题图可知碰撞前m 1的速度大小v 1=0.20.2m/s =1 m/s 故碰撞前的m 1v 1=0.015×1 kg ·m/s =0.015 kg ·m/s碰撞后m 1的速度大小v ′1=0.3-0.20.4-0.2m/s =0.5 m/s m 2的速度大小v ′2=0.35-0.20.4-0.2m/s =0.75 m/s 故m 1v ′1=0.015×0.5 kg ·m/s =0.007 5 kg ·m/sm2v′2=0.01×0.75 kg·m/s=0.007 5 kg·m/s可知m1v1=m1v′1+m2v′2.答案:0.015 kg·m/s 0.007 5 kg·m/s0.007 5 kg·m/s 碰撞中mv的矢量和是守恒的量6.用如下图的装置可以完成“探究碰撞中的不变量〞实验.(1)假设实验中选取的A、B两球半径相同,为了使A、B发生一维碰撞,应使两球悬线长度________,悬点O1、O2之间的距离等于________.(2)假设A、B两球的半径不相同,利用本装置能否完成实验?如果你认为能完成,请说明如何调节?解析:(1)为了保证一维碰撞,碰撞点应与两球在同一条水平线上.故两球悬线长度相等,O1、O2之间的距离等于球的直径.(2)如果两球的半径不相等,也可完成实验.调整装置时,应使O1、O2之间的距离等于两球的半径之和,两球静止时,球心在同一水平高度上.答案:(1)相等球的直径(2)见解析7.把两个大小相同、质量不等的金属球用细线连接起来,中间夹一被压缩了的轻弹簧,置于摩擦可以忽略不计的水平桌面上,如下图,现烧断细线,观察两球的运动情况,进行必要的测量,探究物体间发生相互作用时的不变量.测量过程中:(1)还必须添加的器材有________________________________________________________________________.(2)需直接测量的数据是________________________________________________________________________.解析:两球被弹开后,分别以不同的速度离开桌面做平抛运动,两球做平抛运动的时间相等,均为t=2hg(h为桌面离地的高度).根据平抛运动规律,由两球落地点距抛出点的水平距离x=v·t,知两物体水平速度之比等于它们的射程之比,即v1∶v2=x1∶x2,因此本实验中只需测量x1、x2即可.测量x1、x2时需准确记下两球落地点的位置,故需要直尺、纸、复写纸、图钉、细线、铅锤和木板等.假设要探究m1x1=m2x2或m1x21=m2x22或x1m1=x2m2是否成立,还需要用天平测量两球的质量m1、m2.答案:(1)直尺、纸、复写纸、图钉、细线、铅锤、木板、天平(2)两球的质量m1、m2以及它们做平抛运动的射程x1、x28.某同学设计了一个用打点计时器探究碰撞过程中不变量的实验:在小车甲的前端粘有橡皮泥,推动小车甲使之做匀速直线运动.然后与原来静止在前方的小车乙相碰并粘合成一体,而后两车继续做匀速直线运动,他设计的具体装置如下图.在小车甲后连着纸带,打点计时器打点频率为50 Hz,长木板下垫着小木片用以平衡摩擦力.(1)假设已得到打点纸带如下图,并测得各计数点间距并标在图上,A为运动起始的第一点,那么应选________段计算小车甲的碰前速度,应选________段来计算小车甲和乙碰后的共同速度(以上两空选填“AB〞“BC〞“CD〞或“DE〞).(2)已测得小车甲的质量m甲=0.40 kg,小车乙的质量m乙=0.20 kg,由以上测量结果可得:碰前m甲v甲+m乙v乙=________kg·m/s;碰后m甲v′甲+m乙v′乙=________kg·m/s.(3)通过计算得出的结论是什么?________________________________________________________________________ ________________________________________________________________________ 解析:(1)观察打点计时器打出的纸带,点迹均匀的阶段BC应为小车甲与乙碰前的阶段,CD段点迹不均匀,故CD应为碰撞阶段,甲、乙碰撞后一起匀速直线运动,打出间距均匀的点,故应选DE段计算碰后共同的速度.(2)v甲=BCΔt=1.05 m/s,v′=DEΔt=0.695 m/sm甲v甲+m乙v乙=0.420 kg·m/s碰后m甲v′甲+m乙v′乙=(m甲+m乙)v′=0.60×0.695 kg·m/s=0.417 kg·m/s.(3)在误差允许X围内,碰撞前后两个小车的mv之和是相等的.答案:(1)BCDE(2)0.420 0.417(3)在误差允许X围内,碰撞前后两个小车的mv之和是相等的。
第1节动量定理(教师用书独具)知识与技能1.理解动量的概念及动量变化量的计算.2.知道冲量的定义,知道冲量和动量变化的关系.3.理解动量定理的确切含义,会用动量定理解释有关现象.过程与方法1.通过生活中实例分析体会动量在描述物体运动特征中的作用.2.体会冲量和动量变化的关系,掌握理论推导在物理学中的作用.情感态度和价值观1.通过实验现象的分析,提高对物理学习的好奇心,初步体会物理学与生活的关系.2.体验物理定理中理论和实验的统一性,培养勇于探索的科学精神.1.理解动量的概念;知道动量和动量的变化量均为矢量;会计算一维情况下的动量的变化量.2.知道冲量的概念,知道冲量是矢量.3.理解动量定理的确切含义,能从牛顿运动定律和运动学方程推导其表达式,并应用动量定理解释生活中的有关现象和处理有关问题.4.渗透物理学研究方法的教育,培养学生推理能力和理论联系实际的能力.●教学地位本节课在分析汽车刹车效果的基础上引入动量的概念,并进一步通过实例提出动量的变化以及动量变化的计算方法,加深了对动量矢量性的认识.动量定理是一个非常重要的物理规律,表示力在一段时间内连续作用的积累效果与物体动量变化之间的关系,教材中虽是在恒力作用情况下由牛顿第二定律和运动学方程推导的,但动量定理不仅适用于恒力,也适用于变力情形.正因为如此,动量定理在实际中有广泛的应用,尤其在解决教材中例举的碰撞、缓冲类问题时,动量定理比牛顿运动定律方便的多.本节教学中应通过演示实验和学生实验,激发学生学习的兴趣,通过运用动量定理解释现象和处理有关问题,培养学生理论联系实际的能力.(教师用书独具)●新课导入建议情景导入用一条细线悬挂着一个重物,把重物拿到悬挂点附近,然后释放,重物可以把细线拉断.如果在细线上端拴一段橡皮筋,再把重物拿到悬挂点附近释放,细线就不会被拉断了(如图教1-1-1所示).你想知道这是什么道理吗?请跟我进入本节课的学习.图教1-1-1●教学流程设计课前预习安排:1.看教材2.填写【课前自主导学】同学之间可进行讨论⇒步骤1:导入新课,本节教学地位分析⇒步骤2:老师提问,检查预习效果可多提问几个学生⇒步骤3:师生互动完成“探究1”除例1外可再变换命题角度,补充一个例题以拓展学生思路⇓步骤7:完成“探究4”重在分析冲量问题中平均作用力的计算方法⇐步骤6:完成“探究3”重在讲解规律方法技巧⇐步骤5:师生互动完成“探究2”方式同完成探究1相同⇐步骤4:让学生完成【迁移应用】,检查完成情况并点评⇓步骤8:指导学生完成【当堂双基达标】,验证学习情况⇒步骤9:先由学生自己总结本节的主要知识,教师点评,安排学生课下完成【课后知能检测】课标解读重点难点1.理解动量、冲量的概念,知道动量、冲量是矢量.2.知道动量的变化量是矢量,会正确计算一维的动量变化量.3.理解动量定理的确切含义,掌握其表达式.4.会用动量定理解释碰撞、缓冲等现象.1.对动量、冲量概念的理解.(重点)2.对动量定理的理解和应用.(重点)3.对冲量、动量、动量变化量的矢量性的理解.(难点)4.应用动量定理分析和解决实际问题.(难点)动量及动量的变化1.(1)动量①定义:运动物体的质量和速度的乘积.②公式:p=mv.③单位:动量的单位是kg·m/s.④矢量性:动量是矢量,它的方向与物体运动速度的方向相同,动量运算服从平行四边形定则.(2)动量的变化量①定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=mv2-mv1(矢量式).②计算:动量始终保持在一条直线上时,首先选定一个正方向,与正方向相同的动量取为正,与正方向相反的动量取为负,由此可将矢量运算简化为代数运算(此时的正、负号仅代表方向,不代表大小). 2.思考判断 (1)动量大的物体惯性一定大.(×)(2)动量大的物体运动一定快.(×)(3)动量相同的物体,运动方向一定相同.(√)3.探究交流动量和动能都是由质量和速度定义的物理量,两者间有什么不同?【提示】 动量是矢量,动能是标量,动量和动能分别从不同的角度描述了物体的运动效果.动量定理 1.基本知识(1)冲量①概念:力和力的作用时间的乘积.②公式:I =Ft .③单位:冲量的单位是N·s .(2)动量定理①内容:物体所受合外力的冲量等于物体的动量变化.②公式:I =Δp .③力与动量的关系:F =mv 2-mv 1t,即作用在物体上的合外力等于物体动量的变化率. 2.思考判断(1)物体动量的变化量越大,物体受到的作用力越大.(×)(2)物体动量变化量一定时,力作用时间越短,作用力越大.(√)(3)物体动量变化量一定时,力的大小与作用时间无关.(×)3.探究交流做匀速圆周运动的物体的向心力,在物体运动一个周期内的冲量能用冲量的定义式求解吗?为什么?碰撞与缓冲的实例分析 1.(1)碰撞时可产生冲击力,利用这种冲击力就要设法缩短作用力的作用时间.(2)要防止冲击力带来的危害,就要延长作用力的作用时间.2.思考判断(1)冲床冲压工件是利用碰撞时产生的冲击力.(√)(2)开车时系安全带是利用冲击力.(×)3.探究交流在进行跳高比赛时,为什么要放上很厚的海绵垫子?【提示】 人落到海绵垫子上时,可经过较长的时间使速度减小为零,在动量变化相同的情况下,人受到的冲力减小,对运动员起到保护作用.正确理解动量及动量的变化1.研究物体的动量及动量变化时,为何要选取正方向?2.影响动量的因素有哪些?3.物体运动的速度发生变化时,动量一定变化吗?1.动量的瞬时性通常说物体的动量是物体在某一时刻或某一位置的动量,动量的大小可用p =mv 表示.2.动量的矢量性动量的方向与物体的瞬时速度的方向相同.有关动量的运算,如果物体在一条直线上运动,则选定一个正方向后,动量的矢量运算就可以转化为代数运算了.3.动量的相对性物体的动量与参考系的选择有关.选择不同的参考系时,同一物体的动量可能不同,通常在不说明参考系的情况下,物体的动量是指物体相对地面的动量.4.动量是矢量,动量的变化量也是矢量.Δp =p 2-p 1为矢量表达式,当p 2、p 1在同一直线上时,可规定正方向,将矢量运算转化为代数运算;当p 2、p 1不在同一直线上时,应依据平行四边形定则运算.质量相等的A 、B 两个物体,沿着倾角分别是α和β的两个光滑的固定斜面,由静止从同一高度h 2下滑到同样的另一高度h 1,如图1-1-1所示,则A 、B 两物体( )图1-1-1A .滑到h 1高度时的动量相等B .滑到h 1高度时的动能相等C .由h 2滑到h 1的过程中物体动量变化相等D .由h 2滑到h 1的过程中物体动能变化相等【审题指导】 (1)两物体下滑过程中,机械能守恒,可判断滑下时的速度.(2)动量是矢量,考虑大小和方向,动能是标量只考虑其大小.【解析】 两物体由h 2下滑到h 1高度的过程中,机械能守恒,mg (h 2-h 1)=12mv 2,v =2g h 2-h 1,物体下滑到h 1处时,速度的大小相等,由于α不等于β,速度的方向不同,由此可判断,物体在h 1高度处动能相同,动量不相同.物体运动过程中动量的变化量不同,而物体动能的变化量相等.【答案】 BD1.(2013·福州一中检测)质量为m =2 kg 的物体以初速度v 0=3 m/s 水平抛出,求物体抛出后0.4 s 末时的动量(取g =10 m/s 2).【解析】 由平抛运动规律可知,物体抛出0.4 s 末时的速度大小为v =v 20+g 2t 2=32+42 m/s =5 m/s.其方向与水平方向夹角为θ,则 tan =gt v 0=43,得θ=53°所以p =mv =2×5 kg·m/s =10 kg·m/s,方向与水平方向成53°角.冲量的理解及应用 1.物体受力越大,所受力的冲量越大吗?2.力对物体的作用时间越长,冲量越大吗?3.两个力的冲量大小相等时,两个力的冲量就相同吗?1.冲量的理解(1)冲量的绝对性.由于力和时间均与参考系无关,所以力的冲量也与参考系的选择无关.(2)冲量是矢量.冲量的运算服从平行四边形定则,合冲量等于各外力的冲量的矢量和,若整个过程中,不同阶段受力不同,则合冲量为各阶段冲量的矢量和.(3)冲量是过程量,它是力在一段时间内的积累,它取决于力和时间这两个因素.所以求冲量时一定要明确所求的是哪一个力在哪一段时间内的冲量.(4)冲量的单位:在国际单位制中,力F 的单位是N ,时间t 的单位是s ,所以冲量的单位是N·s.冲量与动量的单位关系是:1 N·s=1 kg·m/s,但要区别使用.2.冲量的计算(1)恒力的冲量公式I =Ft 适用于计算某个恒力的冲量,这时冲量的数值等于力与作用时间的乘积,冲量的方向与恒力方向一致.若力为同一方向均匀变化的力,该力的冲量可以用平均力计算;若力为一般变力,则不能直接计算冲量.图1-1-2(2)变力的冲量①变力的冲量通常可利用动量定理I =Δp 求解.②可用图象法计算,如图1-1-2所示,若某一力方向恒定不变,那么在F -t 图象中,图中阴影部分的面积就表示力在时间Δt =t 2-t 1内的冲量.1.判断两个力的冲量是否相同,要看这两个力冲量的大小是否相等和方向是否相同,缺一不可.2.力对物体有冲量时,不一定对物体做功;力对物体做功时,一定对物体有冲量.图1-1-3如图1-1-3所示,质量为2 kg 的物体沿倾角为30°,高为5 m 的光滑斜面由静止从顶端下滑到底端的过程中,g 取10 m/s 2,求:(1)重力的冲量;(2)支持力的冲量;(3)合力的冲量.【审题指导】 (1)分析物体的受力情况,确定各力的大小和方向.(2)确定物体在斜面上运动的时间.(3)根据公式求各力及合力的冲量.【解析】 由于物体下滑过程中各个力均为恒力,所以只要求出物体下滑的时间,便可以用公式I =Ft 逐个求出.由牛顿第二定律得:a =mg sin θm=g sin θ=5 m/s 2 由x =12at 2,得t =2x a =2h g sin 2θ=2 s 重力的冲量为I G =mgt =2×10×2 N·s=40 N·s,方向竖直向下.支持力的冲量为I N =F N t =mg cos θt =20 3 N·s,方向垂直于斜面向上.合力的冲量为I 合=F 合t =mg sin θt =20 N·s,方向沿斜面向下.【答案】 (1)40 N·s,方向竖直向下(2)20 3 N·s,方向垂直于斜面向上(3)20 N·s,方向沿斜面向下恒力冲量的计算技巧1.某个力的冲量:仅由该力的大小和作用时间共同决定,与其他力是否存在及物体的运动状态无关.例如,一个物体受几个恒力作用处于静止或匀速直线运动状态,其中每一个力的冲量均不为零.2.求合冲量(1)如果是一维情形,可以转化为代数和,如果不在一条直线上,求合冲量遵循平行四边形定则或用正交分解法求出.(2)两种方法:可分别求每一个力的冲量,再求各冲量的矢量和,I合=F1t1+F2t2+F3t3+…如果各力的作用时间相同,也可以先求合力,再用I合=F合t求解.2.物体受到一随时间变化的外力作用,外力随时间变化的规律为F=(10+5t) N,则该力在2 s内的冲量为________.【解析】由题意知,外力F随时间t均匀变化,因此可以认为2 s内物体所受外力的平均值为F=10+202N=15 N.再根据冲量的定义式,可求得外力在2 s内的冲量为I=Ft=15×2 N·s=30 N·s.【答案】30 N·s动量定理的理解及应用【问题导思】1.动量定理中的冲量是某一个力的冲量吗?2.动量定理的表达式是矢量式还是标量式?3.动量定理只适用于恒力情况吗?1.动量定理的理解(1)动量定理反映了合外力的冲量与动量变化量之间的因果关系,即合外力的冲量是原因,物体的动量变化量是结果.(2)动量定理中的冲量是合外力的冲量,而不是某一个力的冲量.它可以是合力的冲量,可以是各力冲量的矢量和,也可以是外力在不同阶段冲量的矢量和.(3)动量定理表达式是矢量式,等号包含了大小相等、方向相同两方面的含义.(4)动量定理具有普遍性,即不论物体的运动轨迹是直线还是曲线,作用力不论是恒力还是变力,几个力作用的时间不论是相同还是不同,动量定理都适用.2.定性解释一些物理现象(1)在动量变化一定的情况下,如果需要增大作用力,必须缩短作用时间;(2)在动量变化一定的情况下,如果需要减小作用力,必须延长作用时间——缓冲作用.在应用动量定理解题时,一定要对物体认真进行受力分析,不可有力的遗漏;建立方程时要先选定正方向.对于变力的冲量,往往通过动量定理来计算,只有当相互作用时间Δt 极短时,且相互作用力远大于重力时,才可舍去重力.(2013·宁德检测)质量为0.5 kg的弹性小球,从1.25 m高处自由下落,与地板碰撞后回跳高度为0.8 m,设碰撞时间为0.1 s,g取10 m/s2,求小球对地板的平均冲力.【审题指导】(1)选好研究对象,分析求解碰前碰后的速度.(2)规定正方向,分析对象的受力情况,列方程求解.【解析】取小球为研究对象.根据物体做自由落体和竖直上抛运动,可知碰撞前的速度v 1=2gh 1=5 m/s 方向向下.碰撞后的速度v 2=2gh 2=4 m/s方向向上.碰撞时小球受力情况如图所示,取竖直向上为正方向,根据动量定理(N -mg )t =mv 2-mv 1则N =mv 2-mv 1t +mg =0.5×[4--5]0.1N +0.5×10 N=50 N 由牛顿第三定律可知,小球对地板的平均冲力大小为50 N ,方向竖直向下.【答案】 50 N ,方向竖起向下应用动量定理解题的一般步骤1.选定研究对象,明确运动过程.2.进行受力分析和运动的初、末状态分析.3.选定正方向,根据动量定理列方程求解.3.(2013·青岛二中检测)质量为m 的钢球自高处落下,落地瞬间速率为v 1,竖直向上弹回,碰撞时间极短,离地的速率为v 2,钢球受到合力的冲量的方向和大小为( )A .向上,m (v 1-v 2)B .向下,m (v 1-v 2)C .向下,m (v 1+v 2)D .向上,m (v 1+v 2)【解析】 取方向向上为正,则p 2=mv 2,p 1=-mv 1Δp =p 2-p 1=mv 2-(-mv 1)=m (v 1+v 2)据动量定理,I =Δp =m (v 1+v 2)方向竖直向上,故选D.综合解题方略——动量定理在实际问题中的应用一辆轿车强行超车时,与另一辆迎面驶来的轿车相撞,两车相撞后,车身因相互挤压皆缩短了0.5 m ,根据测算,两车相撞前速度约为30 m/s.(1)试求车祸中车内质量约60 kg 的人受到的平均冲力是多大?(2)若此人系有安全带,安全带在车碰撞过程中与人体的作用时间是 1 s ,求这时人体受到的平均冲力为多大?【规范解答】 (1)两车相撞时认为人与车一起做匀减速运动直到停止,位移为0.5 m .设运动的时间为t ,根据s =v 02t ,得t =2s v 0=130s.根据动量定理得Ft =Δp =mv 0解得F=mv 0t=60×30130 N =5.4×104 N. (2)若人系有安全带,则F ′=mv 0t ′=60×301N =1.8×103 N. 【答案】 (1)5.4×104 N (2)1.8×103 N冲量问题中平均作用力的计算1.对于大小、方向都不变的恒力,它们的冲量可以用I =Ft 计算.冲量的方向和恒力F 的方向相同,进一步可根据恒力的冲量确定物体动量变化的大小和方向.2.若F 是变力,但在某段时间内方向不变,大小随时间均匀变化,可用平均力F =F 0+F t 2通过I =Ft 求出在时间t 内的冲量.3.若F 的大小、方向都随时间发生变化,或虽然F 的方向不变,但大小不随时间均匀变化,可根据动量定理I =Δp ,通过求Δp 间接求出变力的冲量.【备课资源】(教师用书独具)动量和体育运动在许多体育运动中,人们力图最大限度地转移动量.例如在拳击中,把动量传递给敌手时,单纯伸臂一击远不如身体一起运动打出去的拳头有效.但是在日本拳术中动量的转移却常常不是依靠整个身体的运动而是靠四肢的高速运动来实现的.接触式运动(contact sports)并不是动量转移在其中起重要作用的唯一领域.例如,铅球运动员的基本目的就是要把整个身体的质量的低速运动转换成小球的高速运动(图教1-1-2).在球类活动中动量也起着重要的作用.铅球运动员的动作过程.在理想情况下,当把球刚推出去时身体的部分动量很小,身体的动量都转移给了铅球.图教1-1-2下表列出了在各种球类运动中测量到的优秀运动员的典型速度和时间.击球器是用采击球的器械,例如棒球棍,网球拍,或是脚.要想利用冲量和动量并由这些数据中得出有用的信息时,我们必须搞清楚击球器的质量,因而其动量并不总能算得十分精确。