Phos-tag Acrylamide
- 格式:pdf
- 大小:418.38 KB
- 文档页数:4
phostag胶配制方法Phostag胶是一种用于电泳中分离核酸分子的重要工具,其配制方法相对简单,但需要一定的注意和技巧。
下面将详细介绍Phostag胶的配制方法,希望对您有所帮助。
1. 准备所需材料:- 聚丙烯酰胺凝胶:可购买现成的聚丙烯酰胺凝胶片,也可以自行配制。
- Phostag混合液:将Phostag及其相关试剂按照特定比例混合得到。
2. 配制Phostag混合液:- 将Phostag粉末称取所需量,通常为每100ml凝胶液中添加450微克Phostag。
- 将Phostag粉末加入含有50%甲醇、50%二甲基亚砜(DMSO)的溶剂中,并用磁力搅拌器搅拌至溶解。
- 将Phostag混合液在4℃下保存,避光保存以保持其活性。
3. 配制聚丙烯酰胺凝胶:- 如果使用现成的聚丙烯酰胺凝胶片,则直接将其放入凝胶电泳槽中即可。
- 如果需要自行配制聚丙烯酰胺凝胶,可按照标准柱形凝胶的配制方法进行操作,只是在其中加入Phostag混合液。
4. 装入电泳槽:- 将配制好的聚丙烯酰胺凝胶装入电泳槽中,将凝胶片固定在槽中夹具上。
- 将电泳槽中的缓冲液注入至适当位置,确保凝胶完全覆盖在缓冲液中。
5. 进行电泳分离:- 在准备好样品后,将样品加载到凝胶孔中,然后连接电泳电源进行电泳分离。
- 根据Phostag在凝胶中的性质,可以有效地分离不同长度的核酸分子。
Phostag胶配制方法比较简单,但需要注意的是,配制混合液时要避免高温和避光保存以保持其活性;在电泳过程中要注意控制电场强度和时间,避免过度分离或损坏核酸分子;此外,Phostag胶只适用于特定长度的核酸分子的分离,需根据实验需求进行选择和使用。
总之,Phostag胶是一种非常有用的电泳工具,可以帮助实验者更好地分离和检测核酸分子。
希望上述介绍对您有所帮助,祝您实验顺利!。
二异丙基二硫代磷酸锑化学物质识别代码【最新版】目录1.化学物质识别代码的概述2.二异丙基二硫代磷酸锑的命名规则3.二异丙基二硫代磷酸锑的用途4.二异丙基二硫代磷酸锑的环保性和安全性5.二异丙基二硫代磷酸锑的未来发展趋势正文一、化学物质识别代码的概述化学物质识别代码(Chemical Substance Identification Codes)是一种用于标识和区分化学物质的编码系统。
在化学物质的研发、生产、使用和监管过程中,识别代码起到了至关重要的作用。
它能确保化学物质的信息准确无误地传递给相关人员,有助于提高化学物质的安全管理和环境保护水平。
二、二异丙基二硫代磷酸锑的命名规则二异丙基二硫代磷酸锑是一种有机锑化合物,其化学式为C16H30O4S2。
根据 IUPAC(国际纯粹与应用化学联合会)的命名规则,该化合物的中文名称为二异丙基二硫代磷酸锑。
其中,“二异丙基”表示分子中含有两个异丙基基团,“二硫代磷酸”表示分子中含有两个硫原子取代了磷酸中的两个氧原子,“锑”则表示该化合物中含有锑元素。
三、二异丙基二硫代磷酸锑的用途二异丙基二硫代磷酸锑主要应用于催化剂、润滑油添加剂、农药等领域。
其具有优良的抗磨性能、抗氧化性能和热稳定性,可以提高相关产品的性能和使用寿命。
此外,二异丙基二硫代磷酸锑还在医药、染料、涂料等行业有一定的应用。
四、二异丙基二硫代磷酸锑的环保性和安全性二异丙基二硫代磷酸锑在生产和使用过程中,需要关注其对环境和人体的影响。
根据我国环保法规,该化合物的生产和使用需遵循相关环保标准,以减少对环境的污染。
同时,二异丙基二硫代磷酸锑在人体内的代谢和毒性尚不完全明确,有待进一步研究。
在使用过程中,应确保佩戴防护设备,遵守相关安全操作规程,以降低潜在的安全风险。
五、二异丙基二硫代磷酸锑的未来发展趋势随着科学技术的不断发展,二异丙基二硫代磷酸锑在催化剂、润滑油添加剂等领域的应用将得到进一步拓展。
同时,对其环保性和安全性的研究将不断深入,以提高其在各种应用场景的可持续性。
日用化学品———阿斯巴甜阿斯巴甜概述阿斯巴甜(天冬氨酰苯丙氨酸甲酯)是一种氨基酸二肽衍生物,其化学名称为L-天冬氨酞-L-苯丙氨酸甲酯(APM),分子式为C14H18N2O5,国外商品名称为Nutrasweet、Equal Tablets ,又称甜味素、蛋白糖、天冬甜母、天冬甜精、天苯糖等。
它是一种白色结晶性粉末,具有清爽的甜味,其甜度为蔗糖的180-200倍。
和其他甜味剂相比具有味质佳,安全性高,热量低等优点,因而风靡消费市场。
阿斯巴甜的历史阿斯巴甜阿斯巴甜的安全剂量为每公斤体重摄取不超过50毫克为James M. Schlatter 于1965年发现。
这名化学家在G.D. Searle & Company工作。
在合成制作抑制溃疡药物时,他无意间舔到手指,发现到阿斯巴甜具有甜味。
由于阿斯巴甜比一般的糖甜约200倍,又比一般蔗糖含更少的热量;一克的阿斯巴甜约有4千卡的热量。
但使人感到到甜味所需的阿斯巴甜量非常少,以致于可忽略其所含的热量,因此也被广泛地作为蔗糖的代替品。
阿斯巴甜自1965年发明以来,经过15年的安全性和毒理性研究,并经过美国食品与药物管理局(FDA)、联合国粮农组织和世界卫生组织的食品添加剂专家委员会、欧盟食品科学技术委员会、美国医学会等权威机构超过100次的严格安全性评价和研究(包括人体实验和动物实验),1981年被FDA正式批准作为食品添加剂使用。
目前已有100多个国家批准使用阿斯巴甜,中国也已于1986年批准使用。
阿斯巴甜的化学性质阿斯巴甜在高温或高pH值情形下会水解,因此不适用需用高温烘焙的食品。
不过可借由与脂肪或麦芽糊精化合提高耐热度。
阿斯巴甜在水中的稳定性主要由pH值决定。
在室温下,当pH值为4.3时最为稳定,半衰期约为300天。
当pH值为7的环境下,其半衰期则仅有数天。
阿斯巴甜会和其他较为稳定的甜味剂混合使用,例如糖精。
用于粉状冲泡饮料时,阿斯巴甜的氨基会和某些香料化合物上的醛基进行美拉德反应,导致同时失去甜味和香味。
全新方法:用于磷酸化蛋白的分离和检测蛋白磷酸化是一种重要的翻译后修饰方式,调控广泛的细胞活性,包括细胞周期、分化、代谢和神经元通讯等。
此外,异常的磷酸化事件与许多疾病状态相关。
传统的检测蛋白磷酸化的方法:• 放射性同位素标记• Western Blot• 酶联免疫吸附分析(ELISA)• 流式细胞仪和免疫细胞化学/免疫组织化学(ICC/IHC)• 质谱——由于磷酸化蛋白的信号较弱,目前还具有一定的难度。
需要特异性的磷酸化抗体!!!可是,没有磷酸化抗体怎么办呢?Phos-tag是一种能与磷酸离子特异性结合的功能性分子,可取代传统的酶免疫法和放射性同位素法,用来分离和检测磷酸化蛋白。
有两类:Phos-tag Acrylamide和Phos-tag Biotin。
Phos-tag AcrylamidePhos-tag Acrylamide分离:SDS-PAGE分离不同磷酸化水平的蛋白该方法可以在同一个电泳条带里面同时观察靶蛋白的不同磷酸化状态,以及外因引起的磷酸化状态的改变。
有老师可能会问,这么好用的产品,怎么操作呢?只要在配置SDS-PAGE胶的时候,将phos-tag配成的溶液加入分离胶里面,就配置成Phos-tag聚丙烯酰胺凝胶了,后续用跟常规SDS-PAGE一样的步骤进行操作就可以,用起来简单的呢。
如果想进一步确认一下分开的这些条带是不是你要的蛋白,可以用常规的抗体来确认(常规抗体就可以代替多个磷酸化抗体哦,省时省钱又省力)。
详细的protocol可见APExBIO官网哦!特点• 非放射性元素,非荧光物质• 磷酸化蛋白亚型可以在同一电泳道分离出多条带• 操作简便,与常规SDS-PAGE蛋白电泳相似• Phos-tag 的结合特异性与氨基酸种类、序列无关• Phos-tag SDS-PAGE实验后,可进行常规的免疫组化、质谱等• 性质稳定,溶于蒸馏水后可以稳定保存至少3个月• 磷酸化和非磷酸化蛋白可以同时被分离检测• 不同位点磷酸化修饰以及磷酸化程度不同的蛋白在同一泳道中因迁移率不同而被分离开来应用举例Phos-tag BiotinPhos-tag Biotin检测:代替western blot检测中的磷酸化抗体原理如上图所示:先使用常规的方法,将SDS-PAGE胶上的蛋白转移到PVDF 膜上,然后Phos-tag Biotin就可以跟膜上磷酸化蛋白的磷酸根结合,接着加入HRP耦联的链霉素,再加入底物进行显色,就可以检测我们的磷酸化蛋白了!如果你研究的蛋白没有相应的磷酸化抗体可以使用,就可以尝试用这个方法啦!应用举例如图所示:图A:加入磷酸酶,磷酸化蛋白水平下降,而没有加磷酸酶的磷酸化蛋白水平较高。
phostag胶配制方法英文回答:Phostag Gel Preparation.Phostag gel is a type of polyacrylamide gel electrophoresis (PAGE) gel that contains a specific ligand, phostag, which binds to phosphorylated proteins. This allows for the separation and visualization of phosphorylated proteins based on their phosphorylation status. Phostag gel is commonly used in proteomics and phosphoproteomics research to study the phosphorylation of proteins and its role in cellular processes.Materials:Acrylamide/bisacrylamide solution (30% T, 8% C)。
1.5 M Tris-HCl, pH 8.8。
10% SDS.10% ammonium persulfate (APS)。
N,N,N',N'-Tetramethylethylenediamine (TEMED)。
Phostag ligand.Deionized water.Protocol:1. Prepare the gel solution:Combine the following reagents in a clean glass beaker:5 mL acrylamide/bisacrylamide solution.2.5 mL 1.5 M Tris-HCl, pH 8.8。
化学品安全技术说明书公司地址:上海化学工业区奉贤分区银工路28号E栋楼客服热线:400-133-2688 1 化学品及企业标识1.1 产品标识符化学品俗名或商品名:降钙素基因相关肽片段CAS No.:119911-68-1别名:VAL-THR-HIS-ARG-LEU-ALA-GLY-LEU-LEU-SER-ARG-SER-GLY-GLY-VAL-VAL-LYS-ASN-ASN-PHE-VAL-PRO-THR-ASN-VAL-GLY-SER-LYS-ALA-PHE-NH2;降钙素基因相关肽(8-37);ALA-CYS-ASN-THR-ALA-THR-CYS-VAL-THR-HIS-ARG-LEU-ALA-ASP-PHE-LEU-SER-ARG-SER-GLY-GLY-VAL-GLY-LYS-ASN-ASN-PHE-VAL-PRO-1.2 鉴别的其他方法α-CGRP8-37FBHuman1.3 有关的确定了的物质或混合物的用途和建议不适合的用途仅供科研用途,不作为药物、家庭备用药或其它用途。
2 危险性概述2.1 GHS分类根据全球化学品统一分类和标签制度(GHS)的规定,不是危险物质或混合物。
2.2 GHS 标记要素,包括预防性的陈述2.3 其它危害物-无3 成分/组成信息3.1 物质分子式 - C139H230N44O38分子量 - 3125.59014 急救措施4.1 必要的急救措施描述一般的建议如果吸入如果吸入,请将患者移到新鲜空气处。
如果停止了呼吸,给于人工呼吸。
在皮肤接触的情况下用肥皂和大量的水冲洗。
在眼睛接触的情况下用水冲洗眼睛作为预防措施。
如果误服切勿给失去知觉者从嘴里喂食任何东西。
用水漱口。
4.2 最重要的症状和影响,急性的和滞后的据我们所知,此化学,物理和毒性性质尚未经完整的研究。
4.3 及时的医疗处理和所需的特殊处理的说明和指示无数据资料5 消防措施5.1 灭火介质火灾特征无数据资料灭火方法及灭火剂用水雾,耐醇泡沫,干粉或二氧化碳灭火。
氨基亚甲基膦酸氨基亚甲基膦酸,又称为Ampa,是一种重要的有机磷酸盐。
它是一种白色结晶粉末,在化学和生物领域中具有广泛的应用。
本文将介绍氨基亚甲基膦酸的性质、合成方法、应用和前景。
氨基亚甲基膦酸的化学性质非常稳定,不易被氧化或还原。
它具有良好的水溶性和热稳定性,可以在高温下使用。
此外,氨基亚甲基膦酸还具有良好的生物相容性和生物降解性,不会对环境造成污染。
氨基亚甲基膦酸的合成方法主要有两种:一种是通过磷酸二乙酯与甲胺反应生成中间体,再经过脱水缩合反应得到氨基亚甲基膦酸;另一种是通过对甲酰胺和磷酸三甲酯进行缩合反应得到氨基亚甲基膦酸。
这些合成方法简单、高效,适用于工业规模生产。
氨基亚甲基膦酸在生物医学领域有着广泛的应用。
首先,它可以作为一种药物载体,用于传递药物分子到特定的组织或细胞。
其次,氨基亚甲基膦酸还可以用作生物传感器的基础材料,用于检测生物分子或环境中的污染物。
此外,氨基亚甲基膦酸还可用于制备高效的催化剂,用于有机合成反应。
除了在生物医学领域,氨基亚甲基膦酸在材料科学和化学工程领域也有着广泛的应用。
例如,它可以用于制备高性能的聚合物材料,用于制备阻燃剂和抗静电材料。
此外,氨基亚甲基膦酸还可以作为表面活性剂,用于调节液体的表面张力和粘度。
未来,随着科学技术的不断进步,氨基亚甲基膦酸的应用前景将更加广阔。
科学家们将进一步研究氨基亚甲基膦酸的性质和合成方法,以寻找更多的应用领域。
同时,还将努力改进氨基亚甲基膦酸的性能,提高其在各个领域中的应用效果。
氨基亚甲基膦酸作为一种重要的有机磷酸盐,在化学和生物领域中具有广泛的应用。
它具有稳定性好、水溶性高、热稳定性强等特点,适用于生物医学、材料科学和化学工程等领域。
随着科学技术的进步,氨基亚甲基膦酸的应用前景将更加广阔,对人类社会的发展具有重要意义。
枸橼酸他莫昔芬原料USP32标准Tamoxifen CitrateC26H29NO·C6H8O7563.64Ethanamine, 2-[4-(1,2-diphenyl-1-butenyl)phenoxy]-N,N-dimethyl, (Z)-, 2-hydroxy-1,2,3-propanetricarboxylate (1:1).(Z)-N,N-二甲基-2-[4-(1,2-二苯基-1-丁烯基)苯氧基]-乙胺枸橼酸盐(Z)-2-[p-(1,2-Diphenyl-1-butenyl)phenoxy]-N,N-dimethylethylamine citrate (1:1)[54965-24-1].Tamoxifen Citrate contains not less than 99.0 percent and not more than 101.0 percent of C26H29NO·C6H8O7, calculated on the dried basis.枸橼酸他莫昔芬按干燥品计算,含C26H29NO·C6H8O7不得少于99.0%,不得多于101.0%。
Packaging and storage— Preserve in well-closed, light-resistant containers.包装和贮存—在密闭、耐光的容器中保存。
Description: White, fine, crystalline powder. Soluble in methanol; very slightly soluble in water, in acetone, in chloroform, and in alcohol.性状:本品为白色结晶性粉末。
本品在甲醇中溶解,在水、丙酮、三氯甲烷和乙醇中极微溶解。
Melting Point: Melts at about 142°, with decomposition.熔点:本品的熔点大约为142℃,熔融时同时分解。
Phos Binding Reagent Acrylamide (PBR-A) Protocol Sec. I、Mn2+- PBR-A SDS-PAGE1、Preparation of reagents for PBR-A SDS-PAGE2、Resolving Gel PreparationResolving Gel Solution(0.375 mol/L Tris, 0.1 mmol/L MnCl2 , 0.1% SDS)(In case of preparation of the 10 mL solution with 12 w/v% polyacrylamide gel and 50 μmol/L PBR-A)Sol. A: 30% (w/v) Acrylamide Solution-------------------------------------------------4.00 mLSol. B: 1.5 mol/L Tris/HCl Solution, pH 8.8-------------------------------------------2.50 mLSol. E: 5.0 mmol/L PBR-A Solution-------------------0.10 mLSol. F: 10 mmol/L MnCl2 Solution-------------------------------------------------------0.10 mL *1)Sol. D: 10% (w/v) SDS Solution--------------------------------------------------------- 0.10 mLTEMED (tetramethylethylenediamine) --------------------------------------------------- 10 μL*2)Distilled Water--------------------------------------------------------------------------------3.14 mLDearate with stiring for 2 minutes.Sol. G: 10% (w/v) Ammonium Persulfate Solution-----------------------------------50 μL*2)*1) For the MnCl2 solution, two times the PBR-A concentration (molar ratio) is added.*2) The normally used concentration can be used for TEMED and Sol.G. The above added amounts are examples.Note: Please optimize concentration of Sol. E(PBR-A) and Sol. A (Acrylamide). Refer to 5. Optimization of PBR-A PAGE ConditionExamples of preparation of 10 mL of resolving gel solutionNote: Please optimize concentration of Sol. E(PBR-A) and Sol. A (Acrylamide).3、Stacking Gel PreparationStacking Gel Solution (0.125 mol/L Tris, 0.1% SDS)(In case of preparation of 10 mL (2 mL) of 4.5% polyacrylamide gel.)※The amount shown in parentheses are required for the 2 mL preparation.Sol. A: 30% (w/v) Acrylamide Solution--------------------------------------------1.50 mL (0.30 mL) Sol. C: 0.50 mol/L Tris/HCl Solution, pH 6.8-------------------------------------2.50 mL (0.50 mL) Sol. D: 10% (w/v) SDS Solution-----------------------------------------------------0.10 mL (20 μL) TEMED (tetramethylethylenediamine) ----------------------------------------------10 μL (2 μL)*2) Distille d Water----------------------------------------------------------------------------5.84 mL (1.17 mL) Dearate with stiring for 2 minutes.Sol. G: 10% (w/v) Ammonium Persulfate Solution------------------------------50 μL (10 μL) *2)*2) The normally used concentration can be used for TEMED and Sol.G. The above added amounts are examples.2i、Preparation of Resolving Gel with low concentration containing agarose〈In case of Separation of 200~350 kDa Phosphorylated Proteins〉By strengthening gels with 0.5% agarose, low concentration polyacrylamide gel at 3~5% can be prepared.Resolving Gel Solution(0.375 mol/L Tris, 0.1 mmol/L MnCl2, 0.1% SDS)(In case of preparation of 10 mL of 20 μmol/L Phos binding reagent acrylamide containing 3.0% Polyacrylamide gel and 0.5% Agarose)Sol. A: 30% (w/v) Acrylamide Solution-------------------------------------------------1.00 mLSol. B: 1.5 mol/L Tris/HCl Solution, pH 8.8-------------------------------------------2.50 mLSol. E: 5.0 mmol/L Phos binding reagent acrylamide Solution-------------------0.04 mLSol. F: 10 mmol/L MnCl2 Solution-------------------------------------------------------0.04 mL *1)Sol. D: 10% (w/v) SDS Solution--------------------------------------------------------- 0.10 mLTEMED (tetramethylethylenediamine) --------------------------------------------------- 10 μL*2)Distilled Water--------------------------------------------------------------------------------2.93 mL1.5% (w/v) agarose*3) *4) -------------------------------------------------------------------3.33 mLSol. G: 10% (w/v) Ammonium Persulfate Solution------------------------------------- 50 μL*2)Pour the agarose directly onto the gel preparation table before it hardens.*3) Add the agarose after distilled water has been added and thoroughly dissolved in a microwave oven and it is still hot.*4) If necessary, preheat the pipette tip and gel preparation table to 40 - 45℃.3i、Preparation of Stacking Gel with low concentration containing agaroseStacking Gel Solution(0.125 mol/L Tris, 0.1% SDS)(In case of preparation of 10 mL (or 2 mL) of 3.0 (w/v)% polyacrylamide containing 0.5%(w/v) agarose.)Sol. A: 30% (w/v) Acrylamide Solution--------------------------------------------1.00 mL (0.20 mL)Sol. C: 0.50 mol/L Tris/HCl Solution, pH 6.8-------------------------------------2.50 mL (0.50 mL)Sol. D: 10% (w/v) SDS Solution-----------------------------------------------------0.10 mL (20 μL)TEMED (tetramethylethylenediamine) ---------------------------------------------- 10 μL (2 μL)*2)Distille d Water--------------------------------------------------------------------------3.01 mL (602 μL)1.5% (w/v) agarose*3) *4) --------------------------------------------------------------3.33 mL (666 μL)Sol. G: 10% (w/v) Ammonium Persulfate Solution--------------------------------50 μL (10 μL) *2)Pour the agarose directly onto the gel preparation table before it hardens.4、Sample Preparation1) Mix sample with 3 μL of Solution I (Sample Buffer) and add an appropriate amount of distilled water to make 9 μL solution in a microcentrifuge tube.2) Heat at 95℃for 5 minutes, then, allow the solution to cool to room temperature.3) Load the sample solution (eg: 1.5 μL/well) using a micropipette.※In case of β-casein, load 5~10 μg /well to obtain clear bands.5、Electrophoresis1) Assemble the electrophoresis equipments and fill the electrode chambers with Solution H (Running Buffer).2) Gently remove the comb from the stacking gel and load the sample into each well using a micropipette.3) Attach the leads to the power supply. Run the gel under a constant current condition (25~30 mA/gel) until the BPB reaches the bottom of the resolving gel.(※In case of two gels, run the gels at 50~60 mA.)※When performing Western blotting, refer to Sec. II below after electrophoretic migration has occurred.6、CBB Staining・Destaining1) Just after electrophoresis, the gel is soaked in 50 mL of the Sol. J (Acidic Solution for Fixation of Proteins) for ca. 10 min. with gentle agitation.2) Stain the gel by soaking in 50 mL of the Sol. K (CBB Staining Solution) for ca. 2 hours with gentle agitation.3) Wash the gel in 50 mL of the Sol. L (Washing and Destaining Solution) 3 times to remove excess stain until the background is sufficiently clear.4) Take a photograph of the gel.Sec. II、Tips for Western blotting of PBR-A SDS-PAGE gelsAfter electrophoresis, an additional procedure, i.e., elimination of the manganese ion (Mn2+) from the gel using chelating agent (EDTA), is necessary before electroblotting. This procedure increases the transfer efficiency of the phosphorylated and non-phosphorylated proteins onto a PVDF membrane.1) Just after electrophoresis, the gel is soaked in a general transfer buffer containing 1~10 mmol/L EDTA for a minimum of 10 minutes with gentle agitation. (for 10 minutes x 1~3 times).※Change the temperature and treatment time with transfer EDTA-buffer according to the gel thickness, etc.(eg: 1.5 mm thick: 20 minute treatment x twice).※Besides transfer buffer, 1 x Running buffer can be also used .2) Next, the gel is soaked in a general transfer buffer without EDTA for 10 minutes with gentleagitation (for 10 min. x 1 time).※a wet-tank method is strongly recommended for effective protein transfer from the Mn2+-PBR-A acrylamide gel to the PVDF membrane. (The semi-dry method can also be used.)※The blotting conditions, such as time and temperature, must be optimized for your phosphorylated target protein in the PBR-A gel.Sec. III、Tips for Mass Spectrometry of PBR-A SDS-PAGENo special procedures such as EDTA treatment are necessary.Sec. IV、Trouble Shooting1、Distortion of bandsThe most common complaint for PBR-A SDS-PAGE is “Distortion of bands”. Especially, make sure not to contain EDTA in your samples.1) Prestained marker: Not only the lane of the marker but also the sample lane may be affected due to a difference in the salt concentration among lanes.⇒ Prestained markers should not be used. We recommend to use alkaline phosphatase-treated sample or recombinant protein of your target one as the negative control of phosphorylation instead of using prestained markers.2) Acidic sample: Bands may be distorted.⇒If the solution is a yellow to orange color even after loading sample buffer, add Tris buffer until it isneutral (violet).3) EDTA (Mn2+is chelated), vanadic acid, inorganic salts, surfactants, etc., cause distortion or tailing of bands.⇒ Desalinate by precipitation with TCA or dialysis.4) Blank lanes: Blank lanes may cause distortion.⇒Load the same amount of 1 x sample buffer in blank lanes.5) Vanadic acid: Competitive binding with phosphoric acid may cause distortion.⇒Use a different phosphatase inhibitor or remove vanadic acid by precipitation with TCA or dialysis.6) Adding MnCl2 to the sample to be applied (eg: 1 mM final concentration) may improve results. ⇒If the sample contains an EDTA residue, it is because the added Mn2+ is chelated instead of the Mn2+ contained in the gel.2、Low Resolution1) Rise of the molar ratio of MnCl2 to PBR-A Acrylamide may improve the resolution. (eg: 1: 4)2) Adopting Tris-Tricine Buffer as Running Buffer may improve the resolution.3、Protein DiffusionLong-term migration with a constant current will cause decomposition and diffusion of proteins due to excessive heat.1) If you want to use a constant current for migration, try techniques such as using a low-temperature room, thoroughly cooling the migration buffer just before use, and wrapping a cooling agent around the migration tank (but do not use ice because it may cause electric shock).2) When a constant voltage can also be used, migrate with a constant voltage (eg: 200 V). The migration speed will slow down but the generation of heat will be suppressed.4、Easy breaking of the gelThe gel is softened due to the low concentration of acrylamide.1) 5% or higher: Increasing the N,N’-methylene-bisacrylamide to acrylamide ratio (eg: 24:1) willstrengthen the gel.2) Add 3~5% of agarose to strengthen gels.5、Trouble with Transfer onto the membrane1) Treatment with EDTA may be insufficient. Increase the treatment time, frequently exchange the buffer containing EDTA (eg: 20 min. x twice), or fully agitate during EDTA treatment.2) To intensify the electric current may improve efficiency (eg: 200 mA)3) Staining other than negative staining such as CBB staining may diminish the transfer efficiency.4) Using a low-concentration gel will improve the transfer efficiency.5) Take steps such as using a thick gel and increase the sample application amount.6) Transfer buffer containing SDS may improve the transfer efficiency. When transferring onto a membrane, immediately add the SDS solution to the transfer buffer to prevent sudsing (tank method), or between the EDTA process and transfer, immerse the gel in a transfer buffer containing SDS and shake slowly (eg: for 10 min. x 1 time). Try SDS concentrations of 0.05 ~0.20%.6、Higher background during stainingStain after eliminating metal ions in the gel by EDTA treatment.7、Mobility shift due to protein degradation, not induced by phosphorylationCarry out SDS-PAGE as usual (containing 0 μM of PBR-A) and verify that no mobility shift occurs. Sec. V、Optimization of PBR-A PAGE ConditionTo obtain a high quality result using PBR-A PAGE, optimization of the concentration of acrylamide and PBR-A is essential. Optimize the concentration of acrylamide (1) first, followed by that of PBR-A (2).1、Optimization of the concentration of acrylamideFirst, identify the optimum concentration of acrylamide* that allows migration of the target protein tothe lowest end of the gel when conventional SDS-PAGE is used.In PBR-A PAGE, the migration speed is slower than in conventional SDS-PAGE (including non-phosphorylated proteins) and, therefore, the concentration of acrylamide should be examined (see the below figure). The migration speed decreases as the concentration of PBR-A increases.*: Run a gel electrophoresis until the BPB dye, which is contained in the sample buffer, reaches the bottom of the resolving gel. The position of BPB dye can be defined as an Rf value of 1.0. Under the above mentioned running condition, adjust the optimum concentration of acrylamide. When your target protein is observed as a migration band at an Rf value of 0.8 to 0.9 in conventional SDS-PAGE, the acrylamide concentration would be optimum for PBR-A SDS-PAGE.Indication of optimum concentrationmore than 60 kDa: 6%; less than 60 kDa: 8%.<In case of high molecular weight proteins >The gelstrength can be increased by adding agarose to gels that containless than 4% of acrylamide. There is a data of separation of 350 kDa.(Refer to “Separation of PBR-A Acrylamide”of Sec. VII. FAQ).Furthermore, the gel strength can also be enhanced by increasingthe N,N'-methylenebisacrylamide content (eg: 5% acrylamide [24:1]).2、Optimization of the concentration of PBR-A.Then, optimize the concentration of PBR-A. Please evaluate the optimum concentration in the order of lowest to highest. eg: 20 μM→50μM→100μM.【Cell Lysate】In case there is a large variety of proteins in your sample, eg: cell lysates, the concentration of PBR-A should be 5 to 25 μM. However, a higher concentration, eg: 100 μM, is recommended in case of a lower concentration of the target protein, eg: non-overexpression systems.※The optimum condition depends on the protein. Please find the appropriate condition setting for each targetprotein.Higher concentration of PBR-A leads to higher separation capacity?In general, a higher concentration leads to higher separation capacity. (Compare the samples of 50 μM and 100 μM of Mn2+-PBR-A in the left figure.). However, the higher concentration causes low velocity. It sometimes happens that the higher separation capacity is due to the lower PBR-A concentration (Compare the samples of 50 μM and 150 μM of ovalbumin of the right figure.)Distance between two bands:* : α-casein:50 μM<100 μM* : ovalbumin:50 μM>150 μMconcentration for every target protein.-:phosphorylated protein; +:non-phosphorylated protein (alkaline phosphatase treatment).Sec. VI、FAQ1) Q: How large (kDa) can a protein be separated using this product?A: A phosphorylated protein of 350 kDa has actually been separated with 20 μM PBR-A, 3% acrylamide and 0.5% agarose*.* Agarose was added to strengthen the gel.2) Q: How can the resolution be improved?A: In general, a higher concentration of PBR-A results in a higher resolution. However, increasing the concentration of PBR-A also causes the overall migration speed of the protein to proportionally drop.3) Q: Is it possible to use gel-staining techniques other than CBB?A: Yes, the gel can also be stained by negative staining, silver staining, and fluorescent staining. 4) Q: The gel is easily broken. What can I do for this?A:A low concentration of acrylamide causes the gel to be soft. You can solve this problem by increasing the relative amount of methylenebisacrylamide to acrylamide (24:1), for example.5) Q: How long can the prepared gel containing PBR-A be stored?A: The gel deteriorates within a few days. Therefore, it should be prepared just before use.6) Q: How long can the solutions in methanol and water be stored?A: No remarkable decline in performance has been reported for 6 months by refrigeration under protection from light. The solutions seem to be storable for 1 year without any problem according to doctors who are using the product.7) Q: I have experienced clouding of PBR-A when I prepared a solution as described in the protocol. Is this normal?A: Yes, it is. Clouding is attributed to methanol. The solution becomes clear after standing for a while.8) Q: Does PBR-A dissolve in water alone?A: It is soluble in water, though it takes more time compared to dissolution in water containing methanol. If it does not dissolve completely, centrifuge the solution and use the supernatant.9) Q: What prestained markers can we use?A: Using a prestained marker with the PBR-A gel usually causes distortion of bands. At least one blank lane is needed between the solution containing this marker and other solutions.10) Q: Does ATP in a phosphorylation reaction solution affect electrophoresis?A:ATP had no particular effect at a concentration of 2.0 mM. The limit of use has not been investigated yet.11) Q: A mobility shift was observed in PBR-A SDS-PAGE. How can I know whether it is a sign of phosphorylation or only telling me that the protein was broken down?A:Please carry out a conventional SDS-PAGE (without PBR-A) and verify that your protein is intact.12) Q: Is PBR-A applicable to separate DNA?A: Refer to the following articles:・A SNP genotyping method using phosphate-affinity polyacrylamide gel electrophoresis, Analytical Biochemistry, 361, 294-298 (2007), E. Kinoshita, E. Kinoshita-Kikuta, and T. Koike (The phosphate group at DNA-terminal is efficiently captured by Zn2+-PBR-A.)・A mobility shift detection method for DNA methylation analysis using phosphate affinity polyacrylamide gel electrophoresis, Analytical Biochemistry, 378, 102-104 (2008), E. Kinoshita-Kikuta, E. Kinoshita, and T. Koike。
n,n'-亚甲基双丙烯酰胺标准【1】介绍n,n'-亚甲基双丙烯酰胺(简称:BIS-ACRYLAMIDE)是一种重要的有机合成原料,常用于聚丙烯酰胺凝胶电泳、免疫印迹等生物化学实验中。
BIS-ACRYLAMIDE标准是对其质量和纯度进行规范的标准,保证其在科研和工业生产中的可靠性和稳定性。
【2】BIS-ACRYLAMIDE的重要性BIS-ACRYLAMIDE在生物化学领域起着不可或缺的作用,它能够与丙烯酰胺共聚合形成交联凝胶,用于蛋白质和核酸的电泳分离。
BIS-ACRYLAMIDE还可以作为染料的固定剂,用于免疫印迹实验中。
标准化的BIS-ACRYLAMIDE对保证生物化学实验的准确性和可重复性至关重要。
【3】BIS-ACRYLAMIDE标准的意义BIS-ACRYLAMIDE作为一种化学试剂,其纯度和质量直接影响到实验结果的可信度。
标准的制定和执行可以保证BIS-ACRYLAMIDE的质量稳定,避免因纯度不够或杂质过多而对实验结果产生影响。
BIS-ACRYLAMIDE标准的制定对于提高实验可靠性和结果的准确性具有重要意义。
【4】BIS-ACRYLAMIDE标准的内容BIS-ACRYLAMIDE标准通常包括对其外观、纯度、水分、溶解度、重金属含量等指标的要求。
其中,纯度是其中最为重要的指标之一,其对于实验结果的影响最为显著。
标准中也会对应的检测方法和实施规范进行规定,以确保各项指标的准确性和可行性。
【5】BIS-ACRYLAMIDE标准的执行为了确保BIS-ACRYLAMIDE标准的执行,实验室和企业需要建立相关的质量控制体系。
这包括从原材料采购、贮存、使用到废弃等全过程的管控,同时还需要建立相关的检测和评价机制,确保BIS-ACRYLAMIDE的质量始终符合标准要求。
【6】对BIS-ACRYLAMIDE标准的思考BIS-ACRYLAMIDE标准的制定和执行是一项需要持续投入和关注的工作。
英策拓乐芬片成分-回复什么是英策拓乐芬(英石)的成分以及其特点。
英策拓乐芬(Yashoidtophene),常简称为英石,是一种具有特殊成分和独特特点的矿物质。
它是一种稀有且价值高昂的宝石,被广泛用于珠宝和装饰品制作领域。
现在,让我们逐步深入了解英策拓乐芬的成分以及其特点。
作为一种宝石矿物,英策拓乐芬主要由硅酸盐组成,化学式为Al2SiO4(F,OH)2。
它的晶体属于正交晶系,外观呈现出六面体或八面体的形状。
英策拓乐芬的颜色非常多样,有红色、粉红色、黄色、橙色、蓝色、绿色等等,其中红色最为常见。
在英策拓乐芬的成分中,最重要的元素是铝(Al)、硅(Si)和氧(O)。
这些元素在地壳中非常常见,因此英策拓乐芬也可以在全球范围内找到。
与其他宝石相比,英策拓乐芬的成分相对简单,但正是这种简单性赋予了它独特的特点。
首先,英策拓乐芬的硬度非常高。
在莫氏硬度比例中,它的硬度为9,仅次于钻石,因此拥有出色的耐磨性。
这使得英策拓乐芬成为一种理想的宝石材料,用于制作珠宝和装饰品,可以保持长久的光泽和美丽。
其次,英策拓乐芬的折射率相对较高。
折射率为1.77-1.81,接近于红宝石和蓝宝石。
这意味着英策拓乐芬在透光性方面表现出色,能够产生明亮的光线折射效果。
这一特点使得英策拓乐芬在珠宝设计中非常受欢迎,可以给人眼前一亮的视觉享受。
此外,英策拓乐芬的色彩鲜艳且饱和度高。
它可以呈现出从淡雅的粉红色到深沉的红色,甚至是鲜艳的橙色和黄色。
这些丰富多样的颜色使得英策拓乐芬适合用于各种不同风格和设计的珠宝作品中。
最后,英策拓乐芬还具有光泽和透明度。
它的抛光光泽非常出色,可以给人一种高贵和华丽的感觉。
而透明度方面,英策拓乐芬常常被切割成透明的宝石,能够使光线自由穿过并折射出不同的颜色,增加了宝石的魅力和视觉效果。
综上所述,英策拓乐芬作为一种稀有且具有独特成分的宝石,具有硬度高、折射率高、色彩鲜艳、透明度高的特点。
这些特点使得英策拓乐芬成为珠宝和装饰品制作领域中备受追捧的宝石材质。