数形结合思想方法3
- 格式:doc
- 大小:55.50 KB
- 文档页数:2
数形结合不仅是一种数学思想,也是一种很好的教学方法。
著名数学家华罗庚先生曾经说过:“数缺形时少直观,形少数时难入微”。
数形结合就是通过数与形的相互转化、相辅相成来解决数学问题的一种思想方法。
它既是一个重要的数学思想,又是一种常用的数学方法。
在教学中渗透数形结合的思想,可把抽象的数学概念直观化,帮助学生形成概念;可使计算中的算式形象化,帮助学生在理解算理的基础上掌握算法;可将复杂问题简单化,在解决问题的过程中,提高学生的思维能力和数学素养。
适时的渗透数形结合的思想,可达到事半功倍的效果。
一、渗透数形结合思想,把抽象的数学概念直观化,帮助学生形成概念,运用图形,建立表象,理解本质在低年级教学中学生都是从直观、形象的图形开始入门学习数学。
一年级的小学生学习数学,是从具体的物体开始认数,很多知识都是从具体形象逐步向抽象逻辑思维过渡,但这时的逻辑思维是初步的,且在很大程度上仍具有具体形象性。
数学意义所指的“意义”是人们一致公认的事物的性质、规律以及事物之间的内在联系,是比较抽象的概念。
而“数形结合”能使比较抽象的概念转化为清晰、具体的事物,学生容易掌握和理解。
这方面的例子很多,如低年级开始学习认数、学习加减法、乘除法,到中年级的分数的初步认识、高年级的认识负数等都是以具体的事物或图形为依据,学生根据已有的生活经验,在具体的表象中抽象出数,算理等等。
在小学中高年级的教学中,我们要注重运用直观图形,巧妙地把数和形结合起来,把抽象的数学概念直观化,帮助学生形成概念。
例如:如,教学“体积”概念。
教师可以借助形象物体设问,引导学生分析比较。
首先观察物体,初步感知。
让学生观察一块橡皮和铅笔盒,提问:哪个大,哪个小?又出示一个魔方和一个骰子,提问:那个大,那个小?通过观察物体,让学生对物体的大小有个感性认识。
接着在一个盛有半杯水的玻璃杯里慢慢加入一块石头,学生可以观察到,随着石头的投入,杯中的水位不断上升。
问:玻璃杯里的水位为什么会上升?学生从这一具体事例中获得了物体占有空间的表象。
数形结合对应思想方法在《分数除法》教学中的尝试一、数形结合对应思想方法介绍数形结合对应思想方法是指在教学中将数学的概念、规律与图形的形象结合起来,通过对应和类比的方式来进行教学。
该方法要求教师在教学过程中注重培养学生的观察、比较和归纳能力,使学生能够通过观察和分析图形及其对应的数学关系,掌握数学概念和规律。
数形结合对应思想方法能够培养学生的综合素质和创造能力,激发学生的学习兴趣和求知欲。
二、《分数除法》教学中的数形结合对应思想方法尝试1. 利用图形展示分数除法的基本概念在学生学习分数除法的初期,教师可以通过图形来展示分数除法的基本概念。
可以利用长方形或正方形的图形来表示分数,然后以图形的方式来演示分数的除法运算。
通过观察和比较图形,学生可以更直观地理解分数除法的含义和运算规律。
2. 利用图形对应数学公式和规律在教学中,教师可以通过对图形和数学公式之间的对应关系进行讲解,让学生通过观察图形来发现数学规律。
可以通过对长方形的划分来引出分数的除法运算规律,让学生在观察图形的基础上推导出相应的数学公式和规律。
这样能够帮助学生更好地掌握数学知识,提高他们的数学思维能力。
3. 利用对应思想培养学生的逻辑思维能力在教学中,教师可以通过对应思想方法来培养学生的逻辑思维能力。
在讲解分数除法的过程中,教师可以设计一些对应问题,要求学生通过观察和分析找出图形和数学公式之间的对应关系,从而培养学生的归纳和推理能力。
这样不仅能够提高学生的学习兴趣,还能够激发他们的求知欲,培养他们的创造力和创新能力。
4. 利用实例激发学生的学习兴趣在教学中,教师可以通过一些具体的实例来展示分数除法的应用和意义,从而激发学生的学习兴趣。
可以利用日常生活中的例子来说明分数除法的实际应用,让学生通过观察和思考来发现数学知识与实际生活的联系。
这样能够使学生更加主动地参与学习,更好地理解和掌握分数除法的相关知识。
数形结合对应思想方法在《分数除法》教学中也存在一些问题。
“数形结合思想”在小学数学教学中的应用探究“数形结合思想”是指通过将数学概念与几何图形相结合,利用图形的形状、大小、位置等特点,来帮助学生理解和掌握数学知识的一种教学方法。
在小学数学教学中,数形结合思想可以应用于多个知识点,有助于激发学生的兴趣和思维能力,提高学习效果。
下面以几个具体的例子来探究“数形结合思想”的应用。
1. 初识分数在小学三年级,学生初学分数,通常会通过画图解决一些简单的分数计算问题。
给学生发一块巧克力,要求学生将其分成4份,然后问学生得到了几分之几的巧克力。
通过画图的方式,学生可以直观地看到巧克力被平均分成了4份,每份都是1/4,因此得到了1/4的巧克力。
在实际操作中,学生通过将巧克力分成4份,再仔细观察其形状,可以帮助学生理解分数的基本概念和意义。
2. 计算面积小学四年级学生学习了面积的概念,通常会通过直观的图形模型来计算面积。
给学生一块长方形的纸,要求学生将其剪成两个相等的正方形,然后问学生每个正方形的边长是多少。
学生可以通过观察纸张的形状和剪切后的图形,发现纸张的面积没有改变,只是形状发生变化,因此可以利用数形结合思想,将纸张的面积等分成两个相等的部分,得出每个正方形的边长。
3. 探索正方体的表面积和体积小学五年级学生学习了正方体的表面积和体积的计算方法。
在教学中,可以通过将正方体展开成一个平面图形,来帮助学生计算表面积。
给学生一份模型图纸,要求学生将其折叠成一个正方体,并计算其表面积。
学生可以通过将模型拆解成若干个平面图形,然后计算每个图形的面积,再将各个面积加起来,得到正方体的表面积。
这种通过图形的拆解和组合,结合数学的计算方法的教学方式,可以帮助学生更好地理解和掌握正方体的表面积和体积的概念。
4. 运算符号的理解小学六年级学生学习了运算符号的理解和运用,在教学中可以通过图形的比较来帮助学生理解不同运算符号的含义。
给学生两个数的图形表示,要求学生通过观察图形的大小和形状,来判断两个数的大小关系,并用相应的运算符号表示。
初中数学数形结合解题思想方法探究数学是一门精确的科学,其中涉及到的数形结合问题是数学中的一个重要内容。
解决数形结合问题的方法有很多,下面将介绍三种常用的解题思想和方法。
一、几何思想几何思想是解决数形结合问题的一种重要思想。
它通过几何图形的性质和关系来解决问题。
解题时,可以先根据题目中给出的条件画出几何图形,并找出几何图形之间的性质和关系。
然后利用这些性质和关系进行推理和计算,最终得到问题的解答。
有一个矩形,它的周长是30cm,面积是100cm²,求矩形的长和宽。
解:设矩形的长为x,宽为y。
根据题目中的条件,可以得到以下两个方程:2(x+y) = 30xy = 100利用几何思想,可以发现矩形的周长等于长和宽的两倍之和,即2(x+y),所以可以得到第一个方程。
通过这两个方程,可以解得x=10,y=10。
所以矩形的长和宽分别是10cm。
二、代数思想代数思想是解决数形结合问题的另一种重要思想。
它通过建立代数模型来解决问题。
解题时,可以将问题中的未知量用代数符号表示出来,并建立相应的方程或不等式。
然后利用代数的方法进行运算和计算,得到问题的解答。
有一个数字,它是一个两位数,相反的两个数字之差是36,这个数字是多少?利用代数思想,可以将相反的两个数字表示成10x+y和10y+x。
它们之差是36,所以可以得到上述方程。
三、逻辑思想有5个小方块,它们的边长分别为1cm、2cm、3cm、4cm、5cm,将这些小方块拼成一个正方形,这个正方形的边长是多少?解:根据题目中给出的条件,可以知道这个正方形一共有5个小方块,而且边长依次增加1cm。
通过观察和推理,可以得到以下结论:1. 正方形的边长一定大于等于最长的小方块的边长,即大于等于5cm。
2. 正方形的边长一定小于等于所有小方块的边长之和,即小于等于1+2+3+4+5=15cm。
根据以上两个结论,可以得到正方形的边长的范围是5cm到15cm之间。
再观察题目中给出的条件,可以发现正方形的边长的值一定在这个范围中。
初中数学思想方法有哪些1、数形结合思想:就是依据数学问题的条件和结论之间的内在联系,既分析其代数含义,又显示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、分类讨论的思想:在数学中,我们经常必须要依据研究对象性质的差异,分各种不同状况予以考查;这种分类思索的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
3、联系与转化的思想:事物之间是互相联系、互相制约的,是可以互相转化的。
数学学科的各部分之间也是互相联系,可以互相转化的。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
2方法一1.对应的思想和方法在初一代数入门教学中,有代数式求值的计算题,通过计算发现:代数式的值是由代数式里字母的取值所决定的,字母的不同取值可得不同的计算结果。
这里字母的取值与代数式的值之间就建立了一种对应关系,再如实数与数轴上的点,有序实数对与坐标平面内的点都存在对应关系在进行此类教学〔制定〕时,应注意渗透对应的思想,这样既有助于培养同学用变化的观点看问题,又助于培养同学的函数观念。
2.整体的思想和方法整体思想就是合计数学问题时,不是着眼于它的局部特征,而是把注意和和着眼点放在问题的整体结构上,通过对其全面深入的观察,从宏观整体上熟悉问题的实质,把一些彼此独立但实质上又互相紧密联系着的量作为整体来处理的思想方法。
整体思想在处理数学问题时,有广泛的应用。
3.数形结合的思想和方法数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。
著名数学家华罗庚先生说:"数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。
'这充分说明了数形结合思想在数学研究和数学应用中的重要性。
4.分类的思想和方法教材中进行分类的实例比较多,如有理数、实数、三角形、四边形等分类的教学不仅可以使同学明确分类的重要性:一是使有关的概念系统化、完整化;二是使被分概念的外延更清楚、更深入、更具体,并且还能使同学掌握分数的要点方法:3方法二1、数形结合的思想和方法在同学刚接触初中数学不久,教材中设置利用"数轴'这一图形,巩固"具有相反意义的量'的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。
常用的数学思想方法常用的数学思想方法大全在数学的学习过程中,有哪些常见的思想方法呢?下面是店铺网络整理的常见的数学思想方法以供大家学习。
常用的数学思想方法篇11、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。
这种思维过程通常称为“执果寻因”8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”9、演绎法:由一般到特殊的推理方法。
数形结合的思想方法(3)--巩固练习1.设命题甲:0<x<5;命题乙:|x-2|<3,那么甲是乙的_____。
A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件2.若loga 2<logb2<0,则()A. 0<a<b<1B. 0<b<a<1C. a>b>1D. b>a>13.如果|x|≤π4,那么函数f(x)=cos2x+sinx的最小值是()A. 212-B. -212+C. -1D.122-4.如果奇函数f(x)在区间[3,7]上是增函数且最小值是5,那么f(x)的[-7,-3]上是()A.增函数且最小值为-5B.增函数且最大值为-5C.减函数且最小值为-5D.减函数且最大值为-55.设全集I={(x,y)|x,y∈R},集合M={(x,y)| yx--32=1},N={(x,y)|y≠x+1},那么M N∪等于() A. φ B. {(2,3)} C. (2,3) D. {(x,y)|y=x+16.如果θ是第二象限的角,且满足cos θ2-sinθ2=1-sinθ,那么θ2是()A.第一象限角B.第三象限角C.可能第一象限角,也可能第三象限角D.第二象限角7.已知集合E={θ|cosθ<sinθ,0≤θ≤2π},F={θ|tgθ<sinθ},那么E∩F的区间是()。
A. (π2,π) B. (π4,34π) C. (π,32π) D. (34π,54π)8.若复数z的辐角为56π,实部为-23,则z=()A. -23-2iB. -23+2iC. -23+23iD. -23-23i9.如果实数x、y满足等式(x-2)2+y2=3,那么yx的最大值是()A. 12B.33C.32D. 310.满足方程|z+3-3i|=3的辐角主值最小的复数z是_____。
11.条件甲:x2+y2≤4;条件乙:x2+y2≤2x,那么甲是乙的().A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既非充分条件又非必要条件12. 已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(A∪B)=().A.{1,6}B.{4,5}C.{2,3,4,5,7}D.{1,2,3,6,7}13. “a=1”是“函数f(x)=x-a在区间[1,+∞)上为增函数”的().A.充分不必要条件B. 必要不充分条件C.充要条件D. 既不充分也不必要条件14. 已知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2,x1+x2=1-a,则().A. f(x1)>f(x2) B. f(x1)<f(x2)C. f(x1)=f(x2)D. f(x1)与f(x2)的大小不能确定15. 将函数y=sinωx(ω>0)的图象按向量a=(-,0)平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是().16. 已知向量a=(cosα,sinα),b=(cosβ,sinβ),且a≠±b,那么a+b与a-b的夹角的大小是.17. 若a>0,b>0,则不等式-b<<a等价于().18. 已知平面区域D由以A(1,3)、B(5,2)、C(3,1)为顶点的三角形内部和边界组成.若在区域D上有无穷多个点(x,y)可使目标函数z=x+my取得最小值,则m=().A. -2B. -1C. 1D. 419. 已知点P(x,y)的坐标满足条件,点O为坐标原点,那么PO的最小值等于,最大值等于.巩固练习答案1:将不等式解集用数轴表示,可以看出,甲=>乙,选A;2:由已知画出对数曲线,选B;3:设sinx=t后借助二次函数的图像求f(x)的最小值,选D;4:由奇函数图像关于原点对称画出图像,选B;5:将几个集合的几何意义用图形表示出来,选B;6:利用单位圆确定符号及象限;选B;7:利用单位圆,选A;8:将复数表示在复平面上,选B;9:转化为圆上动点与原点连线的斜率范围问题;选D;10小题:利用复平面上复数表示和两点之间的距离公式求解,答案-32+32i。
思想方法训练3 数形结合思想思想方法训练第6页一、能力突破训练1。
若i为虚数单位,图中网格纸的小正方形的边长是1,复平面内点Z表示复数z,则复数z1+i对应的点位于复平面内的()A。
第一象限B。
第二象限C。
第三象限D。
第四象限答案:D解析:由题图知,z=2+i,则z1+i =2+i1+i=2+i1+i·1-i1-i=32−12i,则对应的点位于复平面内的第四象限。
故选D。
2。
设全集U={x|x≤8,x∈N*},若A⊆U,B⊆U,B∩(∁U A)={2,6},A∩(∁U B)={1,8},(∁U A)∩(∁U B)={4,7},则()A。
A={1,6},B={2,8}B。
A={1,3,5,6},B={2,3,5,8}C.A={1,6},B={2,3,5,8}D.A={1,3,5,8},B={2,3,5,6}答案:D解析:根据题意可作出Venn 图如图所示,由图可知A={1,3,5,8},B={2,3,5,6}.3.若变量x ,y 满足{x -y +1≤0,y ≤1,x >-1,则(x —2)2+y 2的最小值为( )A .3√22B .√5C .92D.5答案:D解析:如图,作出不等式组所表示的可行域(阴影部分)。
设z=(x-2)2+y 2,则z 的几何意义为可行域内的点到定点D (2,0)的距离的平方,由图象可知,C ,D 两点间的距离最小,此时z 最小,由{y =1,x -y +1=0,可得{x =0,y =1,即C (0,1)。
所以z min =(0—2)2+12=4+1=5。
4.若函数f (x )=(a —x )|x —3a |(a>0)在区间(-∞,b ]上取得最小值3-4a 时所对应的x 的值恰有两个,则实数b 的值等于( ) A .2±√2B .2-√2或6—3√2C 。
6±3√2D .2+√2或6+3√2 答案:D解析:结合函数f (x )的图象(图略)知,3—4a=—a 2, 即a=1或a=3.当a=1时,—b 2+4b —3=-1(b 〉3),解得b=2+√2;当a=3时,—b 2+12b —27=-9(b>9), 解得b=6+3√2,故选D. 5.已知函数f (x )={|lgx |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( ) A.(1,10) B 。
数形结合思想方法数与形,本是相倚依,焉能分作两边飞。
数无形时少直觉,形少数时难入微。
数形结合百般好,隔离分家万事非;切莫忘,几何代数统一体,永远联系,切莫分离! 选自华罗庚先生于1964 年1月撰写了《谈谈与蜂房结构有关数学问题》这一科普小册子,书中的一首小词。
沪教版数学书上也转载这首词。
华老的这首词清楚地告诉我们为什么要数形结合(本是相倚依),怎么数形结合(数无形时少直觉,形少数时难入微。
)。
数形结合就是“以形助数、以数解形”。
数学家波利亚在《怎样解题》一书中在讲解解题的第一个步骤——弄清题意时指出:“画一个图,并用符号表示”,同样也告诫数学学习者要数形结合。
数形结合的思想方法就是在我们看到数量关系时能够想象到形,本文封面就是基本不等式的形。
而看到形要设法用数量关系来描述从而可以精准求解,坐标系的建立(函数、向量、解析几何等)给学习者提供了以数表形的模型方法,坐标平面上的点用有序数对表示如,点A(a , b),这个有序数对也可理解成向量0A的坐标,线(直线、曲线)用二元方程(或者函数解析式)表示。
所以学好数形结合思想方法归根结底还是要深刻理解教材。
对被开方数进行配方,根据坐标平面上两点间的距离公式可联想到y 是x 轴上点到两定点间的距离和。
满足方程的数对(x、y)理解为以点(-2,0 )为圆心半径为根号3上的动点,而y 与x的比值可理解为该圆上的点(x、y)和原点连线的斜率。
集合M 根据圆的参数方程(或者说三角比的定义)可知是半圆,集合N 是直线,交集不空那就是直线与半圆有公共点。
简解:根据苹果公司规定,微信iOS 版赞赏功能关闭,赞赏的点这里。
数形结合思想方法在小学数学教学中的应用数形结合思想方法是指将数学知识与几何图形相结合,通过图形的形状、位置、变换等特性来解决数学问题。
这种方法可以帮助学生更好地理解抽象的数学概念,激发他们的数学兴趣和创造力。
在小学数学教学中,数形结合思想方法有以下几个方面的应用:一、几何图形的分类与属性的学习:通过观察各种几何图形的形状和属性,让学生进行分类和比较。
可以让学生观察多边形的边数和角数,并进行分类,如三角形、四边形等。
引导学生发现图形的对称性、相等性等性质,帮助他们掌握几何图形的基本属性。
二、几何图形的变换与对称性的学习:通过学习平移、旋转、翻折等变换操作,让学生理解几何图形的变化规律和对称性。
可以让学生进行变换操作,观察图形的形状和位置的变化,并总结规律。
引导学生发现图形的对称性,如点的对称、线的对称和面的对称等,并进行讨论和比较。
三、图形的面积与周长的学习:通过几何图形的面积和周长的计算,让学生理解面积和周长的概念,并掌握计算的方法。
可以通过平铺法、划分法等方式,让学生计算图形的面积,并比较大小。
通过测量图形的边长,让学生计算图形的周长,并进行比较和应用。
四、图形的位置与方位的学习:通过观察几何图形的位置和方位,让学生学习位置关系和方位概念。
可以让学生观察图形在平面内的位置,如上、下、左、右等,并进行描述和比较。
引导学生使用坐标系来表示图形的位置,并进行相应的运算和应用。
五、几何图形的应用:通过实际问题的解决,让学生应用几何图形的知识和技巧。
可以设计一些实际的问题,让学生根据图形的属性和关系进行分析和解答。
引导学生发现几何图形在日常生活中的应用,如建筑、地图等,并进行讨论和探究。
数形结合思想方法在小学数学教学中的应用可以帮助学生更好地理解抽象的数学知识,增强他们的几何直观和创造力,同时培养他们的问题解决能力和数学思维能力。
教师在教学中应重视培养学生的观察力和想象力,同时注重启发学生的思维,引导他们自主探究和合作学习,从而提高教学效果。
浅议数形结合思想在小学数学教学中的运用数形结合思想是指将数学内容与图形相结合,从而更直观地理解和掌握数学知识的一种方法。
在小学数学教学中,运用数形结合思想可以提高学生的学习兴趣和思维能力,加深对数学概念的理解,同时也可以培养学生的空间想象力和解决实际问题的能力。
本文将探讨数形结合思想在小学数学教学中的运用。
一、教学方法1. 图形帮助理解数学概念在小学数学中有很多概念是抽象的,难以被学生直观理解。
例如,正方形的定义可以用文字描述,但是对于学生,看到图形后,他们更容易理解正方形的属性。
因此,在教学过程中,可以先给学生呈现一个图形,然后帮助他们理解和记忆相应的概念。
例如,可以让学生画出正方形、长方形、三角形等,并让他们根据图形的角度、边长等属性来描述它们。
2. 图形与计算相结合在小学数学教学中,计算与图形的结合也非常常见。
例如,学习长方形面积时,可以让学生通过画出长方形、计算公式的方式来理解计算方法。
又如,学习周长时,可以让学生通过画出图形,根据公式计算边长的方式来掌握周长的计算方法。
3. 图形辅助解题采用数形结合思想,有助于学生更直观地理解解题方法。
例如,在求解问题时,可以通过画出图形的方式来辅助解题。
例如,学生可以用图形来解决比例问题、分数问题等,这有助于学生更快地理解计算过程中的数学概念和方法。
二、教学实例1. 长方形面积教授长方形面积时,可以先让学生画出长方形,并标出长和宽。
然后,可以计算出长方形的面积,并要求学生复述计算方法。
这样,学生会更清楚地理解长方形面积的计算方法。
2. 分数的大小比较教授分数的大小比较时,可以画出图形辅助教学。
例如,可以画出一个圆形,然后将其分成几个部分,并让学生根据分数的大小来完成相应的练习。
通过这种方法,学生不仅可以更直观地理解分数的大小比较方法,还可以培养他们的空间想象力。
3. 三角形的面积教授三角形面积时,也可以画出图形来辅助教学。
例如,可以将一个三角形图形与一个矩形图形组合起来,这样学生可以更直观地理解三角形面积的计算方法。
数形结合数学思想方法2数形结合数学思想方法用图形的直观,帮助同学理解数量关系,提升教学效率用数形结合策略表示题中量与量之关系,可以达到化繁为简、化难为易的目的。
"数形结合'可以借助简单的图形(如统计图)、符号和文字所作的示意图,促进同学形象思维和抽象思维的协调发展,〔沟通〕数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。
它是小学数学教材的一个重要特点,更是解决问题时常用的方法。
众所周知,同学从形象思维向抽象思维发展,一般来说必须要借助于直观。
以数解形:有关图形中往往蕴含着数量关系,特别是复杂的几何〔形体〕可以用简单的数量关系来表示。
而我们也可以借助代数的运算,经常可以将几何图形化难为易,表示为简单的数量关系(如算式等),以获得更多的知识面,简单地说就是"以数解形'。
它往往借助于数的准确性来阐明形的某些属性,表示形的特征、形的求积计算等等,而有的老师在出示图形时太过简单,同学直接来观察却看不出个所以然,这时我们就必须要给图形赋予一定价值的问题。
助表象,发展同学的空间观念,培养同学初步的逻辑思维能力。
儿童的熟悉规律,一般来说是从直接感知到表象,再到形成科学概念的过程。
表象介于感知和形成科学概念之间,抓住这中间环节,在几何初步知识教学中,发展同学的空间观念,培养初步的逻辑思维能力,具有十分重要意义。
数形结合,为建立函数思想打好基础。
小学数学中虽然没有学习函数,但还是慢慢的开始渗透函数的思想。
为初中数学学习打好基础,如确实位置中,用数对表示平面图形上的点,点的平移引起了了数对的变化,而数对变化也对应了不同的点。
此外,在六年二期学习的比例中,让同学通过描点连线来表示正比例函数的图象,发现成只要是正比例关系的式子,画在坐标图中是就一条直线。
从而体会到图形与函数之间密不可分的关系。
3数形结合数学思想渗透方法小同学都是从直观、形象的图形开始入门学习数学。
从人类发展史来看,具体的事物是出现在抽象的文字、符号之前的,人类一开始用小石子,贝壳记事,慢慢的发展成为用形象的符号记事,最后才有了数字。
数形结合思想在小学数学教学中渗透的具体措施
数形结合思想是指在数学教学中,通过引导学生观察、分析和理解图形和图像的性质和规律,培养学生的空间思维能力和逻辑推理能力,从而提高学生数学解决问题的能力。
1. 创设情境:通过引入具体的情境和问题,激发学生的兴趣和思考,培养学生通过图形和图像来解决问题的能力。
在教学中可以通过给学生展示一幅地图,让学生根据图中的信息进行推理和计算。
2. 观察和分析图形:引导学生仔细观察和分析图形的性质和规律,通过观察和探索图形的形状、边长、角度等特征,培养学生通过观察来探索性质和规律的能力。
在教学中可以给学生展示不同形状的图形,要求学生观察并找出它们的共同性质。
3. 给出图形问题:设计一些与图形相关的问题,让学生通过观察和分析图形来解决问题。
在教学中可以给学生展示一些有关图形的数学问题,要求学生通过观察和分析来解决问题,如计算图形的周长、面积等。
4. 运用图形工具:教师可以引导学生运用图形工具,如直尺、量角器等,在解决问题过程中进行测量、绘制图形等活动,培养学生的操作技能和空间思维能力。
5. 数学游戏和拓展活动:设计一些涉及数学思维和空间思维的游戏和活动,使学生在活动中体验和运用数形结合思想,并提高解决问题的能力。
可以设计一些数形结合的拼图游戏,让学生通过拼图的方式来锻炼和提高观察和分析的能力。
6. 综合应用:在教学中,与其他数学内容进行有机的结合,使学生能够将数形结合思想应用到实际问题中。
在解决实际生活中的测量问题时,可以引导学生通过绘制图形和运用数形结合思想来解决问题。
课题:数形结合3——谈坐标系和函数
教学目标:
1、理解数形结合思想方法在函数内容中的实际应用,
2、会借助坐标系来进行对函数的研究,渗透数形结合思想方法,
教学过程:
一、知识要点分析
由于在直角坐标系中,有序实数对(x , y)与点P的一一对应,使函数与其图象的数形结合成为必然。
一个函数可以用图形来表示,而借助这个图形又可以直观地分析出函数的一些性质和特点,这为数学的研究与应用提供了很大的帮助。
因此,函数及其图象内容凸显了数形结合的思想方法。
教学时老师若注重了数形结合思想方法的渗透,将会收到事半功倍的效果。
二、例题与求解
1.根据如下左图所示的程序计算函数值,若输入的x值是1.5,则输出的结果是;
2.弹簧的长度与所挂物体的质量关系为一次函数,如图所示,则不挂物体时弹簧的长度为__________cm
;
3.正比例函数kx
y=与x
y2
=的图象关于x轴对称,则k的值为;4.龟兔赛跑,它们从同一地点同时出发,不久兔子就把乌龟远远地甩在后面,于是兔子便得意洋洋地躺在一棵大树下睡起觉来.乌龟一直在坚持不懈、持之以恒地向终点跑着,兔子一觉醒来,看见乌龟快接近终点了,这才慌忙追赶上去,但最终输给了乌龟.下列图象中能大致反映龟兔行走的路程S随时间t变化情况的是()
三、课堂小结:
四、能力训练:
(克)
1.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,1l 、2l 分别表示步行和骑车的同学前往目的地所走的路程y (千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是( )
A 、骑车的同学比步行的同学晚出发30分钟
B 、步行的速度是6千米/时
C 、骑车的同学从出发到追上步行的同学用了20分钟
D 、骑车的同学和步行的同学同时达到目的地 2.如图,已知A ,B 是反比例函数x
y 2
的图象上两点,设矩形APOQ 与矩形MONB 的面积为S 1,S 2,则( ) (A )S 1=S 2 (B )S 1>S 2
(C )S 1<S 2 (D )上述A 、B 、C 都可能
3.为发展电信事业,方便用户,曲靖市电信公司对移动电话采用不同的收费方
式。
其中,所使用“便民卡”与“如意卡”在全市范围内每月(30天)的通话时间x(分钟)与通话费y(元)的关系如图所示:(1)分别求出通话费y 1、y 2与通话时间x 之间的函数关系式; (2)请帮用户计算,在一个月内使用哪种卡便宜?。