浙教版七年级下数学《第四章因式分解》单元检测试卷含答案
- 格式:pdf
- 大小:92.61 KB
- 文档页数:3
第4章 测试卷一、选择题(每题3分,共30分)1.下列各式从左到右的变形中,是因式分解的为( )A .x (a -b )=ax -bxB .x 2-1+y 2=(x -1)(x +1)+y 2C .x 2-1=(x +1)(x -1)D .x 2+1=x ⎝ ⎛⎭⎪⎫x +1x 2.下列四个多项式,能因式分解的是( )A .a -1B .a 2+1C .x 2-4yD .x 2-6x +93.下列因式分解中,正确的是( )A .x 2-4y 2=(x -4y )(x +4y )B .ax +ay +a =a (x +y )C .x 2+2x -1=(x -1)2D.14x 2+2x +4=⎝ ⎛⎭⎪⎫12x +22 4.因式分解x 3-2x 2+x 正确的是( )A .(x -1)2B .x (x -1)2C .x (x 2-2x +1)D .x (x +1)25.多项式①16x 2-x ;②(x -1)2-4(x -1);③(x +1)2-4x (x +1)+4x 2;④-4x 2-1+4x ,分解因式后,结果中含有相同因式的是( )A .①和②B .③和④C .①和④D .②和③6.若多项式x 2+mx -28可因式分解为(x -4)(x +7),则m 的值为( )A .-3B .11C .-11D .37.已知a +b =2,则a 2-b 2+4b 的值是( )A .2B .3C .4D .68.已知三角形ABC 的三边长为a ,b ,c ,且满足a 2+b 2+c 2=ab +ac +bc ,则三角形ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形9.不论x ,y 为什么实数,代数式x 2+y 2+2x -4y +7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数10.如图,阴影部分是边长为a 的大正方形中剪去一个边长为b 的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列3种割拼方法,其中能够验证平方差公式的是( )A .①②B .②③C .①③D .①②③二、填空题(每题3分,共24分)11.因式分解:a 3-ab 2=______________.12.一个正方形的面积为x 2+4x +4(x >0),则它的边长为________.13.若m -n =-2,则m 2+n 22-mn 的值是________.14.两名同学将同一个二次三项式分解因式,甲因看错了一次项系数而分解成(x +1)(x +9);乙因看错了常数项而分解成(x -2)(x -4),则将原多项式因式分解后的正确结果应该是________.15.如果x 2+kx +64是一个整式的平方,那么常数k 的值是________.16.已知P =3xy -8x +1,Q =x -2xy -2,当x ≠0时,3P -2Q =7恒成立,则y=________.17.如图是两邻边长分别为a ,b 的长方形,它的周长为14,面积为10,则a 2b +ab 2的值为________.18.如果对于大于1的整数w,存在两个正整数x,y,使得w=x2-y2,那么这个数w叫做智慧数.把所有的智慧数按从小到大排列,那么第2 016个智慧数是________.三、解答题(20题4分,19,21,22,23题每题8分,24题10分,共46分) 19.分解因式:(1)a2b-abc; (2)3a(x-y)+9(y-x);(3)(2a-b)2+8ab; (4)(m2-m)2+12(m2-m)+116.20.计算:(1)29×20.18+72×20.18+13×20.18-14×20.18;(2)1002-992+982-972+…+42-32+22-12. 21.先因式分解,再求值:(1)4a2(x+7)-3(x+7),其中a=-5,x=3;(2)(2x-3y)2-(2x+3y)2,其中x=16,y=18.22.已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.23.已知a,b是一个等腰三角形的两边长,且满足a2+b2-4a-6b+13=0,求这个等腰三角形的周长.24.阅读下列材料,然后解答问题:分解因式:x3+3x2-4.解答:把x=1代入多项式x3+3x2-4,发现此多项式的值为0,由此确定多项式x3+3x2-4中有因式(x-1),于是可设x3+3x2-4=(x-1)(x2+mx+n),分别求出m,n的值,再代入x3+3x2-4=(x-1)(x2+mx+n),就容易分解多项式x3+3x2-4.这种分解因式的方法叫“试根法”.(1)求上述式子中m,n的值;(2)请你用“试根法”分解因式:x3+x2-16x-16.答案一、1.C 2.D 3.D 4.B 5.D 6.D7.C 点拨:a 2-b 2+4b =(a +b )(a -b )+4b =2(a -b )+4b =2a +2b =2(a +b )=4.8.D 9.A10.D 点拨:图①中,左阴影S =a 2-b 2,右阴影S =(a +b )(a -b ),故能验证.图②中,左阴影S =a 2-b 2,右阴影S =12(2b +2a )(a -b )=(a +b )(a -b ),故能验证.图③中,左阴影S =a 2-b 2,右阴影S =(a +b )(a -b ),故能验证.二、11.a (a +b )(a -b )12.x +213.2 点拨:m 2+n 22-mn =m 2+n 2-2mn 2=(m -n )22=(-2)22=2.14.(x -3)215.±1616.2 点拨:∵P =3xy -8x +1,Q =x -2xy -2,∴3P -2Q =3(3xy -8x +1)-2(x -2xy -2)=7.∴9xy -24x +3-2x +4xy +4=7.∴13xy -26x =0,即13x (y -2)=0.∵x ≠0,∴y -2=0.∴y =2.17.70 点拨:由题意知,ab =10,a +b =142=7,故a 2b +ab 2=ab (a +b )=10×7=70.18.2 691 点拨:由计算可得智慧数按从小到大排列依次为3,5,7,8,9,11,12,13,15,16,17,19,20,…,∴以3个数为一组,从第2组开始每组第一个数都是4的倍数,∴2 016÷3=672,∴第2 016个智慧数是第672组的最后一个数,∴4×672+3=2 691.三、19.解:(1)原式=ab (a -c ).(2)原式=(x -y )(3a -9)=3(x -y )(a -3).(3)原式=4a 2-4ab +b 2+8ab =4a 2+4ab +b 2=(2a +b )2.(4)原式=(m 2-m )2+2·(m 2-m )·14+⎝ ⎛⎭⎪⎫142=(m 2-m +14)2=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫m -1222 =(m -12)4. 20.解:(1)原式=(29+72+13-14)×20.18=100×20.18=2 018;(2)原式=(100+99)(100-99)+(98+97)(98-97)+…+(2+1)(2-1) =100+99+98+… +3+2+1=101×50=5 050.21.解:(1)原式=(x +7)(4a 2-3).当a =-5,x =3时,(x +7)(4a 2-3)=(3+7)×[4×(-5)2-3]=970.(2)原式=[(2x -3y )+(2x +3y )]·[(2x -3y )-(2x +3y )]=-24xy .当x =16,y =18时,-24xy =-24×16×18=-12. 22.解:∵a 2+b 2+2a -4b +5=0,∴(a 2+2a +1)+(b 2-4b +4)=0,即(a +1)2+(b -2)2=0.∴a +1=0且b -2=0.∴a =-1,b =2.∴2a 2+4b -3=2×(-1)2+4×2-3=7.23.解:a 2+b 2-4a -6b +13=(a -2)2+(b -3)2=0,故a =2,b =3.当腰长为2时,则底边长为3,周长=2+2+3=7;当腰长为3时,则底边长为2,周长=3+3+2=8.所以这个等腰三角形的周长为7或8.24.解:(1)原式=(x -1)(x 2+mx +n )=x 3+mx 2+nx -x 2-mx -n =x 3+(m -1)x 2+(n -m )x -n ,根据题意得⎩⎨⎧m -1=3,n -m =0,-n =-4,解得⎩⎨⎧m =4,n =4. (2)把x =-1代入,发现多项式的值为0,∴多项式x 3+x 2-16x -16中有因式(x +1),于是可设x 3+x 2-16x -16=(x +1)(x 2+m x +n ),可化为x 3+mx 2+nx +x 2+mx +n =x 3+(m +1)x 2+(m +n )x +n ,可得⎩⎨⎧m +1=1,m +n =-16,n =-16,解得⎩⎨⎧n =-16,m =0,∴x 3+x 2-16x -16=(x +1)(x 2-16)=(x +1)(x +4)(x -4).。
浙教版七年级数学下册第四章因式分解单元检测卷第Ⅰ卷(选择题)一.选择题(共10小题,3*10=30)1.下列各式从左到右的变形中,是因式分解的为()A.x(a-b)=ax-bx B.x2-1x2=(x+1x)(x-1x)C.x2-4x+4=(x-2)2D.ax+bx+c=x(a+b)+c2.多项式mx2-m与多项式x2-2x+1的公因式是() A.x-1 B.x+1 C.x2-1 D.(x-1)23.下列各式中,不能分解因式的是()A.4x2+2xy+14y2B.4x2-2xy+14y2C.4x2-14y2D.-4x2-14y24.将下列多项式因式分解,结果中不含有因式a+1的是() A.a2-1 B.a2+aC.a2+a-2 D.(a+2)2-2(a+2)+15.下列各式分解因式错误的是()A.(x-y)2-x+y+14=(x-y-12)2B.4(m-n)2-12m(m-n)+9m2=(m+2n)2C.(a+b)2-4(a+b)(a-c)+4(a-c)2=(b+2c-a)2D.16x4-8x2(y-z)+(y-z)2=(4x2-y-z)26.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a-b,x-y,x+y,a+b,x2-y2,a2-b2分别对应下列六个字:华、爱、我、中、游、美,现将(x2-y2)a2-(x2-y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.中华游C.爱我中华D.美我中华7.若4x2-2(k-1)x+9是完全平方式,则k的值为()A .±2B .±5C .7或-5D .-7或58.若x 2+12mx +k 是完全平方式,则k 的值是( ) A .m 2 B.14m 2 C.116m 2 D.13m 2 9.已知a 2+b 2+2a -4b +5=0,则( )A .a =1,b =2B .a =-1,b =2C .a =1,b =-2D .a =-1,b =-210.已知M =9x 2-4x +3,N =5x 2+4x -2,则M 与N 的大小关系是( )A .M>NB .M =NC .M<ND .不能确定第Ⅱ卷(非选择题)二.填空题(共6小题,3*6=18)11.分解因式:x 2+2x(x -3)-9=____;-3x 2+2x -13=____. 12.如图,现有边长为a 的正方形1个,边长为b 的正方形3个,边长为a ,b(a>b)的长方形4个,把它们拼成一个大长方形,请利用这个拼图中图形的面积关系分解因式:a 2+4ab +3b 2=____.13.观察下列等式:32-12=8×1;52-32=8×2;72-52=8×3;…,请用含正整数n 的等式表示你所发现的规律:___.14.若a -b =1,则代数式a 2-b 2-2b 的值为____.若m +n =4,mn =5,则多项式m 3n 2+m 2n 3的值是____.15.若x 2-4y 2=-32,x +2y =4,则y x =___.16.已知a =12+32+52+…+252,b =22+42+62+…+242,则a -b 的值为____三.解答题(共7小题,52分)17. (6分) 17.(18分)分解因式:(1)m3+6m2+9m. (2)a2b-10ab+25b.(3)4x2-(y-2)2. (4)9x2-8y(3x-2y).(5)m2-n2+(2m-2n). (6)(x2-5)2+8(5-x2)+16.18.(6分)已知P=2x2+4y+13,Q=x2-y2+6x-1,比较代数式P,Q的大小.19.(6分)已知a,b,c是三角形ABC的三边的长,且满足a2+2b2+c2-2b(a+c)=0,试判断此三角形三边的大小关系.20.(8分)如图,将边长为1,2,3,…,2019,2020的正方形叠放在一起,请计算图中阴影部分的面积.21.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.22.(8分)已知x2+y2+6x+4y=-13,求y x的值.23.(8分) 如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2 012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?参考答案1-5 CADCD 6-10 CCCBA11. 3(x +1)(x -3),-13(3x -1)2 12. (a +3b)(a +b)13. (2n +1)2-(2n -1)2=8n_14. 1,10015. 19_ 16. 32517. 解:(1)原式=m(m +3)2(2)原式=b(a -5)2(3)原式=(2x +y -2)(2x -y +2)(4)原式=(3x -4y)2(5)原式=(m -n)(m +n +2)(6)原式=(x +3)2(x -3)218. 解:P -Q =(2x 2+4y +13)-(x 2-y 2+6x -1)=x 2-6x +y 2+4y +14=x 2-6x +9+y 2+4y +4+1=(x -3)2+(y +2)2+1.∵(x -3)2≥0,(y -2)2≥0,∴P -Q =(x -3)2+(y +2)2+1≥1,∴P>Q19. 解:(a 2-2ab +b 2)+(b 2-2bc +c 2)=0,(a -b)2+(b -c)2=0,∴a -b =0且b -c =0,∴a =b 且b =c ,∴a =b =c20. 解:S 阴影=22-12+42-32+...+20202-20192=(2+1)(2-1)+(4+3)(4-3)+ (2020)2019)(2020-2019)=1+2+3+4+…+2019+2020=12(1+2020)×2020=2041210 21. 解:a 3b +2a 2b 2+ab 3=ab(a +b)2,将a +b =3,ab =2代入得ab(a +b)2=2×32=1822. 解:由已知得(x 2+6x +9)+(y 2+4y +4)=0,(x +3)2+(y +2)2=0,∴x =-3,y =-2,∴y x =(-2)-3=-1823. 解:(1)28和2012都是神秘数,因为28=82-62,2012=5042-5022 (2)∵(2k +2)2-(2k)2=4(2k +1),∴由2k +2和2k 构造的神秘数是4的倍数(3)设两个连续奇数为2k +1和2k -1,则(2k +1)2-(2k -1)2=8k ,∴两个连续奇数的平方差不是神秘数.。
最新浙教版初中数学七年级下册第四章因式分解单元检测卷及答案学校:___________姓名:___________班级:___________考号:___________一、选择题(10小题,每题3分,共30分)1.下列等式从左到右的变形是因式分解的是()A.6a3b=3a2•2abB.(x+2)(x﹣2)=x2﹣4C.2x2+4x﹣3=2x(x+2)﹣3D.ax﹣ay=a(x﹣y)2.下列各多项式中,能用公式法分解因式的是( )A.a2-b2 +2ab B.a2+b2 +ab C.4a2+12a+9 D.25n2+15n+93.计算:101×1022﹣101×982=()A.404 B.808 C.40400 D.808004.下列因式分解正确的是()A.2x2-2=2(x+1)(x-1) B.x2+2x-1=(x-1)2C.x2+1=(x+1)2 D.x2-x+2=x(x-1)+25.把多项式m2(a-2)+m(2-a)分解因式,结果正确的是( )A.m(a-2)(m+1) B.m(a-2)(m-1) C.m(2-a)(m-1) D.m(2-a)(m+1)6.把分解因式得,则的值为()A.2 B.3 C. D.7.若多项式x2+mx+9能用完全平方公式分解因式,则m的值为( )A.3 B.±3 C.±6 D.68.小明在抄分解因式的题目时,不小心漏抄了二项式x2-□y2(“□”表示漏抄的式子)中y2前的式子,且该二项式能分解因式,那么他漏抄在作业本上的式子不可能是下列中的( )A.x B.4 C.-4 D.99.下列关于2300+(-2)301的计算结果正确的是( )A.2300+(-2)301=(-2)300+(-2)301=(-2)601 B.2300+(-2)301=2300-2301=2-1C.2300+(-2)301=2300-2301=2300-2×2300=-2300 D.2300+(-2)301=2300+2301=260110.已知a2+2a=1,则代数式1﹣2(a2+2a)的值为()A.0 B.1 C.﹣1 D.﹣2二、填空题(6小题,每题3分,共18分)11.分解因式:x2+6x=________.12.在实数范围内因式分解:=______________________;13.填空:x2-x+____________=;x4+(_________)+y2=(_________)2.14.一个长方形的面积是(x2-9)平方米,其长为(x+3)米,用含有x的整式表示它的宽为_________米.15.若多项式x2-mx+n(m、n是常数)分解因式后,有一个因式是x-3,则3m-n的值为____.16.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.三、解答题(8小题,共52分)17.用简便方法计算:1.42×16-2.22×4.18.分解因式:(1)a2-6a+9; (2)9a2+12ab+4b2;(3)(y+2x)2-(x+2y)2; (4)(x+y)2+2(x+y)+1.19.已知A=2a﹣7,B=a2﹣4a+3,C=a2+6a﹣28,其中a>2.(1)求证:B﹣A>0,并指出A与B的大小关系;(2)比较A与C的大小,并说明你的理由.20.分解因式x2+ax+b时,甲看错a的值,分解的结果是(x+6)(x-1),乙看错b的值,分解的结果是(x-2)(x+1),求a+b的值.21.已知x3+y3=(x+y)(x2-xy+y2)称为立方和公式,x3-y3=(x-y)(x2+xy+y2)称为立方差公式,据此,试将下列各式分解因式:(1)a3+8;(2)27a3-1.22.如图,在边长为a厘米的正方形的四个角各剪去一个边长为b厘米的小正方形.(1)用代数式表示剩余部分的面积;(2)当a=8.68,b=0.66时,求剩余部分的面积.23.由多项式的乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左使用,即可得到用“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b).实例分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).(1)尝试分解因式:x2+6x+8;(2)应用请用上述方法解方程:x2-3x-4=0.24.设a1=32﹣12,a2=52﹣32,…,a n=(2n+1)2﹣(2n﹣1)2(n为大于0的自然数).(1)探究a n是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1,a2,…,a n,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,a n为完全平方数(不必说明理由).参考答案1.D 2. C 3. D 4. A 5 B 6. A 7.C 8. C 9. C 10. C11.x(x+6) 12..13.(1)(2)x2y, x2y.14. 15. 916. a2+2ab+b2=(a+b)2. 17.1218.解:(1)a2-6a+9=(a-3)2.(2)9a2+12ab+4b2=(3a+2b)2.(3)(y+2x)2-(x+2y)2=[(y+2x)+(x+2y)][(y+2x)-(x+2y)]=(3x+3y)(x-y)=3(x+ y)(x -y).(4)原式=(x+y+1)2.19.解:(1)∵B﹣A=a2﹣4a+3﹣2 a+7=a2﹣6a+10=(a﹣3)2+1>0,∴B>A;(2)C﹣A=a2+6a﹣28﹣2a+7=a2+4a﹣21=(a+7)(a﹣3).因为a>2,所以a+7>0,从而当2<a<3时,A>C;当a=3时,A=C;当a>3时,A<C.20.解:甲分解因式得x2+ax+b=(x+6)(x-1)=x2+5x-6,由于甲看错a的值,∴b=-6.乙分解因式得x2+ax+b=(x-2)(x+1)=x2-x-2,由于乙看错b的值,∴a=-1.∴a+b=-7.21.解:(1)a3+8=(a+2)(a2-2a+4).(2)27a3-1=(3a-1)(9a2+3a+1).22.解:(1)剩余部分的面积为(a2-4b2)平方厘米.(2)a2-4b2=(a+2b)(a-2b)=(8.68+2×0.66)×(8.68-2×0.66)=10×7.36= 73.6(厘米2).答:当a=8.68,b=0.66时,剩余部分的面积为73.6平方厘米.23.解:(1)原式=(x+2)(x+4);(2)x2-3x-4=(x-4)(x+1)=0,所以x-4=0或x+1=0,即x=4或x=-1. 24.解:(1)∵a n=(2n+1)2﹣(2n﹣1)2=4n2+4n+1﹣4n2+4n﹣1=8n,(3分)又n为非零的自然数,∴a n是8的倍数.(4分)这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数(5分)说明:第一步用完全平方公式展开各(1),正确化简(1分).(2)这一列数中从小到大排列的前4个完全平方数为16,64,144,256.(7分)n为一个完全平方数的2倍时,a n为完全平方数(8分)说明:找完全平方数时,错一个扣(1),错2个及以上扣(2分).。
第四章因式分解单元检测卷满分120分姓名:__________ 班级:__________一、选择题(共10题;每小题3分,共30分)1.代数式15ax 2﹣15a 与10x 2+20x+10的公因式是( )A. 5(x+1)B. 5a (x+1)C. 5a (x ﹣1)D. 5(x ﹣1) 2.下列因式分解完全正确的是( )A. ﹣2a 2+4a=﹣2a (a+2) B. ﹣4x 2﹣y 2=﹣(2x+y )2C. a 2﹣8ab+16b 2=(a+4b )2D. 2x 2+xy ﹣y 2=(2x ﹣y )(x+y ) 3.下列各式从左边到右边的变形是因式分解的是( )A. (a +1)(a -1)=a 2-1 B. a 2-6a +9=(a -3)2C. x 2+2x +1=x(x +2)+1 D. -18x 4y 3=-6x 2y 2•3x 2y4.下列各式能用完全平方公式进行分解因式的是( )A. x 2+1 B. x 2+2x ﹣1 C. x 2+x+1 D. x 2+4x+45.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a -b,x -y,x +y,a +b,x 2-y 2,a2-b 2分别对应下列六个字:华、爱、我、中、游、美,现将(x 2-y 2)a 2-(x 2-y 2)b 2因式分解,结果呈现的密码信息可能是( )A .我爱美B .中华游C .爱我中华D .美我中华 6.若x 2+12mx +k 是完全平方式,则k 的值是( )A .m 2B.14m 2C.116m 2D.13m 27.已知a 为实数,且a ³+a ²-a+2=0,则(a+1)2008+(a+1)2009+(a+1)2010的值是( )A. -3B. 3C. -1D. 1 8.已知x 2-x -1=0,则代数式x 3-2x +1的值为( )A ﹒-1B ﹒1C ﹒- 2D ﹒2 9.如图,边长为a 、b 的长方形的周长为14,面积为10, 则多项式a 3b +2a 2b 2+ab 3的值为( ) A ﹒490 B ﹒245 C ﹒140 D ﹒196010.已知:a =2017x +2015,b =2017x +2016,c =2017x +2017,则代数式a 2+b 2+c 2-ab -ac -bc 的值为( ) A ﹒0 B ﹒1 C ﹒2 D ﹒3 二、填空题(共8题;共24分)11.若x+y+z=2,x2﹣(y+z)2=8时,x﹣y﹣z=________.12.计算:(﹣2)100+(﹣2)99=________13.分解因式:18b(a﹣b)2﹣12(a﹣b)3=________.14.如果x﹣3是多项式2x2﹣11x+m的一个因式,则m的值________15.多项式﹣5mx3+25mx2﹣10mx各项的公因式是________.16.因式分解:xy3﹣x3y=________.17. 观察下列等式:32-12=8×1;52-32=8×2;72-52=8×3;…,请用含正整数n的等式表示你所发现的规律:_ __.18.已知a=12+32+52+…+252,b=22+42+62+…+242,则a-b的值为________三、解答题(共5题;共66分)19.因式分解:(1)x(x﹣y)﹣y(y﹣x);(2)a2x2y﹣axy2.20.我们知道,多项式a2+6a+9可以写成(a+3)2的形式,这就是将多项式a2+6a+9因式分解,当一个多项式(如a2+6a+8)不能写成两数和(成差)的平方形式时,我们可以尝试用下面的办法来分解因式.a2+6a+8=a2+6a+9﹣1=(a+3)2﹣1=[(a+3)+1][(a+3)﹣1]=(a+4)(a+2)请仿照上面的做法,将下列各式分解因式:(1)x2﹣6x﹣27 (2)x2﹣2xy﹣3y2.21.已知:a,b,c为△ABC的三边长,且2a2+2b2+2c2=2ab+2ac+2bc,试判断△ABC的形状,并证明你的结论.22.当a 为何值时,多项式x 2+7xy+ay 2﹣5x+43y ﹣24可以分解为两个一次因式的乘积.23.完成下列解答:(1) 已知15,8==+mn n m 求22n mn m +-的值 (2)已知012=-+a a 求2016223++a a 的值 (3)已知71=+aa ,求a a 1-的值参考答案一、选择题A DB DC CD D A D 二、填空题11. 4 12. 299 13. 6(a ﹣b )2(3﹣2a+2b ) 14. 15 15. 5mx 16. xy (x+y )(x ﹣y ) 17. (2n +1)2-(2n -1)2=8n 18. 325 三、解答题19.解:(1)x (x ﹣y )﹣y (y ﹣x ) =x (x ﹣y )+y (x ﹣y ) =(x+y )(x ﹣y );(2)a 2x 2y ﹣axy 2=axy (ax ﹣y )20.解:(1)原式=x 2﹣6x+9﹣36=(x ﹣3)2﹣36=(x ﹣3+6)(x ﹣3﹣6)=(x+3)(x ﹣9); (2)原式=x 2﹣2xy+y 2﹣4y 2=(x ﹣y )2﹣4y 2=(x ﹣y+2y )(x ﹣y ﹣2y )=(x+y )(x ﹣3y ). 21.答案:等边三角形解析:因为a ,b ,c 为△ABC 的三边长,所以2a 2+2b 2+2c 2=2ab +2ac +2bc022*******=+-++-++-c bc b c ac a b ab a ,所以()()()0222=-+-+-c b c a b a ,所以b a =且c a =且c b =,所以三角形为等边三角形。
2023年浙教版数学七年级下册《因式分解》单元练习卷一、选择题1.下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21D.a2+4a﹣21=(a+2)2﹣252.把多项式(m+1)(m-1)+(m-1)分解因式,一个因式是(m-1),则另一个因式是( )A.m+1B.2mC.2D.m+23.观察下面算962×95+962×5的解题过程,其中最简单的方法是( )A.962×95+962×5=962×(95+5)=962×100=96200B.962×95+962×5=962×5×(19+1)=962×(5×20)=96200C.962×95+962×5=5×(962×19+962)=5×(18278+962)=96200D.962×95+962×5=91390+4810=962004.把10a2(x+y)2﹣5a(x+y)3因式分解时,应提取的公因式是()A.5aB.(x+y)2C.5(x+y)2D.5a(x+y)25.若实数a,b满足a+b=5,a2b+ab2=-10,则ab的值是( )A.-2B.2C.-50D.506.把多项式4a2﹣1因式分解,结果正确的是()A.(4a+1)(4a﹣1)B.(2a+1)(2a﹣1)C.(2a﹣1)2D.(2a+1)27.把代数式ax2﹣4ax+4a因式分解,下列结果中正确的是( )A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)8.△ABC的三边长分别a,b,c,且a+2ab=c+2bc,则△ABC是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形9.计算(﹣2)2025+22024等于()A.22025B.﹣22025C.﹣22024D.2202410.多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c的值为()A.0B.10C.12D.2211.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为( )A.0B.1C.5D.1212.已知a=2025x+2024,b=2025x+2025,c=2025x+2026,那么a2+b2+c2—ab-bc -ca的值等于( )A.0B.1C.2D.3二、填空题13.若x2﹣ax﹣1可以分解为(x﹣2)(x+b),则a________ ,b=________.14.﹣xy2(x+y)3+x(x+y)2的公因式是;15.已知a=2,x+2y=3,则3ax+6ay=.16.已知ab=2,a-2b=-3,则a3b-4a2b2+4ab3的值为________.17.将x n+3-x n+1因式分解,结果是18.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x3-xy2,取x=27,y=3时,用上述方法产生的密码是:(写出一个即可).三、解答题19.因式分解:2x2﹣8x20.因式分解:2x3(a-1)+8x(1-a).21.因式分解:3x3+6x2y﹣3xy2.22.因式分解:x n+4-169x n+2 (n是自然数);23.已知x2+x=6,将下式先化简,再求值:x(x2+2)-x(x+1)2+3x2-7的值.24.给出三个多项式:2a2+3ab+b2,3a2+3ab,a2+ab,请你任选两个进行加(或减)法运算,再将结果分解因式.25.仔细阅读下面例题,解答问题:例题,已知二次三项式x 2-4x +m 有一个因式是(x +3),求另一个因式以及m 的值.解:设另一个因式为(x +n),得x 2-4x +m=(x +3)(x +n),则x 2-4x +m=x 2+(n +3)x +3n.∴⎩⎨⎧n +3=-4,m =3n , 解得n=-7,m=-21,∴另一个因式为(x -7),m 的值为-21.问题:仿照以上方法解答下面问题:已知二次三项式3x 2+5x -m 有一个因式是(3x -1),求另一个因式以及m 的值.26.先阅读下列材料,再解答下列问题:材料:因式分解:(x +y)2+2(x +y)+1.解:将“x +y”看成整体,令x +y=A ,则原式=A 2+2A +1=(A +1)2.再将“A”还原,得原式=(x +y +1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x -y)+(x -y)2=_______________;(2)因式分解:(a +b)(a +b -4)+4;(3)求证:若n 为正整数,则式子(n +1)(n +2)(n 2+3n)+1的值一定是某一个整数的平方.答案1.B.2.D3.A4.D5.A6.B7.A8.B9.C10.C11.C12.D13.答案为:3 2;12.14.答案为:x(x+y)2;15.答案为:1816.答案为:1817.答案为:x n-1(x+1)(x-1);18.答案为:273024或27243019.解:原式=2x2﹣8x=2x(x﹣4);20.解:原式=2x(a-1)(x-2)(x+2).21.解:原式=﹣3x(x﹣y)2.22.解:原式=x n+2(x+13)(x-13).23.解:原式=-1.24.解:本题答案不唯一;选择加法运算有以下三种情况:(2a2+3ab+b2)+(3a2+3ab)=5a2+6ab+b2=(a+b)(5a+b);(2a2+3ab+b2)+(a2+ab)=3a2+4ab+b2=(a+b)(3a+b);(3a2+3ab)+(a2+ab)=4a2+4ab=4a(a+b).选择减法运算有六种情况,选三种供参考:(2a 2+3ab +b 2)-(3a 2+3ab)=b 2-a 2=(b +a)(b -a); (2a 2+3ab +b 2)-(a 2+ab)=a 2+2ab +b 2=(a +b)2;(3a 2+3ab)-(a 2+ab)=2a 2+2ab =2a(a +b).25.解:设另一个因式为(x +n),则3x 2+5x -m=(3x -1)(x +n).则3x 2+5x -m=3x 2+(3n -1)x -n.∴⎩⎨⎧3n -1=5,-n =-m ,解得n=2,m=2,∴另一个因式为(x +2),m 的值为2.26.解:(1)(x -y +1)2;(2)令A=a +b ,则原式变为A(A -4)+4=A 2-4A +4=(A -2)2,故(a +b)(a +b -4)+4=(a +b -2)2.(3)证明:(n +1)(n +2)(n 2+3n)+1=(n 2+3n)[(n +1)(n +2)]+1 =(n 2+3n)(n 2+3n +2)+1=(n 2+3n)2+2(n 2+3n)+1=(n 2+3n +1)2.∵n 为正整数,∴n 2+3n +1也为正整数,∴式子(n +1)(n +2)(n 2+3n)+1的值一定是某一个整数的平方.。
七年级数学下册第四章因式分解单元测试卷(时间90分钟,总分120分)第Ⅰ卷(选择题)一.选择题(共10小题,3*10=30)1.下列各式中,不能分解因式的是( )A .4x 2+2xy +14y 2B .4x 2-2xy +14y 2C .4x 2-14y 2D .-4x 2-14y 2 2.若x 2+12mx +k 是完全平方式,则k 的值是( ) A .m 2 B.14m 2 C.116m 2 D.13m 2 3.下列从左到右的变形属于因式分解的是( )A .(x +1)(x -1)=x 2-1B .m 2-2m -3=m(m -2)-3C .2x 2+1=x(2x +1x) D .x 2-5x +6=(x -2)(x -3) 4.把多项式x 2+ax +b 分解因式,得(x +2)(x -3),则a ,b 的值分别是( )A .a =1,b =6B .a =-1,b =-6C .a =-1,b =6D .a =1,b =-65.将下列多项式因式分解,结果中不含有因式a +1的是( )A .a 2-1B .a 2+aC .a 2+a -2D .(a +2)2-2(a +2)+16.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a -b ,x -y ,x +y ,a +b ,x 2-y 2,a 2-b 2分别对应下列六个字:华、爱、我、中、游、美,现将(x 2-y 2)a 2-(x 2-y 2)b 2因式分解,结果呈现的密码信息可能是( )A .我爱美B .中华游C .爱我中华D .美我中华7.下列各式分解因式错误的是( )A .(x -y)2-x +y +14=(x -y -12)2 B .4(m -n)2-12m(m -n)+9m 2=(m +2n)2C .(a +b)2-4(a +b)(a -c)+4(a -c)2=(b +2c -a)2D .16x 4-8x 2(y -z)+(y -z)2=(4x 2-y -z)28.已知a 2+b 2+2a -4b +5=0,则( )A .a =1,b =2B .a =-1,b =2C .a =1,b =-2D .a =-1,b =-29.如果257+513能被n 整除,则n 的值可能是( )A .20B .30C .35D .4010.要在二次三项式x 2+( )x -6的括号中填上一个整数,使它能按公式x 2+(a +b)x +ab =(x +a)(x +b)分解因式,那么这些数只能是( )A .1,-1B .5,-5C .1,-1,5,-5D .以上答案都不对第Ⅱ卷(非选择题)二.填空题(共6小题,3*8=24)11.多项式a(a -b -c)+b(c -a +b)+c(b +c -a)提出公因式a -b -c 后,另外一个因式为________.12.已知m +n =4,mn =5,则多项式m 3n 2+m 2n 3的值是________.13.分解因式:x 2+2x(x -3)-9=________;-3x 2+2x -13=________. 14.若a -b =1,则代数式a 2-b 2-2b 的值为________.15.若x 2-4y 2=-32,x +2y =4,则y x =________.16.如图,现有边长为a 的正方形1个,边长为b 的正方形3个,边长为a ,b(a>b)的长方形4个,把它们拼成一个大长方形,请利用这个拼图中图形的面积关系分解因式:a 2+4ab +3b 2=________.17.观察下列等式:32-12=8×1;52-32=8×2;72-52=8×3;…,请用含正整数n 的等式表示你所发现的规律:________.18.已知a =12+32+52+…+252,b =22+42+62+…+242,则a -b 的值为________.三.解答题(共7小题,66分)19.(18分)分解因式:(1)m3+6m2+9m; (2)a2b-10ab+25b;(3)4x2-(y-2)2; (4)9x2-8y(3x-2y);(5)m2-n2+(2m-2n); (6)(x2-5)2+8(5-x2)+16.20.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.21.(8分)已知x2+y2+6x+4y=-13,求y x的值.22.(8分)已知a,b,c是三角形ABC的三边的长,且满足a2+2b2+c2-2b(a+c)=0,试判断此三角形三边的大小关系.23.(8分)已知P=2x2+4y+13,Q=x2-y2+6x-1,比较代数式P,Q的大小.24.(8分) 如图,将边长为1,2,3,…,2019,2020的正方形叠放在一起,请计算图中阴影部分的面积.25.(10分)如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为_______________;(2)若每块小长方形的面积为10 cm2,四个正方形的面积和为58 cm2,试求图中所有裁剪线(虚线部分)长之和.参考答案1-5 DCDBC 6-10 CDBBC11. a -b -c12. 10013. 3(x +1)(x -3),-13(3x -1)2 14. 115. 1916. (a +3b)(a +b)17. (2n +1)2-(2n -1)2=8n18. 32519. 解:(1)原式=m(m +3)2(2)原式=b(a -5)2(3)原式=(2x +y -2)(2x -y +2)(4)原式=(3x -4y)2(5)原式=(m -n)(m +n +2)(6)原式=(x +3)2(x -3)220. 解:a 3b +2a 2b 2+ab 3=ab(a +b)2,将a +b =3,ab =2代入得ab(a +b)2=2×32=1821. 解:由已知得(x 2+6x +9)+(y 2+4y +4)=0,(x +3)2+(y +2)2=0,∴x =-3,y =-2,∴y x =(-2)-3=-1822. 解:(a 2-2ab +b 2)+(b 2-2bc +c 2)=0,(a -b)2+(b -c)2=0,∴a -b =0且b -c =0,∴a =b 且b =c ,∴a =b =c23. 解:P -Q =(2x 2+4y +13)-(x 2-y 2+6x -1)=x 2-6x +y 2+4y +14=x 2-6x +9+y 2+4y +4+1=(x -3)2+(y +2)2+1.∵(x -3)2≥0,(y -2)2≥0,∴P -Q =(x -3)2+(y +2)2+1≥1,∴P>Q24. 解:S 阴影=22-12+42-32+...+20202-20192=(2+1)(2-1)+(4+3)(4-3)+ (2020)2019)(2020-2019)=1+2+3+4+…+2019+2020=12(1+2020)×2020=2041210 25. 解:(1)(m +2n)(2m +n)(2)依题意得,2m 2+2n 2=58,mn =10,∴m 2+n 2=29,∵(m +n)2=m 2+2mn +n 2,∴(m +n)2=29+20=49,∵m +n>0,∴m +n =7,裁剪线长为2(2m +n)+2(m +2n)=6m +6n=42,∴图中所有裁剪线(虚线部分)长之和为42 cm。
第四章因式分解章节同步练习2022年·浙教版初中数学七年级下册知识点习题·定向攻克·含答案及详细解析浙教版初中数学七年级下册第四章因式分解单元测试(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(15小题,每小题3分,共计45分)1、下列多项式能用公式法分解因式的是( )A.m 2+4mnB.m 2+n 2C.a 2+ab +b 2D.a 2﹣4ab +4b 22、下列各组式子中,没有公因式的是( )A.﹣a 2+ab 与ab 2﹣a 2bB.mx +y 与x +yC.(a +b )2与﹣a ﹣bD.5m (x ﹣y )与y ﹣x3、在下列从左到右的变形中,不是因式分解的是( )A.x 2﹣x =x (x ﹣1)B.x 2+3x ﹣1=x (x +3)﹣1 C.x 2﹣y 2=(x +y )(x ﹣y ) D.x 2+2x +1=(x +1)2 4、下列各选项中因式分解正确的是( )A.x 2-1=(x -1)2B.a 3-2a 2+a =a 2(a -2) C.-2y 2+4y =-2y (y +2) D.a 2b -2ab +b =b (a -1)2 5、下列各式从左到右的变形属于因式分解的是( )A.()()2111a a a +-=-B.()2422x y x y -=-C.()2111x x x x -+=-+D.2323623x y x y =⋅6、对于任何整数a ,多项式()2255a +-都能( )A.被3整除B.被4整除C.被5整除D.被a 整除7、把多项式a 3﹣9a 分解因式,结果正确的是( )A.a (a 2﹣9)B.(a +3)(a ﹣3)C.﹣a (9﹣a 2)D.a (a +3)(a ﹣3)8、下列因式分解正确的是( )A.()()2999x x x -=-+B.()322a a a a a a -+=-C.()()()2212111x x x ---+=-D.()22228822x xy y x y -+=-9、把代数式ax 2﹣8ax +16a 分解因式,下列结果中正确的是( )A.a (x +4)2B.a (x ﹣4)2C.a (x ﹣8)2D.a (x +4)(x ﹣4)10、多项式(2)(22)(2)x x x +--+可以因式分解成()(2)x m x n ++,则m n -的值是( )A.-1B.1C.-5D.511、已知23m m -的值为5,那么代数式2203026m m -+的值是( )A.2030B.2020C.2010D.200012、下列各式从左到右的变形,因式分解正确的是( )A.x 2+4=(x +2)2B.x 2﹣10x +16=(x ﹣4)2C.x 3﹣x =x (x 2﹣1)D.2xy +6y 2=2y (x +3y )13、若多项式x 2﹣mx +n 可因式分解为(x +3)(x ﹣4).其中m ,n 均为整数,则m ﹣n 的值是()A.13B.11C.9D.714、下列各式从左到右的变形是因式分解为( )A.()()2111x x x +-=-B.()()2233x y x y x y -+=+-+C.()2242a a -=-D.()2321x y xy x y xy x x -+=-+ 15、下列分解因式正确的是( )A.﹣100p 2﹣25q 2=(10p +5q )(10p ﹣5q )B.x 2+x ﹣6=(x ﹣3)(x +2)C.﹣4m 2+n 2=﹣(2m +n )(2m ﹣n )D.2211()42x x x --+=-- 二、填空题(10小题,每小题4分,共计40分)1、若m 2=n +2021,n 2=m +2021(m ≠n ),那么代数式m 3-2mn +n 3的值 _________.2、将多项式因式分解39x x -=______.3、分解因式:3x 2y ﹣12xy 2=___.4、因式分解:23322212820x y x y x y -+=______.5、分解因式:228m m --=______.6、若x +y =6,xy =4,则x 2y +xy 2=________.7、1002﹣992+982﹣972+962﹣952+…+22﹣12=___.8、小明将(2020x +2021)2展开后得到a 1x 2+b 1x +c 1;小红将(2021x ﹣2020)2展开后得到a 2x 2+b 2x +c 2,若两人计算过程无误,则c 1﹣c 2的值是__________.9、如果9x y +=,3x y -=,那么222x 2y -的值为______.10、分解因式:3a (x ﹣y )+2b (y ﹣x )=___.三、解答题(3小题,每小题5分,共计15分)1、分解因式22424x y x y --+,细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的因式分解了,过程如下:22424(2)(2)2(2)(2)(22)x y x y x y x y x y x y x y --+=+---=-+-.这种分解因式的方法叫分组分解法,利用这种方法解决下列问题:(1)因式分解:2255a a b b +--;(2)已知ABC 的三边a ,b ,c 满足20a ab ac bc -+-=,判断ABC 的形状.2、因式分解:(1)2242x x -+(2)481x -3、因式分解:x 2+4y 2+4xy ﹣1.---------参考答案-----------一、单选题1、D【分析】利用平方差公式,以及完全平方公式判断即可.【详解】解:A 、原式=m (m +4n ),不符合题意; B 、原式不能分解,不符合题意;C 、原式不能分解,不符合题意;D 、原式=(a ﹣2b )2,符合题意.故选:D .【点睛】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.2、B【分析】公因式的定义:多项式ma mb mc ++中,各项都含有一个公共的因式m ,因式m 叫做这个多项式各项的公因式.【详解】解:A 、因为2()a ab a b a -+=-,22()ab a b ab b a -=-,所以2a ab -+与22ab a b -是公因式是()a b a -,故本选项不符合题意;B 、mx y +与x y +没有公因式.故本选项符合题意;C 、因为()a b a b --=-+,所以2()a b +与a b --的公因式是()a b +,故本选项不符合题意;D 、因为5()5()m x y m y x -=--,所以5()m x y -与y x -的公因式是()y x -,故本选项不符合题意; 故选:B.【点睛】本题主要考查公因式的确定,解题的关键是先利用提公因式法和公式法分解因式,然后再确定公共因式.3、B【分析】根据因式分解的定义,逐项分析即可,因式分解指的是把一个多项式分解为几个整式的积的形式.【详解】A. x 2﹣x =x (x ﹣1),是因式分解,故该选项不符合题意;B. x 2+3x ﹣1=x (x +3)﹣1,不是因式分解,故该选项符合题意;C. x 2﹣y 2=(x +y )(x ﹣y ),是因式分解,故该选项不符合题意;D. x 2+2x +1=(x +1)2,是因式分解,故该选项不符合题意;故选B【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.4、D【分析】因式分解是将一个多项式化成几个整式的积的形式,根据定义分析判断即可.【详解】解:A 、()()21=11x x x -+-,选项错误; B 、()()23222211a a a a a a a a -+=-+=-,选项错误; C 、2242(2)y y y y -+=-- ,选项错误;D 、2222(21)(1)a b ab b b a a b a -+=-+=-,选项正确.故选:D【点睛】本题考查的是因式分解,能够根据要求正确分解是解题关键.5、B【分析】根据因式分解的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,可得答案.【详解】解:A 、()()2111a a a +-=-,属于整式乘法;B 、()2422x y x y -=-,属于因式分解;C 、()2111x x x x -+=-+,没把一个多项式转化成几个整式积的形式,不属于因式分解;D 、2323623x y x y =⋅,等式左边不是多项式,不属于因式分解;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6、B【分析】多项式利用完全平方公式分解,即可做出判断.【详解】解:原式()22420255455a a a a =++-=++则对于任何整数a ,多项式()2255a +-都能被4整除.故选:B.【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.7、D【分析】先用提公因式法,再用平方差公式即可完成.a3﹣9a=a(a2﹣9)=a(a+3)(a﹣3).故选:D.【点睛】本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.8、D【分析】A.直接利用平方差公式分解因式得出答案;B.直接提取公因式a,进而分解因式即可;C.直接利用完全平方公式分解因式得出答案;D.首先提取公因式2,再利用完全平方公式分解因式得出答案.【详解】解:A.x2-9=(x-3)(x+3),故此选项不合题意;B.a3-a2+a=a(a2-a+1),故此选项不合题意;C.(x-1)2-2(x-1)+1=(x-2)2,故此选项不合题意;D.2x2-8xy+8y2=2(x-2y)2,故此选项符合题意;故选:D.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.9、B【分析】直接提取公因式a,再利用完全平方公式分解因式即可.解:ax 2﹣8ax +16a=a (x 2﹣8x +16)=a (x ﹣4)2.故选B.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.10、D【分析】先提公因式()2x +,然后将原多项式因式分解,可求出m 和 n 的值,即可计算求得答案.【详解】解:∵()()()()()()()22222221223x x x x x x x +--+=+--=+-,∴2m =,3n =-,∴()235m n -=--=.故选:D .【点睛】本题考查了提公因式法分解因式,准确找到公因式是解题的关键.11、B【分析】将2203026m m -+化简为220302(3)m m --,再将235m m -=代入即可得.【详解】解:∵22-+=--,m m m m20302620302(3)把235-⨯=,-=代入,原式=2030252020m m故选B.【点睛】本题考查了代数式求值,解题的关键是把掌握提公因式.12、D【分析】根据因式分解的方法解答即可.【详解】解:A、x2+4≠(x+2)2,因式分解错误,故此选项不符合题意;B、x2-10x+16≠(x-4)2,因式分解错误,故此选项不符合题意;C、x3-x=x(x2-1)=x(x+1)(x-1),因式分解不彻底,故此选项不符合题意;D、2xy+6y2=2y(x+3y),因式分解正确,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的方法,明确因式分解的结果应是整式的积的形式.运用提公因式法分解因式时,在提取公因式后,不要漏掉另一个因式中商是1的项.13、A【分析】根据多项式与多项式的乘法法则化简(x+3)(x﹣4),再与式x2﹣mx+n比较求出m,n的值,代入m﹣n计算即可.【详解】解:∵(x +3)(x ﹣4)=x 2-4x +3x -12=x 2-x -12,∴x 2﹣mx +n = x 2-x -12,∴m =1,n =-12,∴m ﹣n =1+12=13.故选A.【点睛】本题考查了因式分解,以及多项式与多项式的乘法计算,熟练掌握因式分解与乘法运算是互为逆运算的关系是解答本题的关键.14、D【分析】把一个多项式化成几个整式积的形式,叫因式分解,根据因式分解的定义判断即可.【详解】A . ()()2111x x x +-=-,属于整式的乘法运算,故本选项错误;B . ()()2233x y x y x y -+=+-+,属于整式的乘法运算,故本选项错误;C . ()2242a a -≠-左边和右边不相等,故本选项错误;D . ()2321x y xy x y xy x x -+=-+,符合因式分解的定义,故本选项正确; 故选:D【点睛】此题考查了因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.15、C【分析】根据因式分解的各种方法逐个判断即可.【详解】解:A.222210)02525(4p q p q -+-=-,故本选项不符合题意;B.()()2632x x x x +-=+-,故本选项不符合题意;C.22224(4)(2)(2)m n m n m n m n -++---=-=故本选项符合题意;D.222111()()442x x x x x -+-=-+=---, 所以2211()42x x x -+≠---,故本选项不符合题意; 故选:C.【点睛】此题考查了因式分解的方法,熟练掌握因式分解的有关方法是解题的关键.二、填空题1、-2021【分析】将两式m 2=n +2021,n 2=m +2021相减得出m +n =-1,将m 2=n +2021两边乘以m ,n 2=m +2021两边乘以n 再相加便可得出.【详解】解:将两式m 2=n +2021,n 2=m +2021相减,得m 2-n 2=n -m ,(m +n )(m -n )=n -m ,(因为m ≠n ,所以m -n ≠0), m +n =-1,将m 2=n +2021两边乘以m ,得m ³=mn +2021m ①,将n 2=m +2021两边乘以n ,得n ³=mn +2021n ②,由①+②得:m ³+n ³=2mn +2021(m +n ), m ³+n ³-2mn =2021(m +n ),m ³+n ³-2mn =2021×(-1)=-2021.故答案为-2021.【点睛】本题考查因式分解的应用,代数式m 3-2mn +n 3的降次处理是解题关键.2、()()33x x x +-【分析】先提取公因式,x 再利用平方差公式分解因式即可得到答案.【详解】解:()()()329933.x x x x x x x -=-=+-故答案为:()()33x x x +-【点睛】本题考查的是综合提公因式与公式法分解因式,熟练“一提二套三交叉四分组”的分解因式的方法与顺序是解题的关键.3、()34xy x y -【分析】根据提公因式法因式分解即可.【详解】3x 2y ﹣12xy 2()34xy x y =-故答案为:()34xy x y -【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.4、()224325x y y x -+【分析】直接提取公因式224x y 整理即可.【详解】解:()23322222128204325x y x y x y x y y x -+=-+,故答案是:()224325x y y x -+.【点睛】本题考查了提取公因式因式分解,解题的关键是找准公因式.5、(2)(4)m m +-【分析】根据十字相乘法分解因式,即可得到答案.【详解】228m m --=(2)(4)m m +-故答案为:(2)(4)m m +-.【点睛】本题考查了分解因式的知识;解题的关键是熟练掌握十字相乘法分解因式的性质,从而完成求解. 6、24【分析】先对后面的式子进行因式分解,然后根据已知条件代值即可.【详解】x +y =6,xy =4,∴x 2y +xy 2()=46=24,xy x y =+⨯故答案为:24.【点睛】本题主要考查提取公因式进行因式分解,属于基础题,比较容易,熟练掌握因式分解的方法是解题的关键.7、5050【分析】先根据平方差公式进行因式分解,再计算加法,即可求解.【详解】解: 1002-992 + 982-972 + 962-952 +…+22-12=(100 + 99)(100-99)+(98 + 97)(98-97)+…+(2+1)(2-1)= 100+ 99+98+ 97+…+2+1()10010012+= = 5050.故答案为:5050【点睛】本题主要考查了平方差公式的应用,熟练掌握平方差公式()()22a b a b a b -=+- 的特征是解题的关键.8、4041【分析】根据(2020x +2021)2=(2020x )2+2×2021×2020x +20212得到c 1=20212,同理可得 c 2=20202,所以c 1-c 2=20212-20202,进而得出结论.【详解】解:∵(2020x +2021)2=(2020x )2+2×2021×2020x +20212,∴c 1=20212,∵(2021x -2020)2=(2021x )2-2×2020×2021x +20202,∴c 2=20202,∴c 1-c 2=20212-20202=(2021+2020)×(2021-2020)=4041,故答案为:4041.【点睛】本题主要考查了完全平方公式,平方差公式,解决本题的关键是要熟悉公式的结构特点.9、54【分析】先利用平方差公式分解因式,再代入求值,即可.【详解】解:222x 2y -=()222x y - =()()2x y x y +-=2×9×3=54,故答案是:54.【点睛】本题主要考查代数式求值,掌握平方差公式,进行分解因式,是解题的关键.10、()()32x y a b --【分析】根据提公因式法因式分解即可.【详解】3a (x ﹣y )+2b (y ﹣x )=()()()()3232a x y b x y x y a b ---=--故答案为:()()32x y a b --【点睛】本题考查了提公因式法因式分解,正确的计算是解题的关键.三、解答题1、(1)()()5a b a b ++-;(2)ABC 是等腰三角形.【分析】(1)应用分组的方法,将方程2244a a b --+分解因式,然后在计算即可.(2)首先应用分组分解法,把20a ab ac bc --+=分解因式,然后根据三角形的分类方法,判断出ABC 的形状即可.【详解】解:(1)2255a a b b +--2255a b a b =-+-()()()5a b a b a b =+-+-()()5a b a b =++-(2)20a ab ac bc --+=,()()0a a b c a b ∴---=,()()0a b a c ∴--=,0a b ∴-=或0a c -=,a b ∴=或a c =,ABC ∆∴是等腰三角形.【点睛】本题主要考查了因式分解的方法和应用,熟练掌握,注意分组分解法的应用,是解题的关键.2、(1)22(1)x -;(2)2(9)(3)(3)x x x ++-【分析】(1)先提取公因式2,然后运用完全平方公式分解因式即可;(2)运用平方差公式因式分解即可.【详解】解:(1)2242x x -+22(21)x x =-+22(1)x =-;(2)481x -22(9)(9)x x =+-2(9)(3)(3)x x x =++-.【点睛】本题主要考查提公因式法与公式法因式分解,熟知完全平方公式与平方差公式的结构特点时解题的关键,注意结果要分解完全.3、(x+2y+1)(x+2y-1)【分析】前三项使用完全平方公式,然后再使用平方差公式即可.【详解】解:原式=(x+2y)2-12=(x+2y+1)(x+2y-1).【点睛】本题考查了分组分解法分解因式,解题的关键是把1看作12.。
班级_____________________ 姓名____________________ 考场号____________ 考号___________ ----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ 因式分解综合测试 一、选择题 1. (2012 云南省昆明市) 若221142a b a b -=-=,,则a b +的值为( ). (A )12- (B )12 (C )1 (D )2 2. (2013 湖南省张家界市) 下列各式中能用完全平方公式进行因式分解的是( ) (A )21x x ++ (B )221x x +- (C )21x - (D )269x x -+3. (2014 河北省) 计算:221585-=( ) A .70 B .700 C .4900 D .70004. (2014 海南省) 下列式子从左到右变形是因式分解的是( ) A .a 2+4a-21=a (a+4)-21 B .a 2+4a-21=(a-3)(a+7) C .(a-3)(a+7)=a 2+4a-21 D .a 2+4a-21=(a+2)2-255. (2014 湖南省衡阳市) 下列因式分解中正确的个数为 ①()3222x xy x x x y ++=+; ②()22442x x x ++=+; ③()()22x y x y x y -+=+-。
A .3个 B .2个 C .1个 D .0个6. (2014 湖南省岳阳市) 下列因式分解正确的是( ) A .x 2-y 2= (x -y ) 2 B .a 2+a +1=(a +1) 2 C .xy -x =x (y -1) D .2x +y = 2(x +y )7. (2014 山东省威海市) 将下列多项式分解因式,结果中不含因式1x -的是( ) A .21x - B .(2)(2)x x x -+- C .221x x -+ D .221x x ++班级_____________________ 姓名____________________ 考场号____________ 考号___________ ----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ 8. (2014 浙江省金华市) 把代数式2218x -分解因式,结果正确的是( ▲ ) A .22(9)x - B .22(3)x -C .2(3)(3)x x +-D .2(9)(9)x x +-9. (2014 安徽省) 下列四个多项式中,能因式分解的是( )班级_____________________ 姓名____________________ 考场号____________ 考号___________ ----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------班级_____________________ 姓名____________________ 考场号____________ 考号___________----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ 10. (2014 福建省漳州市) 若代数式x 2+ax 可以分解因式,则常数a 不可以取( ) A . ﹣1 B . 0 C . 1 D . 2 二、填空题 11. (2014 江苏省连云港市) ab =3,a -2b =5,则a 2b -2ab 2的值是 . 12. (2014 辽宁省大连市) 当a=9时,代数式a 2+2a+1的值为 . 13. (2014 四川省乐山市) 若a=2,a ﹣2b=3,则2a2﹣4ab 的值为 12 . 14. (2014 广西南宁市) 因式分解:a a 622-= 15. (2014 辽宁省锦州市) 分解因式2242x x -+ 的结果是__________. 16. (2014 山东省淄博市) 分解因式:=-+a a 16)1(82 . 三、计算题 17. (2010 湖南省益阳市) 已知31=-x ,求代数式4)1(4)1(2++-+x x 的值. 18. (2010 江苏省苏州市) 先化简,再求值:()()22a a b a b +-+,其中a b =班级_____________________ 姓名____________________ 考场号____________ 考号___________ ----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ 19. (2011 江苏省宿迁市) 已知实数a 、b 满足1ab =,2a b +=,求代数式22a b ab +的值. 20. (2011 福建省南平市) 先化简,再求值:x (x +1)-(x -1)(x +1),其中x =-1. 21. (2011 海南省) ()()211a a a +--班级_____________________ 姓名____________________ 考场号____________ 考号___________ ----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ 四、复合题 22. (2011 青海省西宁市) 给出三个整式22a b ,和2ab . (1)当34a b ==,时,求222a b ab ++的值; (2)在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解.请写出你所选的式子及因式分解的过程.班级_____________________ 姓名____________________ 考场号____________ 考号___________ ----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ 参考答案 一、选择题 1. B 2. D 3. D 4. B 5. C 6. C 7. D . 8. C 9. B 10. B . 二、填空题 11. 15 12. 100 13. 12 14. )3(2-a a 15. 22(1x -)班级_____________________ 姓名____________________ 考场号____________ 考号___________ ----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ 16. 2)1(8-a . 三、计算题 17. 解法一:原式=2)21(-+x ……………………………2分 =2)1(-x ……………………………4分 当31=-x 时 原式= 2)3( ……………………………6分 =3 ……………………………8分 解法二:由31=-x 得13+=x ……………………………1分 化简原式=444122+--++x x x ……………………………3分 =122+-x x ……………………………4分 =1)13(2)13(2++-+ …………………………5分 =12321323+--++ …………………………7分 =3 ……………………………8分 18. 解法一:原式=()22222222.a ab a ab b a b +-++=- 当a b === 2.- 解法二:原式=()()()()222.a b a a b a b a b a b +--=+-=- 当a b === 2.- 19. 解:方法一:22()a b ab ab a b +=+ 因为1ab =,2a b +=, 所以原式122=⨯=. 方法二:由已知2a b +=,得2b a =-, 代入1ab =,得(2)1a a -=,即2(1)0a -=,所以1a =, 于是2211b a =-=-=,班级_____________________ 姓名____________________ 考场号____________ 考号___________ ----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ 所以222211112a b ab +=⨯+⨯=. 20. 解法一:原式=()221x x x +-- =221x x x +-+=x +1 当1x =-时,原式=-1+1=0 解法二:原式=()()11x x x +--⎡⎤⎣⎦ =()()11x x x +-+ =1x + 当1x =-时,原式0=. 21. 原式=22212a a a ++-+ =31a + 四、复合题 22. 解:(1)当34a b ==, ()2222a b ab a b ++=+ =49. (2)(答案不惟一)例:()()22a b a b a b -=+-。
浙教版数学七年级下册第4章单元检测一、选择题1.下列等式从左边到右边的变形中,属于因式分解的是(D)A.(x+1)(x-1)=x2-1 B.x2-4x+4=x(x-4)+4C.(x+3)(x-4)=x2-x-12 D.x2-4=(x+2)(x-2)2.把多项式9a2x2-18a4x3分解因式,应提取的公因式为(B)A.9ax B.9a2x2C.a2x2D.a3x23.已知把一个多项式分解因式,得到的结果为(x+1)(x-3),则这个多项式为(C)A.x2+3x-2 B.x2+2x-3C.x2-2x-3 D.x2-3x+24.下列因式分解中,正确的是(D)A.3p2-3q2=(3p+3q)(p-q) B.m4-1=(m2+1)(m2-1)C.2p+2q+1=2(p+q)+1 D.m2-4m+4=(m-2)25.利用因式分解计算2 0212+2 021-2 0222的结果是(D)A.2 021 B.-2 021C.2 022 D.-2 0226.已知长为a,宽为b的长方形,它的周长为10,面积为5.则a2b+ab2的值为(A) A.25 B.50C.75 D.100【解析】由题意,知ab=5,2(a+b)=10,∴a+b=5,∴a2b+ab2=ab(a+b)=25.7.若4x2+kx+25=(2x+a)2,则k+a的值可以为(A)A.-25 B.-15C.15 D.20【解析】4x2+kx+25=(2x+a)2,当a=5时,k=20;当a=-5时,k=-20,故k+a的值为±25.8.设n是任意正整数,代入式子n3-n中计算时,四名同学算出以下四个结果,其中正确的结果可能是(B)A.388 947 B.388 944C.388 953 D.388 949【解析】n3-n=n(n2-1)=n(n+1)(n-1),是3个连续整数的积,易知积为偶数,故选B. 9.小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x-1,a-b,3,x2+1,a,x+1分别对应下列六个字:思,爱,我,数,学,考,现将3a(x2-1)-3b(x2-1)分解因式,结果呈现的密码信息可能是(C)A.我爱学B.爱思考C.我爱思考D.数学思考【解析】3a(x2-1)-3b(x2-1)=3(x2-1)(a-b)=3(x+1)(x-1)(a-b).∵x-1,a-b,3,x+1分别对应思,爱,我,考,∴3(x+1)(x-1)(a-b)对应的信息可能是我爱思考.10.已知m2=3n+a,n2=3m+a,m≠n,则m2+2mn+n2的值为(A)A.9 B.6C.4 D.无法确定【解析】∵m2=3n+a,n2=3m+a,∴m2-n2=3n-3m,∴(m+n)(m-n)+3(m-n)=0,∴(m-n)(m+n+3)=0.∵m≠n,∴m+n+3=0,∴m+n=-3,∴m2+2mn+n2=(m+n)2=(-3)2=9.二、填空题11.分解因式:-2a2+8ab-8b2=__-2(a-2b)2__.12.如果多项式2x+m可以分解为2(x+2),那么m的值为__4__.13.如果25x2+mx+9是完全平方式,那么m的值为__±30__.14.若a与2b互为相反数,则a2+4ab+4b2=__0__.【解析】∵a与2b互为相反数,∴a+2b=0,∴a2+4ab+4b2=(a+2b)2=0.15.计算:53.52×4-46.52×4=__2__800__.【解析】53.52×4-46.52×4=4×(53.52-46.52)=4×(53.5+46.5)×(53.5-46.5)=4×100×7=2 800.16.若m+n=2,mn=1,则m3n+mn3+2m2n2=__4__.【解析】∵m+n=2,mn=1,∴m3n+mn3+2m2n2=mn(m2+2mn+n2)=mn(m+n)2=1×22=4.三、解答题17.分解因式:(1)x2+14x+49.解:原式=(x+7)2.(2)(x-1)2+2(x-5).解:原式=x2-2x+1+2x-10=x2-9=(x+3)(x-3).18.利用因式分解计算:(1)1 200÷(1522-1482).解:原式=1 200(152+148)(152-148)=1 200 300×4=1.(2)98.52-2×98.5×78.5+78.52.解:原式=(98.5-78.5)2=400.19.分解因式:(1)x2(y-2)-x(2-y).解:原式=x2(y-2)+x(y-2)=x(y-2)(x+1).(2)(4a2+b2)2-16a2b2.解:原式=(4a2+b2+4ab)(4a2+b2-4ab)=(2a+b)2(2a-b)2.20.已知a+b=4,ab=-2,求a3+a2b+ab2+b3的值.解:原式=a2(a+b)+b2(a+b)=(a+b)(a2+b2)=(a+b)[(a+b)2-2ab]=4×[16-2×(-2)]=80.21.“换元”是重要的数学思想,它可以使一些复杂的问题得到简化.例如:分解因式:(x2+2x-2)(x2+2x)-3.解:(x2+2x-2)(x2+2x)-3=(x2+2x)2-2(x2+2x)-3=(x2+2x-3)(x2+2x+1)=(x+3)(x-1)(x+1)2.这里就是把x2+2x当成一个量,那么式子(x2+2x)2-2(x2+2x)-3可以看成是一个关于x2+2x 的二次多项式,就容易分解.(1)请模仿上面的方法分解因式:x(x-4)(x-2)2-45.(2)在(1)中,若x2-4x-6=0,求上式的值.解:(1)x(x-4)(x-2)2-45=(x2-4x)(x2-4x+4)-45=(x2-4x)2+4(x2-4x)-45=(x2-4x+9)(x2-4x-5)=(x2-4x+9)(x-5)(x+1).(2)当x2-4x-6=0,即x2-4x=6时,原式=(x2-4x+9)(x2-4x-5)=(6+9)×(6-5)=15.22.因为x2+2x-3=(x+3)(x-1),这说明多项式x2+2x-3有一个因式为x-1,我们把x=1代入此多项式发现x=1能使多项式x2+2x-3的值为0.利用上述阅读材料求解:(1)若x-3是多项式x2+kx+12的一个因式,求k的值.(2)若x-3和x-4是多项式x3+mx2+12x+n的两个因式,试求m,n的值.(3)在(2)的条件下,把多项式x3+mx2+12x+n分解因式.解:(1)∵x -3是多项式x 2+kx +12的一个因式,∴x =3时,x 2+kx +12=0,∴9+3k +12=0,∴3k =-21,∴k =-7.(2)∵x -3和x -4是多项式x 3+mx 2+12x +n 的两个因式, ∴x =3和x =4时,x 3+mx 2+12x +n =0,∴⎩⎨⎧27+9m +36+n =0,64+16m +48+n =0,解得⎩⎨⎧m =-7,n =0.∴m ,n 的值分别为-7和0.(3)∵m =-7,n =0,∴x 3+mx 2+12x +n =x 3-7x 2+12x ,∴x 3-7x 2+12x =x (x 2-7x +12)=x (x -3)(x -4).23.观察下列代数式的因式分解过程:①x 2-1=(x -1)(x +1).②x 3-1=x 3-x +x -1=x (x 2-1)+(x -1)=x (x -1)(x +1)+(x -1)=(x -1)[x (x +1)+1]=(x -1)(x 2+x +1).③x 4-1=x 4-x +x -1=x (x 3-1)+(x -1)=x (x -1)(x 2+x +1)+(x -1)=(x -1)[x (x 2+x +1)+1]=(x -1)(x 3+x 2+x +1).……(1)模仿以上做法,尝试对x 5-1进行因式分解.(2)观察以上结果,猜想x n -1=__(x -1)(x n -1+x n -2+…+x +1)__(n 为大于等于2的正整数,直接写出结果,不用验证).(3)根据以上结论,计算:45+44+43+42+4+1.解:(1)x 5-1=x 5-x +x -1=x (x 4-1)+(x -1)=x(x-1)(x3+x2+x+1)+(x-1)=(x-1)[x(x3+x2+x+1)+1]=(x-1)(x4+x3+x2+x+1).(3)取x=4,n=6,可得(4-1)(45+44+43+42+4+1)=46-1,∴45+44+43+42+4+1=46-13=4 0953=1 365.。
第四章因式分解单元测试一、单选题(共40分)1.(本题4分)已知9641-可以被60到70之间的某两个整数整除,则这两个数是() A .61,63 B .63,65 C .65,67 D .63,64 2.(本题4分)把多项式2x ax b ++分解因式,得(2)(3)x x +-,则a ,b 的值分别是() A .1,6a b == B .1,6a b =-= C .1,6a b =-=- D .1,6a b ==- 3.(本题4分)已知4M m =-,23N m m =-,则M 与N 的大小关系为() A .M N > B .M N ≤ C .M N D .M N < 4.(本题4分)长为a ,宽为b 的长方形,它的周长为10,面积为5.则22a b ab +的值为()A .25B .50C .75D .100 5.(本题4分)如果实数a b ,6161a b a b a b +-=+-,则+a b 的值为() A .5- B .6-C .7-D .8- 6.(本题4分)若,10x y a z x -=-=,则代数式222x y z xy xz yz ++---的最小值为()A .75B .80C .100D .105 7.(本题4分)已知2m n +=,则224m n n -+的值是( ) A .2 B .4 C .6 D .8 8.(本题4分)若3x y -=-,5xy =,则代数式3223242x y x y xy -+的值为() A .90 B .45C .15-D .30- 9.(本题4分)下列多项式:①22x y +;②224x y --;③21a -+;④22b a -,其中能用平方差公式分解因式的多项式有()A .1个B .2个C .3个D .4个 10.(本题4分)已知:2,3,a b ab -==则22a b ab -=()A .2B .3C .4D .6二、填空题(共24分)11.(本题4分)若2|1|(25)0m n -+-=,则22mx ny -分解因式为____________.12.(本题4分)若多项式26x mx -+分解因式后,有一个因式是3x -,则m 的值为______.13.(本题4分)若多项式3x x m ++含有因式22x x -+,则m 的值是________. 14.(本题4分)已知x +y =6,xy =7,则x 2y +xy 2的值是_____.15.(本题4分)因式分解:21664a m am m -+=____________________. 16.(本题4分)已知3a b +=,2ab =,则22a b +的值是__________.三、解答题(共36分)17.(本题9分)已知4a b +=,1a b -=,求()()2222a b +--的值.18.(本题9分)分解因式:(1)224x x -;(2)22()4()a x y b y x -+-. 19.(本题9分)(1)化简求值:2(2)(2)(3)x y x y x y +----,其中1,13x y ==. (2)先因式分解再求值,已知3xy =-,123x y -=,求42332444x y x y x y -+-. 20.(本题9分)已知a+b=-2,a-b=2,把(a 2+b 2-1)2-4a 2b 2先分解因式,再求值.参考答案1.B2.C3.B4.A5.A6.A7.B8.A9.B10.D11.(x+5y )(x-5y )12.513.214.42.15.()28m a -16.517.20.【详解】()()2222a b +--()224444a a b b =++--+ 224444a a b b =++-+-2244a a b b =+-+()()()4a b a b a b =+-++()()4a b a b =+-+,∵4a b +=,1a b -=,∴原式()41420=⨯+=.故答案为:20.18.(1)2(2)x x -;(2)()(2)(2)x y a b a b -+-.【详解】解:(1)224x x -=2(2)x x -;(2)22()4()a x y b y x -+-=22()4()a x y b x y ---=22()(4)x y a b --=()(2)(2)x y a b a b -+-.19.(1)2136y xy --,15-;(2)()2222x y x y --,1- 【详解】解:(1)2(2)(2)(3)x y x y x y +----=()2222964x y xy x y +-+-=2222964x y xy x y ----=2136y xy -- 将1,13x y ==代入, 原式=21131613-⨯-⨯⨯=15-;(2)42332444x y x y x y -+- =()222244x y x xy y --+=()2222x y x y --∵3xy =-,123x y -=,∴原式=()()222xy x y --=()22133⎛⎫--⨯ ⎪⎝⎭=1-.20.()()()()1111a b a b a b a b +++--+--,9【详解】解:()2222214a b a b +--=()()22221212a b ab a b ab +-++-- =()()2211a b a b ⎡⎤⎡⎤+---⎣⎦⎣⎦=()()()()1111a b a b a b a b +++--+--, 把2,2a b a b +=--=代入得:原式=()()()()212121219-+⨯--⨯+⨯-=.。
浙教版七年级下数学第四章因式分解单元检测卷学校:___________姓名:___________班级:___________考号:___________一、选择题(10小题,每小题3分,共30分)1.下列从左到右的变形,属于因式分解的是( )A.(a+1)(a-1)=a2-1 B.2a-2b=2(a-b)C.a2-2a+1=a(a-2)+1 D.a+2b=(a+b)+b2.下列因式分解正确的是( )A.ab+ac+ad+1=a(b+c+d)+1B.(x+1)(x+2)=x2+3x+2C.a3+3a2b+a=a(a2+3ab+1)D.x2-y2=(x+y)(y-x)3.下列添括号错误的是( )A.3-4x=-(4x-3)B.(a+b)-2a-b=(a+b)-(2a+b)C.-x2+5x-4=-(x2-5x+4)D.-a2+4a+a3-5=-(a2-4a)-(a3+5)4.在下面的多项式中,能因式分解的是( )A.m2+n B.m2-m-1 C.m2-m+1 D.m2-2m+15.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是( )A.2x B.4x C.-4x D.4x46.下列代数式中,没有公因式的是()A.ab与b B.a+b与C.a+b与D.x与7.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为( ).A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-68.对于任何整数,多项式(n+5)2-n2一定是( )A.2的倍数 B.5的倍数 C.8的倍数 D.n的倍数9.若a+b+1=0,则3a2+3b2+6ab的值是( )A.1 B.-1 C.3 D.-310.要在二次三项式x2+( )x-6的括号中填上一个整数,使它能按公式x2+(a+b)x+ab=(x+a)(x+b)分解因式,那么这些数只能是( )A.1,-1 B.5,-5 C.1,-1,5,-5 D.以上答案都不对二、填空题(8小题,每小题3分,共24分)11.一个多项式中每一项都含有的________,叫做这个多项式各项的公因式.把该公因式提取出来进行因式分解的方法,叫做________.12.公式法分解因式:a2-b2=________;a2±2ab+b2=_________.13.已知正方形的面积是9a2+6a+1(a>0),则该正方形的边长是_________.14.9x3y2+12x2y2—6xy3中各项的公因式是___________.15.若关于x的多项式x2-ax-6含有因式x-1,则实数a=_______.16.简便计算:101×99=_________.17.如图,大正方形ABCD和小正方形AEFG的周长和为20,且阴影部分的面积是10,则BE=__________.18.已知x2+y2+2x-4y+5=0,则x+y=________.三、解答题(8小题,共66分)19.用简便方法计算:①20192-2018×2019;②0.932+2×0.93×0.07+0.072.20.分解因式:(1)2a3-8a;(2)-3x2-12+12x;(3)(a+2b)2+6(a+2b)+9;(4)2(x-y)2-x+y;(5)(a2+4b2)2-16a2b2.21.已知x2+5x-991=0,求x3+6x2-986x+1027的值.22.利用因式分解说明(1)3200-4×3199+10×3198能被7整除.(2)913-324必能被8整除.23.已知P=3xy-8x+1,Q=x-2xy-2,当x≠0时,3P-2Q=7恒成立,求y的值.24.已知a,b,c是三角形ABC的三边的长,且满足a2+2b2+c2-2b(a+c)=0,试判断此三角形三边的大小关系.25.如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为________;(2)若每块小长方形的面积为10 cm2,四个正方形的面积和为58 cm2,试求图中所有裁剪线(虚线部分)长之和.26.先阅读下面例题的解法,然后解答问题:例:若多项式2x3-x2+m分解因式的结果中有因式2x+1,求实数m的值.解:设2x3-x2+m=(2x+1)·A(A为整式).若2x3-x2+m=(2x+1)·A=0,则2x+1=0或A=0.由2x+1=0,解得x=-.∴x=-是方程2x3-x2+m=0的解.∴2×(-)3-(-)2+m=0,即--+m=0.∴m=.请你模仿上面的方法尝试解决下面的问题:若多项式x4+mx3+nx-16分解因式的结果中有因式(x-1)和(x-2),求实数m,n的值.参考答案1.B 2.C 3.D 4.D 5.A 6.B 7.D 8.B 9.C 10.C 11.解:一个多项式中每一项都含有的相同的因式,叫做这个多项式各项的公因式.把该公因式提取出来进行因式分解的方法,叫做提取公因式法.12.解:根据平方差和完全平方的性质得:a2-b2=(a+b)(a-b);a2±2ab+b2=(a±b)2.13.解:∵9a2+6a+1=(3a+1)2,由题可知9a2+6a+1(a>0)是正方形的面积,∴该正方形的边长是3a+1.14.解:∵9x3y2+12x2y2-6xy3=3xy2(3x2+4x-2y),∴9x3y2+12x2y2-6xy3的公因式为3xy2.15.解:设多项式的另一个因式是(x+b),即x2-ax-6=(x+1)(x+b),对等式右侧进行整理得x2+(b+1)x+b,即x2-ax-6= x2+(b+1)x+b,∴b=-6,∴x2-ax-6= x2-5x-6,∴b=-5.16.解:101×99=(100+1)×99=9900+99=9999.17.解:设大正方形的边长为x,小正方形的边长为y,依题意得:4x+4y=20,即x+y=5,x2-y2=10,化简得(x-y)(x-y)=10,将x+y=5代入上式得x-y=2,由图可知,BE= x-y=2.18.解:∵x2+y2+2x-4y+5=(x+1)2+(y-2)2,x2+y2+2x-4y+5=0,即(x+1)2+(y-2)2=0,又∵(x+1)20,(y-2)20,∴x=-1,y=2,∴x+y=1.19.解:①20192-2018×2019=2019×(2019-2018)=2019;②0.932+2×0.93×0.07+0.072=(0.93+0.07)2=1.20.解:(1)原式=2a(a2-4)=2a(a+2)(a-2).(2)原式=-3(x2-4x+4)=-3(x-2)2.(3)原式=[(a+2b)+3]2=(a+2b+3)2.(4)原式=2(x-y)2-(x-y)=(x-y)(2x-2y-1).(5)原式=(a2+4b2)2-(4ab)2=(a2+4b2+4ab)(a2+4b2-4ab)=(a+2b)2(a-2b)2.21.解:原式=x3+5x2-991x+x2+5x-991+991+1027=x(x2+5x-991)+(x2+5x-991)+2018=2018.22.解:(1)原式=3198×(32-4×3+10)=3198×7,∴3200-4×3199+10×3198能被7整除(2)913-324=326-324=324(32-1)=8×324∴913-324必能被8整除23.解:∵P=3xy-8x+1,Q=x-2xy-2,3P-2Q=7恒成立,∴3P-2Q=3(3xy-8x+1)-2(x-2xy-2)=7,∴9xy-24x+3-2x+4xy+4=7,13xy-26x=0,13x(y-2)=0,∵x≠0,∴y-2=0,∴y=2.24.解:(a2-2ab+b2)+(b2-2bc+c2)=0,(a-b)2+(b-c)2=0,∴a-b=0且b-c=0,∴a=b且b=c,∴a=b=c.25.解:(1)图中所有裁剪线(虚线部分)长度之和为:2(m+2n)+2(2m+n)=6m+6n=6(m+n) ;(2)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(3)依题意得:2m2+2n2=58,mn=10,∴m2+n2=29.∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49.26.解:设x4+mx3+nx-16=(x-1)(x-2)·C(C为整式). 若x4+mx3+nx-16=(x-1)(x-2)·C=0,则x-1=0或x-2=0或C=0,由x-1=0或x-2=0,解得x=1或x=2.∴x=1,x=2都是方程x4+mx3+nx-16=0的解.∴14+m·13+n·1-16=0或24+m·23+n·2-16=0,即m+n=15①,4m+n=0②,①②联立解得m=-5,n=20.。
浙教版七年级数学下册第4章因式分解一、选择题(每小题3分,共24分)1.下列等式从左到右的变形,属于因式分解的是( )A .8a 2b =2a •4abB .-ab 3-2ab 2-ab =-ab (b 2+2b )C .4x 2+8x -4=4x ⎝ ⎛⎭⎪⎫x +2-1x D .4my -2=2(2my -1)2.下列分解因式正确的是( )A .x 2-y 2=(x -y )2B .a 2+a +1=(a +1)2C .xy -x =x (y -1)D .2x +y =2(x +y )3.多项式mx 2-m 与多项式x 2-2x +1的公因式是( )A .x -1B .x +1C .x 2-1D .(x -1)24.把x 3+4x 分解因式的结果是( )A .x (x 2+4)B .x (x +2)(x -2)C .x (x +2)2D .x (x -2)25.将4x 2+1再加上一项,不能化成(a +b )2形式的是( )A .4xB .-4xC .4x 4D .16x 46.已知a +3b =2,则a 2-9b 2+12b 的值是( )A .2B .3C .4D .67.把代数式3x 3-12x 2+12x 分解因式,结果正确的是( )A .3x ()x 2-4x +4B .3x ()x -42C .3x ()x +2()x -2D .3x ()x -228.无论x ,y 为何值,x 2+y 2-2x +12y +40的值都是( )A .正数B .负数C .0D .不确定二、填空题(每小题4分,共32分)9.添括号:2a -3b -c =2a -(________).10.若多项式x 2-mx -21可以分解为(x +3)·(x -7),则m =________.11.因式分解:a 2b -4ab +4b =____________.12.利用因式分解计算:7.56×1.09+1.09×6-12.56×1.09=________.13.若(a +b +1)(a +b -1)=63,则(a +b )2=________.14.若一个长方体的体积为(a 3-2a 2b +ab 2)立方厘米,高为(a -b )厘米,则这个长方体的底面积是________平方厘米.15.若整式x 2+ky 2(k 为不等于零的常数)能在有理数范围内分解因式,则k 的值可以是________(写出一个即可).16.如果一个正整数能表示成两个连续偶数的平方差,那么称这个数为“神秘数”,如4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.请你写出一个类似的等式:________________.三、解答题(共44分)17.(9分)分解因式:(1)4x2-12xy;(2)(x+y)2+64-16(x+y);(3)9(a+b)2-(a-b)2.18.(8分)给出三个多项式:a2+3ab-2b2,b2-3ab,ab+6b2,请任选两个多项式进行加法运算,并把结果分解因式.19.(8分)阅读:99×99+199=992+198+1=992+2×99×1+12=(99+1)2=104.(1)计算:999×999+1999;(2)999999×999999+1999999的值为多少?请写出计算过程.20.(9分)对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式法将它分解为(x+a)2的形式,但是,对于一般二次三项式,就不能直接应用完全平方公式了,我们可以在二次三项式中先加上一项,使其成为完全平方式,再减去这项,使整个式子的值不变,如x2+2ax-3a2=x2+2ax+a2-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).像上面这样把二次三项式分解因式的方法叫做配方法.用上述方法把m2-6m+8分解因式.21.(10分)阅读下列分解因式的过程,再回答提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3.(1)上述分解因式的方法是________________________________________,共应用了________次;(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2019,则需应用上述方法________次,结果是____________;(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).教师详解详析1.D 2.C3.A [解析] 因为mx2-m=m(x2-1)=m(x-1)(x+1), x2-2x+1=(x-1)2,所以公因式为x-1.故选A.4.A [解析] x3+4x=x(x2+4).故选A.5.D 6.C 7.D8.A [解析] x2+y2-2x+12y+40=(x2-2x+1)+(y2+12y+36)+3=(x-1)2+(y+6)2+3≥3.故选A.9.3b+c10.4 [解析] (x+3)(x-7)=x2-4x-21.又∵多项式x2-mx-21可以分解为(x+3)(x-7),∴m=4.11.b(a-2)2[解析] a2b-4ab+4b=b(a2-4a+4)=b(a-2)2.12.1.0913.6414.a(a-b) [解析] 因为a3-2a2b+ab2=a(a2-2ab+b2)=a(a-b)2,所以这个长方体的底面积为(a3-2a2b+ab2)÷(a-b)=a(a-b)2÷(a-b)=a(a-b)(厘米2).15.答案不唯一,如-116.答案不唯一,如28=82-62,44=122-10217.[解析] 注意分解因式的三个步骤:一提、二套、三查.解:(1)4x2-12xy=4x(x-3y).(2)原式=(x+y)2-2×8×(x+y)+82=(x+y-8)2.(3)9(a+b)2-(a-b)2=[3(a+b)]2-(a-b)2=[3(a+b)+(a-b)][3(a+b)-(a-b)]=(4a+2b)(2a+4b)=4(2a+b)(a+2b).18.解:本题答案不唯一.如(a2+3ab-2b2)+(b2-3ab)=a2+3ab-2b2+b2-3ab=a2-b2=(a+b)(a-b).19.解:(1)999×999+1999=9992+1998+1=(999+1)2=106.(2)999999×999999+1999999=9999992+2×999999×1+1=(999999+1)2=1012.20.解:m2-6m+8=m2-6m+9-1=(m-3)2-1=(m-2)(m-4).21.(1)提取公因式法 2(2)2019 (1+x)2020(3)(1+x)n+1。
浙教版初中数学七年级下册第四单元《因式分解》单元测试卷(标准难度)(含答案解析)考试范围:第四单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列等式从左边到右边的变形,属于因式分解的是( )A. 2ab(a−b)=2a2b−2ab2.B. x2+1=x(x+1).xC. x2−4x+3=(x−2)2−1.D. a2−b2=(a+b)(a−b).2. 下面各式从左到右的变形,属于因式分解的是( )A. x2−x−1=x(x−1)−1B. x2−1=(x−1)2C. x2−x−6=(x−3)(x+2)D. x(x−1)=x2−x3. 已知多项式ax2+bx+c分解因式后的结果为2(x−3)(x+1),则b,c的值分别为( )A. b=3,c=−1B. b=−6,c=2C. b=−6,c=−4D. b=−4,c=−64. 若m−n=−2,mn=1,则m3n+mn3=( )A. 6B. 5C. 4D. 35. 将多项式a n−a3n+a n+2分解因式的结果是( )A. a n(1−a3+a2)B. a n(1−a2n+a2)C. a n(−a2n+a2)D. a n(1−a3+a n)6. 多项式3x2y2−12x2y4−6x3y3的公因式是.( )A. 3xyB. x+y2C. 3x2y2D. 3x3y27. 下列因式分解正确的是( )A. (x−y)3−(x−y)=(x−y)(x−y)2B. (x−y)2−(x−y)3=(x−y)2(x−y+1)C. (x−y)2−(y−x)=(x−y)(x−y+1)D. (x−y)2−(y−x)=(x−y)(x−y−0)=(x−y)28. 将a3b−ab进行因式分解,正确的是( )A. a(a2b−b)B. ab(a−1)2C. ab(a+1)(a−1)D. ab(a2−1)9. 将多项式4x2y−4xy2−x3分解因式的结果是( )A. 4xy(x−y)−x3B. −x(x−2y)2C. x(4xy−4y2−x2)D. −x(−4xy+4y2+x2)10. 已知m2=3n+a,n2=3m+a,m≠n,则m2+2mn+n2的值为( )A. 9B. 6C. 4D. 无法确定11. 多项式x2−4xy−2y+x+4y2分解因式后有一个因式是x−2y,另一个因式是( )A. x+2y+1B. x+2y−1C. x−2y+1D. x−2y−112. 如果二次三项式x2−ax−9(a为整数)在整数范围内可以分解因式,那么a可取值的个数是( )A. 2个B. 3个C. 4个D. 无数个第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 在分解因式x2+ax+b时,甲看错了a的值,分解的结果为(x+6)(x−1);乙看错了b的值,分解的结果为(x−2)(x+1),则a+b=.14. 若x2+x=1,则3x4+3x3+3x+1的值为.15. 已知x+y=10,xy=1,则代数式x2y+xy2的值为.16. 若a+b=4,a−b=1,则(a+1)2−(b−1)2的值为.三、解答题(本大题共9小题,共72.0分。
七年级数学下册第四章因式分解单元测试卷(时间90分钟,总分120分)第Ⅰ卷(选择题)一.选择题(共10小题,3*10=30)1.下列各式中,不能分解因式的是( )A .4x 2+2xy +14y 2B .4x 2-2xy +14y 2C .4x 2-14y 2D .-4x 2-14y 2 2.若x 2+12mx +k 是完全平方式,则k 的值是( ) A .m 2 B.14m 2 C.116m 2 D.13m 2 3.下列从左到右的变形属于因式分解的是( )A .(x +1)(x -1)=x 2-1B .m 2-2m -3=m(m -2)-3C .2x 2+1=x(2x +1x) D .x 2-5x +6=(x -2)(x -3) 4.把多项式x 2+ax +b 分解因式,得(x +2)(x -3),则a ,b 的值分别是( )A .a =1,b =6B .a =-1,b =-6C .a =-1,b =6D .a =1,b =-65.将下列多项式因式分解,结果中不含有因式a +1的是( )A .a 2-1B .a 2+aC .a 2+a -2D .(a +2)2-2(a +2)+16.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a -b ,x -y ,x +y ,a +b ,x 2-y 2,a 2-b 2分别对应下列六个字:华、爱、我、中、游、美,现将(x 2-y 2)a 2-(x 2-y 2)b 2因式分解,结果呈现的密码信息可能是( )A .我爱美B .中华游C .爱我中华D .美我中华7.下列各式分解因式错误的是( )A .(x -y)2-x +y +14=(x -y -12)2 B .4(m -n)2-12m(m -n)+9m 2=(m +2n)2C .(a +b)2-4(a +b)(a -c)+4(a -c)2=(b +2c -a)2D .16x 4-8x 2(y -z)+(y -z)2=(4x 2-y -z)28.已知a 2+b 2+2a -4b +5=0,则( )A .a =1,b =2B .a =-1,b =2C .a =1,b =-2D .a =-1,b =-29.如果257+513能被n 整除,则n 的值可能是( )A .20B .30C .35D .4010.要在二次三项式x 2+( )x -6的括号中填上一个整数,使它能按公式x 2+(a +b)x +ab =(x +a)(x +b)分解因式,那么这些数只能是( )A .1,-1B .5,-5C .1,-1,5,-5D .以上答案都不对第Ⅱ卷(非选择题)二.填空题(共6小题,3*8=24)11.多项式a(a -b -c)+b(c -a +b)+c(b +c -a)提出公因式a -b -c 后,另外一个因式为________.12.已知m +n =4,mn =5,则多项式m 3n 2+m 2n 3的值是________.13.分解因式:x 2+2x(x -3)-9=________;-3x 2+2x -13=________. 14.若a -b =1,则代数式a 2-b 2-2b 的值为________.15.若x 2-4y 2=-32,x +2y =4,则y x =________.16.如图,现有边长为a 的正方形1个,边长为b 的正方形3个,边长为a ,b(a>b)的长方形4个,把它们拼成一个大长方形,请利用这个拼图中图形的面积关系分解因式:a 2+4ab +3b 2=________.17.观察下列等式:32-12=8×1;52-32=8×2;72-52=8×3;…,请用含正整数n 的等式表示你所发现的规律:________.18.已知a =12+32+52+…+252,b =22+42+62+…+242,则a -b 的值为________.三.解答题(共7小题,66分)19.(18分)分解因式:(1)m3+6m2+9m; (2)a2b-10ab+25b;(3)4x2-(y-2)2; (4)9x2-8y(3x-2y);(5)m2-n2+(2m-2n); (6)(x2-5)2+8(5-x2)+16.20.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.21.(8分)已知x2+y2+6x+4y=-13,求y x的值.22.(8分)已知a,b,c是三角形ABC的三边的长,且满足a2+2b2+c2-2b(a+c)=0,试判断此三角形三边的大小关系.23.(8分)已知P=2x2+4y+13,Q=x2-y2+6x-1,比较代数式P,Q的大小.24.(8分) 如图,将边长为1,2,3,…,2019,2020的正方形叠放在一起,请计算图中阴影部分的面积.25.(10分)如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为_______________;(2)若每块小长方形的面积为10 cm2,四个正方形的面积和为58 cm2,试求图中所有裁剪线(虚线部分)长之和.参考答案1-5 DCDBC 6-10 CDBBC11. a -b -c12. 10013. 3(x +1)(x -3),-13(3x -1)2 14. 115. 1916. (a +3b)(a +b)17. (2n +1)2-(2n -1)2=8n18. 32519. 解:(1)原式=m(m +3)2(2)原式=b(a -5)2(3)原式=(2x +y -2)(2x -y +2)(4)原式=(3x -4y)2(5)原式=(m -n)(m +n +2)(6)原式=(x +3)2(x -3)220. 解:a 3b +2a 2b 2+ab 3=ab(a +b)2,将a +b =3,ab =2代入得ab(a +b)2=2×32=1821. 解:由已知得(x 2+6x +9)+(y 2+4y +4)=0,(x +3)2+(y +2)2=0,∴x =-3,y =-2,∴y x =(-2)-3=-1822. 解:(a 2-2ab +b 2)+(b 2-2bc +c 2)=0,(a -b)2+(b -c)2=0,∴a -b =0且b -c =0,∴a =b 且b =c ,∴a =b =c23. 解:P -Q =(2x 2+4y +13)-(x 2-y 2+6x -1)=x 2-6x +y 2+4y +14=x 2-6x +9+y 2+4y +4+1=(x -3)2+(y +2)2+1.∵(x -3)2≥0,(y -2)2≥0,∴P -Q =(x -3)2+(y +2)2+1≥1,∴P>Q24. 解:S 阴影=22-12+42-32+...+20202-20192=(2+1)(2-1)+(4+3)(4-3)+ (2020)2019)(2020-2019)=1+2+3+4+…+2019+2020=12(1+2020)×2020=2041210 25. 解:(1)(m +2n)(2m +n)(2)依题意得,2m 2+2n 2=58,mn =10,∴m 2+n 2=29,∵(m +n)2=m 2+2mn +n 2,∴(m +n)2=29+20=49,∵m +n>0,∴m +n =7,裁剪线长为2(2m +n)+2(m +2n)=6m +6n=42,∴图中所有裁剪线(虚线部分)长之和为42 cm。
第四章因式分解单元检测卷姓名:__________ 班级:__________一、选择题(共11题;每小题3分,共33分)1.代数式15ax2﹣15a与10x2+20x+10的公因式是()A. 5(x+1)B. 5a(x+1)C. 5a(x﹣1)D. 5(x﹣1)2.下列因式分解完全正确的是()A. ﹣2a2+4a=﹣2a(a+2)B. ﹣4x2﹣y2=﹣(2x+y)2C. a2﹣8ab+16b2=(a+4b)2D. 2x2+xy﹣y2=(2x﹣y)(x+y)3.下列各式从左边到右边的变形是因式分解的是()A. (a+1)(a-1)=a2-1B. a2-6a+9=(a-3)2C. x2+2x+1=x(x+2)+1D. -18x4y3=-6x2y2•3x2y4.下列各式能用完全平方公式进行分解因式的是()A. x2+1B. x2+2x﹣1C. x2+x+1D. x2+4x+45.分解因式a2﹣9a的结果是()A. a(a﹣9)B. (a﹣3)(a+3)C. (a﹣3a)(a+3a)D. (a﹣3)26.将x2﹣16分解因式正确的是()A. (x﹣4)2B. (x﹣4)(x+4)C. (x+8)(x﹣8)D. (x﹣4)2+8x7.下列各组多项式没有公因式的是()A. 2x﹣2y与y﹣xB. x2﹣xy与xy﹣x2C. 3x+y与x+3yD. 5x+10y与﹣2y﹣x8.已知a为实数,且a³+a²-a+2=0,则(a+1)2008+(a+1)2009+(a+1)2010的值是()A. -3B. 3C. -1D. 19.下列式子中,从左到右的变形是因式分解的是()A. (x﹣1)(x﹣1)=x2﹣2x+1B. 4x2﹣9y2=(2x﹣3y)(2x+3y)C. x2+4x+4=x(x﹣4)+4D. x2+y2=(x+y)(x﹣y)10.分解因式-2xy2+6x3y2-10xy时,合理地提取的公因式应为()A. -2xy2B. 2xyC. -2xyD. 2x2y11.下列多项式在有理数范围内能用平方差公式进行因式分解的是()A. x2+y2B. ﹣x2+y2C. ﹣x2﹣y2D. x2﹣3y二、填空题(共10题;共40分)12.若x+y+z=2,x2﹣(y+z)2=8时,x﹣y﹣z=________.13.多项式﹣3x2y3z+9x3y3z﹣6x4yz2的公因式是________.14.计算:(﹣2)100+(﹣2)99=________15.分解因式:18b(a﹣b)2﹣12(a﹣b)3=________.16.如果x﹣3是多项式2x2﹣11x+m的一个因式,则m的值________17.多项式﹣5mx3+25mx2﹣10mx各项的公因式是________.18.因式分解:xy3﹣x3y=________.19.9x3y2+12x2y3中各项的公因式是________ .20.分解因式:9x3﹣18x2+9x=________.21.多项式12x3y2z3+18x2y4z2﹣30x4yz3各项的公因式是________.三、解答题(共3题;共27分)22.因式分解:(1)x(x﹣y)﹣y(y﹣x);(2)a2x2y﹣axy2.23.我们知道,多项式a2+6a+9可以写成(a+3)2的形式,这就是将多项式a2+6a+9因式分解,当一个多项式(如a2+6a+8)不能写成两数和(成差)的平方形式时,我们可以尝试用下面的办法来分解因式.a2+6a+8=a2+6a+9﹣1=(a+3)2﹣1=[(a+3)+1][(a+3)﹣1]=(a+4)(a+2)请仿照上面的做法,将下列各式分解因式:(1)x2﹣6x﹣27(2)x2﹣2xy﹣3y2.24.当a为何值时,多项式x2+7xy+ay2﹣5x+43y﹣24可以分解为两个一次因式的乘积.参考答案一、选择题A DB D A BCD B C B二、填空题12.4 13.﹣3x2yz 14.29915.6(a﹣b)2(3﹣2a+2b)16.15 17.5mx 18.xy(x+y)(x﹣y)19.3x2y220.9x(x﹣1)221.6x2yz2三、解答题22.解:(1)x(x﹣y)﹣y(y﹣x)=x(x﹣y)+y(x﹣y)=(x+y)(x﹣y);(2)a2x2y﹣axy2=axy(ax﹣y)23.解:(1)原式=x2﹣6x+9﹣36=(x﹣3)2﹣36=(x﹣3+6)(x﹣3﹣6)=(x+3)(x﹣9);(2)原式=x2﹣2xy+y2﹣4y2=(x﹣y)2﹣4y2=(x﹣y+2y)(x﹣y﹣2y)=(x+y)(x﹣3y).24.解:多项式的第一项是x2,因此原式可分解为:(x+ky+c)(x+ly+d),∵(x+ky+c)(x+ly+d)=x2+(k+l)xy+kly2+(c+d)x+(cl+dk)y+cd,∴cd=﹣24,c+d=﹣5,∴c=3,d=﹣8,∵cl+dk=43,∴3l﹣8k=43,∵k+l=7,∴k=﹣2,l=9,∴a=kl=﹣18,.即当a=﹣18时,多项式x2+7xy+ay2﹣5x+43y﹣24可以分解为两个一次因式的乘积.。
第四章因式分解综合考试注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx 分钟收取答题卡第Ⅰ卷客观题第Ⅰ卷的注释阅卷人得分一、单选题1.下列各式中,从左到右的变形是因式分解的是( )A.x2+2x+3=x(x+2)+3B.(x+y)(x−2y)=x2−xy−2y2 C.3x2−12y2=3(x+2y)(x−2y)D.2(x+y)=2x+2y2.多项式−4a2b2+12a2b2−8a3b2c的公因式是( ).A.−4a2b2c B.−a2b2C.−4a2b2D.−4a3b2c 3.下列分解因式正确的是( )A.a2−9=(a−3)2B.6a2+3a=a(6a+3)C.a2+6a+9=(a+3)2D.a2−2a+1=a(a−2)+14.若x2+mx+16是完全平方式,则m的值等于( )A.2B.4或-4C.2或-2D.8或-8 5.下列多项式中,是完全平方式的为( )A.x2−x+14B.x2+12x+14C.x2+14x−14D.x2−14x+146.若x=1,y=12,则x2+4xy+4y2的值是( )A.2B.4C.32D.127.若m+ 1m =5,则m2+ 1m2的结果是( )A.23B.8C.3D.7 8.把二次三项式2x2﹣8xy+5y2因式分解,下列结果中正确的是( )A.(x﹣4+62y)(x﹣4−62y)B.(2x﹣4y+ 6y)(x﹣4+62y)C.(2x﹣4y+ 6y)(x﹣4−62y)D.2(x﹣4−62y)(x﹣4+62y)9.若m2=n+2022,n2=m+2022(m和n不相等),那么式子m3−2mn+n3的值为( )A.2022B.−2022C.2023D.−202310.已知x,y,z都是正整数,其中x>y,且x2−xz−xy+yz=23,设a=x−z,则[(3a−1)(a+2)−5a+2]÷a=( )A.3B.69C.3或69D.2或46阅卷人得分二、填空题11.将a3b -ab 进行因式分解的结果是 .12.把多项式因式分解a2b−2ab+b的结果是 .13.已知x2+mx+ 19是完全平方式,则m= .14.已知正实数a、b、c满足a2+b2+c2−ac−bc=1.则c的最大值是 .15.已知实数a,b,c满足a2+b2-4a≤1,b2+c2-8b≤-3,且c2+a2-12c≤-26,则(a+b)c的值为 .16.若一个四位数M的个位数字与十位数字的和与它们的差之积恰好是M去掉个位数字与十位数字后得到的两位数,则这个四位数M称为“和差数”,令M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记G(M)=dc,且P(M)=Mc+d,则G(1224)P(1224)= ;当G(M),P(M)均为整数时,M的最大值为 .阅卷人得分三、解答题17.如图,在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=6.8cm,r=1.6 cm,他想知道剩余阴影部分的面积,你能利用所学过的因式分解的方法帮助小刚计算吗?请写出求解的过程(π取3).18.已知4m+n=40,2m-3n=5.求(m+2n)2-(3m-n)2的值.19.仔细阅读下面的例题,仿照例题解答问题,例题:已知二次三项式x2−4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2−4x+m=(x+3)(x+n)化简得x2−4x+m=x2+nx+3x+3n整理得x2−4x+m=x2+(n+3)x+3n于是有{n+3=−4m=3n解得{m=−21 n=−7因此另一个因式是(x−7),m的值为21.问题:已知二次三项式3x2+5x−k有一个因式是(3x−1),求另一个因式以及k的值.20.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC的最大边c的值;(3)已知a﹣b=8,ab+c2﹣16c+80=0,求a+b+c的值.21.现有若干张长方形和正方形卡片,如图所示.请运用拼图的方法,选取图中相应的种类和一定数量的卡片拼成一个大长方形,使它的面积等于a2+4ab+3b2,并根据拼成图形的面积,把多项式a2+4ab+3b2因式分解.22.认真阅读下列因式分解的过程,再回答问题:1+x+x(1+x)+x(1+x)2=(1+x)[1+x+x(1+x)]=(1+x)2(1+x)=(1+x)³.(1)上述因式分解的方法是.(2)分解因式::1+x+x(1+x)+x(1+x)2+x(1+x)³.(3)猜想1+x+x(1+x)+x(1+x)2+⋯+x(1+x)"分解因式的结果.阅卷人四、实践探究题得分23.先阅读材料:分解因式:(a+b)2+2(a+b)+1.解:令a+b=M,则(a+b)2+2(a+b)+1=M2+2M+1=(M+1)2所以(a+b)2+2(a+b)+1=(a+b+1)2.材料中的解题过程用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你运用这种思想方法解答下列问题:(1)分解因式:1−2(x+y)+(x+y)2= ;(2)分解因式:(m+n)(m+n−4)+4;(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某个整数的平方.答案解析部分1.【答案】C【解析】【解答】解:A.等式的右边不是几个整式的积的形式,不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.从左到右的变形属于因式分解,故本选项符合题意;D.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;故答案为:C.【分析】把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式,据此判断即可.2.【答案】C【解析】【解答】解:∵−4a2b2+12a2b2−8a3b2c=−4a2b2(1−3+2ac),∴公因式为:−4a2b2,故答案为:C.【分析】利用公因式的定义求解即可.3.【答案】C【解析】【解答】A. a2−9=(a−3)(a−3),故不符合题意;B. 6a2+3a=3a(2a+1),故不符合题意;C. a2+6a+9=(a+3)2,符合题意;D. a2−2a+1=(a−1)2,故不符合题意;故答案为:C.【分析】运用因式分解的定义逐项判断即可;4.【答案】D【解析】【解答】解:∵x2+mx+16=x2+mx+42,∴mx=±2•x•4,解得m=8或﹣8.故答案为:D.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的这两数乘积二倍项即可确定m的值.5.【答案】A【解析】【解答】A. x2−x+14= (x−12)2,故符合题意B. x 2+12x +14 = (x +14)2+316 ,故不符合题意C. x 2+14x−14 = (x +116)2−65256 ,故不符合题意D. x 2−14x +14 = (x−116)2+63256 ,故不符合题意故答案为:A【分析】利用配方法分别转化为完全平方式的形式即可求解.6.【答案】B【解析】【解答】解:原式=(x+2y )2=(1+2× 12)2=4.故答案为:B【分析】根据完全平方公式a 2±2ab+b 2=(a ±b )2,分解因式x 2+4xy+4y 2=(x+2y )2,把x 、y 的值代入,求出代数式的值.7.【答案】A【解析】【解答】因为m+1m =5,所以m 2+ 1m2 =(m+ 1m )2﹣2=25﹣2=23.故答案为:A .【分析】两边平方可得m 2+1m 2=(m +1m )2−2。
浙教版初中数学七年级下册第四章因式分解单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各式属于因式分解的是()A.(3x+1)(3x﹣1)=9x2﹣1B.x2﹣2x+4=(x﹣2)2C.a4﹣1=(a2+1)(a+1)(a﹣1)D.9x2﹣1+3x=(3x+1)(3x﹣1)+3x2.(3分)下列各式分解因式结果是(a﹣2)(b+3)的是()A.﹣6+2b﹣3a+ab B.﹣6﹣2b+3a+abC.ab﹣3b+2a﹣6D.ab﹣2a+3b﹣63.(3分)若多项式﹣6ab+18abx+24aby的一个因式是﹣6ab,那么另一个因式是()A.1﹣3x﹣4y B.﹣1﹣3x﹣4y C.1+3x﹣4y D.﹣1﹣3x+4y4.(3分)若(a﹣b﹣2)2+|a+b+3|=0,则a2﹣b2的值是()A.﹣1B.1C.6D.﹣65.(3分)若多项式x2﹣ax﹣1可分解为(x﹣2)(x+b),则a+b的值为()A.2B.1C.﹣2D.﹣16.(3分)下列各式:①4x2﹣y2;②2x4+8x3y+8x2y2;③a2+2ab﹣b2;④x2+xy﹣6y2;⑤x2+2x+3其中不能分解因式的有()A.1个B.2个C.3个D.4个7.(3分)多项式x2+7x﹣18因式分解的结果是()A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)8.(3分)把多项式4x2﹣2x﹣y2﹣y用分组分解法分解因式,正确的分组方法应该是()A.(4x2﹣y)﹣(2x+y2)B.(4x2﹣y2)﹣(2x+y)C.4x2﹣(2x+y2+y)D.(4x2﹣2x)﹣(y2+y)9.(3分)下列关于x的二次三项式中(m表示实数),在实数范围内一定能分解因式的是()A.x2﹣2x+2B.2x2﹣mx+1C.x2﹣2x+m D.x2﹣mx﹣110.(3分)已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0B.1C.2D.3二.填空题(共6小题,满分24分,每小题4分)11.(4分)多项式15m3n2+5m2n﹣20m2n的公因式是.12.(4分)已知x+y=8,xy=2,则x2y+xy2=.13.(4分)若多项式x2﹣mx﹣21可以分解为(x+3)(x﹣7),则m=.14.(4分)通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:a2+3ab+2b2=.15.(4分)因式分解:a2b2﹣a2﹣b2+1=.16.(4分)已知a2+a﹣1=0,则a3+2a2+2018=.三.解答题(共8小题,满分66分)17.(6分)把x2+3x+c分解因式得:x2+3x+c=(x+1)(x+2),求c.18.(6分)已知ab2=﹣1,求(﹣ab)(a3b7﹣ab3﹣b)的值?19.(8分)分解因式:(1)x2y﹣9y;(2)﹣m2+4m﹣4.20.(8分)已知x+y=8,xy=12,求:①x2y+xy2;②x2﹣xy+y2;③x﹣y的值.21.(8分)阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.22.(10分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.23.(10分)(1)请用两种不同的方法列代数式表示图1的面积方法1,方法2;(2)若a+b=7,ab=15,根据(1)的结论求a2+b2的值;(3)如图2,将边长为x和x+2的长方形,分成边长为x的正方形和两个宽为1的小长方形,并将这三个图形拼成图3,这时只需要补一个边长为1的正方形便可以构成一个大正方形.①若一个长方形的面积是216,且长比宽大6,求这个长方形的宽.②把一个长为m,宽为n的长方形(m>n)按上述操作,拼成一个在一角去掉一个小正方形的大正方形,则去掉的小正方形的边长为.24.(10分)若一个正整数a可以表示为连续的两个奇数的平方差的形式,如:8=32﹣12,16=52﹣32,24=72﹣52,……,我们则称形如8,16,24这样的正整数a为“奇特数”.(1)请写出最小的三位“奇特数”,并表示成连续的两个奇数的平方差的形式;(2)求证:任意一个“奇特数”都是8的倍数;(3)若一个三位数b为“奇特数”,其百位和个位上的数字相同,十位上的数字比个位上的数字大m(m为正整数),求满足条件的所有三位“奇特数”.参考答案一.选择题(共10小题,满分30分,每小题3分)1.C2.B3.A4.D5.A6.B7.D8.B9.D10.D 二.填空题(共6小题,满分24分,每小题4分)11.5m2n12.1613.414.(a+2b)(a+b)15.(a+1)(a﹣1)(b+1)(b﹣1)16.2019三.解答题(共8小题,满分66分)17.解:(x+1)(x+2)=x2+3x+2,∴c=2.18.解:原式=﹣a4b8+a2b4+ab2=﹣(ab2)4+(ab2)2+ab2,当ab2=﹣1时,原式=﹣(﹣1)3+(﹣1)2﹣1=1.19.解:(1)原式=y(x2﹣32)=y(x+3)(x﹣3).(2)原式=﹣(m2﹣4m+4)=﹣(m﹣2)2.20.解:①∵x+y=8,xy=12,∴原式=xy(x+y)=96;②∵x+y=8,xy=12,∴原式=(x+y)2﹣3xy=64﹣36=28;③(x﹣y)2=(x+y)2﹣4xy=64﹣48=16,∴x﹣y=±4.21.解:(1)x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1=(x﹣2+1)(x﹣2﹣1)=(x﹣1)(x﹣3)(2)4x2+12x﹣7=4x2+12x+9﹣9﹣7=(2x+3)2﹣16=(2x+3+4)(2x+3﹣4)=(2x+7)(2x﹣1)22.解:(1)∵(x2﹣4x+4)2=(x﹣2)4,∴该同学因式分解的结果不彻底.(2)设x2﹣2x=y原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2﹣2x+1)2=(x﹣1)4.故答案为:不彻底.23.解:(1)方法1,图1可看作是边长为(a+b)的正方形面积,即(a+b)2方法2,图1可看作是边长分别为a和b的2个正方形面积加上2个长为a宽为b的矩形面积,即a2+2ab+b2故答案为:(a+b)2;a2+2ab+b2(2)∵a+b=7∴(a+b)2=49,即a2+2ab+b2=49又∵ab=15∴a2+b2=49﹣2ab=19故答案为:19(3)①设宽为x,由题意可得:(x+3)2=216+32因为x>0,解得x=12.故答案为:12②由题可知:去掉小正方形的边长是原长方形长与宽差的一半故答案为:24.(1)解:最小的三位奇特数是:104104=(2)证明:设m=∵m=8k+8∴m =8(k +1)∴r 任意一个“奇特数”都是8的倍数(3)设个位上的数字为:x ,则十位数字为:(m +x ),百位数字为:x 则b =100x +10(m +x )+x =100x +10m +10x +x =111x +10m ∵b 为奇特数∴b 是8的倍数=13x +m +又∵ 是整数 ∴也是整数且1≤x <10,1≤(x +m )<10∴,,(舍),(舍)(舍)∴b 的值为:232 464 696。
浙教版七年级数学下册第四章因式分解单元检测卷第Ⅰ卷(选择题)一.选择题(共10小题,3*10=30)1.下列各式从左到右的变形中,是因式分解的为()A.x(a-b)=ax-bx B.x2-1x2=(x+1x)(x-1x)C.x2-4x+4=(x-2)2D.ax+bx+c=x(a+b)+c2.多项式mx2-m与多项式x2-2x+1的公因式是() A.x-1 B.x+1 C.x2-1 D.(x-1)23.下列各式中,不能分解因式的是()A.4x2+2xy+14y2B.4x2-2xy+14y2C.4x2-14y2D.-4x2-14y24.将下列多项式因式分解,结果中不含有因式a+1的是() A.a2-1 B.a2+aC.a2+a-2 D.(a+2)2-2(a+2)+15.下列各式分解因式错误的是()A.(x-y)2-x+y+14=(x-y-12)2B.4(m-n)2-12m(m-n)+9m2=(m+2n)2C.(a+b)2-4(a+b)(a-c)+4(a-c)2=(b+2c-a)2D.16x4-8x2(y-z)+(y-z)2=(4x2-y-z)26.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a-b,x-y,x+y,a+b,x2-y2,a2-b2分别对应下列六个字:华、爱、我、中、游、美,现将(x2-y2)a2-(x2-y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.中华游C.爱我中华D.美我中华7.若4x2-2(k-1)x+9是完全平方式,则k的值为()A .±2B .±5C .7或-5D .-7或58.若x 2+12mx +k 是完全平方式,则k 的值是( ) A .m 2 B.14m 2 C.116m 2 D.13m 2 9.已知a 2+b 2+2a -4b +5=0,则( )A .a =1,b =2B .a =-1,b =2C .a =1,b =-2D .a =-1,b =-210.已知M =9x 2-4x +3,N =5x 2+4x -2,则M 与N 的大小关系是( )A .M>NB .M =NC .M<ND .不能确定第Ⅱ卷(非选择题)二.填空题(共6小题,3*6=18)11.分解因式:x 2+2x(x -3)-9=____;-3x 2+2x -13=____. 12.如图,现有边长为a 的正方形1个,边长为b 的正方形3个,边长为a ,b(a>b)的长方形4个,把它们拼成一个大长方形,请利用这个拼图中图形的面积关系分解因式:a 2+4ab +3b 2=____.13.观察下列等式:32-12=8×1;52-32=8×2;72-52=8×3;…,请用含正整数n 的等式表示你所发现的规律:___.14.若a -b =1,则代数式a 2-b 2-2b 的值为____.若m +n =4,mn =5,则多项式m 3n 2+m 2n 3的值是____.15.若x 2-4y 2=-32,x +2y =4,则y x =___.16.已知a =12+32+52+…+252,b =22+42+62+…+242,则a -b 的值为____三.解答题(共7小题,52分)17. (6分) 17.(18分)分解因式:(1)m3+6m2+9m. (2)a2b-10ab+25b.(3)4x2-(y-2)2. (4)9x2-8y(3x-2y).(5)m2-n2+(2m-2n). (6)(x2-5)2+8(5-x2)+16.18.(6分)已知P=2x2+4y+13,Q=x2-y2+6x-1,比较代数式P,Q的大小.19.(6分)已知a,b,c是三角形ABC的三边的长,且满足a2+2b2+c2-2b(a+c)=0,试判断此三角形三边的大小关系.20.(8分)如图,将边长为1,2,3,…,2019,2020的正方形叠放在一起,请计算图中阴影部分的面积.21.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.22.(8分)已知x2+y2+6x+4y=-13,求y x的值.23.(8分) 如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2 012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?参考答案1-5 CADCD 6-10 CCCBA11. 3(x +1)(x -3),-13(3x -1)2 12. (a +3b)(a +b)13. (2n +1)2-(2n -1)2=8n_14. 1,10015. 19_ 16. 32517. 解:(1)原式=m(m +3)2(2)原式=b(a -5)2(3)原式=(2x +y -2)(2x -y +2)(4)原式=(3x -4y)2(5)原式=(m -n)(m +n +2)(6)原式=(x +3)2(x -3)218. 解:P -Q =(2x 2+4y +13)-(x 2-y 2+6x -1)=x 2-6x +y 2+4y +14=x 2-6x +9+y 2+4y +4+1=(x -3)2+(y +2)2+1.∵(x -3)2≥0,(y -2)2≥0,∴P -Q =(x -3)2+(y +2)2+1≥1,∴P>Q19. 解:(a 2-2ab +b 2)+(b 2-2bc +c 2)=0,(a -b)2+(b -c)2=0,∴a -b =0且b -c =0,∴a =b 且b =c ,∴a =b =c20. 解:S 阴影=22-12+42-32+...+20202-20192=(2+1)(2-1)+(4+3)(4-3)+ (2020)2019)(2020-2019)=1+2+3+4+…+2019+2020=12(1+2020)×2020=2041210 21. 解:a 3b +2a 2b 2+ab 3=ab(a +b)2,将a +b =3,ab =2代入得ab(a +b)2=2×32=1822. 解:由已知得(x 2+6x +9)+(y 2+4y +4)=0,(x +3)2+(y +2)2=0,∴x =-3,y =-2,∴y x =(-2)-3=-1823. 解:(1)28和2012都是神秘数,因为28=82-62,2012=5042-5022 (2)∵(2k +2)2-(2k)2=4(2k +1),∴由2k +2和2k 构造的神秘数是4的倍数(3)设两个连续奇数为2k +1和2k -1,则(2k +1)2-(2k -1)2=8k ,∴两个连续奇数的平方差不是神秘数.。
浙教版七年级下数学《第四章因式分解》单元检测试卷含答案
第四章因式分解单元检测卷
姓名:__________班级:__________
题号一二三
评分
一、选择题(共11题;每小题3分,共33分)
1.代数式15ax2﹣15a与10x2+20x+10的公因式是()
A.5(x+1)
B.5a(x+1)
C.5a(x﹣1)
D.5(x﹣1)
2.下列因式分解完全正确的是()
A.﹣2a2+4a=﹣2a(a+2)
B.﹣4x2﹣y2=﹣(2x+y)2
C.a2﹣8ab+16b2=(a+4b)2
D.2x2+xy﹣y2=(2x﹣y)(x+y)
3.下列各式从左边到右边的变形是因式分解的是()
A.(a+1)(a-1)=a2-1
B.a2-6a+9=(a-3)2
C.x2+2x+1=x(x+2)+1
D.-18x4y3=-6x2y2•3x2y
4.下列各式能用完全平方公式进行分解因式的是()
A.x2+1
B.x2+2x﹣1
C.x2+x+1
D.x2+4x+4
5.分解因式a2﹣9a的结果是()
A.a(a﹣9)
B.(a﹣3)(a+3)
C.(a﹣3a)(a+3a)
D.(a﹣3)2
6.将x2﹣16分解因式正确的是()
A.(x﹣4)2
B.(x﹣4)(x+4)
C.(x+8)(x﹣8)
D.(x﹣4)2+8x
7.下列各组多项式没有公因式的是()
A.2x﹣2y与y﹣x
B.x2﹣xy与xy﹣x2
C.3x+y与x+3y
D.5x+10y与﹣2y﹣x
8.已知a为实数,且a³+a²-a+2=0,则(a+1)2008+(a+1)2009+(a+1)2010的值是()
A.-3
B.3
C.-1
D.1
9.下列式子中,从左到右的变形是因式分解的是()
A.(x﹣1)(x﹣1)=x2﹣2x+1
B.4x2﹣9y2=(2x﹣3y)(2x+3y)
C.x2+4x+4=x(x﹣4)+4
D.x2+y2=(x+y)(x﹣y)
10.分解因式-2xy2+6x3y2-10xy时,合理地提取的公因式应为()
A.-2xy2
B.2xy
C.-2xy
D.2x2y
11.下列多项式在有理数范围内能用平方差公式进行因式分解的是()
A.x2+y2
B.﹣x2+y2
C.﹣x2﹣y2
D.x2﹣3y
二、填空题(共10题;共40分)
12.若x+y+z=2,x2﹣(y+z)2=8时,x﹣y﹣z=________.
13.多项式﹣3x2y3z+9x3y3z﹣6x4yz2的公因式是________.
14.计算:(﹣2)100+(﹣2)99=________
15.分解因式:18b(a﹣b)2﹣12(a﹣b)3=________.
16.如果x﹣3是多项式2x2﹣11x+m的一个因式,则m的值________
17.多项式﹣5mx3+25mx2﹣10mx各项的公因式是________.
18.因式分解:xy3﹣x3y=________.
19.9x3y2+12x2y3中各项的公因式是________.
20.分解因式:9x3﹣18x2+9x=________.
21.多项式12x3y2z3+18x2y4z2﹣30x4yz3各项的公因式是________.
三、解答题(共3题;共27分)
22.因式分解:
(1)x(x﹣y)﹣y(y﹣x);
(2)a2x2y﹣axy2.
23.我们知道,多项式a2+6a+9可以写成(a+3)2的形式,这就是将多项式a2+6a+9因式分解,当一个多项式(如a2+6a+8)不能写成两数和(成差)的平方形式时,我们可以尝试用下面的办法来分解因式.
a2+6a+8=a2+6a+9﹣1
=(a+3)2﹣1
=[(a+3)+1][(a+3)﹣1]
=(a+4)(a+2)
请仿照上面的做法,将下列各式分解因式:
(1)x2﹣6x﹣27
(2)x2﹣2xy﹣3y2.
24.当a为何值时,多项式x2+7xy+ay2﹣5x+43y﹣24可以分解为两个一次因式的乘积.
参考答案
一、选择题
A D
B D A B
C
D B C B
二、填空题
12.413.﹣3x2yz14.29915.6(a﹣b)2(3﹣2a+2b)
16.1517.5mx18.xy(x+y)(x﹣y)
19.3x2y220.9x(x﹣1)221.6x2yz2
三、解答题
22.解:(1)x(x﹣y)﹣y(y﹣x)
=x(x﹣y)+y(x﹣y)
=(x+y)(x﹣y);
(2)a2x2y﹣axy2=axy(ax﹣y)
23.解:(1)原式=x2﹣6x+9﹣36=(x﹣3)2﹣36=(x﹣3+6)(x﹣3﹣6)=(x+3)(x﹣9);(2)原式=x2﹣2xy+y2﹣4y2=(x﹣y)2﹣4y2=(x﹣y+2y)(x﹣y﹣2y)=(x+y)(x﹣3y).24.解:多项式的第一项是x2,因此原式可分解为:(x+ky+c)(x+ly+d),
∵(x+ky+c)(x+ly+d)=x2+(k+l)xy+kly2+(c+d)x+(cl+dk)y+cd,
∴cd=﹣24,c+d=﹣5,
∴c=3,d=﹣8,
∵cl+dk=43,
∴3l﹣8k=43,
∵k+l=7,
∴k=﹣2,l=9,
∴a=kl=﹣18,.
即当a=﹣18时,多项式x2+7xy+ay2﹣5x+43y﹣24可以分解为两个一次因式的乘积.。