2018年(辽宁地区)聚焦中考数学总复习 专题突破训练:第25讲 图形的对称
- 格式:doc
- 大小:482.00 KB
- 文档页数:3
考点三十:图形的轴对称聚焦考点☆温习理解1.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点.2.图形轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任意一对对应点所连线段的垂直平分线.轴对称图形的对称轴,是任意一对对应点所连线段的垂直平分线.对应线段、对应角相等.3.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样;新图形上的每一点,都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴垂直平分.这样,由一个平面图形得到它的轴对称图形叫做轴对称变换.一个轴对称图形可以看作以它的一部分为基础,经轴对称变换而成.4. 轴对称与轴对称图形轴对称图形和图形的轴对称之间的的区别是:轴对称图形是一个具有特殊性质的图形,而图形的轴对称是说两个图形之间的位置关系;两者之间的联系是:若把轴对称的两个图形视为一个整体,则它就是一个轴对称图形;若把轴对称图形在对称轴两旁的部分视为两个图形,则这两个图形就形成轴对称的位置关系.名师点睛☆典例分类考点典例一、识别轴对称图形【例1】(2017重庆A卷第2题)下列图形中是轴对称图形的是()【答案】C.【解析】试题解析:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意.故选C.考点:轴对称图形.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.判断图形是否是轴对称图形,关键是理解、应用轴对称图形的定义,看是否能找到至少1条合适的直线,使该图形沿着这条直线对折后,两旁能够完全重合.若能找到,则是轴对称图形;若找不到,则不是轴对称图形.【举一反三】1.(2017山东烟台第2题)下列国旗图案是轴对称图形但不是中心对称图形的是()【答案】A.考点:中心对称图形;轴对称图形.2. (2017江苏盐城第3题)下列图形中,是轴对称图形的是()【答案】D.【解析】试题解析:D的图形沿中间线折叠,直线两旁的部分可重合,故选D .考点:轴对称图形.考点典例二、作已知图形的轴对称图形【例2】(2017浙江宁波第20题)在44´的方格纸中,ABC △的三个顶点都在格点上.(1)在图1中画出与ABC △成轴对称且与ABC △有公共边的格点三角形(画出一个即可);(2)将图2中的ABC △绕着点C 按顺时针方向旋转90°,画出经旋转后的三角形.【答案】(1)作图见解析;(2)作图见解析.【解析】试题分析:根据题意画出图形即可.试题解析:(1)如图所示:或(2)如图所示:考点:1.轴对称图形;2.旋转.【点睛】此题主要考查了轴对称变换,得出对应点坐标是解题关键.画轴对称图形,关键是先作出一条对称轴,对于直线、线段、多边形等特殊图形,一般只要作出直线上的任意两点、线段端点、多边形的顶点等的对称点,就能准确作出图形.【举一反三】这个图形(2017内蒙古呼和浩特第3题)如图中序号(1)(2)(3)(4)对应的四个三角形,都是ABC进行了一次变换之后得到的,其中是通过轴对称得到的是()A.(1)B.(2)C.(3)D.(4)【答案】A【解析】试题分析:∵轴对称是沿着某条直线翻转得到新图形,∴通过轴对称得到的是(1).故选A.考点:轴对称图形.考点典例三、轴对称性质的应用【例3】(2017贵州安顺第17题)如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为.【答案】6.【解析】试题解析:设BE与AC交于点P,连接BD,∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度;∵正方形ABCD的边长为6,∴AB=6.又∵△ABE 是等边三角形,∴BE=AB=6.故所求最小值为6.考点:轴对称﹣最短路线问题;等边三角形的性质;正方形的性质.【点睛】求两条线段之和为最小,可以利用轴对称变换,使之变为求两点之间的线段,因为线段间的距离最短.本题考查了轴对称-最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P 的位置.【举一反三】(2017江苏徐州第27题)如图,将边长为6的正三角形纸片ABC 按如下顺序进行两次折叠,展开后,得折痕,AD BE (如图①),点O 为其交点.(1)探求AO 与OD 的数量关系,并说明理由;(2)如图②,若,P N 分别为,BE BC 上的动点.①当PN PD +的长度取得最小值时,求BP 的长度; ②如图③,若点Q 在线段BO 上,1BQ =,则QN NP PD ++的最小值= .【答案】(1)AO=2OD ,理由见解析;(2.【解析】(3)如图③,作Q关于BC的对称点Q′,作D关于BE的对称点D′,连接Q′D′,即为QN+NP+PD的最小值.根据轴对称的定义得到∠Q′BN=∠QBN=30°,∠QBQ′=60°,得到△BQQ′为等边三角形,△BDD′为等边三角形,解直角三角形即可得到结论.试题解析:(1)AO=2OD,理由:∵△ABC是等边三角形,∴∠BAO=∠ABO=∠OBD=30°,∴AO=OB,∵BD=CD,∴AD⊥BC,∴∠BDO=90°,∴OB=2OD,∴OA=2OD;(2)如图②,作点D关于BE的对称点D′,过D′作D′N⊥BC于N交BE于P,则此时PN+PD的长度取得最小值,∵BE垂直平分DD′,∴BD=BD′,∵∠ABC=60°,∴△BDD′是等边三角形,∴BN=12BD=32, ∵∠PBN=30°,∴2BN PB =,∴(3)如图③,作Q 关于BC 的对称点Q′,作D 关于BE 的对称点D′,连接Q′D′,即为QN+NP+PD 的最小值.根据轴对称的定义可知:∠Q′BN=∠QBN=30°,∠QBQ′=60°,∴△BQQ′为等边三角形,△BDD′为等边三角形,∴∠D′BQ′=90°,∴在Rt △D′BQ′中,∴QN+NP+PD 的最小值考点典例四、折叠问题【例4】(2017贵州安顺第7题)如图,矩形纸片ABCD 中,AD=4cm ,把纸片沿直线AC 折叠,点B 落在E 处,AE 交DC 于点O ,若AO=5cm ,则AB 的长为( )A.6cm B.7cm C.8cm D.9cm【答案】C.【解析】考点:翻折变换(折叠问题);矩形的性质.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.折叠的过程实际上就是一个轴对称变换的过程,轴对称变换前后的图形是全等图形,对应边相等,对应角相等.【举一反三】1. (2017江苏无锡第10题)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.54C.53D.75【答案】D.【解析】试题解析:如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴,∵CD=DB,∴AD=DC=DB=52,∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,75== .故选D.考点:1.翻折变换(折叠问题);2.直角三角形斜边上的中线;3.勾股定理.2. (2017浙江宁波第18题)如图,在边长为2的菱形ABCD中,∠A=60°,点M是A D边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的.【解析】试题分析:如图所示:过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=12MD=12,∴FM=DM×cos30°=2,∴EC=MC.考点:1.折叠问题;2.菱形的性质.课时作业☆能力提升1.(2017内蒙古通辽第4题)下列图形中,是轴对称图形,不是中心对称图形的是()A B C D【答案】D试题分析:根据中心对称图形和轴对称图形的定义,可得:A是中心对称图形,故本选项不符合题意;B是中心对称图形,故本选项不符合题意;C是中心对称图形,故本选项不符合题意;D不是中心对称图形,故本选项符合题意;故选:D.考点:1、中心对称图形;2、轴对称图形2. (2017郴州第2题)下列图形既是对称图形又是中心对称图形的是()【答案】B.【解析】试题分析:根据轴对称图形和中心对称图形的概念可得选项A是轴对称图形,不是中心对称图形;选项B既是轴对称图形又是中心对称图形;选项C不是轴对称图形,是中心对称图形;选项D是轴对称图形,不是中心对称图形.故选B.考点:轴对称图形和中心对称图形.3.(2017海南第6题)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(-3,2)B.(2,-3)C.(1,-2)D.(-1,2)【解析】试题分析:首先利用平移的性质得到△A 1B 1C 1,进而利用关于x 轴对称点的性质得到△A 2B 2C 2,即可得出答案. 如图所示:点A 的对应点A 2的坐标是:(2,﹣3).故选:B .考点:平移的性质,轴对称的性质.4.(2017新疆乌鲁木齐第9题)如图,在矩形ABCD 中,点F 在AD 上,点E 在BC 上,把这个矩形沿EF折叠后,使点D 恰好落在BC 边上的G 点处,若矩形面积为60,2AFG GE BG ∠==,则折痕EF 的长为( )A .1B 2 D .【答案】C.【解析】在Rt △GHE 中,∠HGE=30°,∴GE=2HE=CE ,∴==.∵GE=2BG ,∴BC=BG+GE+EC=4EC .∵矩形ABCD 的面积为∴EC=1,EF=GE=2.故选C .考点:翻折变换(折叠问题);矩形的性质.5. (2017新疆乌鲁木齐第10题)如图,点()(),3,,1A a B b 都在双曲线3y x=上,点,C D ,分别是x 轴,y 轴上的动点,则四边形ABCD 周长的最小值为( )A ...【答案】B .【解析】试题解析:分别把点A (a ,3)、B (b ,1)代入双曲线y=3x 得:a=1,b=3,则点A 的坐标为(1,3)、B 点坐标为(3,1),作A 点关于y 轴的对称点P ,B 点关于x 轴的对称点Q ,所以点P 坐标为(﹣1,3),Q 点坐标为(3,﹣1),连结PQ 分别交x 轴、y 轴于C 点、D 点,此时四边形ABCD 的周长最小,四边形ABCD 周长=DA+DC+CB+AB=DP+DC+CQ+AB=PQ+AB+故选B.考点:反比例函数图象上点的坐标特征;轴对称﹣最短路线问题.6.(2017四川宜宾第7题)如图,在矩形ABCD中BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上F处,则DE的长是()A.3 B.245C.5 D.8916【答案】C.【解析】试题解析:∵矩形ABCD,∴∠BAD=90°,由折叠可得△BEF≌△BAE,∴EF⊥BD,AE=EF,AB=BF,在Rt△ABD中,AB=CD=6,BC=AD=8,根据勾股定理得:BD=10,即FD=10﹣6=4,设EF=AE=x,则有ED=8﹣x,根据勾股定理得:x2+42=(8﹣x)2,解得:x=3(负值舍去),则DE=8﹣3=5,故选C.考点:1. 翻折变换(折叠问题);2.矩形的性质.7. (2017重庆A卷第18题)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.【答案】【解析】试题解析:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,∵DC∥AB,∴PQ⊥AB,∵四边形ABCD是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,易证明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ ⊥FB ,∴FQ=BQ=12BF , ∵AB=4,F 是AB 的中点,∴BF=2,∴FQ=BQ=PE=1,∴Rt △DAF 中,∵DE=EF ,DE ⊥EF ,∴△DEF 是等腰直角三角形,∴∴,如图2,∵DC ∥AB ,∴△DGC ∽△FGA , ∴422CG DC DG AG AF FG ====, ∴CG=2AG ,DG=2FG ,∴FG=133⨯=,∵=,∴CG=23⨯=∴EG=33-=,连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴=∴EH=EF﹣-=∴∠NDE=∠AEF,∴tan∠NDE=tan∠AEF=EN GH DE EH=,12EN==,∴EN=2,∴NH=EH﹣EN=326-=,Rt△GNH中,6==,由折叠得:MN=GN,EM=EG,∴△EMN的周长=EN+MN+EM=2632+++=.考点:1.折叠;2.正方形的性质.8.(2017湖北咸宁第14题)如图,点O的矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B 恰好与点O 重合,若3=BE ,则折痕AE 的长为 .【答案】6.考点:矩形的性质;翻折变换(折叠问题).9. (2017青海西宁第20题)如图,将ABCD 沿EF 对折,使点A 落在点C 处,若060,4,6A AD AB ∠===,则AE 的长为___. 【答案】285【解析】试题分析:过点C 作CG ⊥AB 的延长线于点G ,在▱ABCD 中,∠D=∠EBC ,AD=BC ,∠A=∠DCB ,由于▱ABCD 沿EF 对折,∴∠D ′=∠D=∠EBC ,∠D ′CE=∠A=∠DCB ,D ′C=AD=BC ,∴∠D ′CF+∠FCE=∠FCE+∠ECB ,∴∠D ′CF=∠ECB ,在△D ′CF 与△ECB 中,D EBC D C BC D CF ECB '∠=∠⎧⎪'=⎨⎪'∠=∠⎩,∴△D ′CF ≌△ECB (ASA ),∴D ′F=EB ,CF=CE ,∵DF=D ′F ,∴DF=EB ,AE=CF设AE=x ,则EB=8﹣x ,CF=x ,∵BC=4,∠CBG=60°,∴BG=12BC=2,由勾股定理可知: ∴EG=EB+BG=8﹣x+2=10﹣x在△CEG 中,由勾股定理可知:(10﹣x )2+(2=x 2,解得:x=AE=285考点: 1.翻折变换(折叠问题);2.平行四边形的性质.10.如图,在边长为2的等边△ABC 中,D 为BC 的中点,E 是AC 边上一点,则BE +DE 的最小值为 .【解析】试题分析:作B 关于AC 的对称点B ′,连接BB ′、B ′D ,交AC 于E ,此时BE +ED =B ′E +ED =B ′D ,根据两点之间线段最短可知B ′D 就是BE +ED 的最小值,∵B 、B ′关于AC 的对称,∴AC 、BB ′互相垂直平分,∴四边形ABCB ′是平行四边形,∵三角形ABC 是边长为2,∵D 为BC 的中点,∴AD ⊥BC ,∴AD BD =CD =1,BB ′=2AD =B ′G ⊥BC 的延长线于G ,∴B ′G =AD在Rt △B ′BG 中,BG ,∴DG =BG ﹣BD =3﹣1=2,在Rt △B ′DG 中,BD BE +ED考点:1.轴对称-最短路线问题;2.等边三角形的性质;3.最值问题;4.综合题.11. (2017海南第17题)如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .【答案】35.考点:轴对称的性质,矩形的性质,余弦的概念.12. (2017黑龙江齐齐哈尔第21题)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC ∆的三个顶点的坐标分别为(3,4)A -,(5,2)B -,(2,1)C -.(1)画出ABC ∆关于y 轴的对称图形111A B C ∆;(2)画出将ABC ∆绕原点O 逆时针方向旋转90︒得到的222A B C ∆;(3)求(2)中线段OA 扫过的图形面积.【答案】(1)画图见解析;(2)画图见解析;(3)线段OA 扫过的图形面积为254π. 【解析】试题分析:(1)分别作出各点关于y 轴的对称点,再顺次连接即可;(2)根据图形旋转的性质画出旋转后的图形△A 2B 2C 2即可;(3)利用扇形的面积公式即可得出结论.试题解析:(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求;(3)∵,∴线段OA 扫过的图形面积=2905360π⨯=254π.考点:1.作图﹣旋转变换;2.扇形面积的计算;3.作图﹣轴对称变换.13. (2017辽宁大连第25题)如图1,四边形ABCD 的对角线BD AC ,相交于点O ,OD OB =,m AD AB OA OC =+=,,n BC =,ACB ADB ABD ∠=∠+∠.(1)填空:BAD ∠与ACB ∠的数量关系为 ;(2)求nm 的值; (3)将A C D ∆沿CD 翻折,得到CD A '∆(如图2),连接'BA ,与CD 相交于点P .若215+=CD ,求PC 的长.【答案】(1)∠BAD+∠ACB=180°;(2;(3)1.(3)如图2中,作DE ∥AB 交AC 于E .想办法证明△PA′D∽△PBC ,可得'A D PD BC PC ==,可得PD PC PC +=,即PD PC = 试题解析:(1)如图1中,在△ABD 中,∵∠BAD+∠ABD+∠ADB=180°,∠ABD+∠ADB=∠ACB ,∴∠BAD+∠ACB=180°,故答案为∠BAD+∠ACB=180°.(2)如图1中,作DE ∥AB 交AC 于E .∴∠DEA=∠BAE ,∠OBA=∠ODE ,∵OB=OD ,∴△OAB ≌△O ED ,∴AB=DE ,OA=OE ,设AB=DE=CE =CE=x ,OA=OE=y ,∵∠EDA+∠DAB=180°,∠BAD+∠ACB=180°,∴∠EDA=∠ACB ,∵∠DEA=∠CAB ,∴△EAD ∽△ABC , ∴ED AE DA m AC AB CB n===,∴22x y x y x =+, ∴4y 2+2xy ﹣x 2=0,∴22210y y x x ⎛⎫+-= ⎪⎝⎭,∴2y x =,∴m n = (3)如图2中,作DE ∥AB 交AC 于E .由(1)可知,DE=CE ,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,∴DE ∥CA′∥AB ,∴∠ABC+∠A′CB=180°,∵△EAD ∽△ACB ,∴∠DAE=∠ABC=∠DA′C,∴∠DA′C +∠A′CB=180°,∴A′D∥BC ,∴△PA′D∽△PBC ,∴'A D PD BC PC ==,∴PD PC PC +=,即PD PC = ∴PC=1.考点:相似三角形的判定和性质;解一元二次方程;三角形的内角和定理. 14. (2017贵州六盘水第25题)如图,MN 是O ⊙的直径,4MN =,点A 在O ⊙上,30AMN =∠°,B 为AN 的中点,P 是直径MN 上一动点.(1)利用尺规作图,确定当PA PB +最小时P 点的位置(不写作法,但要保留作图痕迹).(2)求PA PB +的最小值.【答案】(1)详见解析;试题分析:(1)画出A 点关于MN 的称点A ',连接A 'B,就可以得到P 点; (2)利用30AMN =∠°得∠AON=∠ON A '=60°,又B 为弧AN 的中点,∴∠BON=30°,所以∠A 'ON=90°,再求最小值22.试题解析:(1)如图,点P 即为所求作的点.(2)由(1)可知,PA PB +的最小值为'A B 的长,连接'OA ,OB 、OA∵A 点关于MN 的称点A ',∠AMN=30°,∴00'223060AON A ON AMN ∠=∠=∠=⨯=又∵B 为AN 的中点∴AB BN = ∴0011603022BON AOB AON ∠=∠=∠=⨯= ∴000''603090A OB A ON BON ∠=∠+∠=+=又∵MN=4 ∴11'4222OA OB MN ===⨯=在Rt△'A OB中,'A B=+的最小值为即PA PB考点:圆,最短路线问题.。
2018中考数学分类汇编--图形的对称(有解析)2018中考数学试题分类汇编:考点34图形的对称一.选择题(共36小题)1.(2018新疆)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.B.1C.D.2【分析】先作点M关于AC的对称点M′,连接M′N交AC 于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1.【解答】解:如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选:B.2.(2018资阳)下列图形具有两条对称轴的是()A.等边三角形B.平行四边形C.矩形D.正方形【分析】根据轴对称及对称轴的定义,结合所给图形即可作出判断.【解答】解:A、等边三角形由3条对称轴,故本选项错误;B、平行四边形无对称轴,故本选项错误;C、矩形有2条对称轴,故本选项正确;D、正方形有4条对称轴,故本选项错误;故选:C.3.(2018苏州)下列四个图案中,不是轴对称图案的是()A.B.C.D.【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.4.(2018湘潭)如图,点A的坐标(﹣1,2),点A关于y轴的对称点的坐标为()A.(1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)【分析】直接利用关于y轴对称点的性质分析得出答案.【解答】解:点A的坐标(﹣1,2),点A关于y轴的对称点的坐标为:(1,2).故选:A.5.(2018永州)誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项正确;D、是轴对称图形,故此选项错误;故选:C.6.(2018重庆)下列图形中一定是轴对称图形的是()A.直角三角形B.四边形C.平行四边形D.矩形【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.7.(2018广州)如图所示的五角星是轴对称图形,它的对称轴共有()A.1条B.3条C.5条D.无数条【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:五角星的对称轴共有5条,故选:C.8.(2018淄博)下列图形中,不是轴对称图形的是()A.B.C.D.【分析】观察四个选项图形,根据轴对称图形的概念即可得出结论.【解答】解:根据轴对称图形的概念,可知:选项C中的图形不是轴对称图形.故选:C.9.(2018河北)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l4【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:该图形的对称轴是直线l3,故选:C.10.(2018沈阳)在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是()A.(4,1)B.(﹣1,4)C.(﹣4,﹣1)D.(﹣1,﹣4)【分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答】解:∵点B的坐标是(4,﹣1),点A与点B关于x轴对称,∴点A的坐标是:(4,1).故选:A.11.(2018临安区)如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是()A.2B.4C.8D.10【分析】本题考查空间想象能力.【解答】解:阴影部分由一个等腰直角三角形和一个直角梯形组成,由第一个图形可知:阴影部分的两部分可构成正方形的四分之一,正方形的面积=4×4=16,∴图中阴影部分的面积是16÷4=4.故选:B.12.(2018邵阳)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.13.(2018重庆)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.14.(2018台湾)下列选项中的图形有一个为轴对称图形,判断此形为何?()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,对称轴为两宽的中点的连线所在的直线,故本选项正确.故选:D.15.(2018桂林)下列图形是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解即可.【解答】解:A、是轴对称图形,本选项正确;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选:A.16.(2018资阳)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米【分析】利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,那么由折叠可得HF的长即为边AD的长.【解答】解:∵∠HEM=∠AEH,∠BEF=∠FEM,∴∠HEF=∠HEM+∠FEM=×180°=90°,同理可得:∠EHG=∠HGF=∠EFG=90°,∴四边形EFGH为矩形,AD=AH+HD=HM+MF=HF,HF===20,∴AD=20厘米.故选:C.17.(2018天津)如图,将一个三角形纸片ABC沿过点B的直线折叠,使点C落在AB边上的点E处,折痕为BD,则下列结论一定正确的是()A.AD=BDB.AE=ACC.ED+EB=DBD.AE+CB=AB【分析】先根据图形翻折变换的性质得出BE=BC,根据线段的和差,可得AE+BE=AB,根据等量代换,可得答案.【解答】解:∵△BDE由△BDC翻折而成,∴BE=BC.∵AE+BE=AB,∴AE+CB=AB,故D正确,故选:D.18.(2018宜昌)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义逐个判断即可.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意;故选:D.19.(2018无锡)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个B.2个C.3个D.4个【分析】直接利用轴对称图形的性质画出对称轴得出答案.【解答】解:如图所示:直线l即为各图形的对称轴.,故选:D.20.(2018湘西州)下列四个图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:D选项的图形是轴对称图形,A,B,C选项的图形不是轴对称图形.故选:D.21.(2018天门)如图,正方形ABCD中,AB=6,G是BC 的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1B.1.5C.2D.2.5【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【解答】解:∵AB=AD=AF,∠D=∠AFE=90°,在Rt△ABG和Rt△AFG中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.22.(2018烟台)对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为()A.7B.6C.5D.4【分析】连接AC、BD,如图,利用菱形的性质得OC=AC=3,OD=BD=4,∠COD=90°,再利用勾股定理计算出CD=5,接着证明△OBM≌△ODN得到DN=BM,然后根据折叠的性质得BM=B'M=1,从而有DN=1,于是计算CD﹣DN即可.【解答】解:连接AC、BD,如图,∵点O为菱形ABCD的对角线的交点,∴OC=AC=3,OD=BD=4,∠COD=90°,在Rt△COD中,CD==5,∵AB∥CD,∴∠MBO=∠NDO,在△OBM和△ODN中,∴△OBM≌△ODN,∴DN=BM,∵过点O折叠菱形,使B,B′两点重合,MN是折痕,∴BM=B'M=1,∴DN=1,∴CN=CD﹣DN=5﹣1=4.故选:D.23.(2018武汉)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.【分析】连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,利用垂径定理得到OD⊥AB,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC和弧CD所在的圆为等圆,则根据圆周角定理得到=,所以AC=DC,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF为正方形得到OF=EF=1,然后计算出CF后得到CE=BE=3,于是得到BC=3.【解答】解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,∴OD⊥AB,∴AD=BD=AB=2,在Rt△OBD中,OD==1,∵将弧沿BC折叠后刚好经过AB的中点D.∴弧AC和弧CD所在的圆为等圆,∴=,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,在Rt△OCF中,CF==2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=3.故选:B.24.(2018吉林)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为()A.12B.13C.14D.15【分析】由D为BC中点知BD=3,再由折叠性质得ND=NA,从而根据△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD可得答案.【解答】解:∵D为BC的中点,且BC=6,∴BD=BC=3,由折叠性质知NA=ND,则△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD=3+9=12,故选:A.25.(2018嘉兴)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A.B.C.D.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:由于得到的图形的中间是正方形,且顶点在原来的正方形的对角线上,故选:A.26.(2018贵港)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6B.3C.2D.4.5【分析】作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,由PE+PM=PE′+PM=E′M 知点P、M即为使PE+PM取得最小值的点,利用S菱形ABCD=ACBD=ABE′M求二级可得答案.【解答】解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值,其PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB==3,由S菱形ABCD=ACBD=ABE′M得×6×6=3E′M,解得:E′M=2,即PE+PM的最小值是2,故选:C.27.(2018滨州)如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.B.C.6D.3【分析】作P点分别关于OA、OB的对称点C、D,连接CD 分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.【解答】解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.故选:D.28.(2018广西)如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.【分析】根据折叠的性质可得出DC=DE、CP=EP,由∠EOF=∠BOP、∠B=∠E、OP=OF可得出△OEF≌△OBP (AAS),根据全等三角形的性质可得出OE=OB、EF=BP,设EF=x,则BP=x、DF=4﹣x、BF=PC=3﹣x,进而可得出AF=1+x,在Rt△DAF中,利用勾股定理可求出x的值,再利用余弦的定义即可求出cos∠ADF的值.【解答】解:根据折叠,可知:△DCP≌△DEP,∴DC=DE=4,CP=EP.在△OEF和△OBP中,,∴△OEF≌△OBP(AAS),∴OE=OB,EF=BP.设EF=x,则BP=x,DF=DE﹣EF=4﹣x,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,∴AF=AB﹣BF=1+x.在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,解得:x=,∴DF=4﹣x=,∴cos∠ADF==.故选:C.29.(2018新疆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cmB.4cmC.3cmD.2cm【分析】根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC﹣BE,代入数据进行计算即可得解.【解答】解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选:D.30.(2018青岛)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕相交于点F.已知EF=,则BC的长是()A.B.C.3D.【分析】由折叠的性质可知∠B=∠EAF=45°,所以可求出∠AFB=90°,再直角三角形的性质可知EF=AB,所以AB=AC的长可求,再利用勾股定理即可求出BC的长.【解答】解:∵沿过点E的直线折叠,使点B与点A重合,∴∠B=∠EAF=45°,∴∠AFB=90°,∵点E为AB中点,∴EF=AB,EF=,∴AB=AC=3,∵∠BAC=90°,∴BC==3,故选:B.31.(2018天津)如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是()A.ABB.DEC.BDD.AF【分析】连接CP,当点E,P,C在同一直线上时,AP+PE 的最小值为CE长,依据△ABF≌△CDE,即可得到AP+EP 最小值等于线段AF的长.【解答】解:如图,连接CP,由AD=CD,∠ADP=∠CDP=45°,DP=DP,可得△ADP≌△CDP,∴AP=CP,∴AP+PE=CP+PE,∴当点E,P,C在同一直线上时,AP+PE的最小值为CE 长,此时,由AB=CD,∠ABF=∠CDE,BF=DE,可得△ABF≌△CDE,∴AF=CE,∴AP+EP最小值等于线段AF的长,故选:D.32.(2018贵港)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5B.﹣3C.3D.1【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.【解答】解:∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选:D.33.(2018湖州)如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A.AE=EFB.AB=2DEC.△ADF和△ADE的面积相等D.△ADE和△FDE的面积相等【分析】先判断出△BFC是直角三角形,再利用三角形的外角判断出A正确,进而判断出AE=CE,得出DE是△ABC 的中位线判断出B正确,利用等式的性质判断出D正确.【解答】解:如图,连接CF,∵点D是BC中点,∴BD=CD,由折叠知,∠ACB=∠DFE,CD=DF,∴BD=CD=DF,∴△BFC是直角三角形,∴∠BFC=90°,∵BD=DF,∴∠B=∠BFD,∴∠EAF=∠B+∠ACB=∠BFD+∠DFE=∠AFE,∴AE=EF,故A正确,由折叠知,EF=CE,∴AE=CE,∵BD=CD,∴DE是△ABC的中位线,∴AB=2DE,故B正确,∵AE=CE,∴S△ADE=S△CDE,由折叠知,△CDE≌△△FDE,∴S△CDE=S△FDE,∴S△ADE=S△FDE,故D正确,当AD=AC时,△ADF和△ADE的面积相等∴C选项不一定正确,故选:C.34.(2018枣庄)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.35.(2018江西)小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形、如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个【分析】直接利用平移的性质结合轴对称图形的性质得出答案.【解答】解:如图所示:正方形ABCD可以向上、下、向右以及沿AC所在直线,沿BD所在直线平移,所组成的两个正方形组成轴对称图形.故选:C.36.(2018台湾)如图1的矩形ABCD中,有一点E在AD 上,今以BE为折线将A点往右折,如图2所示,再作过A点且与CD垂直的直线,交CD于F点,如图3所示,若AB=6,BC=13,∠BEA=60°,则图3中AF的长度为何?()A.2B.4C.2D.4【分析】作AH⊥BC于H.则四边形AFCH是矩形,AF=CH,AH=CF=3.在Rt△ABH中,解直角三角形即可解决问题;【解答】解:作AH⊥BC于H.则四边形AFCH是矩形,AF=CH,AH=CF=3.在Rt△AHB中,∠ABH=30°,∴BH=ABcos30°=9,∴CH=BC﹣BH=13﹣9=4,∴AF=CH=4,故选:B.二.填空题(共9小题)37.(2018南京)在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是(1,﹣2).【分析】直接利用关于y轴对称点的性质得出点A'坐标,再利用平移的性质得出答案.【解答】解:∵点A的坐标是(﹣1,2),作点A关于y 轴的对称点,得到点A',∴A′(1,2),∵将点A'向下平移4个单位,得到点A″,∴点A″的坐标是:(1,﹣2).故答案为:1,﹣2.38.(2018邵阳)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.【解答】解:∵AB=AC,∠A=36°,∴∠B=∠ACB==72°,∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,∴AE=CE,∠A=∠ECA=36°,∴∠CEB=72°,∴BC=CE=AE=,故答案为:.39.(2018杭州)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=3+2.【分析】设AD=x,则AB=x+2,利用折叠的性质得DF=AD,EA=EF,∠DFE=∠A=90°,则可判断四边形AEFD为正方形,所以AE=AD=x,再根据折叠的性质得DH=DC=x+2,则AH=AE﹣HE=x﹣1,然后根据勾股定理得到x2+(x﹣1)2=(x+2)2,再解方程求出x即可.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE﹣HE=x﹣1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x﹣1)2=(x+2)2,整理得x2﹣6x﹣3=0,解得x1=3+2,x2=3﹣2(舍去),即AD的长为3+2.故答案为3+2.40.(2018自贡)如图,在△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是菱形,点P、E、F分别为线段AB、AD、DB的任意点,则PE+PF的最小值是.【分析】根据题意证明四边相等即可得出菱形;作出F关于AB的对称点M,再过M作ME⊥AD,交ABA于点P,此时PE+PF最小,求出ME即可.【解答】解:∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四边形ADBC是菱形,故答案为菱;如图作出F关于AB的对称点M,再过M作ME⊥AD,交ABA于点P,此时PE+PF最小,此时PE+PF=ME,过点A作AN⊥BC,∵AD∥BC,∴ME=AN,作CH⊥AB,∵AC=BC,∴AH=,由勾股定理可得,CH=,∵,可得,AN=,∴ME=AN=,∴PE+PF最小为,故答案为.41.(2018成都)如图,在菱形ABCD中,tanA=,M,N 分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB 的对应线段EF经过顶点D,当EF⊥AD时,的值为.【分析】首先延长NF与DC交于点H,进而利用翻折变换的性质得出NH⊥DC,再利用边角关系得出BN,CN的长进而得出答案.【解答】解:延长NF与DC交于点H,∵∠ADF=90°,∴∠A+∠FDH=90°,∵∠DFN+∠DFH=180°,∠A+∠B=180°,∠B=∠DFN,∴∠A=∠DFH,∴∠FDH+∠DFH=90°,∴NH⊥DC,设DM=4k,DE=3k,EM=5k,∴AD=9k=DC,DF=6k,∵tanA=tan∠DFH=,则sin∠DFH=,∴D H=DF=k,∴CH=9k﹣k=k,∵cosC=cosA==,∴CN=CH=7k,∴BN=2k,∴=.42.(2018乌鲁木齐)如图,在Rt△ABC中,∠C=90°,BC=2,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为3或.【分析】利用三角函数的定义得到∠B=30°,AB=4,再利用折叠的性质得DB=DC=,EB′=EB,∠DB′E=∠B=30°,设AE=x,则BE=4﹣x,EB′=4﹣x,讨论:当∠AFB′=90°时,则∴BF=cos30°=,则EF=﹣(4﹣x)=x﹣,于是在Rt△B′EF中利用EB′=2EF得到4﹣x=2(x﹣),解方程求出x得到此时AE的长;当∠FB′A=90°时,作EH⊥AB′于H,连接AD,如图,证明Rt△ADB′≌Rt△ADC得到AB′=AC=2,再计算出∠EB′H=60°,则B′H=(4﹣x),EH=(4﹣x),接着利用勾股定理得到(4﹣x)2+[(4﹣x)+2]2=x2,方程求出x得到此时AE的长.【解答】解:∵∠C=90°,BC=2,AC=2,∴tanB===,∴∠B=30°,∴AB=2AC=4,∵点D是BC的中点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F∴DB=DC=,EB′=EB,∠DB′E=∠B=30°,设AE=x,则BE=4﹣x,EB′=4﹣x,当∠AFB′=90°时,在Rt△BDF中,cosB=,∴BF=cos30°=,∴EF=﹣(4﹣x)=x﹣,在Rt△B′EF中,∵∠EB′F=30°,∴EB′=2EF,即4﹣x=2(x﹣),解得x=3,此时AE为3;当∠FB′A=90°时,作EH⊥AB′于H,连接AD,如图,∵DC=DB′,AD=AD,∴Rt△ADB′≌Rt△ADC,∴AB′=AC=2,∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,∴∠EB′H=60°,在Rt△EHB′中,B′H=B′E=(4﹣x),EH=B′H=(4﹣x),在Rt△AEH中,∵EH2+AH2=AE2,∴(4﹣x)2+[(4﹣x)+2]2=x2,解得x=,此时AE为.综上所述,AE的长为3或.故答案为3或.43.(2018常德)如图,将矩形ABCD沿EF折叠,使点B 落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB=75°.【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.44.(2018长春)如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为20.【分析】当AE⊥BC时,四边形AEFD的周长最小,利用直角三角形的性质解答即可.【解答】解:当AE⊥BC时,四边形AEFD的周长最小,∵AE⊥BC,AB=2,∠B=60°.∴AE=3,BE=,∵△ABE沿BC方向平移到△DCF的位置,∴EF=BC=AD=7,∴四边形AEFD周长的最小值为:14+6=20,故答案为:2045.(2018重庆)如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,得到∠AGE=30°,若AE=EG=2厘米,则△ABC的边BC的长为6+4厘米.【分析】根据折叠的性质和含30°的直角三角形的性质解答即可.【解答】解:∵把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,∴BE=AE,AG=GC,∵∠AGE=30°,AE=EG=2厘米,∴AG=6,∴BE=AE=2,GC=AG=6,∴BC=BE+EG+GC=6+4,故答案为:6+4,三.解答题(共5小题)46.(2018白银)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到新图案是轴对称图形的结果数,利用概率公式计算可得.【解答】解:(1)∵正方形网格被等分成9等份,其中阴影部分面积占其中的3份,∴米粒落在阴影部分的概率是=;(2)列表如下:ABCDEFA(B,A)(C,A)(D,A)(E,A)(F,A)B(A,B)(C,B)(D,B)(E,B)(F,B)C(A,C)(B,C)(D,C)(E,C)(F,C)D(A,D)(B,D)(C,D)(E,D)(F,D)E(A,E)(B,E)(C,E)(D,E)(F,E)F(A,F)(B,F)(C,F)(D,F)(E,F)由表可知,共有30种等可能结果,其中是轴对称图形的有10种,故新图案是轴对称图形的概率为=.47.(2018威海)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.【分析】由题意知∠3=180°﹣2∠1=45°、∠4=180°﹣2∠2=30°、BE=KE、KF=FC,作KM⊥BC,设KM=x,知EM=x、MF=x,根据EF的长求得x=1,再进一步求解可得.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF=FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.48.(2018荆门)如图,在Rt△ABC中,(M2,N2),∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.【分析】(1)只要证明△DEB是等边三角形,再根据SAS 即可证明;(2)如图,作点E关于直线AC点E',连接BE'交AC于点H.则点H即为符合条件的点.【解答】(1)证明:在Rt△ABC中,∠BAC=30°,E为AB边的中点,∴BC=EA,∠ABC=60°.∵△DEB为等边三角形,∴DB=DE,∠DEB=∠DBE=60°,∴∠DEA=120°,∠DBC=120°,∴∠DEA=∠DBC∴△ADE≌△CDB.(2)解:如图,作点E关于直线AC点E',连接BE'交AC于点H.则点H即为符合条件的点.由作图可知:EH=HE',AE'=AE,∠E'AC=∠BAC=30°.∴∠EAE'=60°,∴△EAE'为等边三角形,∴,∴∠AE'B=90°,在Rt△ABC中,∠BAC=30°,,∴,,∴,∴BH+EH的最小值为3.49.(2018长春)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.【分析】利用轴对称图形性质,以及全等四边形的定义判断即可.【解答】解:如图所示:50.(2018广东)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD 于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.。
考点三十二:图形的轴对称1.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点.2.图形轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任意一对对应点所连线段的垂直平分线.轴对称图形的对称轴,是任意一对对应点所连线段的垂直平分线.对应线段、对应角相等.3.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样;新图形上的每一点,都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴垂直平分.这样,由一个平面图形得到它的轴对称图形叫做轴对称变换.一个轴对称图形可以看作以它的一部分为基础,经轴对称变换而成.4. 轴对称与轴对称图形轴对称图形和图形的轴对称之间的的区别是:轴对称图形是一个具有特殊性质的图形,而图形的轴对称是说两个图形之间的位置关系;两者之间的联系是:若把轴对称的两个图形视为一个整体,则它就是一个轴对称图形;若把轴对称图形在对称轴两旁的部分视为两个图形,则这两个图形就形成轴对称的位置关系.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ).A .3229x x -=+B .3(2)29x x -=+C .2932x x +=- D .3(2)2(9)x x -=+ 【答案】B【解析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .1【答案】D【解析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m 、n 的值,代入计算可得.【详解】∵点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选D .【点睛】本题考查了关于y 轴对称的点,熟练掌握关于y 轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.3.若分式有意义,则x 的取值范围是( ) A .x >3B .x <3C .x≠3D .x=3 【答案】C【解析】试题分析:∵分式13x -有意义,∴x﹣3≠0,∴x≠3;故选C . 考点:分式有意义的条件.4.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为()A .1(1)282x x -=B .1(1)282x x +=C .(1)28x x -=D .(1)28x x +=【答案】A【解析】根据应用题的题目条件建立方程即可.【详解】解:由题可得:1(1)472x x -=⨯ 即:1(1)282x x -= 故答案是:A.【点睛】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.5.如图,等腰直角三角形ABC 位于第一象限,2AB AC ==,直角顶点A 在直线y x =上,其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数k y x=的图象与ABC △有交点,则k 的取值范围是( ).A .12k <<B .13k ≤≤C .14k ≤<D .14k ≤≤【答案】D 【解析】设直线y=x 与BC 交于E 点,分别过A 、E 两点作x 轴的垂线,垂足为D 、F ,则A (1,1),而AB=AC=2,则B (3,1),△ABC 为等腰直角三角形,E 为BC 的中点,由中点坐标公式求E 点坐标,当双曲线与△ABC 有唯一交点时,这个交点分别为A 、E ,由此可求出k 的取值范围.解:∵2AC BC ==,90CAB ∠=︒.()1,1A .又∵y x =过点A ,交BC 于点E ,∴2EF ED ==, ∴()2,2E ,∴14k ≤≤.故选D.6.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a 小时及以内,免费骑行;超过a 小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a 的值时,参考的统计量是此次调查所得数据的( )A .平均数B .中位数C .众数D .方差【答案】B 【解析】根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.【详解】因为需要保证不少于50%的骑行是免费的,所以制定这一标准中的a 的值时,参考的统计量是此次调查所得数据的中位数,故选B .【点睛】本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。
2017年中考数学备考专题复习图形的对称(含解析)2017年中考数学备考专题复习图形的对称(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学备考专题复习图形的对称(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学备考专题复习图形的对称(含解析)的全部内容。
1图形的对称一、单选题(共12题;共24分)1、当你看到镜子中的你在用右手往左梳理你的头发时,实际上你是( )A、右手往左梳B、右手往右梳C、左手往左梳D、左手往右梳2、线段MN在直角坐标系中的位置如图所示,线段M1N1与MN关于y 轴对称,则点M的对应的点M1的坐标为( )A、(4,2)B、(-4,2)C、(-4,-2)D、(4,-2)3、如图,ΔABC与ΔA'B’C’关于直线l对称,则∠B的度数为( )A、30°B、50°C、90°D、100°4、下面有4个汽车标志图案,其中是轴对称图形的是( )A、②③④B、①③④C、①②④D、①②③25、如图,将半径为6的⊙O沿AB折叠,弧AB与AB垂直的半径OC交于点D且CD=2OD,则折痕AB的长为()A 、B 、C、6D 、6、若A(m-1,2n+3)与B(n-1,2m+1)关于y轴对称,则m与n的值分别为( )A、,B 、,C、-1,-1D、-1, 17、(2016•济宁)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A 、B 、C 、D 、8、(2016•苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A、(3,1)B、(3, )C、(3,)D、(3,2)39、(2016•义乌)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有( )A、1条B、2条C、3条D、4条10、(2016•曲靖)如图,C,E是直线l两侧的点,以C为圆心,CE长为半径画弧交l于A,B两点,又分别以A,B为圆心,大于AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A、CD⊥lB、点A,B关于直线CD对称C、点C,D关于直线l对称D、CD平分∠ACB11、如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A、(1,2)B、(2,2)C、(3,2)D、(4,2)12、如图,C,E是直线l两侧的点,以C为圆心,CE长为半径画弧交l于A,B两点,又分别以A,B为圆心,大于AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()4A、CD⊥lB、点A,B关于直线CD对称C、点C,D关于直线l对称D、CD平分∠ACB二、填空题(共5题;共6分)13、在同一直角坐标系中,A(a+1,8)与B(-5,b-3)关于x轴对称,则a=________,b=________.14、(2016•娄底)从“线段,等边三角形,圆,矩形,正六边形”这五个圆形中任取一个,取到既是轴对称图形又是中心对称图形的概率是________.15、数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题.如图所示,∠1=∠2,若∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1等于________.16、(2016•张家界)如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是________cm .17、(2016•义乌)如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F 在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为________.三、解答题(共1题;共5分)18、(2016•荆州)请用割补法作图,将一个锐角三角形经过一次或两次分割后,重新拼成一个与原三角形面积相等的平行四边形(只要求用一种方法画出图形,把相等的线段作相同的标记).四、综合题(共5题;共55分)19、(2016•自贡)抛物线y=﹣x2+4ax+b(a>0)与x轴相交于O、A两点(其中O为坐标原点),过点P(2,2a)作直线PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(其中B、C5不重合),连接AP交y轴于点N,连接BC和PC.(1)a= 时,求抛物线的解析式和BC的长;(2)如图a>1时,若AP⊥PC,求a的值.20、(2016•齐齐哈尔)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O; (3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.21、(2016•义乌)对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P (2,3)经1次斜平移后的点的坐标为(3,5),已知点A的坐标为(1,0).(1)分别写出点A经1次,2次斜平移后得到的点的坐标.(2)如图,点M是直线l上的一点,点A关于点M的对称点的点B,点B关于直线l的对称轴为点C.①若A、B、C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由.②若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),求出点B的坐标及n的值.22、如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C 点坐标为(3,1).6(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标.(2)求△ABC的面积.23、在棋盘中建立如图所示的平面直角坐标系,三颗棋子A,O,B的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0)(1)如图,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他个点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置坐标(写出2个即可).7答案解析部分一、单选题【答案】D【考点】生活中的轴对称现象,轴对称图形【解析】【解答】根据镜面对称的性质,当镜子中的像在用右手往左梳理你的头发时,实际上是左手往右梳.故选D.【分析】根据镜面对称的性质求解,在平面镜中的像与现实中的事物恰好左右或上下顺序颠倒,且关于镜面对称.【答案】D【考点】关于x轴、y轴对称的点的坐标,坐标与图形变化—对称【解析】【解答】根据坐标系可得M点坐标是(—4,-2),故点M的对应点M′的坐标为(4,-2),故选:D.【分析】此题主要考查了坐标与图形的变化,关键是掌握关于y轴对称点的坐标的变化特点.根据坐标系写出点M的坐标,再根据关于y轴对称的点的坐标特点:纵坐标相等,横坐标互为相反数,即可得出M′的坐标.【答案】D【考点】三角形内角和定理,轴对称的性质【解析】【解答】∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=50°,∠C=∠C′=30°;∴∠B=180°-80°=100°.故选D【分析】本题主要考查了轴对称的性质与三角形的内角和是180度由已知条件,根据轴对称的性质可得∠C=∠C′=30°,利用三角形的内角和等于180°可求答案.【答案】D【考点】生活中的轴对称现象,轴对称图形【解析】【解答】根据轴对称图形的定义,即可分析出可以看成轴对称图形的汽车标志图案.由轴对称图形的定义可得可以看成轴对称图形的汽车标志图案有①②③,故选D.【分析】解答本题的根据是掌握好轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.【答案】B【考点】勾股定理,垂径定理,翻折变换(折叠问题)【解析】【解答】延长CO交AB于E点,连接OB,∵CE⊥AB,8∴E为AB的中点,∵OC=6,CD=2OD,∴CD=4,OD=2,OB=6,∴DE=(2OC-CD)=(6×2-4)=×8=4,∴OE=DE—OD=4—2=2,在Rt△OEB中,∵OE2+BE2=OB2∴∴AB=2BE=故选B.【分析】根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键。
2018年中考数学真题演练之轴对称专题(解析版)1. (1)问题提出如图1,点A为线段BC外一动点,且,填空:当点A位于________时,线段AC的长取得最大值,且最大值为________ (用含的式子表示).(2)问题探究点A为线段BC外一动点,且,如图2所示,分别以为边,作等边三角形ABD和等边三角形ACE,连接,找出图中与BE相等的线段,请说明理由,并直接写出线段BE长的最大值.(3)问题解决:①如图3,在平面直角坐标系中,点A的坐标为,点B的坐标为,点P为线段AB外一动点,且,求线段AM长的最大值及此时点P的坐标.如图4,在四边形ABCD中,,若对角线于点D,请直接写出对角线AC的最大值.2.在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且∠PAC+∠PCA= ,连接PB,试探究PA、PB、PC满足的等量关系.(1)当α=60°时,将△ABP绕点A逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC的大小为________度,进而得到△CPP′是直角三角形,这样可以得到PA、PB、PC满足的等量关系为________;(2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;(3)PA、PB、PC满足的等量关系为________.3.如图,抛物线y=ax2﹣5ax﹣4交x轴于A,B两点(点A位于点B的左侧),交y轴于点C,过点C 作CD∥AB,交抛物线于点D,连接AC、AD,AD交y轴于点E,且AC=CD,过点A作射线AF交y轴于点F,AB平分∠EAF.(1)此抛物线的对称轴是________;(2)求该抛物线的解析式;(3)若点P是抛物线位于第四象限图象上一动点,求△APF面积S△APF的最大值,以及此时点P的坐标;(4)点M是线段AB上一点(不与点A,B重合),点N是线段AD上一点(不与点A,D重合),则两线段长度之和:MN+MD的最小值是________.4.已知四边形ABCD是矩形,连接AC,点E是边CB延长线上一点,CA=CE,连接AE,F是线段AE 的中点,(1)如图1,当AD=DC时,连接CF交AB于M,求证:BM=BE;(2)如图2,连接BD交AC于O,连接DF分别交AB、AC于G、H,连接GC,若∠FDB=30°,S四边形= ,求线段GC的长.GBOH5.如图,△ABC内接于⊙O,且AB=AC.延长BC到点D,使CD=CA,连接AD交⊙O于点E.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为________时,四边形AOCE是菱形;②若AE=6,BE=8,则EF的长为________.6.如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=________,BC=________,AC=________;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择哪题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P 的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.7.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC= AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN MC的值.8.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E 出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)当t为何值时,△PQF为等腰三角形?试说明理由.9.如图,△ABC是边长为2的正三角形,点D在△ABC内部,且满足DB=DC,DB⊥DC,点E在边AC 上,延长ED交线段AB于点H.(1)若ED=EC请直接写出∠BAD=________,∠AEH=________,∠AHE=________.(2)若ED=EC,求EH的长;(3)若AE=x,AH=y,请利用S△AEH=S△AED+S△AHD,求y关于x的函数关系式,并求自变量x的取值范围.10.已知:如图①,在平行四边形ABCD中,AB=12,BC=6,AD⊥BD.以AD为斜边在平行四边形AB CD的内部作Rt△AED,∠EAD=30°,∠AED=90°.(1)求△AED的周长;(2)若△ AED以每秒2个单位长度的速度沿DC向右平行移动,得到△AE0D0,当A0D0与BC重合时停止移动,设运动时间为t秒,△A0E0D0与△BDC重叠的面积为S,请直接写出S与t之间的函数关系式,并写出t的取值范围;(3)如图②,在(2)中,当△AED停止移动后得到△BEC,将△BEC绕点C按顺时针方向旋转α(0°<α<180°),在旋转过程中,B的对应点为B1,E的对应点为E1,设直线B1E1与直线BE 交于点P、与直线CB交于点Q.是否存在这样的α,使△BPQ为等腰三角形?若存在,求出α的度数;若不存在,请说明理由.11.如图,抛物线y=ax2+bx(a≠0)的图象过原点O和点A(1,),且与x轴交于点B,△AOB的面积为。
第二十五讲图形的对称、平移、旋转与位似命题点1 轴对称图形与中心对称图形类型一轴对称图形与中心对称图形的识别1.(2021•黄石)下列几何图形中,是轴对称图形但不是中心对称图形的是()A.梯形B.等边三角形C.平行四边形D.矩形【答案】B【解答】解:A.梯形不一定是轴对称图形,不是中心对称图形,故此选项不合题意;B.等边三角形是轴对称图形,不是中心对称图形,故此选项符合题意;C.平行四边形不是轴对称图形,是中心对称图形,故此选项不合题意;D.矩形既是轴对称图形,又是中心对称图形,故此选项不合题意;故选:B.2.(2021•天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【答案】A【解答】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:A.3.(2021•山西)为推动世界冰雪运动的发展,我国将于2022年举办北京冬奥会,在此之前进行了冬奥会会标的征集活动,以下是部分参选作品,其文字上方的图案既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解答】解:A.不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.既是轴对称图形又是中心对称图形,故此选项符合题意;C.是轴对称图形,不是中心对称图形,故此选项不合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.故选:B.4.(2021•枣庄)将如图的七巧板的其中几块,拼成一个多边形,为轴对称图形的是()A.B.C.D.【答案】D【解答】解:A.不是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项不合题意;C.不是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项符合题意;故选:D.5.(2021•济宁)一个圆柱体如图所示,下面关于它的左视图的说法其中正确的是()A.既是轴对称图形,又是中心对称图形B.既不是轴对称图形,又不是中心对称图形C.是轴对称图形,但不是中心对称图形D.是中心对称图形,但不是轴对称图形【答案】A【解答】解:圆柱体的左视图是长方形,而长方形既是轴对称图形,也是中心对称图形,故选:A.6.(2021•广安)下列几何体的主视图既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解答】解:A、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故不合题意;B、主视图是是矩形,是轴对称图形,也是中心对称图形,故符合题意;C、主视图是等腰梯形,是轴对称图形,不是中心对称图形,故不合题意;D、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故不合题意;故选:B.7.(2021•自贡)下列图形中,是轴对称图形且对称轴条数最多的是()A.B.C.D.【答案】D【解答】解:A.是轴对称图形,共有1条对称轴;B.不是轴对称图形,没有对称轴;C.不是轴对称图形,没有对称轴;D.是轴对称图形,共有2条对称轴.故选:D.类型二与轴对称有关的判断8.(2021•嘉兴)将一张三角形纸片按如图步骤①至④折叠两次得图⑤,然后剪出图⑤中的阴影部分,则阴影部分展开铺平后的图形是()A.等腰三角形B.直角三角形C.矩形D.菱形【答案】D【解答】解:如图,由题意可知,剪下的图形是四边形BACD,由折叠可知CA=AB,∴△ABC是等腰三角形,又△ABC和△BCD关于直线BC对称,∴四边形BACD是菱形,故选:D.9.(2021•连云港)如图,将矩形纸片ABCD沿EF折叠后,点D、C分别落在点D1、C1的位置,ED1的延长线交BC于点G,若∠EFG=64°,则∠EGB等于()A.128°B.130°C.132°D.136°【答案】A【解答】解:如图,在矩形ABCD中,AD∥BC,∴∠DEF=∠EFG=64°,∠EGB=∠DEG,由折叠可知∠GEF=∠DEF=64°,∴∠DEG=128°,∴∠EGB=∠DEG=128°,故选:A.10.(2021•河北)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P 关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.0B.5C.6D.7【答案】B【解答】解:连接OP1,OP2,P1P2,∵点P关于直线l,m的对称点分别是点P1,P2,∴OP1=OP=2.8,OP=OP2=2.8,OP1+OP2>P1P2,0<P1P2<5.6,故选:B.11.(2021•台州)如图,将长、宽分别为12cm,3cm的长方形纸片分别沿AB,AC折叠,点M,N恰好重合于点P.若∠α=60°,则折叠后的图案(阴影部分)面积为()A.(36)cm2B.(36)cm2C.24cm2D.36cm2【答案】A【解答】解:根据翻折可知,∠MAB=∠BAP,∠NAC=∠P AC,∴∠BAC=∠P AB+∠P AC=(∠MAB+∠BAP+∠NAC+∠P AC)=180°=90°,∵∠α=60°,∴∠MAB=180°﹣∠BAC﹣∠α=180°﹣90°﹣60°=30°,∴AB==6(cm),AC==2(cm),∴阴影部分的面积=S长方形﹣S△ABC=12×3﹣6×=(36﹣6)(cm2),故选:A.12.(2021•衡阳)如图,矩形纸片ABCD,AB=4,BC=8,点M、N分别在矩形的边AD、BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①四边形CMPN是菱形;②点P 与点A重合时,MN=5;③△PQM的面积S的取值范围是4≤S≤5.其中所有正确结论的序号是()A.①②③B.①②C.①③D.②③【答案】C【解答】解:∵PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN,∵NC=NP,∴PM=CN,∵MP∥CN,∴四边形CNPM是平行四边形,∵CN=NP,∴四边形CNPM是菱形,故①正确;如图1,当点P与A重合时,设BN=x,则AN=NC=8﹣x,在Rt△ABN中,AB²+BN²=AN²,即4²+x²=(8﹣x)²,解得x=3,∴CN=8﹣3=5,∵AB=4,BC=8,∴AC==4,∴CQ=AC=2,∴QN==,∴MN=2QN=2,故②不正确;由题知,当MN过点D时,CN最短,如图2,四边形CMPN的面积最小,此时S=S菱形CMPN=×4×4=4,当P点与A点重合时,CN最长,如图1,四边形CMPN的面积最大,此时S=×5×4=5,∴4≤S≤5正确,故选:C.13.(2021•海南)如图,在矩形ABCD中,AB=6,AD=8,将此矩形折叠,使点C与点A 重合,点D落在点D′处,折痕为EF,则AD′的长为,DD′的长为.【答案】6,【解答】解:∵四边形ABCD是矩形,∴CD=AB=6,∵AD′=CD,∴AD′=6;连接AC,∵AB=6,BC=AD=8,∠ABC=90°,∴AC===10,∵∠BAF=∠D′AE=90°,∴∠BAE=∠D′AF,在△BAE和△D′AF中,∴△BAE≌△D′AF(ASA),∴D′F=BE,∠AEB=∠AFD′,∴∠AEC=∠D′FD,由题意知:AE=EC;设BE=x,则AE=EC=8﹣x,在Rt△ABE中,∠B=90°,由勾股定理得:(8﹣x)2=62+x2,解得:x=,∴BE=,AE=8﹣=,∴=,∴=,∵∠AD′F=∠D′AE=90°,∴D′F∥AE,∵DF∥EC,∴△DD′F∽△CAE,∴==,∴DD′=×10=,故答案为6,.14.(2021•江西)如图,将▱ABCD沿对角线AC翻折,点B落在点E处,CE交AD于点F,若∠B=80°,∠ACE=2∠ECD,FC=a,FD=b,则▱ABCD的周长为.【答案】4a+2b【解答】解:∵∠B=80°,四边形ABCD为平行四边形.∴∠D=80°.由折叠可知∠ACB=∠ACE,又AD∥BC,∴∠DAC=∠ACB,∴∠ACE=∠DAC,∴△AFC为等腰三角形.∴AF=FC=a.设∠ECD=x,则∠ACE=2x,∴∠DAC=2x,在△ADC中,由三角形内角和定理可知,2x+2x+x+80°=180°,解得:x=20°.∴由三角形外角定理可得∠DFC=4x=80°,故△DFC为等腰三角形.∴DC=FC=a.∴AD=AF+FD=a+b,故平行四边形ABCD的周长为2(DC+AD)=2(a+a+b)=4a+2b.故答案为:4a+2b.15.(2021•重庆)如图,三角形纸片ABC中,点D,E,F分别在边AB,AC,BC上,BF =4,CF=6,将这张纸片沿直线DE翻折,点A与点F重合.若DE∥BC,AF=EF,则四边形ADFE的面积为.【答案】5【解答】解:∵纸片沿直线DE翻折,点A与点F重合,∴DE垂直平分AF.∴AD=DF,AE=EF.∵DE∥BC,∴DE为△ABC的中位线.∴DE=BC=(BF+CF)=×(4+6)=5.∵AF=EF,∴△AEF为等边三角形.∴∠F AC=60°.在Rt△AFC中,∵tan∠F AC=,∴AF==2.∴四边形ADFE的面积为:DE×AF=×5×2=5.故答案为:5.16.(2021•河南)小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB =90°,∠B=30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A 落在A'处,如图2;第二步,将纸片沿CA'折叠,点D落在D′处,如图3.当点D′恰好落在原直角三角形纸片的边上时,线段A′D′的长为.【答案】或2﹣【解答】解:①点D′恰好落在直角三角形纸片的AB边上时,设A′C交AB边于点E,如图,由题意:△ADC≌△A′DC≌△A′D′C,A′C垂直平分线段DD′.则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1.∵∠ACB=90°,∠B=30°,AC=1,∴BC=AC•tan A=1×tan60°=.AB=2AC=2,∵,∴CE=.∴A′E=A′C﹣CE=1﹣.在Rt△A′D′E中,∵cos∠D′A′E=,∴,∴A′D′=2A′E=2﹣.②点D′恰好落在直角三角形纸片的BC边上时,如图,由题意:△ADC≌△A′DC≌△A′D′C,∠ACD=∠A′CD=∠A′CD′=∠ACB =30°;则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1.∵∠D′A′C=60°,∠A′CD′=30°,∴∠A′D′C=90°,∴A′D′=′C=.综上,线段A′D′的长为:或2﹣.故答案为:或2﹣.17.(2020•南通)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.(1)如图①,若点P恰好在边BC上,连接AP,求的值;(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.【答案】(1)==.(2)BF=3【解答】解:(1)如图①中,取DE的中点M,连接PM.∵四边形ABCD是矩形,∴∠BAD=∠C=90°,由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,在Rt△EPD中,∵EM=MD,∴PM=EM=DM,∴∠3=∠MPD,∴∠1=∠3+∠MPD=2∠3,∵∠ADP=2∠3,∴∠1=∠ADP,∵AD∥BC,∴∠ADP=∠DPC,∴∠1=∠DPC,∵∠MOP=∠C=90°,∴△POM∽△DCP,∴===,∴==.解法二:证明△ABP和△DAE相似,==.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG=x,则BG=4﹣x∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,∴∠EPG=∠PDH,∴△EGP∽△PHD,∴====,∴PH=3EG=3x,DH=AG=4+x,在Rt△PHD中,∵PH2+DH2=PD2,∴(3x)2+(4+x)2=122,解得x=(负值已经舍弃),∴BG=4﹣=,在Rt△EGP中,GP==,∵GH∥BC,∴△EGP∽△EBF,∴=,∴=,∴BF=3.18.(2021•青海)在我们学习过的数学教科书中,有一个数学活动,若身旁没有量角器或三角尺,又需要作60°,30°,15°等大小的角,可以采用如下方法:操作感知:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1 ).第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).猜想论证:(1)若延长MN交BC于点P,如图3所示,试判定△BMP的形状,并证明你的结论.拓展探究:(2)在图3中,若AB=a,BC=b,当a,b满足什么关系时,才能在矩形纸片ABCD 中剪出符合(1)中结论的三角形纸片BMP?【答案】(1)△BMP是等边三角(2)b≥a【解答】解:(1)△BMP是等边三角形,理由如下:如图3,连接AN,由折叠的性质可得AE=BE,EF⊥AB,AB=BN,∠ABM=∠NBM,∠BAM=∠BNM=90°,∴AN=BN,∴AN=BN=AB,∴△ABN是等边三角形,∴∠ABN=60°,∴∠ABM=∠NBM=30°=∠PBN,∴∠BMN=∠BPM=60°,∴△BMP是等边三角形;(2)∵AB=a,∠ABM=30°,∴BM==a,∵△BMP是等边三角形,∴BP=BM=a,∵在矩形纸片ABCD中剪出符合(1)中结论的三角形纸片BMP,∴BC≥BP,∴b≥a.命题点3 图形的平移及其相关计算19.(2021•长春)如图,在平面直角坐标系中,等腰直角三角形AOB的斜边OA在y轴上,OA=2,点B在第一象限.标记点B的位置后,将△AOB沿x轴正方向平移至△A1O1B1的位置,使A1O1经过点B,再标记点B1的位置,继续平移至△A2O2B2的位置,使A2O2经过点B1,此时点B2的坐标为.【答案】(3,1)【解答】解:如图所示,过点B作BP⊥y轴于点P,∵△ABO是等腰直角三角形,OA=2,∴AP=OP=1,∠AOB=45°,∴△BPO是等腰直角三角形,∴BP=PO=1,由题意知点B2的坐标为(3,1),故答案为:(3,1).20.(2021•金华)如图,菱形ABCD的边长为6cm,∠BAD=60°,将该菱形沿AC方向平移2cm得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为cm.【答案】2【解答】解:如图,连接BD,过点E作EF⊥AC于点F,∵四边形ABCD是菱形,∴AD=AB,BD⊥AC,∵∠BAD=60°,∴三角形ABD是等边三角形,∵菱形ABCD的边长为6cm,∴AD=AB=BD=6cm,∴AG=GC=3(cm),∴AC=6(cm),∵AA′=2(cm),∴A′C=4(cm),∵AD∥A′E,∴=,∴=,∴A′E=4(cm),∵∠EA′F=∠DAC=DAB=30°,∴EF=A′E=2(cm).故答案为:2.命题点4 图形的旋转及其相关计算21.(2021•苏州)如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是()A.B.C.D.【答案】B【解答】解:A选项是原图形的对称图形,故A不正确;B选项是Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,故B正确;C选项旋转后的对应点错误,即形状发生了改变,故C不正确;D选项是按逆时针方向旋转90°,故D不正确;故选:B.22.(2021•邵阳)如图,在△AOB中,AO=1,BO=AB=.将△AOB绕点O逆时针方向旋转90°,得到△A′OB′,连接AA′.则线段AA′的长为()A.1B.C.D.【答案】B【解答】解:由旋转性质可知,OA=OA'=1,∠AOA'=90°,则△AOA'为等腰直角三角形,∴AA'===.故选:B.23.(2021•河南)如图,▱OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D.将△ODA绕点O顺时针旋转得到△OD′A′,当点D的对应点D′落在OA上时,D′A′的延长线恰好经过点C,则点C的坐标为()A.(2,0)B.(2,0)C.(2+1,0)D.(2+1,0)【答案】B【解答】解:延长A′D′交y轴于点E,延长D′A′,由题意D′A′的延长线经过点C,如图,∵A(1,2),∴AD=1,OD=2,∴OA=.由题意:△OA′D′≌△OAD,∴A′D′=AD=1,OA′=OA=,OD′=OD=2,∠A′D′O=∠ADO=90°,∠A′OD′=∠DOD′.则OD′⊥A′E,OA平分∠A′OE,∴△A′OE为等腰三角形.∴OE=OA′=,ED′=A′D′=1.∵EO⊥OC,OD′⊥EC,∴△OED′∽△CEO.∴.∴.∴OC=2.∴C(2,0).故选:B.24.(2021•天津)如图,在△ABC中,∠BAC=120°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论一定正确的是()A.∠ABC=∠ADC B.CB=CD C.DE+DC=BC D.AB∥CD【答案】D【解答】解:由旋转的性质得出CD=CA,∠EDC=∠BAC=120°,∵点A,D,E在同一条直线上,∴∠ADC=60°,∴△ADC为等边三角形,∴∠DAC=60°,∴∠BAD=60°=∠ADC,∴AB∥CD,故选:D.25.(2021•吉林)如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),连接AB,若将△ABO绕点B顺时针旋转90°,得到△A′BO′,则点A′的坐标为.【答案】(7,4)【解答】解:作A'C⊥x轴于点C,由旋转可得∠O'=90°,O'B⊥x轴,∴四边形O'BCA'为矩形,∴BC=A'O'=OA=3,A'C=O'B=OB=4,∴点A'坐标为(7,4).故答案为:(7,4).26.(2021•上海)定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O,在正方形外有一点P,OP=2,当正方形绕着点O旋转时,则点P到正方形的最短距离d的取值范围为.【答案】2﹣≤d≤1【解答】解:如图:设AB的中点是E,OP过点E时,点O与边AB上所有点的连线中,OE最小,此时d=PE最大,OP过顶点A时,点O与边AB上所有点的连线中,OA最大,此时d=P A最小,如图①:∵正方形ABCD边长为2,O为正方形中心,∴AE=1,∠OAE=45°,OE⊥AB,∴OE=1,∵OP=2,∴d=PE=1;如图②:∵正方形ABCD边长为2,O为正方形中心,∴AE=1,∠OAE=45°,OE⊥AB,∴OA=,∵OP=2,∴d=P A=2﹣;∴d的取值范围为2﹣≤d≤1.故答案为:2﹣≤d≤1.27.(2021•南京)如图,将▱ABCD绕点A逆时针旋转到▱AB′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为.【答案】【解答】解:法一、如图,过点A作AM⊥BC于点M,过点B作BN⊥AB′于点N,过点E作EG⊥BC,交BC的延长线于点G.由旋转可知,AB=AB′=3,∠ABB′=∠AB′C′,∴∠ABB′=∠AB′B=∠AB′C′,∵BB′=1,AM⊥BB′,∴BM=B′M=,∴AM==,∵S△ABB′==,∴××1=•BN×3,则BN=,∴AN===,∵AB∥DC,∴∠ECG=∠ABC,∵∠AMB=∠EGC=90°,∴△AMB∽△EGC,∴===,设CG=a,则EG=a,∵∠ABB′+∠AB′B+∠BAB′=180°,∠AB′B+∠AB′C′+∠C′B′C=180°,又∵∠ABB′=∠AB′B=∠AB′C′,∴∠BAB′=∠C′B′C,∵∠ANB=∠EGC=90°,∴△ANB∽△B′GE,∴===,∵BC=4,BB′=1,∴B′C=3,B′G=3+a,∴=,解得a=.∴CG=,EG=,∴EC===.故答案为:.法二、如图,连接DD',由旋转可知,∠BAB′=∠DAD′,AB′=AB=3,AD′=AD=4,∴△BAB′∽△DAD′,∴AB:BB′=AD:DD′=3:1,∠AD′D=∠AB′B=∠B,∴DD′=,又∵∠AD′C′=∠AB′C′=∠B,∠AD′D=∠B=∠AB′B,∴∠AD′C′=∠AD′D,即点D′,D,C′在同一条直线上,∴DC′=,又∠C′=∠ECB′,∠DEC′=∠B′EC,∴△CEB′∽△C'ED,∴B′E:DE=CE:C′E=B′C:DC′,即B′E:DE=CE:C′E=3:,设CE=x,B'E=y,∴x:(4﹣y)=y:(3﹣x)=3:,∴x=.故答案为:.法三、构造相似,如图,延长B′C到点G,使B′G=B′E,连接EG,∴∠B′EG=∠B′GE,由旋转可知,AB=AB′,∴∠B=∠AB′B=∠AB′C′,∴∠BAB′=∠EB′G,∴∠B=∠G,又AB∥CD,∴∠ECG=∠B=∠G,∴△ABB′∽△B′EG∽△ECG,∴,设CG=m,∴EC=3m,∴B′G=3+m,∴,解得m=,∴3m=.故答案为:.解法四:如图,过点C作CF∥C′D′,交B′C′于点F,∵AB=AB′,∴∠B=∠AB′B,由∵∠AB′C′=∠B,由三角形内角和可知,∠FB′C=∠BAB′,∵AB′∥FC,∴∠B′CF=∠AB′B,由∵AB=3,BB′=1,BC=4,∴AB=B′C,∴△ABB′≌△B′CF,∴FC=B′B=1,由旋转可知,△ABB′∽△ADD′,∴,∴DD′=∴C′D=,又由CF∥C′D,∴△C′DE∽△FCE,∴=,∴=,∴,∴EC=.故答案为:.28.(2021•新疆)如图,已知正方形ABCD边长为1,E为AB边上一点,以点D为中心,将△DAE按逆时针方向旋转得△DCF,连接EF,分别交BD,CD于点M,N.若,则sin∠EDM=.【答案】【解答】解:如图,过点E作EG⊥BD于点G,设AE=2x,则DN=5x,由旋转性质得:CF=AE=2x,∠DCF=∠A=90°,∵四边形ABCD是正方形,∴∠DCB=90°,∠ABC=90°,∠ABD=45°,∴∠DCB+∠DCF=180°,∠DCB=∠ABC,∴点B,C,F在同一条直线上,∵∠DCB=∠ABC,∠NFC=∠EFB,∴△FNC∽△FEB,∴,∴,解得:x1=﹣1(舍去),x2=,∴AE=2×=,∴ED===,EB=AB﹣AE=1﹣=,在Rt△EBG中,EG=BE•sin45°=×=,∴sin∠EDM===,故答案为:.29.(2021•衡阳)如图,点E为正方形ABCD外一点,∠AEB=90°,将Rt△ABE绕A点逆时针方向旋转90°得到△ADF,DF的延长线交BE于H点.(1)试判定四边形AFHE的形状,并说明理由;(2)已知BH=7,BC=13,求DH的长.【答案】(1)矩形AFHE是正方(2)DH=12+5=17【解答】解:(1)四边形AFHE是正方形,理由如下:∵Rt△ABE绕A点逆时针方向旋转90°得到△ADF,∴Rt△ABE≌Rt△ADF,∴∠AEB=∠AFD=90°,∴∠AFH=90°,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE,又∵∠DAF+∠F AB=90°,∴∠BAE+∠F AB=90°,∴∠F AE=90°,在四边形AFHE中,∠F AE=90°,∠AEB=90°,∠AFH=90°,∴四边形AFHE是矩形,又∵AE=AF,∴矩形AFHE是正方形;(2)设AE=x.则由(1)以及题意可知:AE=EH=FH=AF=x,BH=7,BC=AB=13,在Rt△AEB中,AB2=AE2+BE2,即132=x2+(x+7)2,解得:x=5,∴BE=BH+EH=5+7=12,∴DF=BE=12,又∵DH=DF+FH,∴DH=12+5=17.命题点5 图形的位似及其相关计算30.(2021•东营)如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍,设点B的横坐标是a,则点B的对应点B′的横坐标是()A.﹣2a+3B.﹣2a+1C.﹣2a+2D.﹣2a﹣2【答案】A【解答】解:设点B′的横坐标为x,则B、C间的水平距离为a﹣1,B′、C间的水平距离为﹣x+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(a﹣1)=﹣x+1,解得:x=﹣2a+3,故选:A.31.(2021•重庆)如图,△ABC与△DEF位似,点O是它们的位似中心,其中OE=2OB,则△ABC与△DEF的周长之比是()A.1:2B.1:4C.1:3D.1:9【答案】A【解答】解:∵△ABC与△DEF位似,∴△ABC∽△DEF,BC∥EF,∴△OBC∽△OEF,∴==,即△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的周长之比为1:2,故选:A.命题点6 网络作图及其相关计算32.(2021秋•牧野区校级期中)如图,在每个小正方形的边长为1个单位的网格中,△ABC 的顶点均在格点(网格线的交点)上.(1)将△ABC向右平移5个单位得到△A1B1C1,画出△A1B1C1;(2)将(1)中的△A1B1C1绕点C1逆时针旋转90°得到△A2B2C1,画出△A2B2C1;(3)连接A1B2,则A1B2=.【答案】(1)如图(2)A1B2==3(3)3.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C1即为所求;(3)连接A1B2,A1B2==3,故答案为:3.33.(2021•安徽)如图,在每个小正方形的边长为1个单位的网格中,△ABC的顶点均在格点(网格线的交点)上.(1)将△ABC向右平移5个单位得到△A1B1C1,画出△A1B1C1;(2)将(1)中的△A1B1C1绕点C1逆时针旋转90°得到△A2B2C1,画出△A2B2C1.【答案】(1)略(2)略【解答】解:(1)如图,△A1B1C1即为所求作.(2)如图,△A2B2C1即为所求作.34.(2021•绥化)如图所示,在网格中,每个小正方形的边长均为1个单位长度,把小正方形的顶点叫做格点,O为平面直角坐标系的原点,矩形OABC的4个顶点均在格点上,连接对角线OB.(1)在平面直角坐标系内,以原点O为位似中心,把△OAB缩小,作出它的位似图形,并且使所作的位似图形与△OAB的相似比等于;(2)将△OAB以O为旋转中心,逆时针旋转90°,得到△OA1B1,作出△OA1B1,并求出线段OB旋转过程中所形成扇形的周长.【答案】(1)略(2)4+π.【解答】解:(1)如图,△OA′B′或△OA″B″即为所求.(2)如图,△OA1B1即为所求.OB==2,线段OB旋转过程中所形成扇形的周长=2×2+=4+π.。
沈阳市初中数学图形的平移,对称与旋转的知识点训练及答案一、选择题1.如图,已知点P (0,3) ,等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,BC 边在x 轴上滑动时,PA +PB 的最小值是 ( )A .102+B .26C .5D .26【答案】B【解析】【分析】 过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´ A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,根据勾股定理求出A B '的长即可.【详解】如图,过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,∵等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,∴AE=BE=1,∵P (0,3) ,∴A A´=4, ∴A´E=5, ∴22221526A B BE A E ''+=+故选B.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,解此题的关键是作出点A 关于直线PD 的对称点,找出PA +PB 的值最小时三角形ABC 的位置.2.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据轴对称图形的概念求解.【详解】解:平行四边形不是轴对称图形,菱形、矩形、正方形都是轴对称图形.故选:C .【点睛】本题考查轴对称图形的概念,解题关键是寻找轴对称图形的对称轴,图形两部分沿对称轴折叠后可重合.3.如图,在Rt ABC V 中,BAC 90∠=︒,B 36∠=︒,AD 是斜边BC 上的中线,将△ACD 沿AD 对折,使点C 落在点F 处,线段DF 与AB 相交于点E ,则∠BED 等于( )A .120°B .108°C .72°D .36° 【答案】B【解析】【分析】 根据三角形内角和定理求出C 90B 54∠∠=︒-=︒.由直角三角形斜边上的中线的性质得出AD =BD =CD ,利用等腰三角形的性质求出BAD B 36∠∠==︒,DAC C 54∠∠==︒,利用三角形内角和定理求出ADC 180DAC C 72∠∠∠=︒--=︒.再根据折叠的性质得出ADF ADC 72∠∠==︒,然后根据三角形外角的性质得出BED BAD ADF 108∠∠∠=+=︒.【详解】∵在Rt ABC V 中,BAC 90∠=︒,B 36∠=︒,∴C 90B 54∠∠=︒-=︒.∵AD 是斜边BC 上的中线,∴AD BD CD ==,∴BAD B 36∠∠==︒,DAC C 54∠∠==︒,∴ADC=180DAC C 72∠∠∠︒--=︒.∵将△ACD 沿AD 对折,使点C 落在点F 处,∴ADF ADC 72∠∠==︒,∴BED BAD ADF 108∠∠∠=+=︒.故选B .【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.4.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.5.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A .主视图B .左视图C .俯视图D .主视图和左视图【答案】C【解析】 【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.6.如图,O 是AC 的中点,将面积为216cm 的菱形ABCD 沿AC 方向平移AO 长度得到菱形OB C D ''',则图中阴影部分的面积是( )A .28cmB .26cmC .24cmD .22cm【答案】C【解析】【分析】 根据题意得,▱ABCD ∽▱OECF ,且AO=OC=12AC ,故四边形OECF 的面积是▱ABCD 面积的14【详解】解:如图,由平移的性质得,▱ABCD ∽▱OECF ,且AO=OC=12AC 故四边形OECF 的面积是▱ABCD 面积14即图中阴影部分的面积为4cm 2.故选:C【点睛】 此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是 应用相似多边形的性质解答问题.Y的顶点O,A,C的坐标分别为(0,0),(4,0),(1,3),则顶点B 7.如图,若OABC的坐标为()A.(4,1)B.(5,3)C.(4,3)D.(5,4)【答案】B【解析】【分析】根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.【详解】解:∵四边形OABC是平行四边形,∴OC∥AB,OA∥BC,∴点B的纵坐标为3,∵点O向右平移1个单位,向上平移3个单位得到点C,∴点A向右平移1个单位,向上平移3个单位得到点B,∴点B的坐标为:(5,3);故选:B.【点睛】本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.8.如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为()A.26 B.20 C.15 D.13【答案】D【解析】【分析】直接利用平移的性质得出EF=DB=5,进而得出CF=EF=5,进而求出答案.解:∵将线段BD沿着BC的方向平移得到线段EF,∴EF=DB=5,BE=6,∵AB=AC,BC=9,∴∠B=∠C,EC=3,∴∠B=∠FEC,∴CF=EF=5,∴△EBF的周长为:5+5+3=13.故选D.【点睛】本题考查了平移的性质,根据题意得出CF的长是解题关键.9.下列四个交通标志图中,是轴对称图形的是()A.B.C.D.【答案】B【解析】【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【详解】A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点睛】.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重本题考查了轴对称图形的概念合.10.如图,一个长为2、宽为1的长方形以下面的“姿态”从直线l的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是()A.1 B.2 C.3 D.22【答案】C【分析】根据平移的性质即可解答.【详解】如图连接AA ',根据平行线的性质得到∠1=∠2,如图,平移的距离AA '=的长度123=+=故选C.【点睛】此题考查平移的性质,解题关键在于利用平移的性质求解.11.在下列图形中是轴对称图形的是( )A .B .C .D .【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】A.不是轴对称图形,故本选项不符合题意,B.是轴对称图形,故本选项符合题意,C.不是轴对称图形,故本选项不符合题意,D.是不轴对称图形,故本选项不符合题意.故选B.【点睛】本题考查了轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B、不是轴对称图形,是中心对称的图形,故本选项不符合题意;C、既是轴对称图形,又是中心对称的图形,故本选项符合题意;D、是轴对称图形,不是中心对称的图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、既是轴对称图形,又是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项符合题意.故选:A.【点睛】此题考查中心对称图形与轴对称图形的概念.解题关键在于掌握轴对称图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.14.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【答案】B【解析】试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′=22+=22BC BD'+=5.故选B.3415.小天从镜子里看到镜子对面的电子钟如下图所示,则此时的实际时间是()A.21:10 B.10:21C.10:51 D.12:01【答案】C【解析】【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】根据镜面对称的性质,题中所显示的时刻与12:01成轴对称,所以此时实际时刻为10:51,故选C.【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.16.在等边三角形ABC中,CD是∠ACB的平分线,过D作DE∥BC交AC于E,若△ABC的边长为a,则△ADE的周长为()A.2a B.4 3 aC.1.5a D.a【答案】C【解析】解:△ABC是等边三角形,由折叠可知,AD=BD=0.5AB=0.5a,易得△ADE是等边三角形.故周长是1.5a。
第25讲图形的对称
(时间30分钟满分39分)
一、选择题(每小题3分,共24分)
1.(2017·重庆A)下列图形中是轴对称图形的是( C )
2.(2017·成都)下列图标中,既是轴对称图形,又是中心对称图形的是( D )
3.(2017·宁夏)在平面直角坐标系中,点(3,-2)关于原点对称的点是( A )
A.(-3,2) B.(-3,-2)
C.(3,-2) D.(3,2)
4.(2017·枣庄)如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM 的长为( B )
A.2 B. 3 C. 2 D. 1
5.(2017·广州)如图,E,F分别是▱ABCD的边AD,BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为( C ) A.6 B.12 C.18 D.24
,第5题图),第6题图) 6.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,G,H分别交OM,ON于点A,B点,若∠MON=35°,则∠GOH=( B ) A.60°B.70°C.80°D.90°
7.(2017·菏泽)如图,矩形ABOC的顶点A的坐标为(-4,5),D是OB的中点E是OC上一点,当△ADE的周长是最小时,点E的坐标是( B )
A .(0,43
) B .(0,53
) C .(0,2)
D .(0,103
) (导学号 58824198)
8.(2017·无锡)如图,△ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连接CE ,则线段CE 的长等于( D )
A .2
B .54
C .53
D .75
二、填空题(每小题3分,共15分)
9.(2016·绍兴改编)我国传统建筑中,窗框(如图①)的图案玲珑剔透、千变万化,窗框一部分如图②,它是一个轴对称图形,其对称轴有_2_条.
10.(2017·宁夏)如图,将平行四边形ABCD 沿对角线BD 折叠,使点A 落在点A′处.若∠1=∠2=50°,则∠A′为_105°_.
,第10题图) ,第11题图)
11.(2017·海南)如图,在矩形ABCD 中,AB =3,AD =5,点E 在DC 上,将矩形ABCD
沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是_35
_.(导学号 58824199)
12.(2017·随州)如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N(3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB =30°,要使PM +PN 最小,
则点P 的坐标为_(32,2)_.
,第12题图) ,第13题图)
13.(2017·南宁)如图,菱形ABCD 的对角线相交于点O ,AC =2,BD =23,将菱形按如图方式折叠,使点B 与点O 重合,折痕为EF ,则五边形AEFCD 的周长为_7_.。