函数的应用(二)专题训练卷(含解析)
- 格式:doc
- 大小:1.09 MB
- 文档页数:25
《函数的图像及其应用》(二)考查内容:主要涉及利用函数图像研究函数的性质、利用函数图像解不等式等一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数3211,0()32,0x x x x f x e x ⎧-<⎪=⎨⎪≥⎩则2(3)(2)f x f x ->的解集为( ) A .(,3)(1,)-∞-⋃+∞ B .(3,1)- C .(,1)(3,)-∞-+∞D .(1,3)-2.已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( ) A .][(),22,-∞-⋃+∞ B .][)4,20,⎡--⋃+∞⎣C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞3.已知奇函数()f x 在0x ≥时的图象如图所示,则不等式()0xf x <的解集为( )A .(1,2)B .(2,1)--C .(2,1)(1,2)--⋃D .(1,1)-4.已知在R 上的偶函数()y f x =,当0x ≥时,()2f x x x =-,则关于x 的不等式()()2f f x ≤的解集为( )A .[]1,1-B .[]22-,C .[]3,3-D .[]4,4-5.已知函数()f x 是定义在[)(]4,00,4-⋃上的奇函数,当(]0,4x ∈时,()f x 的图象如图所示,那么满足不等式()31xf x ≥-的x 的取值范围是( )A .[)(]1,00,1-B .[](]4,20,1--C .[][]4,22,4-- D .[)[]1,02,4-6.函数()[](),y f x x ππ=∈-的图象如图所示,那么不等式()cos 0f x x ⋅≥的解集为( )A .,22ππ⎡⎤-⎢⎥⎣⎦B .][,0,22πππ⎡⎤--⋃⎢⎥⎣⎦C .,2ππ⎡⎤-⎢⎥⎣⎦ D .0,22ππ⎧⎫⎡⎤-⋃⎨⎬⎢⎥⎩⎭⎣⎦7.函数y =f (x )的图象是以原点为圆心、1为半径的两段圆弧,如图所示.则不等式f (x )>f (-x )+x 的解集为( )A .[1,-∪(0,1]B .[-1,0)∪C .[1,-∪D .[1,-∪1] 8.已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|1f x ax ≥-恒成立,则a 的取值范围是( ) A .[2,0]-B .[4,0]-C .[2,1]-D .[4,1]-9.设函数()f x 的定义域为R ,满足2(1)()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =--.若对任意[,)x m ∈+∞,都有8()9f x ≤,则m 的取值范围是( ) A .7[,)6-+∞B .5[,)3-+∞C .5[,)4-+∞D .4[,)3-+∞10.已知函数()()2,0,ln 1,0,x x f x x x ⎧⎪=⎨+>⎪⎩若不等式()10f x kx k -++<的解集为空集,则实数k 的取值范围为( )A .(2⎤-⎦B .(2⎤-⎦C .2⎡⎤-⎣⎦D .[]1,0-11.已知()y f x =是定义在R 上的偶函数,当0x ≥时,()22f x x x =-,则不等式()210f x ->的解集为( )A .13,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭B .33,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .()(),53,-∞-+∞D .()(),33,-∞-+∞12.设函数2()min{|2|,,|2|}f x x x x =-+,其中min{,,}x y z 表示,,x y z 中的最小者.下列说法错误的是 A .函数()f x 为偶函数B .若[1,)x ∈+∞时,有(2)()f x f x -≤C .若x ∈R 时,(())()f f x f x ≤D .若[]4,4x ∈-时|()2|()f x f x -≥二.填空题13.如图所示,已知奇函数()y f x =在y 轴右边部分的图像,则()0f x >的解集为_________.14.已知22,0()32,0x x f x x x ⎧-≤=⎨->⎩,若|()|f x ax 在[1,1]x ∈-上恒成立,则实数a 的取值范围是__________15.已知函数()(),y f x y g x ==分别是定义在[]3,3-上的偶函数和奇函数,且它们在[]0,3上的图象如图所示,则不等式()()0f x g x ≥在[]3,3-上的解集是________.16.设()(),()()0f x g x g x ≠分别是定义在R 上的奇函数和偶函数,当0x <时,()()()()0f x g x f x g x ''-<,且(2)0f -=,则不等式()0()f xg x >的解集为__ 三.解答题(解答应写出文字说明、证明过程或演算步骤)17.已知函数+2y k x b =+的图象经过点(2-,4)和(6-,2-),完成下面问题:(1)求函数+2y k x b =+的表达式;(2)在给出的平面直角坐标系中,请用适当的方法画出这个函数的图象,并写出这个函数的一条性质; (3)已知函数1+12y x =的图象如图所示,结合你所画出+2y k x b =+的图象,直接写出1+2+12k x b x +>的解集.18.已知函数()|21|||2f x x x =+--. (1)解不等式()0f x ≤;(2)当[2,2]x ∈-时,|()||1|f x a ≥+有解,求实数a 的取值范围.19.已知函数()()20f x x a x a =-+>. (1)解不等式()2f x a ≥;(2)若函数()f x 的图象与直线2y a =围成的图形的面积为6,求实数a 的值.20.已知函数()()()()22102201log 1x x f x x x x x ⎧+≤⎪=-+<≤⎨⎪>⎩(1)画出()y f x =的简图,并指出函数值域;(2)结合图象,求当()1f x >时,x 的取值范围.21.设函数()121f x x x =+--.(1)画出()y f x =的图象;(2)当(],0x ∈-∞时,()f x ax b ≤+,求-a b 的最大值.22.已知函数()y f x =是定义在R 上的偶函数,且[)0,x ∈+∞时,()[]()222,0,11,1,x x f x x x ⎧-∈⎪=⎨-∈+∞⎪⎩.(1)求(),0x ∈-∞时()f x 的解析式;(2)在如图坐标系中作出函数()f x 的大致图象;(3)若不等式()f x k ≤恰有5个整数解,求k 的取值范围.《函数的图像及其应用》(二)解析1.【解析】当0x <时,()321132f x x x =-,()2f x x x '=- ()0,0x f x ∴',()f x 单调递增,且0x →时,()0f x →,∴()0f x <当0x ≥时,()xf x e =单调递增,且()()01f x f ≥=因此可得()f x 单调递增,()()232f x f x ∴->可转化为232xx ->解得31x -<<,故选B 项.2.【解析】由()()2g x f x =-是把函数()f x 向右平移2个单位得到的,且()()200g g ==,()()()4220f g g -=-=-=,()()200f g -==,画出()f x 的大致形状结合函数的图像可知,当4x ≤-或2x ≥-时,()0xf x ≤,故选C. 3.【解析】由图像可知在0x ≥时,在()()012+∞,,,()0f x >;在(1,2),()0f x <;由()f x 为奇函数,图象关于原点对称,在0x <时,在()(),21,0∞-⋃--,()0f x <;在(2,1)--,()0f x >; 又()y xf x =,在0x ≥时与()y f x =同号,在0x <时与()y f x =异号 故不等式()0xf x <的解集为:(2,1)(1,2)--⋃,故选:C4.【解析】因为()y f x =是R 上的偶函数,且当0x ≥时,()2f x x x =-,则当0x <时,0x ->,()()2f x f x x x =-=+。
二次函数应用题专题(带答案)0)时,可用交点式y=a(x-x1x-x2求其解析式。
4)根据问题要求,利用解析式求出所需的未知量。
三、练1、一枚炮弹在发射点上空爆炸,爆炸点离发射点水平距离1800米,爆炸高度为400米,求炮弹的初速度和仰角。
2、一架飞机以900km/h的速度飞行,飞行高度为2km,发现前方有一座山峰,山顶离飞机水平距离为10km,求飞机的爬升率和俯冲率。
3、一个人从距离地面20米的悬崖上抛出一个物体,物体抛出初速度为20m/s,抛出角度为60度,求物体落地点到悬崖的水平距离。
XXX:1、设炮弹飞行时间为t,初速度为v,仰角为θ,则可列出方程组:x=vtcosθy=vtsinθ-1/2gtx2y21800)2400)=xxxxxxx解得v600m/s,θ≈48.6°。
2、设飞机的爬升率和俯冲率分别为a和b,则可列出方程组:tan(θ-a)=4000/tan(θ+b)=2000/解得a≈2.5°,b≈1.4°。
3、设物体落地点到悬崖的水平距离为d,则可列出方程:d=vcosθtt=2vsinθ/g代入可得d≈40.8m。
评析:二次函数应用题需要学生熟练掌握建立坐标系、求解析式、利用解析式求未知量的方法,同时也需要学生对物理知识有一定的掌握,如抛物线运动、平抛运动等。
练中的例题和练题都体现了这些要点,可以帮助学生加深对二次函数应用的理解和掌握。
在教学过程中,可以引导学生多思考实际问题中的数学应用,提高他们的应用能力和解决问题的能力。
例2、某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.1)求y与x之间的关系式;2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?解:(1)依题意设y=kx+b,则有 y= -30x+960 (16≤x≤32).2)每月获得利润P=(-30x+960)(x-16)=30(-x+32)(x-16)=-30+48x-512+1920.所以当x=24时,P有最大值,最大值为1920.答:当价格为24元时,才能使每月获得最大利润,最大利润为1920元.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用一次函数求最值.例3、在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为(6,5)1)求这个二次函数的解析式;2)该男同学把铅球推出去多远?(精确到0.01米)解:(1)设二次函数的解析式为 y=ax^2+bx+c。
2024-2025学年第22章二次函数专题02 实际应用问题常考题型汇总(原卷版)一.选择题1.如图1是某城市广场音乐喷泉,出水口A处的水流呈抛物线形,该水流喷出的高度y(m)与水平距离x(m)之间的关系如图2所示,点B为该水流的最高点,点C为该水流的落地点,且BD⊥OC,垂足为点D,OA=2m.若BD=6m,OD=2m,则OC的长为()A.4m B.5m C.D.第1题第2题2.如图,小明在某次投篮中,球的运动路线是抛物线y=﹣0.2x2+3.5的一部分,若命中篮圈中心,则他与篮圈底的距离l是()A.3m B.3.5m C.4m D.4.5m3.某市新建一座景观桥.如图,桥的拱肋ADB可视为抛物线的一部分,桥面AB可视为水平线段,桥面与拱肋用垂直于桥面的杆状景观灯连接,拱肋的跨度AB为40米,桥拱的最大高度CD为16米(不考虑灯杆和拱肋的粗细),则与CD的距离为5米的景观灯杆MN的高度为()A.13米B.14米C.15米D.16米第3题第4题4.如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2.下列叙述正确的是()A.小球的飞行高度不能达到15m B.小球的飞行高度可以达到25mC.小球从飞出到落地要用时4s D.小球飞出1s时的飞行高度为10m5.如图是一款抛物线型落地灯筒示意图,防滑螺母C为抛物线支架的最高点,灯罩D距离地面1.5米,最高点C 距灯柱的水平距离为1.6米,灯柱AB=1.5米,若茶几摆放在灯罩的正下方,则茶几到灯柱的距离AE为()米.A.3.2 B.0.32 C.2.5 D.1.66.如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2,下列对方程20t﹣5t2=15的两根t1=1与t2=3的解释正确的是()A.小球的飞行高度为15m时,小球飞行的时间是1s B.小球飞行3s时飞行高度为15m,并将继续上升C.小球从飞出到落地要用4s D.小球的飞行高度可以达到25m7.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为()元.A.50 B.90 C.80 D.708.如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长为18m.设矩形菜园的边AB的长为x m,面积为S m2,其中AD≥AB.有下列结论:①x的取值范围为5≤x≤10;②AB的长有两个不同的值满足该矩形菜园的面积为100m2;③矩形菜园ABCD的面积的最大值为.其中,正确结论的个数是()A.0 B.1 C.2 D.3第8题第9题9.如图1是莲花山景区一座抛物线形拱桥,按图2所示建立平面直角坐标系,得到抛物线解析式为y=,正常水位时水面宽AB为36m,当水位上升5m时水面宽CD为()A.10m B.12m C.24m D.48m10.中国廊桥是桥梁与房屋的珠联璧合,代表着中国人的智慧和造艺,是世界文明宝库的一大奇观.如图,这是某座下方为抛物线形的廊桥示意图,已知抛物线的表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF长为()A.米B.16米C.米D.米第10题第11题11.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降2.5米时,水面的宽度为米.()A.3 B.6 C.8 D.912.如图,排球运动员站在点O处练习发球,将球从点O正上方2m的A处发出,把球看成点,其运行的高度y(单位:m)与运行的水平距离x(单位:m)满足关系式,已知球网与点O的水平距离为9m,第12题第13题13.如图,人民医院在某流感高发时段,用防护隔帘布临时搭建了一隔离区,隔离区一面靠长为10m的墙,隔离区分成两个区域,中间也用防护隔帘布隔开.已知整个隔离区所用防护隔帘布总长为24m,如果隔离区出入口的大小不计,并且隔离区靠墙的一面不能超过墙长,小明认为:隔离区的最大面积为48m2;小亮认为:隔离区的面积可能为36m2,你认为他们俩的说法是()A.小明正确,小亮错误 B.小明错误,小亮正确 C.两人均正确 D.两人均错误14.廊桥是我国古老的文化遗产.如图是某座抛物线形廊桥的示意图,已知水面AB宽48m,拱桥最高处点C到水面AB的距离为12m,为保护该桥的安全,现要在该抛物线上的点E,F处安装两盏警示灯,若要保证两盏灯的水平距离EF是24m,则警示灯E距水面AB的高度为()A.12m B.11m C.10m D.9m二.填空题(共14小题)15.如图,有一个截面边缘为抛物线型的水泥门洞.门洞内的地面宽度为8m,两侧距地面4m高处各有一盏灯,两灯间的水平距离为6m,则这个门洞内部顶端离地面的距离为.第15题第16题16.漪汾桥是太原市首座对称双七拱吊桥,每个桥拱可近似看作抛物线.如图是其中一个桥拱的示意图,拱跨AB =60m,以AB的中点O为坐标原点,AB所在直线为x轴,过点O垂直于AB的直线为y轴建立平面直角坐标系,通过测量得AE=2m,DE⊥AB且DE=1.16m,则桥拱(抛物线)的函数表达式为.17.如图1是一座抛物线形拱桥,图2是其示意图,桥拱与水平桥面相交于A、B两点,桥拱最高点C到AB的距离为9m,AB=36m,D、E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7m,则DE的长为m.第17题第18题19.如图,同学们在操场上玩跳大绳游戏,绳甩到最高处时的形状是抛物线型,摇绳的甲、乙两名同学拿绳的手的间距为6米,到地面的距离AO与BD均为0.9米,绳子甩到最高点C处时,最高点距地面的垂直距离为1.8米.身高为1.4米的小吉站在距点O水平距离为m米处,若他能够正常跳大绳(绳子甩到最高时超过他的头顶),则m 的取值范围是.第19题第21题20.超市销售的某商品进价10元/件.在销售过程中发现,该商品每天的销售量y(件)与售价x(元/件)之间满足函数关系式y=﹣5x+150(10≤x≤30),则利润w和售价x之间的函数关系为,该商品售价定为元/件时,每天销售该商品获利最大.21.如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高米,现要水半放置横截面为正方形的箱子,其中两个顶点在抛物线上的最大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子正方形的最大边长为米.22.要建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3米,水柱落地处离池中心3米,水管长应为米.第22题第23题23.某单位要对拱形大门进行粉刷,如图是大门示意图,门柱AD和BC高均为0.75米,门宽AB为9米,上方门拱可以近似的看作抛物线的一部分,最高点到地面AB的最大高度为4.8米,工人师傅站在倾斜木板AM上,木板点M一端恰好落在门拱上且到点A的水平距离AN为7.5米,工人师傅能刷到的最大垂直高度为2.4米,则在MA上方区域中,工人师傅刷不到的最大水平宽度为米.24.如图①,“东方之门”通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了苏州的历史文化.如图②,“门”的内侧曲线呈抛物线形,已知其底部宽度为80m,高度为200m.则离地面150m处的水平宽度(即CD的长)为.第24题第25题25.如图是某拱桥的截面示意图.已知桥底呈抛物线,主桥底部跨度OA=400米,以O为原点,OA所在直线为x轴建立平面直角坐标系,桥面BF∥OA,抛物线最高点E离路面距离EF=10米,BC=120米,CD⊥BF,O,D,B三26.漪汾桥是太原市首座对称双七拱吊桥,每个桥拱可近似看作抛物线.如图是其中一个桥拱的示意图,拱跨AB =60m,以AB的中点O为坐标原点,AB所在直线为x轴,过点O垂直于AB的直线为y轴建立平面直角坐标系,通过测量得AE=2m,DE⊥AB且DE=1.16m,则桥拱最高点到桥面的距离OC为m.27.掷实心球是中学生体质健康检测中的一项,体育老师给出标准示范围,小明发现实心球飞行路线是一条抛物线,若不考虑空气阻力,实心球的飞行高度y(米)与飞行的水平距离x(米)之间具有函数关系y=﹣,则小明这次实心球训练的成绩为.28.如图1,是一座抛物线型拱桥侧面示意图,水面宽AB与桥长CD均为12m,在距离D点3m的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.如图2,桥面上方有3根高度均为5m的支柱CG、OH、DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为2m,下面结论正确的是(填写正确结论序号).①图1抛物线型拱桥的函数表达式y=﹣x2.②图2右边钢缆抛物线的函数表达式y=2+2.③图2左边钢缆抛物线的函数表达式y=2+2.④图2在钢缆和桥拱之间竖直装饰若干条彩带,彩带长度的最小值是3m.三.解答题29.某商场计划用5400元购买一批商品,若将进价降低10%,则可以多购买该商品30件.市场调查反映:售价为每件25元时,每天可卖出250件.如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)求该商品原来的进价;(2)在进价没有改变的条件下,若每天所得的销售利润2000元时,且销量尽可能大,商品的售价是多少元;(3)在进价没有改变的条件下,商场的营销部在调控价格方面,提出了A,B两种营销方案.方案A:每件商品涨价不超过5元;方案B:每件商品的利润至少为16元.请比较哪种方案的最大利润更高,并30.电商平台经销某种品牌的儿童玩具,进价为50元/个.经市场调查发现:每周销售量y(个)与销售单价x(元/个)满足一次函数关系(其中x为整数,且50≤x≤100).部分数据如下表所示:销售单价x(元/个)55 60 70销售量y(个)220 200 160根据以上信息,解答下列问题:(1)求y与x的函数关系式;(2)求每周销售这种品牌的儿童玩具获得的利润W元的最大值;(3)电商平台希望每周获得不低于1100元的利润,请计算销售单价的范围.31.某机械厂每月固定生产甲、乙两种零件共80万件,并能全部售出.甲零件每件成本10元,售价16元;乙零件每件成本8元,售价12元.设生产甲零件x万件.所获总利润y万元.(1)写出y与x的函数关系式;(2)如果每月投入的总成本不超过740万元,应该怎样安排甲、乙零件的产量,可使所获的总利润最大?最大总利润是多少万元?(3)该厂在销售中发现:某月甲零件售价每提高1元,甲零件销量会减少5万件,乙零件售价不变,不管生产多少都能卖出,在(2)获得最大利润的情况下,为了获得更大的利润,该厂决定提高甲零件的售价,并重新调整甲、乙零件的生产数量,求甲零件售价提高多少元时,可获总利润最大?最大总利润是多少万元?32.在跳绳时,绳甩到最高处的形状可近似看作抛物线,如图,已知甲、乙两名学生拿绳的手间距为6米,距地面均为1米,绳的最高点距离地面的高度为4米,以水平地面为x轴,垂直于地面且过绳子最高点的直线为y轴,建立平面直角坐标系,如图.(1)求抛物线的函数表达式;(2)身高为1.57米的小明此时进入跳绳,他站直时绳子刚好通过他的头顶,小明与甲的水平距离小于小明与乙的水平距离,求小明离甲的水平距离.33.如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式<不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:≈取1.4)34.某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮建立如图的平面直角坐标系.(1)求出抛物线的解析式;(2)若队员与篮圈中心的水平距离为7m,篮圈距地面3m,问此球能否准确投中?35.高楼火灾越来越受到重视,某区消防中队开展消防技能比赛,如图,在一废弃高楼距地面10m的点A和其正上方点B处各设置了一个火源.消防员来到火源正前方,水枪喷出的水流看作抛物线的一部分(水流出口与地面的距离忽略不计),第一次灭火时,站在水平地面上的点C处,水流恰好到达点A处,且水流的最大高度为12m.待A处火熄灭后,消防员退到点D处,调整水枪进行第二次灭火,使水流恰好到达点B处,已知点D到高楼的水平距离为12m,假设两次灭火时水流的最高点到高楼的水平距离均为3m.建立如图所示的平面直角坐标系.(1)求消防员第一次灭火时水流所在抛物线的解析式;(2)若两次灭火时水流所在抛物线的形状相同,求A、B 之间的距离;(3)若消防员站在到高楼水平距离为9m的地方,想要扑灭距地面高度12~18m范围内的火苗,当水流最高点到高楼的水平距离始终为3m时,直接写出a的取值范围.36.如图1,一辆灌溉车正为绿化带浇水,喷水口H离地面竖直高度为h=1.2米.建立如图2所示的平面直角坐标系,可以把灌溉车喷出水的上、下边缘抽象为两条抛物线的部分图象,把绿化带横截面抽象为矩形DEFG,其水平宽度DE=1.8米,竖直高度EF=1.1米,若下边缘抛物线是由上边缘抛物线向左平移得到的,上边缘抛物线最高点A离喷水口的水平距离为2米,高出喷水口0.4米,灌溉车到绿化带的距离OD为d米.(1)求上边缘抛物线的函数解析式;(2)下边缘抛物线与x轴交点B的坐标为;(3)若d=2.2米,则灌溉车行驶时喷出的水能否浇灌到整个绿化带?请说明理由.37.消防员正在对一处着火点A进行喷水灭火,水流路线L为抛物线的一部分.建立如图所示的平面直角坐标系,已知消防车上的喷水口B高出地面2m,距离原点的水平距离为6m,着火点A距离点B的水平距离为10m,且点B,A分别位于y轴左右两侧,抛物线L的解析式为(其中b,c为常数).(1)写出点B的坐标,求c与b之间满足的关系式.(2)若着火点A高出地面3m,①求水流恰好经过着火点A时抛物线L的解析式,并求它的对称轴;②为彻底消除隐患,消防员对距着火点A水平距离1m的范围内继续进行喷水,直接写出抛物线(水流路线)L解析式中b的取值范围(包含端点)及c的最小值.38.跳大绳是天家喜欢的传统体育运动,绳子两端由两人拉着旋转,绳子离开地面时呈抛物线状,有一次跳大绳,甲、乙两人的手A、B离地面高度都为1米,现以地面为x轴,过点A向地面作的垂线为y轴,建立如图所示的平面直角坐标系,AB=6米,绳子甩到最高处C点离地面2.8米,此时所有点都处于同一平面内.(1)求此时绳子所对应的抛物线表达式;(2)身高1.55米的小红跳入绳中,在绳子的正下方来回跳动,则她离A点的水平方向上的最小距离和最大距离分别是多少米?(3)若身高与小红相同的一群同学想同时跳绳,相互间的间距为0.8米,则此绳最多可容纳多少人一起跳?39.某宾馆有100个房间供游客居住,当每个房间每天的定价是200元时,房间会全部住满,当每个房间每天的定价每增加5元时,就会有一个房间空闲,空闲的房间可以出租储存货物,每个空闲房间每天储存货物可获得50元的利润,如果游客居住房间,宾馆需对每个房间每天额外支出40元的各种费用,储存货物不需要额外支出费用,设空闲房间有x间.(1)用含x的式子表示下列各量.①供游客居住的房间数是间;②每个房间每天的定价是元;③该宾馆每天的总利润w是元;(2)若游客居住每天带来的总利润不低于21600元时,求空闲房间每天储存货物获得的最大总利润是多少元?(3)该宾馆计划接受130吨的货物存储,每个房间最多可以存储3吨,当每间房价定价为多少元时,宾馆每天的总利润w最大,最大利润是多少元?40.宜昌某农副加工厂2023年年初投入80万元经销某种农副产品,由于物美价廉,在惠农网商平台推广下,该产品火爆畅销全国各地.已知该产品的成本为20元/件,经市场调查发现,该产品的销售单价定为25元到30元之间较为合理,该产品每年的销售量y(万件)与售价x(元/件)之间满足一种函数关系,售价x(元/件)与y (万件)的对应关系如表:x…20 26 28 31 35 …y…20 14 12 9 5 …(1)求该产品每年的销售量y(万件)与售价x(元/件)之间的函数关系式;(2)2023年年底该工厂共盈利16万元,2024年国家惠农政策力度更大,生产技术也有所提高,使得该特产的成本平均每件减少了1元.①求2023年该特产的售价;②该产品2024年售价定为多少时,工厂利润最大?最大利润是多少?41.掷实心球是宝鸡市高中阶段学校招生体育考试的选考项目.如图1是一名男生投实心球,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,掷出时起点处高度为,当水平距离为4m时,实心球行进至最高点3m处.(1)求y关于x的函数表达式;(2)根据宝鸡市高中阶段学校招生体育考试男生评分标准,投掷过程中,实心球从起点到落地点的水平距离大于等于9.60m时,得分为满分10分.请计算说明该男生在此项考试中是否得满分.42.如图,一个圆形水池的中央安装了一个柱形喷水装置OA,A处的喷头向外喷水,喷出的水流沿形状相同的曲线向各个方向落下,水流的路线是抛物线y=a(x﹣)2+4的一部分,落点B距离喷水柱底端O处3.5米.(1)写出水流到达的最大高度,并求a的值;(2)在保证水流形状不变的前提下,调整喷水柱OA的高度,使水流落在宽(EF)为米,内侧(点E)距点O为4米的环形区域内(含E,F),直接说出喷水柱OA的高度是变大还是变小,并求它变化的高度h(h>0)(米)的取值范围.43.如图1,一辆灌溉车正为绿化带浇水,喷水口H离地面竖直高度为h=1.2米,建立如图2所示的平面直角坐标系,可以把灌溉车喷出水的上、下边缘抽象为两条抛物线的部分图象,把绿化带横截面抽象为矩形DEFG,其水平宽度DE=2米,竖直高度EF=0.8米,若下边缘抛物线是由上边缘抛物线向左平移得到的,上边缘抛物线最高点A离喷水口的水平距离为2米,高出喷水口0.4米,灌溉车到绿化带的距离OD为d米.(1)求上边缘抛物线的函数解析式;(2)求下边缘抛物线与x轴交点B的坐标;(3)若d=3.2米,则灌溉车行驶时喷出的水(填“能”或“不能”)浇灌到整个绿化带.44.海豚是生活在海洋里的一种动物,它行动敏捷,弹跳能力强.海豚表演是武汉海昌极地海洋公园最吸引人的节目之一.在进行跳水训练时,海豚身体(看成一点)在空中的运行路线可以近似看成抛物线的一部分.如图,在某次训练中以海豚起跳点O为原点,以O与海豚落水点所在的直线为x轴,垂直于水面的直线为y轴建立平面直角坐标系.海豚离水面的高度y(单位:m)与距离起跳点O的水平距离x(单位:m)之间具有函数关系y=ax2+2x,海豚在跳起过程中碰到(不改变海豚的运动路径)饲养员放在空中的离O点水平距离为3m,离水面高度为4.5m 的小球.(1)求海豚此次训练中离水面的最大高度是多少m?(2)求当海豚离水面的高度是时,距起跳点O的水平距离是多少m?(3)在海豚起跳点与落水点之间漂浮着一个截面长CD=6m,高DE=4m的泡沫箱,若海豚能够顺利跳过泡沫箱(不碰到),求点D横坐标n的取值范围.45.如图①为某悬索桥的示意图,其两座桥塔间的主索的形状近似于抛物线,桥塔与锚锭间的主索形状近似于直线,吊索间距均为2米,桥塔和吊索均与水平桥面垂直.如图②,已知桥塔AD和BC的高度为10米,水平桥长AB为32米,桥塔间的主索最低点P距桥面2米,锚锭E,F到桥塔AD,BC的距离均为16米,E,A,B,F四点共线,以CD为x轴,CD的垂直平分线为y轴(恰好经过点P),建立平面直角坐标系xOy.(1)求该抛物线的表达式;(2)为了满足桥梁的使用安全性,长度不小于4米的吊索需要使用密度更高、抗风性能更好的新型吊索,求这座悬索桥所需新型吊索的数量;(3)对桥梁进行维护检修时,发现需要在桥塔AD左右的主索上各加一条竖直钢索进行加固,要求桥塔AD左右的加固钢索相距8米,则最少需要准备加固钢索多少米?46.某公园要在小广场建造一个喷泉景观.在小广场中央O处垂直于地面安装一个高为1.25米的花形柱子OA,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上抛物线路径如图1所示,为使水流形状较为美观,设计成水流在距OA的水平距离为1米时达到最大高度,此时离地面2.25米.(1)以点O为原点建立如图2所示的平面直角坐标系,水流到OA水平距离为x米,水流喷出的高度为y米,求出在第一象限内的抛物线解析式(不要求写出自变量的取值范围);(2)张师傅正在喷泉景观内维修设备期间,喷水管意外喷水,但是身高1.76米的张师傅却没有被水淋到,此时他离花形柱子OA的距离为d米,求d的取值范围;(3)为了美观,在离花形柱子4米处的地面B、C处安装射灯,射灯射出的光线与地面成45°角,如图3所示,光线交汇点P在花形柱子OA的正上方,其中光线BP所在的直线解析式为y=﹣x+4,求光线与抛物线水流之间的最小垂直距离.47.如图①,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度OH=1.5米.如图②,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=2米,竖直高度EF=1米.下边缘抛物线可以看作由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2米,高出喷水口0.5米,灌溉车到l的距离OD为d米.(1)求上边缘抛物线的函数表达式,并求喷出水的最大射程OC;(2)求下边缘抛物线与x轴的正半轴交点B的坐标;(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带(即矩形DEFC位于上边缘抛物线和下边缘抛物线所夹区域内),求d的取值范围.48.某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(2)求w与x之间的函数关系式;(3)由于受资金的影响,今年投入生产的费用不会超过360万元,求今年可获得最大毛利润。
高一数学函数的应用测试题(含答案)高一数学函数的应用测试题(含答案)数学是研究现实世界空间形式和数量关系的一门科学。
小编准备了高一数学函数的应用测试题,具体请看以下内容。
一、选择题:本大题共12小题,每小题5分,共60分.1.函数的定义域是( )A.[1,+)B.45,+C.45,1D.45,1解析:要使函数有意义,只要得01,即45答案:D2.设a=20.3,b=0.32,c=logx(x2+0.3)(x1),则a,b,c的大小关系是()A.aC.c解析:∵a=20.321=2,且a=20.320=1,1∵x1,c=logx(x2+0.3)logxx2=2. cb.答案:B3.已知函数f(x)=ln(x+x2+1),若实数a,b满足f(a)+f(b-1)=0,则a+b等于()A.-1B.0C.1D.不确定解析:观察得f(x)在定义域内是增函数,而f(-x)=ln(-x+x2+1)=ln1x+x2+1=-f(x),f(x)是奇函数,则f(a)=-f(b-1)=f(1-b).a=1-b,即a+b=1.答案:C4.已知函数f(x)=-log2x (x0),1-x2 (x0),则不等式f(x)0的解集为()A.{x|0C.{x|-1-1}解析:当x0时,由-log2x0,得log2x0,即0当x0时,由1-x20,得-1答案:C5.同时满足两个条件:①定义域内是减函数;②定义域内是奇函数的函数是()A.f(x)=-x|x|B.f(x)=x3C.f(x)=sinxD.f(x)=lnxx解析:为奇函数的是A、B、C,排除D. A、B、C中在定义域内为减函数的只有A.答案:A6.函数f(x)=12x与函数g(x)= 在区间(-,0)上的单调性为()A.都是增函数B.都是减函数C.f(x)是增函数,g(x)是减函数D.f(x)是减函数,g(x)是增函数解析:f(x)=12x在x(-,0)上为减函数,g(x)= 在(-,0)上为增函数.答案:D7.若x(e-1,1),a=lnx,b=2lnx,c=ln3x,则()A.aC.b解析:a=lnx,b=2lnx=lnx2,c=ln3x.∵x(e-1,1),xx2.故ab,排除A、B.∵e-1lnx答案:C8.已知f(x)是定义在(-,+)上的偶函数,且在(-,0]上是增函数,若a=f(log47),,c=f(0.2-0.6) ,则a、b、c的大小关系是()A.cC.c解析:函数f(x)为偶函数,b=f(log123)=f(log23),c=f(0.2-0.6)=f(50.6).∵50.6log23=log49log47,f(x)在(0,+)上为减函数,f(50.6)答案:A9.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆),若该公司在这两地共销售15辆车,则能获得的最大利润为()A.45.606万元B.45.6万元C.46.8万元D.46.806万元解析:设在甲地销售x辆,则在乙地销售(15-x)辆,总利润L=L1+L2=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30,当x=3.0620.15=10.2时,L最大.但由于x取整数,当x=10时,能获得最大利润,最大利润L=-0.15102+3.0610+30=45.6(万元).答案:B10.若f(x)是定义在R上的偶函数,且满足f(x+3)=f(x),f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是()A.5B.4C.3D.2解析:f(5)=f(2+3)=f(2)=0,又∵f(-2)=f(2)=0,f(4)=f(1)=f(-2)=0,在(0,6)内x=1,2,4,5是方程f(x)=0的根.答案:B11.函数f(x)=x+log2x的零点所在区间为()A.[0,18]B.[18,14]C.[14,12]D.[12,1]解析:因为f(x)在定义域内为单调递增函数,而在四个选项中,只有f14f120,所以零点所在区间为14,12.答案:C12.定义在R上的函数f(x)满足f(x+2)=3f(x),当x[0,2]时,f(x)=x2-2x,则当x[-4,-2]时,f(x)的最小值是()A.-19B.-13C.19D.-1解析:f(x+2)=3f(x),当x[0,2]时,f(x)=x2-2x,当x=1时,f(x)取得最小值.所以当x[-4,-2]时,x+4[0,2],所以当x+4=1时,f(x)有最小值,即f(-3)=13f(-3+2)=13f(-1)=19f(1)=-19.答案:A第Ⅱ卷(非选择共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.若函数f(x)=ax2+x+1的值域为R,则函数g(x)=x2+ax+1的值域为__________.解析:要使f(x)的值域为R,必有a=0.于是g(x)=x2+1,值域为[1,+).答案:[1,+)14.若f(x)是幂函数,且满足f(4)f(2)=3,则f12=__________. 解析:设f(x)=x,则有42=3,解得2=3,=log23,答案:1315.若方程x2+(k-2)x+2 k-1=0的两根中,一根在0和1之间,另一根在1和2之间,则实数k的取值范围是__________. 解析:设函数f(x)=x2+(k-2)x+2k-1,结合图像可知,f(0)0,f(1)0,f(2)0.即2k-10,1+(k-2)+2k-10,4+2(k-2)+2k-10,解得k12,k23,即1214,我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
二次函数的应用测试题(含答案)一.选择题(共8小题)1.一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A.1米 B.3米 C.5米 D.6米2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=﹣x2 +10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A.30万元 B.40万元 C.45万元 D.46万元3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第9.5秒 B.第10秒 C.第10.5秒 D.第11秒4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()A.y= (x+3)2 B.y= (x+3)2 C.y= (x﹣3)2 D.y= (x﹣3)25.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.2s B.4s C.6s D.8s6一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是()A.2米 B.5米 C.6米 D.14米7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.6s8.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y= (x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A.40 m/s B.20 m/s C.10 m/s D.5 m/s二.填空题(共6小题)9.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为_________米.10.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是_________.11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为_________元.12.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P 的坐标是_________.13.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为_________米.14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图.这种工艺品的销售量为_________件(用含x的代数式表示).三.解答题(共8小题)15.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.(1)若公司每天的现售价为x元时则每天销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?16.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].17.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?18.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB= (x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求yA、yB关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?19.“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?20.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)21.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.22.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx﹣75.其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?26.3.3二次函数的应用参考答案与试题解析一.选择题(共8小题)1.一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A. 1米 B.3米 C.5米 D. 6米考点:二次函数的应用.分析:直接利用配方法求出二次函数最值进而求出答案.解答:解:h=﹣5t2+10t+1=﹣5(t2﹣2t)+1=﹣5(t﹣1)2+6,故小球到达最高点时距离地面的高度是:6m.故选:D.点评:此题主要考查了二次函数的应用,正确利用配方法求出是解题关键.2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=﹣x2+10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A. 30万元 B.40万元 C.45万元 D. 46万元考点:二次函数的应用.分析:首先根据题意得出总利润与x之间的函数关系式,进而求出最值即可.解答:解:设在甲地销售x辆,则在乙地销售(15﹣x)量,根据题意得出:W=y1+y2=﹣x2+10x+2(15﹣x)=﹣x2+8x+30,∴最大利润为:= =46(万元),故选:D.点评:此题主要考查了二次函数的应用,得出函数关系式进而利用最值公式求出是解题关键.3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第9.5秒 B.第10秒 C.第10.5秒 D.第11秒考点:二次函数的应用.分析:根据题意,x=7时和x=14时y值相等,因此得到关于a,b的关系式,代入到x=﹣中求x的值.解答:解:当x=7时,y=49a+7b;当x=14时,y=196a+14b.根据题意得49a+7b=196a+14b,∴b=﹣21a,根据二次函数的对称性及抛物线的开口向下,当x=﹣=10.5时,y最大即高度最高.因为10最接近10.5.故选:C.点评:此题主要考查了二次函数的应用,根据对称性看备选项中哪个与之最近得出结论是解题关键.4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()A. y= (x+3)2 B.y= (x+3)2 C.y= (x﹣3)2 D. y= (x﹣3)2考点:二次函数的应用.专题:应用题.分析:利用B、D关于y轴对称,CH=1cm,BD=2cm可得到D点坐标为(1,1),由AB=4cm,最低点C在x轴上,则AB关于直线CH对称,可得到左边抛物线的顶点C的坐标为(﹣3,0),于是得到右边抛物线的顶点C的坐标为(3,0),然后设顶点式利用待定系数法求抛物线的解析式.解答:解:∵高CH=1cm,BD=2cm,而B、D关于y轴对称,∴D点坐标为(1,1),∵AB∥x轴,AB=4cm,最低点C在x轴上,∴AB关于直线CH对称,∴左边抛物线的顶点C的坐标为(﹣3,0),∴右边抛物线的顶点C的坐标为(3,0),设右边抛物线的解析式为y=a(x﹣3)2,把D(1,1)代入得1=a×(1﹣3)2,解得a= ,故右边抛物线的解析式为y= (x﹣3)2.故选C.点评:本题考查了二次函数的应用:利用实际问题中的数量关系与直角坐标系中线段对应起来,再确定某些点的坐标,然后利用待定系数法确定抛物线的解析式,再利用抛物线的性质解决问题.5.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A. 2s B.4s C.6s D. 8s考点:二次函数的应用.分析:礼炮在点火升空到最高点处引爆,故求h的最大值.解答:解:由题意知礼炮的升空高度h(m)与飞行时间t(s)的关系式是:,∵<0∴当t=4s时,h最大为40m,故选B.点评:本题考查二次函数的实际应用,借助二次函数解决实际问题.6.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是()A. 2米 B.5米 C.6米 D. 14米考点:二次函数的应用.分析:把二次函数的解析式化成顶点式,即可得出小球距离地面的最大高度.解答:解:h=﹣5t2+20t﹣14=﹣5(t2﹣4t)﹣14=﹣5(t2﹣4t+4)+20﹣14=﹣5(t﹣2)2+6,﹣5<0,则抛物线的开口向下,有最大值,当t=2时,h有最大值是6米.故选:C.点评:本题考查了二次函数的应用以及配方法求二次函数最值,把函数式化成顶点式是解题关键.7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为()A. 3s B.4s C.5s D. 6s考点:二次函数的应用.专题:计算题;应用题.分析:到最高点爆炸,那么所需时间为﹣.解答:解:∵礼炮在点火升空到最高点引爆,∴t=﹣=﹣=4s.故选B.点评:考查二次函数的应用;判断出所求时间为二次函数的顶点坐标的横坐标的值是解决本题的关键.8.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y= (x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A. 40 m/s B.20 m/s C.10 m/s D. 5 m/s考点:二次函数的应用.专题:应用题.分析:本题实际是告知函数值求自变量的值,代入求解即可,另外实际问题中,负值舍去.解答:解:当刹车距离为5m时,即可得y=5,代入二次函数解析式得:5= x2.解得x=±10,(x=﹣10舍),故开始刹车时的速度为10m/s.故选C.点评:本题考查了二次函数的应用,明确x、y代表的实际意义,刹车距离为5m,即是y=5,难度一般.二.填空题(共6小题)9.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.考点:二次函数的应用.专题:函数思想.分析:根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.解答:解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x= ,所以水面宽度增加到米,故答案为:米.点评:此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.10.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是y=﹣(x+6)2+4.考点:二次函数的应用.专题:数形结合.分析:根据题意得出A点坐标,进而利用顶点式求出函数解析式即可.解答:解:由题意可得出:y=a(x+6)2+4,将(﹣12,0)代入得出,0=a(﹣12+6)2+4,解得:a=﹣,∴选取点B为坐标原点时的抛物线解析式是:y=﹣(x+6)2+4.故答案为:y=﹣(x+6)2+4.点评:此题主要考查了二次函数的应用,利用顶点式求出函数解析式是解题关键.11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为25元.考点:二次函数的应用.专题:销售问题.分析:本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.解答:解:设最大利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.点评:本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.12.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P 的坐标是(,5).考点:二次函数的应用.专题:压轴题.分析:分别求得线段AB、线段AC、线段BC的解析式,分析每一条线段上横、纵坐标的乘积的最大值,再进一步比较.解答:解:线段AB的解析式是y= x+1(0≤x≤4),此时w=x(x+1)= +x,则x=4时,w最大=8;线段AC的解析式是y= x+1(0≤x≤2),此时w=x(x+1)= +x,此时x=2时,w最大=12;线段BC的解析式是y=﹣2x+10(2≤x≤4),此时w=x(﹣2x+10 )=﹣2x2+10x,此时x= 时,w最大=12.5 .综上所述,当w=xy取得最大值时,点P的坐标是(,5).点评:此题综合考查了二次函数的一次函数,能够熟练分析二次函数的最值.13.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为2米.考点:二次函数的应用.分析:直接利用公式法求出函数的最值即可得出最高点离地面的距离.解答:解:∵函数解析式为:,∴y最值= = =2.故答案为:2.点评:此题主要考查了二次函数的应用,正确记忆最值公式是解题关键.14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图.这种工艺品的销售量为(60+x)件(用含x的代数式表示).考点:二次函数的应用.分析:由函数的图象可知点(30,2700)和点(60,0)满足解析式w=mx2+n,设销售量为a,代入函数的解析式,即可得到a和x的关系.解答:解:由函数的图象可知点(30,2700)和点(60,0)满足解析式w=mx2+n,∴,解得:,∴w=﹣x2+3600,设销售量为a,则a(60﹣x)=w,即a(60﹣x)=﹣x2+3600,解得:a=(60+x ),故答案为:(60+x).点评:本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题,用的知识点为:因式分解,题目设计比较新颖,同时也考查了学生的逆向思维思考问题.三.解答题(共8小题)15.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.(1)若公司每天的现售价为x元时则每天销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?考点:二次函数的应用.分析:(1)由原来的销量﹣每天减少的销量就可以得出现在每天的销量而得出结论;(2)由每件的利润×数量=总利润建立方程求出其解即可.解答:解:(1)由题意,得32﹣×4=80﹣2x.答:每天的现售价为x元时则每天销售量为(80﹣2x)件;(2)由题意,得(x﹣20)(80﹣2x)=150,解得:x1=25,x2=35.∵x≤28,∴x=25.答:想要每天获得150元的销售利润,销售价应当为25元.点评:本题考查了销售问题的数量关系每件的利润×数量=总利润的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据销售问题的等量关系建立方程是关键.16.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].考点:二次函数的应用;一元二次方程的应用.专题:销售问题.分析:(1)根据销售量=240﹣(销售单价每提高5元,销售量相应减少20套)列函数关系即可;(2)根据月销售额=月销售量×销售单价=14000,列方程即可求出销售单价;(3)设一个月内获得的利润为w元,根据利润=1套球服所获得的利润×销售量列式整理,再根据二次函数的最值问题解答.解答:解:(1),∴y=﹣4x+480(x≥60);(2)根据题意可得,x(﹣4x+480)=14000,解得,x1=70,x2=50(不合题意舍去),∴当销售价为70元时,月销售额为14000元.(3)设一个月内获得的利润为w元,根据题意,得w=(x﹣40)(﹣4x+480),=﹣4x2+640x﹣19200,=﹣4(x﹣80)2+6400,当x=80时,w的最大值为6400∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.点评:本题考查了二次函数的应用以及一元二次方程的应用,并涉及到了根据二次函数的最值公式,熟练记忆公式是解题关键.17.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?考点:二次函数的应用.专题:销售问题.分析:(1)设函数关系式y=kx+b,把(10,40),(18,24)代入求出k和b即可,由成本价为10元/千克,销售价不高于18元/千克,得出自变量x的取值范围;(2)根据销售利润=销售量×每一件的销售利润得到w和x的关系,利用二次函数的性质得最值即可;(3)先把y=150代入(2)的函数关系式中,解一元二次方程求出x,再根据x的取值范围即可确定x的值.解答:解:(1)设y与x之间的函数关系式y=kx+b,把(10,40),(18,24)代入得,解得,∴y与x之间的函数关系式y=﹣2x+60(10≤x≤18);(2)W=(x﹣10)(﹣2x+60)=﹣2x2+80x﹣600,对称轴x=20,在对称轴的左侧y随着x的增大而增大,∵10≤x≤18,∴当x=18时,W最大,最大为192.即当销售价为18元时,每天的销售利润最大,最大利润是19 2元.(3)由150=﹣2x2+80x﹣600,解得x1=15,x2=25(不合题意,舍去)答:该经销商想要每天获得150元的销售利润,销售价应定为15元.点评:本题考查了二次函数的应用,得到每天的销售利润的关系式是解决本题的关键,结合实际情况利用二次函数的性质解决问题.18.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB= (x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求yA、yB关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?考点:二次函数的应用.专题:应用题;数形结合.分析:(1)首先求出yB函数关系式,进而得出交点坐标,即可得出yA函数关系式;(2)首先将y=120代入求出x的值,进而代入yB求出答案;(3)得出yA﹣yB的函数关系式,进而求出最值即可.解答:解:(1)由题意可得出:yB= (x﹣60)2+m经过(0,1000),则1000= (0﹣60)2+m,解得:m=100,∴yB= (x﹣60)2+100,当x=40时,yB= ×(40﹣60)2+100,解得:yB=200,yA=kx+b,经过(0,1000),(40,200),则,解得:,∴yA=﹣20x+1000;(2)当A组材料的温度降至120℃时,120=﹣20x+1000,解得:x=44,当x=44,yB= (44﹣60)2+100=164(℃),∴B组材料的温度是164℃;(3)当0<x<40时,yA﹣yB=﹣20x+1000﹣(x﹣60)2﹣100=﹣x2+10x=﹣(x﹣20)2+100,∴当x=20时,两组材料温差最大为100℃.点评:此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及二次函数最值求法等知识,得出两种材料的函数关系式是解题关键.19.“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?考点:二次函数的应用;一元二次方程的应用.专题:销售问题.分析:(1)设每箱应涨价x元,得出日销售量将减少2x箱,再由盈利额=每箱盈利×日销售量,依题意得方程求解即可;(2)设每箱应涨价x元,得出日销售量将减少2x箱,再由盈利额=每箱盈利×日销售量,依题意得函数关系式,进而求出最值.解答:解:(1)设每箱应涨价x元,则每天可售出(50﹣2x)箱,每箱盈利(10+x)元,依题意得方程:(50﹣2x)(10+x)=600,整理,得x2﹣15x+50=0,解这个方程,得x1=5,x2=10,∵要使顾客得到实惠,∴应取x=5,答:每箱产品应涨价5元.(2)设利润为y元,则y=(50﹣2x)(10+x),整理得:y=﹣2x2+30x+500,配方得:y=﹣2(x﹣7.5)2+612.5,当x=7.5元,y可以取得最大值,∴每箱产品应涨价7.5元才能获利最高.点评:此题考查了一元二次方程的应用以及二次函数应用,解答此题的关键是熟知等量关系是:盈利额=每箱盈利×日销售量.20.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)考点:二次函数的应用.专题:销售问题.分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(﹣5x+550)≤7000,通过解不等式来求x的取值范围.解答:解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得50(﹣5x+550)≤7000,解得x≥82.∴82≤x≤90,∵50≤x≤100,∴销售单价应该控制在82元至90元之间.点评:本题考查二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.21.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.。
2022年年年年年年年年年年——年年年年年年年年年年1.(2022·辽宁省铁岭市)某蔬菜批发商以每千克18元的价格购进一批山野菜,市场监督部门规定其售价每千克不高于28元.经市场调查发现,山野菜的日销售量y(千克)与每千克售价x(元)之间满足一次函数关系,部分数据如表:(1)求y与x之间的函数关系式;(2)当每千克山野菜的售价定为多少元时,批发商每日销售这批山野菜所获得的利润最大?最大利润为多少元?2.(2022·山东省临沂市)第二十四届冬奥会在北京成功举办,我国选手在跳台滑雪项目中夺得金牌.在该项目中,运动员首先沿着跳台助滑道飞速下滑,然后在起跳点腾空,身体在空中飞行至着陆坡着陆,再滑行到停止区终止.本项目主要考核运动员的飞行距离和动作姿态,某数学兴趣小组对该项目中的数学问题进行了深入研究:如图为该兴趣小组绘制的赛道截面图,以停止区CD所在水平线为x轴,过起跳点A与x轴垂直的直线为y轴,O为坐标原点,建立平面直角坐标系.着陆坡AC的坡角为30°,OA=65m,某运动员在A处起跳腾空后,飞行至着陆坡的B处着陆,AB=100m.在空中飞行过程中,运动员到x轴的距离y(m)与水平方向移动的距x2+bx+c.离x(m)具备二次函数关系,其解析式为y=−160(1)求b,c的值;(2)进一步研究发现,运动员在飞行过程中,其水平方向移动的距离x(m)与飞行时间t(s)具备一次函数关系,当运动员在起跳点腾空时,t=0,x=0;空中飞行5s后着陆.①求x关于t的函数解析式;②当t为何值时,运动员离着陆坡的竖直距离ℎ最大,最大值是多少?3. (2022·辽宁省)某超市以每件13元的价格购进一种商品,销售时该商品的销售单价不低于进价且不高于18元.经过市场调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足如图所示的一次函数关系. (1)求y 与x 之间的函数关系式;(2)销售单价定为多少时,该超市每天销售这种商品所获的利润最大?最大利润是多少?4. (2022·内蒙古自治区包头市)由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x 天(x 取整数)时,日销售量y(单位:千克)与x 之间的函数关系式为y ={12x,0≤x ≤10−20x +320,10<x ≤16,草莓价格m(单位:元/千克)与x 之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当4≤x ≤12时,草莓价格m 与x 之间的函数关系式; (3)试比较第8天与第10天的销售金额哪天多?5.(2022·广西壮族自治区南宁市)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.(1)求y与x的函数解析式,并写出自变量x的取值范围;(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.6.(2022·广西壮族自治区贺州市)2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品.某商家以每套34元的价格购进一批冰墩墩和雪容融套件.若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.(1)设冰墩墩和雪容融套件每套售价定为x元时,求该商品销售量y与x之间的函数关系式;(2)求每套售价定为多少元时,每天销售套件所获利润W最大,最大利润是多少元?7.(2022·江苏省无锡市)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).(1)若矩形养殖场的总面积为36m2,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?8.(2022·河南省)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x−ℎ)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.参考答案1.解:(1)设y 与x 之间的函数关系式为y =kx +b(k ≠0), 由表中数据得:{20x +b =6622x +b =60,解得:{k =−3b =126,∴y 与x 之间的函数关系式为y =−3x +126;(2)设批发商每日销售这批山野菜所获得的利润为w 元,由题意得:w =(x −18)y =(x −18)(−3x +126)=−3x 2+180x −2268=−3(x −30)2+432,∵市场监督部门规定其售价每千克不高于28元, ∴18≤x ≤28, ∵−3<0,∴当x <30时,w 随x 的增大而增大, ∴当x =28时,w 最大,最大值为420,∴当每千克山野菜的售价定为28元时,批发商每日销售这批山野菜所获得的利润最大,最大利润为420元. 2.解:(1)作BE ⊥y 轴于点E , ∵OA =65m ,着陆坡AC 的坡角为30°,AB =100m ,∴点A 的坐标为(0,65),AE =50m ,BE =50√3m , ∴OE =OA −AE =65−50=15(m), ∴点B 的坐标为(50√3,15),∵点A(0,65),点B(50√3,15)在二次函数y =−160x 2+bx +c 的图象上,∴{c=65−160×(50√3)2+50√3b+c=15,解得{b=√32c=65,即b的值是√32,c的值是65;(2)①设x关于t的函数解析式是x=kt+m,因为点(0,0),(5,50√3)在该函数图象上,∴{m=05k+m=50√3,解得{k=10√3m=0,即x关于t的函数解析式是x=10√3t;②设直线AB的解析式为y=px+q,∵点A(0,65),点B(50√3,15)在该直线上,∴{q=6550√3p+q=15,解得{p=−√33q=65,即直线AB的解析式为y=−√33x+65,则ℎ=(−160x2+√32x+65)−(−√33x+65)=−160x2+5√36x,∴当x=−5√362×(−160)=25√3时,ℎ取得最值,此时ℎ=1254,∵25√3<50√3,∴x=25√3时,ℎ取得最值,符合题意,将x=25√3代入x=10√3t,得:25√3=10√3t,解得t=2.5,即当t为2.5时,运动员离着陆坡的竖直距离ℎ最大,最大值是1254m.3.解:(1)设y 与x 之间的函数关系式为y =kx +b(k ≠0), 由所给函数图象可知:{14k +b =22016k +b =180,解得:{k =−20b =500,故y 与x 的函数关系式为y =−20x +500; (2)∵y =−20x +500,∴w =(x −13)y =(x −13)(−20x +500) =−20x 2+760x −6500 =−20(x −19)2+720, ∵−20<0,∴当x <19时,w 随x 的增大而增大, ∵13≤x ≤18,∴当x =18时,w 有最大值,最大值为700, ∴售价定为18元/件时,每天最大利润为700元. 4.解:(1)∵当10≤x ≤16时,y =−20x +320, ∴当x =14时,y =−20×14+320=40(千克), ∴第14天小颖家草莓的日销售量是40千克.(2)当4≤x ≤12时,设草莓价格m 与x 之间的函数关系式为m =kx +b , ∵点(4,24),(12,16)在m =kx +b 的图象上, ∴{4k +b =2412k +b =16, 解得:{k =−1b =28,∴函数解析式为m =−x +28. (3)当0≤x ≤10时,y =12x , ∴当x =8时,y =12×8=96, 当x =10时,y =12×10=120; 当4≤x ≤12时,m =−x +28, ∴当x =8时,m =−8+28=20, 当x =10时,m =−10+28=18∴第8天的销售金额为:96×20=1920(元),第10天的销售金额为:120×18=2160(元), ∵2160>1920, ∴第10天的销售金额多.5.解:(1)设函数解析式为y =kx +b ,由题意得: {60k +b =20080k +b =100, 解得:{k =−5b =500,∴y =−5x +500,当y =0时,−5x +500=0, ∴x =100,∴y 与x 之间的函数关系式为y =−5x +500(50<x <100); (2)设销售利润为w 元,w =(x −50)(−5x +500)=−5x 2+750x −25000=−5(x −75)2+3125, ∵抛物线开口向下, ∴50<x <100,∴当x =75时,w 有最大值,是3125,∴当销售单价定为75元时,该种油茶的月销售利润最大,最大利润是3125元. 6.解:(1)根据题意,得y =200−12×4(x −48) =−2x +296,∴y 与x 之间的函数关系式:y =−2x +296; (2)根据题意,得W =(x −34)(−2x +296) =−2(x −91)2+6498, ∵a =−2<0,∴抛物线开口向下,W 有最大值, 当x =91时,W 最大值=6498,答:每套售价定为:91元时,每天销售套件所获利润最大,最大利润是6498元. 7.解:(1)根据题意知:较大矩形的宽为2xm ,长为24−x−2x3=(8−x) m ,∴(x +2x)×(8−x)=36, 解得x =2或x =6,经检验,x =6时,3x =18>10不符合题意,舍去,∴x =6,答:此时x 的值为2m ;(2)设矩形养殖场的总面积是ym 2,∵墙的长度为10,∴0<x ≤103,根据题意得:y =(x +2x)×(8−x)=−3x 2+24x =−3(x −4)2+48, ∵−3<0,∴当x =103时,y 取最大值,最大值为−3×(103−4)2+48=1403(m 2), 答:当x =103时,矩形养殖场的总面积最大,最大值为1403m 2.8.解:(1)由题意知,抛物线顶点为(5,3.2),设抛物线的表达式为y =a(x −5)2+3.2,将(0,0.7)代入得: 0.7=25a +3.2,解得a =−110,∴y =−110(x −5)2+3.2=−110x 2+x +710,答:抛物线的表达式为y =−110x 2+x +710;(2)当y =1.6时,−110x 2+x +710=1.6,解得x =1或x =9,∴她与爸爸的水平距离为3−1=2(m)或9−3=6(m),答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m 或6m .。
专题第02讲二次函数的实际应用(30题)1.(2022秋•泰兴市期末)一水果店售卖一种水果,以8元/千克的价格进货,经过往年销售经验可知:以12元/千克售卖,每天可卖60千克;若每千克涨价0.5元,每天要少卖2千克;若每千克降价0.5元,每天要多卖2千克,但不低于成本价.设该商品的价格为x元/千克时,一天销售总质量为y千克.(1)求y与x的函数关系式.(2)若水果店货源充足,每天以固定价格x元/千克销售(x≥8),试求出水果店每天利润W与单价x的函数关系式,并求出当x为何值时,利润达到最大.2.(2023•朝阳)某超市以每件10元的价格购进一种文具,销售时该文具的销售单价不低于进价且不高于19元.经过市场调查发现,该文具的每天销售数量y(件)与销售单价x(元)之间满足一次函数关系,部分数据如下表所示:销售单价x/元…121314……363432…每天销售数量y/件(1)直接写出y与x之间的函数关系式;(2)若该超市每天销售这种文具获利192元,则销售单价为多少元?(3)设销售这种文具每天获利w(元),当销售单价为多少元时,每天获利最大?最大利润是多少元?3.(2023•海淀区校级开学)电缆在空中架设时,两端挂起的电缆下垂可以近似的看成抛物线的形状.如图,在一个斜坡BD上按水平距离间隔60米架设两个塔柱,每个塔柱固定电缆的位置离地面高度为27米(AB =CD=27米),以过点A的水平线为x轴,水平线与电缆的另一个交点为原点O建立平面直角坐标系,如图所示.经测量,AO=40米,斜坡高度12米(即B、D两点的铅直高度差).结合上面信息,回答问题:(1)若以1米为一个单位长度,则D点坐标为,下垂电缆的抛物线表达式为.(2)若电缆下垂的安全高度是13.5米,即电缆距离坡面铅直高度的最小值不小于13.5米时,符合安全要求,否则存在安全隐患.(说明:直线GH⊥x轴分别交直线BD和抛物线于点H、G.点G距离坡面的铅直高度为GH的长),请判断上述这种电缆的架设是否符合安全要求?请说明理由.4.(2023春•江岸区校级月考)如图,在斜坡底部点O处安装一个的自动喷水装置,喷水头(视为点A)的高度(喷水头距喷水装置底部的距离)是1.8米,自动喷水装置喷射出的水流可以近似地看成抛物线.当喷射出的水流与喷水装置的水平距离为8米时,达到最大高度5米.以点O为原点,自动喷水装置所在的直线为y轴,建立平面直角坐标系.(1)求抛物线的解析式;(2)斜坡上距离O水平距离为10米处有一棵高度为1.75米的小树NM,MN垂直水平地面且M点到水平地面的距离为2米.①记水流的高度为y1,斜坡的高度为y2,求y1﹣y2的最大值(斜坡可视作直线OM);②如果要使水流恰好喷射到小树顶端的点N,直接写出自动喷水装置应向后平移(即抛物线向左)多少米?5.(2023•武汉模拟)如图,灌溉车为绿化带浇水,喷水口H离地竖直高度OH为1.2m.可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度EF=0.5m.下边缘抛物线是由上边缘抛物线向左平移得到,上边抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.4m,灌溉车到绿化带的距离OD为d(单位:m).(1)求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;(2)求下边缘抛物线与x轴的正半轴交点B的坐标;(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带,直接写出d的取值范围.6.(2022秋•华容区期末)农户销售某农产品,经市场调查发现:若售价为6元/千克,日销售量为40千克,若售价每提高1元/千克,日销售量就减少2千克.现设售价为x元/千克(x≥6且为正整数).(1)若某日销售量为24千克,求该日产品的单价;(2)若政府将销售价格定为不超过18元/千克.设每日销售额为w元,求w关于x的函数表达式,并求w的最大值和最小值;(3)市政府每日给农户补贴a元后(a为正整数),发现最大日收入(日收入=销售额+政府补贴)还是不超过450元,并且只有5种不同的单价使日收入不少于440元,请直接写出所有符合题意的a的值.7.(2023春•蔡甸区月考)如图,抛物线AB,AC是某喷水器喷出的水抽象而成,抛物线AB由抛物线AC 向左平移得到,把汽车横截面抽象为矩形DEFG,其中DE=米,DG=2米,OA=h米,抛物线AC表达式为y=a(x﹣2)2+h+,h=,且点A,B,D,G,C均在坐标轴上.(1)求抛物线AC表达式.(2)求点B的坐标.(3)要使喷水器喷出的水能洒到整个汽车,记OD长为d米,直接写出d的取值范围.8.(2022秋•华容区期末)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y 轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高.球第一次落地点后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取,)9.(2023•淮安一模)某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?10.(2023•盘锦)某工厂生产一种产品,经市场调查发现,该产品每月的销售量y(件)与售价x(万元/件)之间满足一次函数关系,部分数据如表:每件售价x/万元…2426283032…月销售量y/件…5248444036…(1)求y与x的函数关系式(不写自变量的取值范围).(2)该产品今年三月份的售价为35万元/件,利润为450万元.①求:三月份每件产品的成本是多少万元?②四月份工厂为了降低成本,提高产品质量,投资了450万元改进设备和革新技术,使每件产品的成本比三月份下降了14万元.若四月份每件产品的售价至少为25万元,且不高于30万元,求这个月获得的利润w(万元)关于售价x(万元/件)的函数关系式,并求最少利润是多少万元.11.(2023春•江都区月考)某企业生产并销售某种产品,假设销售量与产量相等,图中的线段AB表示该产品每千克生产成本y1(单位:元)与产量x(单位:kg)之间的函数关系;线段CD表示该产品销售价y2(单位:元)与产量x(单位:kg)之间的函数关系,已知0<x≤120,m>60.(1)求线段AB所表示的y1与x之间的函数表达式;(2)若m=90,该产品产量为多少时,获得的利润最大?最大利润是多少?(3)若60<m<70,该产品产量为多少时,获得的利润最大?最大利润是多少?12.(2023•梁溪区模拟)为加强劳动教育,各校纷纷落实劳动实践基地.某校学生在种植某种高产番茄时,经过试验发现:①当每平方米种植2株番茄时,平均单株产量为8.4千克;②在每平方米种植的株数不超过10的前提下,以同样的栽培条件,株数每增加1株,平均单株产量减少0.8千克.(1)求平均单株产量y(千克)与每平方米种植的株数x(x为整数,且2≤x<10)之间的函数关系式;(2)已知学校劳动基地共有10平方米的空地用于种植这种番茄.问:当每平方米种植多少株时,该学校劳动基地能获得最大的产量?最大产量为多少千克?13.(2023春•仓山区校级期末)根据以下素材,探索完成任务.如何设计大棚苗木种植方案?素材1:图1中有一个大棚苗木种植基地及其截面图,其下半部分是一个长为20m,宽为1m的矩形,其上半部分是一条抛物线,现测得,大棚顶部的最高点距离地面5m.素材2:种植苗木时,每棵苗木高1.76m,为了保证生长空间,相邻两棵苗木种植点之间间隔1m,苗木顶部不触碰大棚,且种植后苗木成轴对称分布.(1)任务1:确定大棚上半部分形状.根据图2建立的平面直角坐标系,通过素材1提供的信息确定点的坐标,求出抛物线的函数关系式;(2)任务2:探究种植范围.在图2的坐标系中,在不影响苗木生长的情况下,确定种植点的横坐标的取值范围.14.(2023•岳麓区校级二模)从2020年开始,越来越多的商家向线上转型发展,“直播带货”已经成为商家的一种促销的重要手段.某商家在直播间销售一种进价为每件10元的日用商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)满足y=﹣10x+400,设销售这种商品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)该商家每天想获得1250元的利润,又要减少库存,应将销售单价定为多少元?(3)若销售单价不低于28元,且每天至少销售50件时,求W的最大值.15.(2022秋•蜀山区校级期末)某超市经销甲、乙两种商品.商品甲每千克成本为20元,经试销发现,该种商品每天销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系,商品乙的成本为4元/千克,销售单价为10元/千克,但每天供货总量只有80千克,且能当天销售完.为了让利消费者,超市开展了“买一送一”活动,即买1千克的商品甲,免费送1千克的商品乙.(1)直接写出销售量y与销售单价x之间的函数表达式;(2)设这两种商品的每天销售总额为S元,求出S(元)与x(元/千克)的函数关系式;(注:商品的销售额=销售单价×销售量)(3)设这两种商品销售总利润为W,若商品甲的售价不低于成本,不超过成本的150%,当销售单价定为多少时,才能使当天的销售总利润最大?最大利润是多少?(注:销售总利润=两种商品的销售总额﹣两种商品的总成本)16.(2023春•莲池区校级期中)为促进学生德智体美劳全面发展,推动文化学习与体育锻炼协调发展,某校举办了学生趣味运动会.该校计划用不超过5900元购买足球和篮球共36个,分别作为运动会团体一、二等奖的奖品.已知足球单价170元,篮球单价160元.(1)学校至多可购买多少个足球?(2)受卡塔尔世界杯的影响,学校商议决定按(1)问的结果购买足球作为一等奖奖品,以鼓励更多学生热爱足球,同时商场也对足球和篮球的价格进行调整,足球单价下降了a%,篮球单价上涨了,最终学校购买奖品的经费比计划经费的最大值节省了155元,求a的值.17.(2023春•宜都市期末)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有一次函数关系:y=ax+b.当x=5时,y=40;当x=30时,y=140.B 城生产产品的每件成本为7万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本之和为660万元时,求A,B两城各生产产品多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D 两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,若A,B 两城总运费之和的最小值为150万元,求m的值.18.(2023•海淀区校级四模)某公园修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安装一个可调节角度的喷水头,从喷水头喷出的水柱形状是一条抛物线.建立如图所示的平面直角坐标系,抛物线形水柱的竖直高度y(单位:m)与到池中心的水平距离x(单位:m)满足的关系式近似为y=a (x﹣h)2+k(a<0).(1)在某次安装调试过程中,测得x与y的部分对应值如下表:水平距离x/m00.51 1.52 2.53竖直高度y/m 2.25 2.81253 2.8125 2.25 1.31250根据表格中的数据,解答下列问题:①水管的长度是m;②求出y与x满足的函数解析式y=a(x﹣h)2+k(a<0);(2)安装工人在上述基础上进行了下面两种调试:①不改变喷水头的角度,将水管长度增加1m,水柱落地时与池中心的距离为d1;②不改变水管的长度,调节喷水头的角度,使得水柱满足y=﹣0.6(x﹣1.5)2+3.6,水柱落地时与池中心的距离为d2.则比较d1与d2的大小关系是:d1d2(填“>”或“=”或“<”)19.(2023•罗山县三模)实心球是中考体育项目之一.在掷实心球时,实心球被掷出后的运动路线可以看作是抛物线的一部分.已知小军在一次掷实心球训练中,第一次投掷时出手点距地面1.8m,实心球运动至最高点时距地面3.4m,距出手点的水平距离为4m.设实心球掷出后距地面的竖直高度为y(m),实心球距出手点的水平距离为x(m).如图,以水平方向为x轴,出手点所在竖直方向为y轴建立平面直角坐标系.(1)求第一次掷实心球时运动路线所在抛物线的表达式.(2)若实心球投掷成绩(即出手点与着陆点的水平距离)达到12.4m为满分,请判断小军第一次投掷实心球能否得满分.(3)第二次投掷时,实心球运动的竖直高度y与水平距离x近似满足函数关系y=﹣0.08(x﹣5)2+3.8记小军第一次投掷时出手点与着陆点的水平距离为d1,第二次投掷时出手点与着陆点的水平距离为d2,则d1d2.(填“>”“<”“=”)20.(2023•花溪区校级一模)过山车是一项富有刺激性的娱乐工具,在乘坐过山车的过程中能够亲身体验由能量守恒、加速度和力交织在一起产生的效果,那感觉真是妙不可言.如图是合肥某乐园中部分过山车滑道所抽象出来的函数图象,线段AB是一段直线滑道,且AB长为米,点A到地面距离OA=6米,点B到地面距离BE=3米,滑道B﹣C﹣D可以看作一段抛物线,最高点为C(8,4).(1)求滑道B﹣C﹣D部分抛物线的函数表达式;(2)当小车(看成点)沿滑道从A运动到D的过程中,小车距离x轴的垂直距离为2.5米时,它到出发点A的水平距离是多少?(3)现在需要对滑道C﹣D部分进行加固,建造某种材料的水平和竖直支架CF,PH,PG.已知这种材料的价格是75000元/米,为了预算充足,至少需要申请多少元的资金.21.(2022秋•丰都县期末)抛实心球是丰都中考体育考试项目之一,如图1是一名男生投实心球情境,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,掷出时,起点处高度为1.9m,当水平距离为4m时,实心球行进至最高点3.5m处.(1)求y关于x的函数表达式;(2)根据中考体育考试评分标准(男生版),投掷过程中,实心球从起点到落地点的水平距离大于等于9.7m时,即可得满分10分.该男生在此项考试中能否得满分,请说明理由.22.(2022秋•建昌县期末)2022年11月,“中国传统制茶技艺及其相关习俗”申遗成功,弘扬茶文化,倡导“和美雅静”的生活方式已成时尚.某茶商经销某品牌茶,成本为50元/千克,经市场调查发现,每周的销量y(千克)与销售单价x(元/千克)满足一次函数关系,部分数据列表如下:566575…销售单价x(元/千克)销量y(千克)12811090…(1)求y与x的一次函数关系式;(2)求该茶商这一周销售该品牌茶叶所获利润w(元)的最大值.23.(2023•锦州二模)近年来国家出台政策要求电动车上牌照,“保安全、戴头盔”出行.某头盔专卖店购进一批单价为36元的头盔.在销售中,通过分析销售情况发现这种头盔的月销售量y(个)与售价x(元/个)(42≤x≤72)满足一次函数关系,下表是其中的两组对应值.售价x(元/个)…5055…月销售量y(个)…10090…(1)求y与x之间的函数关系式;(2)专卖店的优惠活动:若购买一个这种头盔,就赠送一个成本为6元的头盔面罩.请问这种头盔的售价定为多少元时,月销售利润最大,最大月销售利润是多少元?24.(2023•金湖县三模)某超市购进甲、乙两种商品,已知购进5件甲商品和2件乙商品,需80元:购进3件甲商品和4件乙商品,需90元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当12≤x≤18时,甲商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:销售单价x(元/件)1218日销售量y(件)164请写出当12≤x≤18时,y与x之间的函数关系式;(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?25.(2022秋•新抚区期末)疫情防控常态化,全国人民同心抗疫.某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售,市场调查发现,线下的月销量y(件)与线下售价x(元/件,且12≤x≤16)之间满足一次函数关系,部分数据如下表:x(元/件)12131415y(件)1000900800700(1)求y与x之间的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为600件.当x为何值时,线上和线下销售月利润总和W达到最大?最大利润是多少?(3)要使(2)中月利润总和W不低于4400元,请直接写出x的取值范围.26.(2023•嘉鱼县模拟)为巩固扶贫攻坚成果,我县政府督查各部门和单位对口扶贫情况.某单位的帮扶对象种植的农产品在某月(按30天计)的第x天(x为正整数)的销售价格p(元/千克)关于x的函数关系为p=,销售量y(千克)与x之间的关系如图所示.(1)直接写出y与x之间的函数关系式和x的取值范围;(2)求该农产品的销售量有几天不超过60千克?(3)当月第几天,该农产品的销售额最大,最大销售额是多少?(销售额=销售量×销售价格)27.(2023•云梦县校级三模)李丽大学毕业后回家乡创业,开了一家服装专卖店代理品牌服装的销售.已知该品牌服装进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),每天付员工的工资每人82元,每天应支付其他费用106元.(1)直接写出日销售y(件)与销售价x(元/件)之间的函数关系式;(2)当某天的销售价为48元/件时,收支恰好平衡(收入=支出),求该店员工人数;(3)若该店只有2名员工,则每天能获得的最大利润是多少元?此时,每件服装的价格应定为多少元?28.(2023•卧龙区二模)如图,在斜坡底部点O处安装一个自动喷水装置,喷水头(视为点A)的高度(喷水头距喷水装置底部的距离)是1.8米,自动喷水装置喷射出的水流可以近似地看成抛物线.当喷射出的水流与喷水装置的水平距离为8米时,达到最大高度5米.以点O为原点,自动喷水装置所在的直线为y轴,建立平面直角坐标系.(1)求抛物线的函数关系式;(2)斜坡上距离O水平距离为10米处有一棵高度为1.75米的小树NM,MN垂直水平地面,且M点到水平地面的距离为2米,绿化工人向左水平移动喷水装置后,水流恰好喷射到小树顶端的点N,求自动喷水装置向左水平平移(即抛物线向左)了多少米?29.(2023•竞秀区二模)过山车是一项富有刺激性的娱乐工具,深受年轻游客的喜爱.某游乐场修建了一款大型过山车.如图所示,A→B→C为这款过山车的一部分轨道(B为轨道最低点),它可以看成一段抛物线,其中OA=16.9米,OB=13米(轨道厚度忽略不计).(1)求抛物线A→B→C的函数表达式;(2)在轨道上有两个位置P和C到地面的距离均为n米,当过山车运动到C处时,又进入下坡段C→E (接口处轨道忽略不计,E为轨道最低点),已知轨道抛物线C→E→F的形状与抛物线A→B→C完全相同,E点坐标为(33,0),求n的值;(3)现需要对轨道下坡段A→B进行安全加固,建造某种材料的水平和竖直支架GD、GM、HI、HN,且要求MN=2OM,已知这种材料的价格是100000元/米,请计算OM多长时,造价最低?最低造价为多少元?30.(2023•利辛县模拟)如图,某小区的景观池中安装一雕塑OA,OA=2米,在点A处安装喷水装置,喷出两股水流,两股水流可以抽象为平面直角坐标系中的两条抛物线(图中的C1,C2)的部分图象,两条抛物线的形状相同且顶点的纵坐标相同,且经测算发现抛物线C2的最高点(顶点)C距离水池面2.5米,且与OA的水平距离为2米.(1)求抛物线C2的解析式;(2)求抛物线C1与x轴的交点B的坐标;(3)小明同学打算操控微型无人机在C1,C2之间飞行,为了无人机的安全,要求无人机在竖直方向上的活动范围不小于0.5米,设无人机与OA的水平距离为m,求m的取值范围.。
4.5 函数的应用(二)【题组一 零点的求解】1.若函数()2f x x ax b =-+的两个零点是2和3,则函数()21g x bx ax =--的零点是A .1-和16 B .1和16- C .12和13 D .12-【答案】B 【解析】函数()2f x x ax b=-+的两个零点是2和3, 由函数的零点与方程根的关系知方程2=x ax b -+的两根为2和3.结合根与系数的关系得2323a b +=⎧⎨⨯=⎩,即56a b =⎧⎨=⎩, ∴()2651g x x x =--,∴g (x )的零点为1和16-,故选B.2.(2020·北京高一期中)已知函数21ln ()xf x x-=,那么方程f (x )=0的解是( ) A .1=x eB .x =1C .x =eD .x =1或x =e【答案】C【解析】依题意()21ln 0xf x x-==,所以1ln 0,ln 1,x x x e -===.故选:C 3.(2020年广东湛江)若函数()2f x x ax b =-+的两个零点是2和3,则函数()21g x bx ax =--的零点是A .1-和16 B .1和16- C .12和13 D .12-【答案】B 【解析】函数()2f x x ax b=-+的两个零点是2和3, 由函数的零点与方程根的关系知方程2=x ax b -+的两根为2和3.结合根与系数的关系得2323a b +=⎧⎨⨯=⎩,即56a b =⎧⎨=⎩, ∴()2651g x x x =--,∴g (x )的零点为1和16-,故选B.【题组二 零点区间的判断】1.(2020·浙江高一课时练习)在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭【答案】C【解析】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩,所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C. 2.(2020·浙江高一课时练习)设函数3y x =与212x y -⎛⎫= ⎪⎝⎭的图象的交点为00,x y ,则0x 所在的区间是( )A .0,1B .1,2C .()2,3D .()3,4【答案】B【解析】因为根据题意可知,当x=1时,则23102x x -⎛⎫< ⎪⎝⎭-,而当x=2时,则23102x x -⎛⎫-> ⎪⎝⎭,故选B.3.(2020天津高一期中)在下列个区间中,存在着函数3()239f x x x =--的零点的区间是( ) A .(1,0)- B .(0,1)C .(1,2)D .(2,3)【答案】C 【解析】由()()1239100,2166910f f =--=-=--=.由零点存在定理知函数()3239f x x x =--在()1,2上必有零点。
中考数学复习专题训练二次函数的综合应用一、选择题1.下列函数是二次函数的是( )A. y=2x+1B. y=﹣2x+1C. y=x2+2D. y=x﹣22.函数y=(m﹣3)x|m|﹣1+3x﹣1是二次函数,则m的值是( )A. ﹣3B. 3C. ±2D. ±33.已知抛物线y=ax2+bx+c经过原点和第一、二、三象限,那么()A. a>0,b>0,c>0B. a>0,b>0,c=0C. a>0,b>0,c<0D. a>0,b<0,c=04.如图,在同一坐标系下,一次函数y=ax+b与二次函数y=ax2+bx+4的图象大致可能是()A. B. C. D.5.在平面直角坐标系中,抛物线y=x2-1与y轴的交点坐标是( )A. (1,0)B. (0,1)C. (0,-1)D. (-1,0)6.二次函数的图象如图所示,则这个二次函数的解析式为()A. y (x﹣2)2+3B. y= (x﹣2)2﹣3C. y=﹣(x﹣2)2+3D. y=﹣(x﹣2)2﹣37.如图,已知二次函数y1= x2﹣x的图象与正比例函数y2= x的图象交于点A(3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A. 0<x<2B. 0<x<3C. 2<x<3D. x<0或x>38. 设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A. a(x1﹣x2)=dB. a(x2﹣x1)=dC. a(x1﹣x2)2=dD. a(x1+x2)2=d9.二次函数y=x2﹣8x+15的图象与x轴相交于M,N两点,点P在该函数的图象上运动,能使△PMN的面积等于的点P共有( )A. 1个B. 2个C. 3个D. 4个10.已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为()A. B. C. 3 D. 411.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为( )A. -B. 或-C. 2或-D. 2或或-12.现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=﹣x2+4x上的概率为()A. B. C. D.二、填空题13.若函数y=(m+2)是二次函数,则m=________14.抛物线y= (x﹣4)2+3与y轴交点的坐标为________.15.已知抛物线的顶点坐标为(1,﹣1),且经过原点(0,0),则该抛物线的解析式为________.16.二次函数y=x2+4x+5中,当x=________时,y有最小值.17.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表x﹣1013y﹣1353下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小.③当x=2时,y=5;④3是方程ax2+(b﹣1)x+c=0的一个根;其中正确的有________.(填正确结论的序号)18.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线,且经过点(-3,y1),(4,y2),试比较y1和y2的大小:y1________y2(填“>”,“<”或“=”).19.如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是________.20.如图,二次函数的图象经过点,对称轴为直线,下列5个结论:①;②;③;④;⑤,其中正确的结论为________ .(注:只填写正确结论的序号)三、解答题21.已知抛物线y= x2﹣2x的顶点是A,与x轴相交于点B、C两点(点B在点C的左侧).(1)求A、B、C的坐标;(2)直接写出当y<0时x的取值范围.22.在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当S△ABC=15时,求该抛物线的表达式;(3)在(2)的条件下,经过点C的直线与抛物线的另一个交点为D.该抛物线在直线上方的部分与线段CD组成一个新函数的图象。
2020届高考数学命题猜想函数与方程﹑函数模型及其应用【考向解读】求方程的根、函数的零点的个数问题以及由零点存在性定理判断零点是否存在,利用函数模型解决实际问题是高考的热点;备考时应理解函数的零点,方程的根和函数的图象与x轴的交点的横坐标的等价性;掌握零点存在性定理.增强根据实际问题建立数学模型的意识,提高综合分析、解决问题的能力.【命题热点突破一】函数零点的存在性定理1.零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根.2.函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.例1 、(2018年全国卷Ⅱ)已知函数.(1)若,求的单调区间;(2)证明:只有一个零点.【答案】见解析【解析】(2)由于,所以等价于.设=,则g ′(x )=≥0,仅当x=0时g ′(x )=0,所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.又f (3a –1)=,f (3a+1)=,故f (x )有一个零点.综上,f (x )只有一个零点.【感悟提升】新定义问题的本质是转化思想的应用,即把新定义问题转化为已知的问题加以解决,解题的关键是理解新定义,把新定义表达的问题转化为我们已经掌握的数学问题,然后根据题目的要求进行推理计算得出结论.【变式探究】给出定义:如果函数f(x)在[a ,b]上存在x1,x2(a<x1<x2<b),满足f ′(x1)=f (b )-f (a )b -a ,f ′(x2)=f (b )-f (a )b -a ,则称实数x1,x2为[a ,b]上的“对望数”,函数f(x)为[a ,b]上的“对望函数”.已知函数f(x)=13x3-x2+m 是[0,m]上的“对望函数”,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎪⎫32,3 B .(2,3) C.⎝⎛⎭⎪⎪⎫32,2 3 D .(2,2 3)【答案】A【命题热点突破三】 函数模型及其应用解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答.例3、(2017·江苏)设f(x)是定义在R 上且周期为1的函数,在区间[0,1)上,f(x)=⎩⎪⎨⎪⎧x2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x =n -1n ,n ∈N*,则方程f(x)-lg x =0的解的个数是_____.【答案】8【变式探究】随着网络的发展,网校教育越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势.假设某网校每日的套题销售量y(单位:万套)与销售价格x(单位:元/套)满足关系式y =m x -2+4(x -6)2,其中2<x<6,m 为常数.已知销售价格为4元/套时,每日可售出套题21万套.(1)求m 的值;(2)假设每套题的成本为2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数)【解析】解:(1)因为x =4时,y =21,代入y =mx -2+4(x -6)2,得m2+16=21,解得m =10.(2)由(1)可知,套题每日的销售量y =10x -2+4(x -6)2,所以每日销售套题所获得的利润f (x )=(x -2)·⎣⎢⎢⎡⎦⎥⎥⎤10x -2+4(x -6)2=10+4(x -6)2(x -2)=4x3-56x2+240x -278(2<x<6),从而f ′(x )=12x2-112x +240=4(3x -10)(x -6)(2<x<6).令f ′(x )=0,得x =103(x =6舍去),且在⎝ ⎛⎭⎪⎪⎫2,103上,f ′(x )>0,函数f (x )单调递增,在⎝ ⎛⎭⎪⎪⎫103,6上,f ′(x )<0,函数f (x )单调递减,所以x =103是函数f (x )在(2,6)内的极大值点,也是最大值点,所以当x =103≈3.3时,函数f (x )取得最大值,即当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大.1 、(2017·全国Ⅲ)已知函数f(x)=x2-2x +a(ex -1+e -x +1)有唯一零点,则a 等于 A.-12B.13C.12 D.1【解析】f(x)=x2-2x +a(ex -1+e -x +1) =(x -1)2+a[ex -1+e -(x -1)]-1,令t =x -1,则g(t)=f(t +1)=t2+a(et +e -t)-1. ∵g(-t)=(-t)2+a(e -t +et)-1=g(t), ∴函数g(t)为偶函数.∵f(x)有唯一零点,∴g(t)也有唯一零点. 又g(t)为偶函数,由偶函数的性质知g(0)=0, ∴2a -1=0,解得a =12 .【答案】C.2、(2017·江苏)设f(x)是定义在R 上且周期为1的函数,在区间[0,1)上,f(x)=⎩⎪⎨⎪⎧x2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x =n -1n ,n ∈N*,则方程f(x)-lg x =0的解的个数是_____.【答案】81.【2016高考新课标1卷】函数在[]2,2-的图像大致为(A)(B)(C)(D)【答案】D2.【2016高考山东文数】已知函数其中0m>,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是________________.【答案】() 3,+∞【解析】画出函数图象如下图所示:由图所示,要()f x b=有三个不同的根,需要红色部分图像在深蓝色图像的下方,即,解得3m >。
函数的实际应用-中考数学重难点题型专题汇总抛物线型问题(专题训练)1.现要修建一条隧道,其截面为抛物线型,如图所示,线段OE 表示水平的路面,以O 为坐标原点,以OE 所在直线为x 轴,以过点O 垂直于x 轴的直线为y 轴,建立平面直角坐标系.根据设计要求:10m OE =,该抛物线的顶点P 到OE 的距离为9m .(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A 、B 处分别安装照明灯.已知点A 、B 到OE 的距离均为6m ,求点A 、B 的坐标.【答案】(1)29(5)925y x =--+(2)(5(5A B +【分析】(1)根据题意,设抛物线的函数表达式为2(5)9y a x =-+,再代入(0,0),求出a 的值即可;(2)根据题意知,A ,B 两点的纵坐标为6,代入函数解析式可求出两点的横坐标,从而可解决问题.(1)依题意,顶点(5,9)P ,设抛物线的函数表达式为2(5)9y a x =-+,将(0,0)代入,得20(05)9a =-+.解之,得925a =-.∴抛物线的函数表达式为29(5)925y x =--+.(2)令6y =,得29(5)9625x --+=.解之,得125,5x x +=+.∴(5(5A B +.【点睛】本题考查了运用待定系数法求二次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出二次函数的解析式是关键.2.甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽8m OA =,桥拱顶点B 到水面的距离是4m .(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m 的打捞船径直向桥驶来,当船驶到桥拱下方且距O 点0.4m 时,桥下水位刚好在OA 处.有一名身高1.68m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);(3)如图③,桥拱所在的函数图象是抛物线()20y ax bx c a =++≠,该抛物线在x 轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移()0m m >个单位长度,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小,结合函数图象,求m 的取值范围.【答案】(1)y=14-x 2+2x (0≤x≤8);(2)他的头顶不会触碰到桥拱,理由见详解;(3)【分析】(1)设二次函数的解析式为:y=a(x-8)x ,根据待定系数法,即可求解;(2)把:x =1,代入y=14-x 2+2x ,得到对应的y 值,进而即可得到结论;(3)根据题意得到新函数解析式,并画出函数图像,进而即可得到m 的范围.【详解】(1)根据题意得:A(8,0),B(4,4),设二次函数的解析式为:y=a(x-8)x ,把(4,4)代入上式,得:4=a×(4-8)×4,解得:14a =-,∴二次函数的解析式为:y=14-(x-8)x=14-x 2+2x (0≤x≤8);(2)由题意得:x=0.4+1.2÷2=1,代入y=14-x 2+2x ,得y=14-×12+2×1=74>1.68,答:他的头顶不会触碰到桥拱;(3)由题意得:当0≤x≤8时,新函数表达式为:y=14x 2-2x ,当x <0或x >8时,新函数表达式为:y=-14x 2+2x ,∴新函数表达式为:2212(08)41(08)4x x x y x x x ⎧-≤≤⎪⎪=⎨⎪-+⎪⎩或,∵将新函数图象向右平移()0m m >个单位长度,∴O '(m ,0),A '(m+8,0),B '(m+4,-4),如图所示,根据图像可知:当m+4≥9且m≤8时,即:5≤m≤8时,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小.本题主要考查二次函数的实际应用,掌握二次函数的待定系数法,二次函数的图像和性质,二次函数图像平移和轴对称变换规律,是解题的关键.3.2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系.图中的抛物线2117C :1126y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到离A 处的水平距离为4米时,离水平线的高度为8米,求抛物线2C 的函数解析式(不要求写出自变量x 的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b 的取值范围.【答案】(1)213482y x x =-++;(2)12米;(3)3524b ≥.【分析】(1)根据题意可知:点A (0,4)点B (4,8),利用待定系数法代入抛物线221:8C y x bx c=-++即可求解;(2)高度差为1米可得21=1C C -可得方程,由此即可求解;(3)由抛物线2117C :1126y x x =-++可知坡顶坐标为61(7,)12,此时即当7x =时,运动员运动到坡顶正上方,若与坡顶距离超过3米,即2161773812y b c =-⨯++≥+,由此即可求出b的取值范围.【详解】解:(1)根据题意可知:点A (0,4),点B (4,8)代入抛物线221:8C y x bx c =-++得,2=4144=88c b c ⎧⎪⎨-⨯++⎪⎩,解得:=43=2c b ⎧⎪⎨⎪⎩,∴抛物线2C 的函数解析式213482y x x =-++;(2)∵运动员与小山坡的竖直距离为1米,∴221317(4)(1)182126x x x x -++--++=,解得:14x =-(不合题意,舍去),212x =,故当运动员运动水平线的水平距离为12米时,运动员与小山坡的竖直距离为1米;(3)∵点A (0,4),∴抛物线221:48C y x bx =-++,∵抛物线2211761C :1=7)12612y x x x =-++-+,∴坡顶坐标为61(7,12,∵当运动员运动到坡顶正上方,且与坡顶距离超过3米时,∴21617743812y b =-⨯++≥+,解得:3524b ≥.【点睛】本题属二次函数应用中的难题.解决函数应用问题的一般步骤为:(1)审题:弄清题意,分清条件和结论,理清数量关系;(2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型;(3)求模:求解数学模型,得到数学结论;(4)还原:将用数学方法得到的结论还原为实际问题.4.如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB 在x 轴上,且8AB =dm ,外轮廓线是抛物线的一部分,对称轴为y 轴,高度8OC =dm .现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB 上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB 上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为3dm 的圆,请说明理由.【答案】(1)296-;(2)20dm ;(3)能切得半径为3dm 的圆.【分析】(1)先把二次函数解析式求出来,设正方形的边长为2m ,表示在二次函数上点的坐标,代入即可得到关于m (2)如详解2中图所示,设矩形落在AB 上的边DE=2n ,利用函数解析式求解F 点坐标,进而表示出矩形的周长求最大值即可;(3)为了保证尽可能截取圆,应保证圆心H 坐标为(0,3),表示出圆心H 到二次函数上个点之间的距离与半径3进行比较即可.(1)由题目可知A (-4,0),B (4,0),C (0,8)设二次函数解析式为y=ax²+bx+c ,∵对称轴为y 轴,∴b=0,将A 、C 代入得,a=12-,c=8则二次函数解析式为2182y x =-+,如下图所示,正方形MNPQ 即为符合题意得正方形,设其边长为2m ,则P 点坐标可以表示为(m ,2m )代入二次函数解析式得,21822m m -+=,解得122,2m m =-=-(舍去),∴2m=4,()()222496m =-=-则正方形的面积为296-;(2)如下如所示矩形DEFG ,设DE=2n ,则E (n ,0)将x=n 代入二次函数解析式,得2182y n =-+,则EF=2182n -+,矩形DEFG 的周长为:2(DE+EF )=2(2n+2182n -+)=22416(2)20n n n -++=--+,当n=2时,矩形的周长最大,最大周长为20dm ;(3)如下图所示,为了保证尽可能截取圆,应保证圆心H 坐标为(0,3),则圆心H 到二次函数上个点之间的距离为3≥,∴能切得半径为3dm 的圆.【点睛】本题考查了二次函数与几何结合,熟练掌握各图形的性质,能灵活运用坐标与线段长度之间的转换是解题的关键.5.跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K 为飞行距离计分的参照点,落地点超过K 点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA 为66m ,基准点K 到起跳台的水平距离为75m ,高度为m h (h 为定值).设运动员从起跳点A 起跳后的高度(m)y 与水平距离(m)x 之间的函数关系为2(0)y ax bx c a =++.(1)c 的值为__________;(2)①若运动员落地点恰好到达K 点,且此时19,5010a b =-=,求基准点K 的高度h ;②若150a =-时,运动员落地点要超过K 点,则b 的取值范围为__________;(3)若运动员飞行的水平距离为25m 时,恰好达到最大高度76m ,试判断他的落地点能否超过K点,并说明理由.【答案】(1)66(2)①基准点K的高度h为21m;②b>9 10;(3)他的落地点能超过K点,理由见解析.【分析】(1)根据起跳台的高度OA为66m,即可得c=66;(2)①由a=﹣150,b=910,知y=﹣150x2+910x+66,根据基准点K到起跳台的水平距离为75m,即得基准点K的高度h为21m;②运动员落地点要超过K点,即是x=75时,y>21,故﹣150×752+75b+66>21,即可解得答案;(3)运动员飞行的水平距离为25m时,恰好达到最大高度76m,即是抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,可得抛物线解析式为y=﹣2125(x﹣25)2+76,当x=75时,y=36,从而可知他的落地点能超过K点.(1)解:∵起跳台的高度OA为66m,∴A(0,66),把A(0,66)代入y=ax2+bx+c得:c=66,故答案为:66;(2)解:①∵a=﹣150,b=910,∴y=﹣150x2+910x+66,∵基准点K到起跳台的水平距离为75m,∴y=﹣150×752+910×75+66=21,∴基准点K的高度h为21m;②∵a=﹣1 50,∴y=﹣150x2+bx+66,∵运动员落地点要超过K点,∴当x=75时,y>21,即﹣150×752+75b+66>21,解得b>9 10,故答案为:b>9 10;(3)解:他的落地点能超过K点,理由如下:∵运动员飞行的水平距离为25m时,恰好达到最大高度76m,∴抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,把(0,66)代入得:66=a(0﹣25)2+76,解得a=﹣2 125,∴抛物线解析式为y=﹣2125(x﹣25)2+76,当x=75时,y=﹣2125×(75﹣)2+76=36,∵36>21,∴他的落地点能超过K点.【点睛】本题考查二次函数的应用,解题的关键是读懂题意,能根据题意把实际问题转化为数学问题.6.根据以下素材,探索完成任务.如何设计拱桥景观灯的悬挂方案?素材1图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高.素材2为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm 长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m ;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m ;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.问题解决任务1确定桥拱形状在图2任务2探究悬挂范围在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.任务3拟定设计方案给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.【答案】任务一:见解析,2120y x =-;任务二:悬挂点的纵坐标的最小值是 1.8-;66x -≤≤;任务三:两种方案,见解析【分析】任务一:根据题意,以拱顶为原点,建立如图1所示的直角坐标系,待定系数法求解析式即可求解;任务二:根据题意,求得悬挂点的纵坐标5 1.810.4 1.8y ≥-+++=-,进而代入函数解析式即可求得横坐标的范围;任务三:有两种设计方案,分情况讨论,方案一:如图2(坐标系的横轴,图3同),从顶点处开始悬挂灯笼;方案二:如图3,从对称轴两侧开始悬挂灯笼,正中间两盏与对称轴的距离均为0.8m ,根据题意求得任意一种方案即可求解.【详解】任务一:以拱顶为原点,建立如图1所示的直角坐标系,则顶点为(0,0),且经过点(10,5)-.设该抛物线函数表达式为2(0)y ax a =≠,则5100a -=,∴120a =-,∴该抛物线的函数表达式是2120y x =-.任务二:∵水位再上涨1.8m 1m ,灯笼长0.4m ,∴悬挂点的纵坐标5 1.810.4 1.8y ≥-+++=-,∴悬挂点的纵坐标的最小值是 1.8-.当 1.8y =-时,211.820x -=-,解得16x =或26x =-,∴悬挂点的横坐标的取值范围是66x -≤≤.任务三:有两种设计方案方案一:如图2(坐标系的横轴,图3同),从顶点处开始悬挂灯笼.∵66x -≤≤,相邻两灯笼悬挂点的水平间距均为1.6m ,∴若顶点一侧挂4盏灯笼,则1.646⨯>,⨯<,若顶点一侧挂3盏灯笼,则1.636∴顶点一侧最多可挂3盏灯笼.∵挂满灯笼后成轴对称分布,∴共可挂7盏灯笼.-.∴最左边一盏灯笼悬挂点的横坐标是 4.8方案二:如图3,从对称轴两侧开始悬挂灯笼,正中间两盏与对称轴的距离均为0.8m,+⨯->,∵若顶点一侧挂5盏灯笼,则0.8 1.6(51)6+⨯-<,若顶点一侧挂4盏灯笼,则0.8 1.6(41)6∴顶点一侧最多可挂4盏灯笼.∵挂满灯笼后成轴对称分布,∴共可挂8盏灯笼.-.∴最左边一盏灯笼悬挂点的横坐标是 5.6【点睛】本题考查了二次函数的应用,根据题意建立坐标系,掌握二次函数的性质是解题的关键.7.公路上正在行驶的甲车,发现前方20m处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t(单位:s)的关系分别可以用二次函数和一次函数表示,其图象如图所示.(1)当甲车减速至9m/s时,它行驶的路程是多少?(2)若乙车以10m/s的速度匀速行驶,两车何时相距最近,最近距离是多少?【答案】(1)87.5m ;(2)6秒时两车相距最近,最近距离是2米【分析】(1)根据图像分别求出一次函数和二次函数解析式,令v=9求出t ,代入求出s 即可;(2)分析得出当v=10m/s 时,两车之间距离最小,代入计算即可.【详解】解:(1)由图可知:二次函数图像经过原点,设二次函数表达式为2s at bt =+,一次函数表达式为v kt c =+,∵一次函数经过(0,16),(8,8),则8816k c c =+⎧⎨=⎩,解得:116k c =-⎧⎨=⎩,∴一次函数表达式为16v t =-+,令v=9,则t=7,∴当t=7时,速度为9m/s ,∵二次函数经过(2,30),(4,56),则423016456a b a b +=⎧⎨+=⎩,解得:1216a b ⎧=-⎪⎨⎪=⎩,∴二次函数表达式为21162s t t =-+,令t=7,则s=491672-+⨯=87.5,∴当甲车减速至9m/s 时,它行驶的路程是87.5m ;(2)∵当t=0时,甲车的速度为16m/s ,∴当10<v <16时,两车之间的距离逐渐变小,当0<v <10时,两车之间的距离逐渐变大,∴当v=10m/s 时,两车之间距离最小,将v=10代入16v t =-+中,得t=6,将t=6代入21162s t t =-+中,得78s =,此时两车之间的距离为:10×6+20-78=2m ,∴6秒时两车相距最近,最近距离是2米.【点睛】本题考查了二次函数与一次函数的实际应用,理解题意,读懂函数图像,求出表达式是解题的基本前提.8.如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A 处,另一端固定在离地面高2米的墙体B 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y (米)与其离墙体A 的水平距离x (米)之间的关系满足216y x bx c =-++,现测得A ,B 两墙体之间的水平距离为6米.图2(1)直接写出b ,c 的值;(2)求大棚的最高处到地面的距离;(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为3724米的竹竿支架若干,已知大棚内可以根竹竿,则共需要准备多少根竹竿?【答案】(1)76b =,1c =;(2)7324米;(3)352【分析】(1)根据题意,可直接写出点A 点B 坐标,代入216y x bx c =-++,求出b 、c 即可;(2)根据(1)中函数解析式直接求顶点坐标即可;(3根据2173716624y x x =-++=,先求得大棚内可以搭建支架的土地的宽,再求得需搭建支架的面积,最后根据每平方米需要4根竹竿计算即可.【详解】解:(1)由题意知点A 坐标为(0)1,,点B 坐标为(6)2,,将A 、B 坐标代入216y x bx c =-++得:21=12666c b c ⎧⎪⎨=-⨯++⎪⎩解得:761b c ⎧=⎪⎨⎪=⎩,故76b =,1c =;(2)由221717731666224y x x x ⎛⎫=-++=--+ ⎪⎝⎭,可得当72x =时,y 有最大值7324,即大棚最高处到地面的距离为7324米;(3)由2173716624y x x =-++=,解得112x =,2132x =,又因为06x ≤≤,可知大棚内可以搭建支架的土地的宽为111622-=(米),又大棚的长为16米,故需要搭建支架部分的土地面积为1116882⨯=(平方米)共需要884352⨯=(根)竹竿.【点睛】本题主要考查根据待定系数法求函数解析式,根据函数解析式求顶点坐标,以及根据函数值确定自变量取值范围,掌握此题的关键是熟练掌握二次函数图像的性质.9.如图1是一座抛物线型拱桥侧面示意图.水面宽AB 与桥长CD 均为24m ,在距离D 点6米的E 处,测得桥面到桥拱的距离EF 为1.5m ,以桥拱顶点O 为原点,桥面为x 轴建立平面直角坐标系.(1)求桥拱项部O 离水面的距离.(2)如图2,桥面上方有3根高度均为4m 的支柱CG ,OH ,DI ,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m .①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.【答案】(1)6m ;(2)①21'(6)112y x =++;②2m 【分析】(1)设211y a x =,由题意得(6,1.5)F -,求出抛物线图像解析式,求当x=12或x=-12时y 1的值即可;(2)①由题意得右边的抛物线顶点为(6,1),设222(6)1y a x =-+,将点H 代入求值即可;②设彩带长度为h ,则12h y y =-,代入求值即可.【详解】解(1)设211y a x =,由题意得(6,1.5)F -,11.536a ∴-=,1124a ∴=-,21124y x ∴=-,∴当12x =时,21112624y =-⨯=-,∴桥拱顶部离水面高度为6m .(2)①由题意得右边的抛物线顶点为(6,1),∴设222(6)1y a x =-+,(0,4)H ,224(06)1a ∴=-+,2112a ∴=,221(6)112y x ∴=-+,(左边抛物线表达式:21'(6)112y x =++)②设彩带长度为h ,则22221111(6)1()412248h y y x x x x =-=-+--=-+,∴当4x =时,2min h =,答:彩带长度的最小值是2m .【点睛】本题主要考查待定系数法求二次函数的解析式,以及二次函数最值得求解方法,结合题意根据数形结合的思想设出二次函数的顶点式方程是解题的关键.。
—————————— 教育资源共享 步入知识海洋 ————————第19讲 二次函数的应用(2)1. (2012,河北,导学号5892921)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm 2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据.(1)(2)已知出厂一张边长为40 cm 的薄板,获得的利润是26元(利润=出厂价-成本价). ①求一张薄板的利润与边长之间满足的函数解析式;②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?【思路分析】 (1)设一张薄板的边长为x cm ,它的出厂价为y 元,基础价为n 元,浮动价为kx 元,则y =kx +n .利用待定系数法求一次函数的解析式即可.(2)①设一张薄板的利润为p 元,它的成本价为mx 2元.由题意,得p =y -mx 2,进而得出m 的值,求出函数解析式即可.②利用二次函数的最值公式求出二次函数的最值即可.解:(1)设一张薄板的边长为x cm ,它的出厂价为y 元,基础价为n 元,浮动价为kx 元,则y =kx +n .由表格中的数据,得⎩⎪⎨⎪⎧50=20k +n ,70=30k +n .解得⎩⎪⎨⎪⎧k =2,n =10.所以一张薄板的出厂价与边长之间满足的函数解析式为y =2x +10.(2)①设一张薄板的利润为p 元,它的成本价为mx 2元.由题意,得p =y -mx 2=2x +10-mx 2.将x =40,p =26代入p =2x +10-mx 2,得26=2×40+10-m ·402. 解得m =125.所以一张薄板的利润与边长之间满足的函数解析式为p =-125x 2+2x +10.②因为a =-125<0,所以当x =-b 2a=-22×⎝ ⎛⎭⎪⎫-125=25(在5~50之间)时,p 最大=4ac -b 24a =4×⎝ ⎛⎭⎪⎫-125×10-224×⎝ ⎛⎭⎪⎫-125=35.所以出厂一张边长为25 cm 的薄板,获得的利润最大,最大利润是35元.利润问题例 1 (2018,扬州节选,导学号5892921)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天的销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大?最大利润是多少?例1题图【思路分析】 (1)直接利用待定系数法确定y 与x 之间的函数关系式.(2)先由题意得出x 的取值范围,再根据总利润=销售量×单件的利润,将(1)中的函数关系式代入,得到总利润与销售单价之间的函数关系式,最后根据其性质求出最大值.解:(1)设y 与x 之间的函数关系式为y =kx +b .由题意,得⎩⎪⎨⎪⎧40k +b =300,55k +b =150.解得⎩⎪⎨⎪⎧k =-10,b =700.故y 与x 之间的函数关系式为y =-10x +700.(2)由题意,得-10x +700≥240. 解得x ≤46.设每天获取的利润为w 元, 则w =(x -30)·y=(x -30)(-10x +700)=-10x 2+1 000x -21 000=-10(x -50)2+4 000. ∵-10<0,∴当x <50时,w 随x 的增大而增大.∴当x =46时,w 最大,w 最大=-10×(46-50)2+4 000=3 840.答:当销售单价为46元时,每天获取的利润最大,最大利润是3 840元.针对训练1 (2018,深圳模拟)某商场试销一种成本为50元/件的T 恤,规定试销期间单价不低于成本单价,又获利不得高于50%.经试销发现,销售量y (件)与销售单价x (元/件)符合一次函数关系,试销数据如下表:(1)求y 与x 之间的函数关系式;(2)若该商场获得的利润为w 元,试写出利润w 与销售单价x 之间的函数关系式.当销售单价定为多少元时,商场可获得最大利润?最大利润是多少元?【思路分析】 (1)直接利用待定系数法确定y 与x 之间的函数关系式.(2)根据利润=销售量×(销售单价-单件成本),将(1)中的函数关系式代入,得到利润w 与销售单价x 之间的函数关系式,再根据x 的取值范围和二次函数的性质求出最大值.解:(1)设y 与x 之间的函数关系式为y =kx +b .由题意,得⎩⎪⎨⎪⎧55k +b =75,60k +b =70.解得⎩⎪⎨⎪⎧k =-1,b =130.∴y =-x +130.(2)w =(x -50)(130-x )=-x 2+180x -6 500=-(x -90)2+1 600.由题意,得x ≤50×(1+50%),即x ≤75. ∴50≤x ≤75.∵当x <90时,w 随x 的增大而增大, ∴当x =75时,w 取得最大值,为1 375.所以当销售单价定为75元时,商场可以获得最大利润,最大利润是1 375元.二次函数与几何图形的综合例2 (2018,保定模拟)如图,已知矩形ABCD 的边AB =2,BC =3,P 是AD 边上的一动点(点P 异于点A ,D ),Q 是BC 边上的任意一点,连接AQ ,DQ ,过点P 作PE ∥DQ 交AQ 于点E ,作PF ∥AQ 交DQ 于点F .(1)求证:△APE ∽△PDF ;(2)设AP =x ,求四边形EQDP 的面积S (用含x 的代数式表示出来);当四边形EQDP 的面积等于214时,说明PE 与DQ 的数量关系.例2题图【思路分析】 (1)根据PE ∥DQ ,PF ∥AQ 得出同位角相等即可证得两三角形相似.(2)由PE ∥DQ ,得到△APE ∽△ADQ .根据相似三角形的性质得到S △APE S △ADQ =⎝ ⎛⎭⎪⎫AP AD 2=x 29.求出S △ADQ =12S 矩形ABCD =3,于是得到S =S △ADQ -S △APE =-13x 2+3.根据四边形EQDP 的面积等于214,列方程即可得到结论.(1)证明:∵PE ∥DQ , ∴∠APE =∠PDF . ∵PF ∥AQ ,∴∠DPF =∠PAE . ∴△APE ∽△PDF . (2)解:∵PE ∥DQ , ∴△APE ∽△ADQ .∴S △APE S △ADQ =⎝ ⎛⎭⎪⎫AP AD 2=x 29,AP AD =PE DQ. ∵S △ADQ =12S 矩形ABCD =3,∴S △APE =13x 2.∴S =S △ADQ -S △APE =-13x 2+3.当四边形EQDP 的面积等于214时,214=-13x 2+3.解得x =32.∴AP =32=12AD .∴PE =12DQ .针对训练2(2018,揭阳一模)如图,在Rt △ABC 中,∠BAC =90°,AB =AC =22,AD 为BC 边上的高,动点P 在AD 上,从点A 出发,沿A →D 方向运动.设AP =x ,△ABP 的面积为S 1,矩形PDFE 的面积为S 2,y =S 1+S 2,则y 与x 之间的关系式是 y =-x 2+3x .训练2题图【解析】 ∵在Rt △ABC 中,∠BAC =90°,AB =AC =22,AD 为BC 边上的高,AP =x ,∴∠BAD =∠CAD =45°.∴BD =AD =2.∴PE =AP =x ,PD =AD -AP =2-x .∴y =S 1+S 2=x ·22+(2-x )·x =-x 2+3x .一、 选择题1. (2018,马鞍山二模)某农产品市场经销一种成本为每千克40元的农产品.据市场分析,若按每千克50元销售,一个月能售出500 kg ;销售单价每涨1元,月销售量就减少10 kg.设销售单价为每千克x 元,月销售利润为y 元,则y 与x 之间的函数关系式为(C )A. y =(x -40)(500-10x )B. y =(x -40)(10x -500)C. y =(x -40)[500-10(x -50)]D. y =(x -40)[500-10(50-x )]【解析】 因为销售单价为每千克x 元,月销售利润为y 元,所以y 与x 之间的函数关系式为y =(x -40)[500-10(x -50)].2. (2018,芜湖繁昌县一模)某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y (件)与销售单价x (元/件)之间的函数关系式为y =-4x +440,要使销售该商品获得的月利润最大,该商品的售价应定为(C )A. 60元/件B. 70元/件C. 80元/件D. 90元/件【解析】 设销售该商品每月所获总利润为w 元,则w =(x -50)(-4x +440)=-4x 2+640x-22 000=-4(x -80)2+3 600.∴当x =80时,w 取得最大值,最大值为3 600.所以当售价为80元/件时,销售该商品所获月利润最大.3. 如图,已知边长为4的正方形ABCD ,P 是BC 边上一动点(与点B ,C 不重合),连接AP ,作PE ⊥AP 交外角∠DCF 的平分线于点E .设BP =x ,△PCE 的面积为y ,则y 与x 之间的函数关系式是(C )第3题图A. y =2x +1B. y =12x -2x 2C. y =2x -12x 2D. y =2x【解析】 如答图,过点E 作EH ⊥BC 于点H .∵四边形ABCD 是正方形,∴∠DCH = 90°.∵CE 平分∠DCH ,∴∠ECH =12∠DCH =45°.∵∠CHE =90°,∴∠CEH =∠ECH =45°.∴EH =CH .∵四边形ABCD 是正方形,AP ⊥EP ,∴∠B =∠CHE =∠APE =90°.∴∠BAP +∠APB =90°,∠APB +∠EPH =90°.∴∠BAP =∠EPH .∴△BAP ∽△HPE .∴AB PH=BP EH .∴44-x +EH =x EH .∴EH =x .∴y =12·CP ·EH =12·(4-x )·x =2x -12x 2.第3题答图4. (2018,淄博模拟)如图,在△ABC 中,∠B =90°,AB =12 mm ,BC =24 mm ,动点P 从点A 开始沿边AB 向点B 以2 mm/s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向点C 以4 mm/s 的速度移动(不与点C 重合).如果点P ,Q 分别从点A ,B 同时出发,那么四边形APQC 的面积最小时,经过(C )第4题图A. 1 sB. 2 sC. 3 sD. 4 s【解析】 设点P ,Q 同时出发t s 时,四边形APQC 的面积为S mm 2,则S =S △ABC -S △PBQ =12×12×24-12·4t ·(12-2t )=4t 2-24t +144=4(t -3)2+108.∵4>0,∴当t =3时,S 取得最小值.5. (2018,天津武清区模拟)某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y (元)与销售单价x (元)满足关系y =-x 2+70x -800,要想获得日最大利润,则销售单价为(B )A. 30元B. 35元C. 40元D. 45元【解析】 ∵y =-x 2+70x -800=-(x -35)2+425,∴当x =35时,y 取得最大值,最大值为425,即销售单价为35元时,日销售利润最大.6. (2018,广州南沙区模拟)如图,△ABC 是直角三角形,∠A =90°,AB =8 cm ,AC =6 cm.点P 从点A 出发,沿AB 方向以2 cm/s 的速度向点B 运动,同时点Q 从点A 出发,沿AC 方向以1 cm/s 的速度向点C 运动,其中一个动点到达终点则另一个动点也停止运动,则△APQ 的面积最大是(C )第6题图A. 10 cm 2B. 8 cm 2C. 16 cm 2D. 24 cm 2【解析】 设运动时间为t s .根据题意,得AP =2t ,AQ =t ,∴S △APQ =t 2.易知0<t ≤4,∴△APQ 的面积最大是16 cm 2.7. 如图,正方形ABCD 的边长为1,E ,F 分别是边BC 和CD 上的动点(不与正方形的顶点重合),不管点E ,F 怎样运动,始终保持AE ⊥EF .设BE =x ,DF =y ,则y 关于x 的函数解析式是(C )第7题图A. y =x +1B. y =x -1C. y =x 2-x +1D. y =x 2-x -1【解析】 ∵四边形ABCD 为正方形,∴∠B =∠C =90°.∴∠BAE +∠AEB =90°.∵AE ⊥EF ,∴∠AEB +∠FEC =90°.∴∠BAE =∠FEC .∴△ABE ∽△ECF .∴AB ∶EC =BE ∶CF .∴AB ·CF=EC ·BE .∵AB =1,BE =x ,EC =1-x ,CF =1-y ,∴1·(1-y )=(1-x )·x .化简得y =x 2-x +1.二、 填空题8. (导学号5892921)如图,在矩形ABCD 中,AD =16,AB =12,E ,F 分别是边BC ,DC 上的点,且EC +CF =8.设BE 的长为x ,△AEF 的面积为y ,则y 关于x 的函数解析式是( y =12x 2-10x +96 ).第8题图【解析】 ∵BE =x ,∴CE =16-x .∵CE +CF =8,∴CF =x -8.∴DF =20-x .∴y =S 矩形ABCD-S △ABE -S △CEF -S △ADF =12x 2-10x +96.9. (2018,天津和平区一模)某旅行社组团去外地旅游,30人起组团,每人的费用是800元.旅行社对超过30人的团给予优惠,即旅行团的人数每增加1人,每人的费用就降低10元.当一个旅行团有 55 人时,这个旅行社可以获得最大的营业额.【解析】设一个旅行团有x人,营业额为y元.根据题意,得y=x[800-10(x-30)]=-10x2+1 100x=-10(x-55)2+30 250.故当一个旅行团有55人时,这个旅行社可以获得最大的营业额.三、解答题10. (2018,盘锦节选)鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本为30元.设该款童装每件售价为x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(不求自变量的取值范围)(2)当每件童装售价定为多少元时,每星期的销售利润最大?最大利润是多少?(3)当每件童装售价定为多少元时,该店销售该款童装一星期可获得3 910元的利润?【思路分析】 (1)每星期的销售量等于100件加上因降价而多销售的销售量,由此得到函数关系式.(2)设每星期的销售利润为W元,构建二次函数,利用二次函数的性质解决问题.(3)根据题意列方程即可解决问题.解:(1)y=100+10(60-x)=-10x+700.(2)设每星期的销售利润为W元.根据题意,得W=(x-30)(-10x+700)=-10x2+1 000x-21 000=-10(x-50)2+4 000.∴当x=50时,W最大,W最大=4 000.所以当每件童装售价定为50元时,每星期的销售利润最大,最大利润是4 000元.(3)由题意,得-10(x-50)2+4 000=3 910.解得x=53或x=47.所以当每件童装售价定为53元或47元时,该店销售该款童装一星期可获得3 910元的利润.11. (2018,承德一模,导学号5892921)某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资成本x成正比例关系,种植花卉的利润y2与投资成本x的平方成正比例关系,并得到了表格中的数据:(1)分别求出利润y1与y2关于投资成本的函数解析式;(2)如果这位专业户计划以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和树木共获利润W万元,求出W关于m的函数解析式,并求他至少获得多少利润,他能获取的最大利润是多少.【思路分析】 (1)根据题意设y1=kx,y2=px2,将表格中的数据分别代入求解可得.(2)由投入种植花卉金额m万元,则投入种植树木金额(8-m)万元,根据“总利润=花卉利润+树木利润”列出函数解析式,利用二次函数的性质求得最值即可.解:(1)设y1=kx.由表格数据可知,函数y1=kx的图象过(2,4),∴4=k·2.解得k=2.故种植树木的利润y1关于投资成本x的函数解析式是y1=2x(x≥0).设y2=px2.由表格数据可知,函数y2=px2的图象过(2,2).∴2=p ·22. 解得p =12.故种植花卉的利润y 2关于投资成本x 的函数解析式是y 2=12x 2(x ≥0).(2)因为投入种植花卉金额m 万元,则投入种植树木金额(8-m )万元. 根据题意,得W =2(8-m )+12m 2=12m 2-2m +16 =12(m -2)2+14. ∵a =12>0,0≤m ≤8,∴当m =2时,W 取得最小值,为14. ∵a =12>0,∴当0≤m <2时,W 随m 的增大而减小;当2<m ≤8时,W 随m 的增大而增大. 在对称轴左侧,当m =0时,W 取得最大值,为16. 在对称轴右侧,当m =8时,W 取得最大值,为32. ∵16<32,∴当m =8时,W 取得最大值,为32.故他至少获得14万元的利润,他能获取的最大利润是32万元.12. 如图,矩形ABCD 的两边长AB =18 cm ,AD =4 cm ,点P ,Q 分别从点A ,B 同时出发,点P 在边AB 上沿AB 方向以2 cm/s 的速度匀速运动,点Q 在边BC 上沿BC 方向以1 cm/s 的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x s ,△PBQ 的面积为y cm 2.(1)求y 关于x 的函数解析式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值.第12题图【思路分析】 (1)用x 分别表示出PB ,BQ 的长,然后根据三角形的面积公式列式整理即可得解.(2)把函数解析式整理成顶点式,然后结合实际求二次函数的最值即可.解:(1)∵S △PBQ =12PB ·BQ ,BQ =x ,PB =AB -AP =18-2x ,∴y =12(18-2x )x ,即y =-x 2+9x (0≤x ≤4).(2)由(1)知y =-x 2+9x ,∴y =-⎝ ⎛⎭⎪⎫x -922+814.∵当x ≤92时,y 随x 的增大而增大,而0≤x ≤4,∴当x =4时,y 最大,y 最大=20.所以△PBQ 的面积的最大值是20 cm 2.1. 某旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则会相应地减少10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是(C )A. 140元B. 150元C. 160元D. 180元【解析】 设每张床位收费提高x 个20元,每天收入为y 元.根据题意,得y =(100+20x )(100-10x )=-200x 2+1 000x +10 000.当x =-b 2a =1 000200×2=2.5时,可使y 有最大值.又x 为整数,则x =2时,y =11 200;x =3时,y =11 200.所以为使租出的床位少且租金高,每张床位每天最合适的收费是100+3×20=160(元).2. (2017,湖州,导学号5892921)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20 000 kg 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a 万元,收购成本为b 万元,求a 和b 的值; (2)设这批淡水鱼放养t 天后的质量为m kg ,销售单价为y 元/kg.根据以往经验可知m 与t 的函数关系为m =⎩⎪⎨⎪⎧20 000(0≤t ≤50),100t +15 000(50<t ≤100),y 与t 之间的函数关系如图所示.①分别求出当0≤t ≤50和50<t ≤100时,y 关于t 的函数解析式;②设将这批淡水鱼放养t 天后一次性出售所得利润为W 元,求当t 为何值时,W 最大,并求出最大值.(利润=销售总额-总成本)第2题图【思路分析】 (1)由放养10天的总成本为30.4万元,放养20天的总成本为30.8万元可列出方程组进而求得答案.(2)①分0≤t ≤50,50<t ≤100两种情况,结合函数图象利用待定系数法求解可得.②就以上两种情况,根据“利润=销售总额-总成本”列出函数解析式,依据一次函数性质和二次函数性质求得最大值即可得.解:(1)由题意,得⎩⎪⎨⎪⎧10a +b =30.4,20a +b =30.8.解得⎩⎪⎨⎪⎧a =0.04,b =30.(2)①当0≤t ≤50时,设y 关于t 的函数解析式为y =k 1t +n 1.将(0,15),(50,25)分别代入,得⎩⎪⎨⎪⎧n 1=15,50k 1+n 1=25.解得⎩⎪⎨⎪⎧k 1=15,n 1=15.∴此时y 关于t 的函数解析式为y =15t +15.当50<t ≤100时,设y 关于t 的函数解析式为y =k 2t +n 2.将(50,25),(100,20)分别代入,得⎩⎪⎨⎪⎧50k 2+n 2=25,100k 2+n 2=20.解得⎩⎪⎨⎪⎧k 2=-110,n 2=30.∴此时y 关于t 的函数解析式为y =-110t +30.②当0≤t ≤50时,W =20 000⎝ ⎛⎭⎪⎫15t +15-(400t +300 000)=3 600t .∵3 600>0,∴当t =50时,W 最大,W 最大=180 000. 当50<t ≤100时,W =(100t +15 000)⎝ ⎛⎭⎪⎫-110t +30-(400t +300 000)=-10t 2+1 100t +150 000 =-10(t -55)2+180 250. ∵-10<0,∴当t =55时,W 最大,W 最大=180 250.综上所述,当t =55时,W 最大,最大值为180 250.。
专题08 二次函数应用(六大类型)【题型1 运动类(1)落地模型】【题型2 运动类(2)最值模型】【题型3 经济类二次函数与一次函数初步综合】【题型4 经济类二次函数中的“每每问题”】【题型5 面积类】【题型6 拱桥类】【题型1 运动类(1)落地模型】1.(2022秋•罗山县期末)如图,一位运动员推铅球,铅球运行高度y(m)与水平距离x(m)之间的函数关系式是y=﹣.问:此运动员能把铅球推出多远?()A.12m B.10m C.3m D.4m 2.(2022秋•西岗区校级期末)小强在一次训练中,掷出的实心球飞行高度y (米)与水平距离x(米)之间的关系大致满足二次函数,则小强此次成绩为()A.8米B.9米C.10米D.12米3.(2023•普兰店区一模)在学校运动会上,初三(5)班的运动员掷铅球,铅球的高y(m)与水平距离x(m)之间函数关系式为y=﹣0.2x2+1.6x+1.8,则此运动员的成绩是()A.10m B.4m C.5m D.9m 4.(2023•阿城区一模)一名男生推铅球,铅球行进高度y(单位:米)关于水平距离x(单位:米)的函数解析式是y=﹣x2x,则该男生铅球推出的距离是米.5.(2022秋•未央区期末)体育老师将小华实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=﹣x2+9x+10,由此可知小华此次实心球训练的成绩为米.【题型2 运动类(2)最值模型】6.(2023•泰兴市二模)某学校航模组设计制作的火箭升空高度h(m)与飞行时间t(s)满足函数关系式为h=﹣t2+12t+1.如果火箭在点火升空到最高点时打开降落伞,那么降落伞将在离地面3m处打开.7.(2023春•二道区校级月考)向空中发射一枚信号弹,经x秒后的高度为y 米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此信号弹在第8秒与第14秒时的高度相等,则在秒时信号弹所在高度最高的.8.(2022秋•鄞州区期末)某型号无人机着陆后的滑行距离y(米)与滑行时间t(秒)的函数关系式满足y=﹣t2+60t,则无人机着陆后滑行的最大距离是米.9.(2022秋•交口县期末)某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线是抛物线y=﹣x2+6x(单位:米)的一部分.则水喷出的最大高度是米.时间t(单位:s)的函数解析式是s=30t﹣12t2,汽车刹车后到停下来所用的时间t是()A.2.5s B.1.5s C.1.25s D.不能确定11.(2022秋•栖霞市期末)烟花厂某种礼炮的升空高度h(m)与飞行时间t(s)间的关系是h=﹣2t2+20t+1.若这种礼炮在点升空到最高处引爆,测从点升空到引爆需要的时间为s12.(2022秋•黄冈期末)高速公路上行驶的汽车急刹车时的滑行距离s(m)与时间t(s)的函数关系式为s=30t﹣5t2,遇到紧急情况时,司机急刹车,则汽车最多要滑行m,才能停下来.【题型3 经济类二次函数与一次函数初步综合】13.(2023•鲁甸县二模)某商店销售卡塔尔世界杯的吉祥物,经市场调查发现:该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x与月销售量y的部分对应值如表:售价x/(元/件)304550月销售是y/件300150100(1)求y关于x的函数表达式.(2)若该商品的进价为24元,当售价是多少元时,月销售利润W(元)最大?并求出最大利润.[注:月销售利润=月销售量×(售价﹣进价)]14.(2023•安庆二模)“龙池香尖”是怀宁县一款中国国家地理标志产品,素有:“扬子江心水,蒙山顶上茶”的美誉.某茶庄以600元/kg的价格收购一批龙池香尖,为保护消费者的合法权益,物价部门规定每千克茶叶的利润不低于0元,且不超过进价的60%,经过试销发现,日销量y(kg)与销售单价x(元/kg)满足一次函数关系,部分数据统计如表:x(元/kg)700900…y(kg)9070…(1)根据表格提供的数据,求出y关于x的函数关系式.(2)在销售过程中,每日还需支付其他费用9000元,当销售单价为多少时,该茶庄日利润最大,并求出最大利润.15.(2023•天山区校级二模)某商场销售每件进价为50元的一种商品,物价部门规定每件售价不得高于80元,经市场调查,发现每月的销售量y(件)与每件的售价x(元)满足y=﹣2x+240.(1)商场每月想从这种商品销售中获利2250元,该如何给这种商品定价?(2)请问售价定为多少元时可获得月最大利润?最大利润是多少?16.(2023•长阳县一模)某批发商以24元/箱的进价购进某种蔬菜,销往零售超市,已知这种蔬菜的标价为45元/箱,实际售价不低于标价的八折.批发商通过分析销售情况,发现这种蔬菜的销售量y(箱)与当天的售价x(元/箱)满足一次函数关系,如表是其中的两组对应值.售价x(元/箱)…3538…销售量y(箱)…130124…(1)若某天这种蔬菜的售价为42元/箱,则当天这种蔬菜的销售最为116箱;(2)该批发商销售这种蔬菜能否在某天获利1320元?若能,请求出当天的销售价;若不能,请说明理由.(3)批发商搞优惠活动,购买一箱这种蔬菜,赠送成本为6元的土豆,这种蔬菜的售价定为多少时,可获得日销售利润最大,最大日销售利润是多少元?17.(2023•太康县一模)五一”黄金周期间,丹尼斯百货计划购进A、B两种商品.已知购进3件A商品和2件B商品,需1200元;购进2件A商品和3件B商品,需1300元.(1)A、B两种商品的进货单价分别是多少?(2)设A商品的销售单价为x(单位:元/件),在销售过程中发现:当220≤x≤380时,A商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:销售单价x(元/件)220380日销售量y(件)18020请写出当220≤x≤380时,y与x之间的函数关系式;(3)在(2)的条件下,设A商品的日销售利润为w元,当A商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?18.(2023•东莞市校级一模)某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个)与销售单价x(元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销售量为240个.(1)求遮阳伞每天的销售量y(个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每天的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售利润最大?19.(2023•青州市二模)某超市购进了一种商品,进价为每件8元,销售过程中发现,该商品每天的销售量y(件)与每件售价x(元)之间存在某种函数关系(其中8≤x≤15,且x为整数),且当x=8时,y=110;当x=10时,y=100;当x=12时,y=90;…,设超市销售这种消毒用品每天获利为w(元).(1)请判断y与x符合哪种函数关系,并求y与x的函数表达式;(2)若该商店销售这种商品每天获润480元,则每件商品的售价为多少元;(3)当每件商品的售价为多少元时,每天的销售利润最大?最大利润是多少元?【题型4 经济类二次函数中的“每每问题”】20.(2023•黄冈二模)某商品市场销售抢手,其进价为每件80元,售价为每件130元,每个月可卖出500件;据市场调查,若每件商品的售价每上涨1元,则每个月少卖2件(每件售价不能高于240元).设每件商品的售价上涨x 元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的涨价多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的涨价多少元时,每个月的利润恰为41800元?根据以上结论,请你直接写出x在什么范围时,每个月的利润不低于41800元?21.(2023•南海区校级模拟)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游城市之一.深圳着名旅游“网红打卡地”东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为5元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯;若每杯价格降低1元,则平均每天可多销售30杯.店家计划在2023年春节期间进行降价促销活动,设每杯奶茶降价为x元时,每天可销售y杯.(1)求y与x之间的函数关系式;(2)当x为多少时,能让店家获得最大利润额?最大利润额为多少?22.(2023•南海区校级模拟)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游城市之一.深圳着名旅游“网红打卡地”东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为5元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯;若每杯价格降低1元,则平均每天可多销售30杯.店家计划在2023年春节期间进行降价促销活动,设每杯奶茶降价为x元时,每天可销售y杯.(1)求y与x之间的函数关系式;(2)当x为多少时,能让店家获得最大利润额?最大利润额为多少?23.(2023•阳信县二模)2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品.某商家以每套32元的价格购进一批冰墩墩和雪容融套件.若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.(1)设冰墩墩和雪容融套件每套售价定为x元时,求该商品销售量y与x之间的函数关系式;(2)求每套售价定为多少元时,每天销售套件所获利润W最大,最大利润是多少元?(3)如果每天的利润要达到6080元,并且尽可能的让利于顾客,则每套的售价应该定为多少元?24.(2022•都安县校级二模)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该商品,每件售价应定为多少元?(2)每件售价定为多少元时,每天的销售利润最大?最大利润是多少?25.(2022秋•和平区校级期末)某商家销售一种纪念品.每个纪念品进价40元,规定销售单价不低于44元,且不高于52元.销售期间发现,当销售单价定为44元时,每天可售出300个,销售单价每上涨1元,每天销量减少10个.现商家决定提价销售,设每天销售量为y个,销售单价为x元.(1)直接写出y与x之间的函数关系式;(2)求当每个纪念品的销售单价是多少元时,商家每天获利2400元;(3)将纪念品的销售单价定为多少元时,商家每天销售纪念品获得的利润w 元最大?最大利润是多少元?26.(2023•昭阳区模拟)新华书店销售一个系列的儿童书刊,每套进价100元,销售定价为140元,一天可以销售20套.为了扩大销售,增加盈利,减少库存,书店决定采取降价措施.若一套书每降价1元,平均每天可多售出2套.设每套书降价x元时,书店一天可获利润y元.(1)求出y与x的函数关系式;(2)若要书店每天盈利1200元,则每套书销售定价应为多少元?(3)当每套书销售定价为多少元时,书店一天可获得最大利润?这个最大利润为多少元?【题型5 面积类】27.(2023•锦江区校级模拟)用长为12米的铝合金型材做一个形状如图所示的矩形窗框,设矩形窗框的宽为x米,窗框的透光面积为S平方米.(铝合金型材宽度不计)(1)求S与x的函数关系式,并写出x的取值范围.(2)求S的最大值.28.(2022秋•仙游县期末)如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度为10m),设矩形花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x的取值范围;(2)当花圃的面积为54m2时,求AB的长;(3)当AB的长是多少米时,围成的花圃的面积最大?29.(2023•武汉模拟)春回大地,万物复苏,又是一年花季到.某花圃基地计划将如图所示的一块长40m,宽20m的矩形空地划分成五块小矩形区域.其中一块正方形空地为育苗区,另一块空地为活动区,其余空地为种植区,分别种植A,B,C三种花卉.活动区一边与育苗区等宽,另一边长是10m.A,B,C三种花卉每平方米的产值分别是2百元、3百元、4百元.(1)设育苗区的边长为xm,用含x的代数式表示下列各量:花卉A的种植面积是m2,花卉B的种植面积是m2,花卉C的种植面积是m2.(2)育苗区的边长为多少时,A,B两种花卉的总产值相等?(3)若花卉A与B的种植面积之和不超过560m2,求A,B,C三种花卉的总产值之和的最大值.【题型6 拱桥类】30.(2023•工业园区校级模拟)如图是一座截面为抛物线的拱形桥,当拱顶离(结水面3米高时,水面宽l为6米,则当水面下降3米时,水面宽度为米.果保留根号)31.(2022秋•江岸区校级期末)一座拱桥的轮廓是抛物线型(如图所示),桥高为8米,拱高6米,跨度20米.相邻两支柱间的距离均为5米,则支柱MN的高度为米.32.(2023•阎良区一模)漪汾桥是太原市首座对称双七拱吊桥,每个桥拱呈大小相等的抛物线型,桥拱如长虹出水,屹立于汾河之上,是太原市地标性建筑之一.如图2所示,单个桥拱在桥面上的跨度OA=60米,在水面的跨度BC=80米,桥面距水面的垂直距离OE=7米,以桥面所在水平线为x轴,OE所在直线为y轴建立平面直角坐标系.(1)求桥拱所在抛物线的函数关系表达式;(2)求桥拱最高点到水面的距离是多少米?33.(2023•阎良区一模)漪汾桥是太原市首座对称双七拱吊桥,每个桥拱呈大小相等的抛物线型,桥拱如长虹出水,屹立于汾河之上,是太原市地标性建筑之一.如图2所示,单个桥拱在桥面上的跨度OA=60米,在水面的跨度BC=80米,桥面距水面的垂直距离OE=7米,以桥面所在水平线为x轴,OE所在直线为y轴建立平面直角坐标系.(1)求桥拱所在抛物线的函数关系表达式;(2)求桥拱最高点到水面的距离是多少米?34.(2023•信阳二模)2023年3月15日新晋高速全线通车,它把山西往河南路程由2小时缩短为1小时前期规划开挖一条双向四车道隧道时,王师傅想把入口设计成抛物线形状(如图),入口底宽AB为16cm,入口最高处OC为12.8米.(1)求抛物线解析式;(2)王师傅实地考察后,发现施工难度大,有人建议抛物线的形状不变,将隧道入口往左平移2m,最高处降为9.8米,求平移后的抛物线解析式;(3)双向四车道的地面宽至少要15米,则(2)中的建议是否符合要求?35.(2023•新城区校级二模)如图1所示是一座古桥,桥拱截面为抛物线,如图2,AO,BC是桥墩,桥的跨径AB为20m,此时水位在OC处,桥拱最高点P离水面6m,在水面以上的桥墩AO,BC都为2m.以OC所在的直线为x 轴、AO所在的直线为y轴建立平面直角坐标系,其中x(m)是桥拱截面上一点距桥墩AO的水平距离,y(m)是桥拱截面上一点距水面OC的距离.(1)求此桥拱截面所在抛物线的表达式;(2)有一艘游船,其左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在河中航行.当水位上涨2m时,水面到棚顶的高度为3m,遮阳棚宽12m,问此船能否通过桥洞?请说明理由.36.(2023•西华县三模)足球比赛中,当守门员远离球门时,进攻队员常常使用吊射战术(把球高高地挑过守门员的头顶,射入球门).一般来说,吊射战术中足球的运动轨迹往往是一条抛物线.摩洛哥与葡萄牙比赛进行中,摩洛哥一位球员在离对方球门30米的点O处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14米时,足球达到最大高度8米.以点O为坐标原点,建立如图所示的平面直角坐标系.(1)求该抛物线的函数表达式;(2)此时,葡萄牙队的守门员在球门前方距离球门线1米处,原地起跳后双手能达到的最大高度为2.8米,在没有摩洛哥队员干扰的情况下,那么他能否在空中截住这次吊射?请说明理由.37.(2023•宝安区三模)如图,在一次足球比赛中,守门员在距地面1米高的P处大力开球,一运动员在离守门员6米的A处发现球在自己头上的正上方距离地面4米处达到最高点Q,球落到地面B处后又一次弹起.已知足球在空中的运行轨迹是一条抛物线,在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度为1米.(1)求足球第一次落地之前的运动路线的函数解析式及第一次落地点B与守门员(点O)的距离;(2)运动员(点A)要抢到第二个落点C,他应再向前跑多少米?(假设点O,A,B,C在同一条直线上,结果保留根号)。
2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)一、单选题 1.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是21.560s t t =-+.飞机着陆后到停下来滑行的距离是( )mA .300B .400C .500D .6002.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数2142y x x =-刻画,斜坡可以用一次函数12y x =刻画.下列结论错误的是( )A .小球距O 点水平距离超过4米呈下降趋势B .当小球水平运动2米时,小球距离坡面的高度为6米C .小球落地点距O 点水平距离为7米D .当小球拋出高度达到8m 时,小球距O 点水平距离为4m3.小康在体育训练中掷出的实心球的运动路线呈如图所示的抛物线形,若实心球运动的抛物线的解析式为()2116399y x =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离,则小康此次掷球的成绩(即OA 的长度)是( )A .8mB .7mC .6mD .5m4.如图,要修建一个圆形喷水池,在池中心O 点竖直安装一根水管,在水管的顶端A 处安一个喷水头,使喷出的抛物线形水柱与水池中心O 点的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心O 点3m ,则水管OA 的高是( )A.2m B.2.25m C.2.5m D.2.8m5.学校组织学生去同安进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面上有一瓶洗手液(如图①).于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A下压如图②位置时,洗手液从喷口B 流出,路线近似呈抛物线状,且喷口B为该抛物线的顶点.洗手液瓶子的截面图下面部分是矩形CGHD.小王同学测得:洗手液瓶子的底面直径12cmGH=,喷嘴位置点B距台面的距离为16cm,且B、D、H三点共线.小王在距离台面15.5cm处接洗于液时,手心Q到直线DH的水平距离为3cm,若小王不去接,则洗手液落在台面的位置距DH的水平距离是()A.122cm B.123cm C.62cm D.6cm6.某公园有一个圆形喷水池,喷出的水流呈抛物线形,一条水流的高度h(单位:m)与水流运动时间t(单位:s)之间的函数解析式为2305h t t=-,那么水流从喷出至回落到地面所需要的时间是()A.6s B.4s C.3s D.2s7.如图所示,某工厂的大门是抛物线形水泥建筑物,大门的地面宽度为8m,两侧距地面3m高处各有一壁灯,两壁灯间的水平距离为6m,则厂门的高度约为()A.307B.387C.487D.5078.如图,一座拱桥的轮廓是抛物线型,桥高10米,拱高8米,跨度24米,相邻两支柱间的距离均为6米,则支柱MN的长度为()A.6米B.5米C.4.5米D.4米二、填空题9.如图,已知一抛物线形大门,其地面宽度AB长10米,一位身高1.8米的同学站在门下离门角B点1米的D 处,其头顶刚好顶在抛物线形门上C处.则该大门的最高处离地面高h为米.10.如图所示,抛物线形拱桥的顶点距水面2m时,测得拱桥内水面宽为12m.当水面升高1m后,拱桥内水面的宽度减少m.11.从地面竖直向上抛出一小球,小球的高度h(米)与小球的运动时间(秒)之间的关系式是()2h t t t=-≤≤,若抛出小球1秒钟后再抛出同样的第二个小球.则第二个小球抛出秒时,两个30506小球在空中相撞.12.从地面竖直向上跑出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是()2=-≤≤,小球运动到s时,达到最大高度.h t t t3020613.如图,以40m/s的速度将小球沿与地面成30︒角的方向击出时,小球的飞行路线将是一条抛物线,如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系2=-+,小520h t t球飞行过程中能达到的最大高度为m.14.如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端B处有一个喷水孔,喷出的抛物线形水柱在与池中心A的水平距离为1m处达到A最高点C,高度为3m,水柱落地点D离池中心A处3m,则水管AB的长为m.15.如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8m时,水柱落点距O点为m.16.某次踢球,足球的飞行高度h(米)与水平距离x(米)之间满足2=-+,则足球从离地到落地的560h x x水平距离为米.三、解答题AA的17.如图,隧道的截面由抛物线和长方形构成,长方形的长为16m,宽为6m,抛物线的最高点C离地面1距离为8m.(1)按如图所示的直角坐标系,求该抛物线的函数表达式.(2)一大型汽车装载某大型设备后,高为7m ,宽为4m ,如果该隧道内设双向行车道,那么这辆货车能否安全通过?18.掷实心球是中考体育考试的项目.如图是一男生所掷实心球的行进路线(抛物线的一部分)的高度()y m 与水平距离()x m 之间的函数图象,且掷出时起点处高度为2m ,当到起点的水平距离为4m 时,实心球行进至最高点,此时实心球与地面的距离为3m .(1)求抛物线的函数解析式;(2)在该市的评分标准中,实心球从起点到落地点的水平距离大于等于10m 时,即可得满分,试判断该男生在此项考试中能否得满分,并说明理由(参考数据:3 1.73≈).19.南湖大桥作为我市首个全面采用数控技术的桥体音乐喷泉项目,历经多年已经成为长春市民夜间休闲放松的网红打卡地.其中喷水头喷出的水柱轨迹呈抛物线形状,喷水头P 距水面7.5m ,水柱喷射水平距离为5m 时,达到最大高度,此时距水面10m ,水柱落在水面A 点处.将收集到数据建立如图所示的平面直角坐标系,水柱喷出的高度()m y 与水平距离()m x 之间的函数关系式是21()y a x h k =-+.(1)求抛物线的表达式.(2)现调整P 的出水角度,其喷出的水柱高度()m y 与水平距离()m x 之间的函数关系式是220.1 1.2y x x m =-++,落点恰好在A 点右边的B 点处,求AB 的长.(结果精确到0.1m ,参考数据:11110.54=)20.图①是古代的一种远程投石机,其投出去的石块运动轨迹是抛物线的一部分.据《范蠡兵法》记载:“飞石重十二斤,为机发,行二百步”,其原理蕴含了物理中的“杠杆原理”.在如图②所示的平面直角坐标系中,将投石机置于斜坡OA 的底部点O 处,石块从投石机竖直方向上的点C 处被投出,已知石块运动轨迹所在抛物线的顶点坐标是()50,25,5OC =.(1)求抛物线的表达式;(2)在斜坡上的点A 建有垂直于水平线OD 的城墙AB ,且75OD =,12AD =,9AB =,点D ,A ,B 在一条直线上.通过计算说明石块能否飞越城墙AB .参考答案:1.D2.B3.B4.B。
九年级数学:二次函数的应用练习题(含解析)一、精心选一选1﹒某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x cm.当x=3时,y=8,那么当成本为72元时,边长为()A.6cmB.12cmC.24cmD.36cm2﹒将进货单价为70元的某种商品按零售价100元/个售出时每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价()A.5元B.10元C.15元D.20元3﹒某烟花厂设计一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=-52t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.3sB.4sC.5sD.6s4﹒河北省赵县的赵州桥的桥拱是近似的抛物线,建立如图所示的平面直角坐标系,其函数关系式为y=-125x2,当水面离桥拱的高度DO是4m时,这时水面宽度AB为()A.-20mB.10mC.20mD.-10m5﹒某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(万元)与销售量x(辆)之间分别满足:y1=-x2+10x,y2=2x,若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润是()A.30万元B.40万元C.45万元D.46万元6﹒如图,假设篱笆(虚线部分)的长度为16m,则所围成矩形ABCD的最大面积是()A.60m2B.63m2C.64m2D.66m27﹒某民俗旅游村为接待游客住宿需求,开设了有100张床位的旅馆,当每张床位每天收费10元时,床位可全部租出.若每张床位每天收费提高2元,则相应的减少了10张床位租出;如果每张床位每天以2元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是()A.14元B.15元C.16元D.18元8﹒某建筑物,从10m高的窗口A,用水管向外喷水,喷出的水呈抛物线状(抛物线所在的平面与墙面垂直),如图所示,如果抛物线的最高点M离墙1m,离地面403m,则水流落地点B离墙的距离OB是()A.2mB.3mC.4mD.5m 9﹒羽毛球的运动路线可以看作是抛物线y=-1 4x2+34x+1的一部分,如图所示(单位:m),则下列说法不正确的是()A.出球点A离地面点O的距离是1mB.该羽毛球横向飞出的最远距离是3mC.此次羽毛球最高可达到25 16mD.当羽毛球横向飞出32m时,可达到最高点10.图2是图1拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=1400(x-80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,若OA=10米,则桥面离水面的高度AC为()A.16940米 B.174米 C.1674米 D.154米图1 图2二、细心填一填11.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为______元时,该服装店平均每天的销售利润最大.12.一个足球被从地面上踢出,它距地面的高度h(m)与足球被踢出后经过的时间t(s)之间具有函数关系h=at2+19.6t,已知足球被踢出后经过4s落地,则足球距地面的最大高度是_____________m.13.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,每件的售价应为________元.14.公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t -5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行__________m才能停下来.15.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间有一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为________m2.16.如图是一个横断面为抛物线形状的拱桥,当水面宽为4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面宽度为________米.三、解答题17.九年级数学兴趣小组经市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价100 110 120 130 …(元/件)200 180 160 140 …月销量(件)已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是_______________元;②月销量是________________件;(直接写出结果)(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?18.某商场有A,B两种商品,若买2件A商品和1件B商品,共需80元;若买3件A 商品和2件B商品,共需135元.(1)设A,B两种商品每件售价分别为a元、b元,求a、b的值;(2)B商品每件的成本是20元,根据市场调查:按(1)中求出的单价销售,该商场每天销售B商品100件;若销售单价每上涨1元,B商品每天的销售量就减少5件.①求每天B商品的销售利润y(元)与销售单价x(元)之间的函数关系?②求销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?19.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m 的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为x m,矩形区域ABCD的面积为y m2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?20.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?21.如图,正方形ABCD的边长为3a,两动点E,F分别从顶点B,C同时开始以相同速度沿边BC,CD运动,与△BCF相应的△EGH在运动过程中始终保持△EGH≌△BCF,对应边EG=BC,B,E,C,G在一条直线上.(1)若BE=a,求DH的长;(2)当E点在BC边上的什么位置时,△DHE的面积取得最小值?并求该三角形面积的最小值.21.4 二次函数的应用课时练习题参考答案一、精心选一选题号1 2 3 4 5 6 7 8 91答案A ABCD C C B B B1﹒某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x cm.当x=3时,y=8,那么当成本为72元时,边长为()A.6cmB.12cmC.24cmD.36cm解答:设y与x之间的函数关系式为y=kx2,由题意,得18=9k,解得:k=2,∴y=2x2,当y=72时,72=2x2,∴x=6.故选:A.2﹒将进货单价为70元的某种商品按零售价100元/个售出时每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价()A.5元B.10元C.15元D.20元解答:设应降价x元,则(20+x)(100﹣x﹣70)=﹣x2+10x+600=﹣(x﹣5)2+625,∵﹣1<0∴当x=5元时,二次函数有最大值.∴为了获得最大利润,则应降价5元.故选:A.3﹒某烟花厂设计一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=-52t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.3sB.4sC.5sD.6s解答:∵h=﹣52t2+20t+1,∴h=﹣52(t﹣4)2+41,∴当t=4秒时,礼炮达到最高点爆炸.故选:B.4﹒河北省赵县的赵州桥的桥拱是近似的抛物线,建立如图所示的平面直角坐标系,其函数关系式为y=-125x2,当水面离桥拱的高度DO是4m时,这时水面宽度AB为()A.-20m B.10mC.20mD.-10m解答:根据题意B的纵坐标为﹣4,把y=﹣4代入y=﹣125x2,得x=±10,∴A(﹣10,﹣4),B(10,﹣4),∴AB=20m.即水面宽度AB为20m.故选:C.5﹒某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(万元)与销售量x(辆)之间分别满足:y1=-x2+10x,y2=2x,若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润是()A.30万元B.40万元C.45万元D.46万元解答:设在甲地销售x辆,则在乙地销售(15﹣x)辆,根据题意得出:W=y1+y2=﹣x2+10x+2(15﹣x)=﹣x2+8x+30,∴最大利润为:244ac ba-=24(1)3084(1)⨯-⨯-⨯-=46(万元),故选:D.6﹒如图,假设篱笆(虚线部分)的长度为16m,则所围成矩形ABCD 的最大面积是( )A.60m 2B.63m 2C.64m 2D.66m 2解答:设BC =x m ,则AB =(16﹣x )m ,矩形ABCD 面积为y m 2, 根据题意得:y =(16﹣x )x =﹣x 2+16x =﹣(x ﹣8)2+64, 当x =8m 时,y 最大值=64m 2, 则所围成矩形ABCD 的最大面积是64m 2. 故选:C .7﹒某民俗旅游村为接待游客住宿需求,开设了有100张床位的旅馆,当每张床位每天收费10元时,床位可全部租出.若每张床位每天收费提高2元,则相应的减少了10张床位租出;如果每张床位每天以2元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是( )A.14元B.15元C.16元D.18元 解答:设每张床位提高x 个2元,每天收入为y 元. 则有y =(10+2x )(100﹣10x ) =﹣20x 2+100x +1000. 当x =﹣2ba=2.5时,可使y 有最大值. 又x 为整数,则x =2时,y =1120;x =3时,y =1120;则为使租出的床位少且租金高,每张床收费=10+3×2=16(元). 故选:C .8﹒某建筑物,从10m 高的窗口A ,用水管向外喷水,喷出的水呈抛物线状(抛物线所在的平面与墙面垂直),如图所示,如果抛物线 的最高点M 离墙1m ,离地面403m ,则水流落地点B 离墙的距离OB 是( )A.2mB.3mC.4mD.5m 解答:设抛物线的解析式为y =a (x ﹣1)2+403, 把点A (0,10)代入a (x ﹣1)2+403,得a (0﹣1)2+ =10,解得a=﹣103,因此抛物线解析式为y=﹣103(x﹣1)2+403,当y=0时,解得x1=3,x2=﹣1(不合题意,舍去);即OB=3米.故选:B.9﹒羽毛球的运动路线可以看作是抛物线y=-14x2+34x+1的一部分,如图所示(单位:m),则下列说法不正确的是()A.出球点A离地面点O的距离是1mB.该羽毛球横向飞出的最远距离是3mC.此次羽毛球最高可达到25 16mD.当羽毛球横向飞出32m时,可达到最高点解答:A.当x=0时,y=1,则出球点A离地面点O的距离是1m,故A正确;B.当y=0时,﹣14x2+34x+1=0,解得:x1=﹣1(舍去),x2=4≠3.故B错误;C.∵y=﹣14x2+ x+1,∴y=﹣14(x﹣32)2+2516,∴此次羽毛球最高可达到2516m,故C正确;D.∵y=﹣14(x﹣32)2+2516,∴当羽毛球横向飞出32m时,可达到最高点.故D正确.∴只有B是错误的.故选:B.10.图2是图中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=1400(x-80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,若OA=10米,则桥面离水面的高度AC为()A.16940米 B.174米 C.1674米 D.154米图1 图2 解答:∵AC⊥x轴,OA=10米,∴点C的横坐标为﹣10,当x=﹣10时,y=1400(x-80)2+16=1400(-10-80)2+16=﹣174,∴C(﹣10,﹣174),∴桥面离水面的高度AC为174m.故选:B.二、细心填一填11. 22; 12. 19.6; 13. 25;14. 20; 15. 75;6.11.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为______元时,该服装店平均每天的销售利润最大.解答:设定价为x元,根据题意得:y=(x﹣15)[8+2(25﹣x)]=﹣2x2+88x﹣870∴y=﹣2x2+88x﹣870,=﹣2(x﹣22)2+98∵a=﹣2<0,∴抛物线开口向下,∴当x=22时,y最大值=98.故答案为:22.12.一个足球被从地面上踢出,它距地面的高度h(m)与足球被踢出后经过的时间t(s)之间具有函数关系h=at2+19.6t,已知足球被踢出后经过4s落地,则足球距地面的最大高度是_____________m.解答:由题意得:t=4时,h=0,因此16a+19.6×4=0,解得:a=﹣4.9,∴函数关系为h=﹣4.9t2+19.6t,足球距地面的最大高度是:24( 4.9)019.64( 4.9)⨯-⨯-⨯-=19.6(m),故答案为:19.6.13.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,每件的售价应为________元.解答:设最大利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.14.公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t -5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行__________m才能停下来.解答:依题意:该函数关系式化简为S=﹣5(t﹣2)2+20,当t=2时,汽车停下来,滑行了20m.故惯性汽车要滑行20米.故答案为:20.15.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间有一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为________m2.解答:设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,故饲养室的最大面积为75平方米,故答案为:75.16.如图是一个横断面为抛物线形状的拱桥,当水面宽为4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面宽度为________米.解答:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x6,所以水面宽度增加到6米,故答案为:6.三、解答题17.九年级数学兴趣小组经市场调查,得到某种运动服每月的销量与售价的相关信息如下表:100 110 120 130 …售价(元/件)月销量200 180 160 140 …(件)已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是_______________元;②月销量是________________件;(直接写出结果)(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?解答:(1)①销售该运动服每件的利润是(x﹣60)元;②设月销量W与x的关系式为w=kx+b,由题意得,100200110180k bk b+=⎧⎨+=⎩,解得:2400kb=-⎧⎨=⎩,∴W=﹣2x+400;(2)由题意得,y=(x﹣60)(﹣2x+400)=﹣2x2+520x﹣24000=﹣2(x﹣130)2+9800,∴售价为130元时,当月的利润最大,最大利润是9800元.18.某商场有A,B两种商品,若买2件A商品和1件B商品,共需80元;若买3件A 商品和2件B商品,共需135元.(1)设A,B两种商品每件售价分别为a元、b元,求a、b的值;(2)B商品每件的成本是20元,根据市场调查:按(1)中求出的单价销售,该商场每天销售B商品100件;若销售单价每上涨1元,B商品每天的销售量就减少5件.①求每天B商品的销售利润y(元)与销售单价x(元)之间的函数关系?②求销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?解答:(1)根据题意得:280 32135a ba b+=⎧⎨+=⎩,解得:2530ab=⎧⎨=⎩;(2)①由题意得:y=(x﹣20)[100﹣5(x﹣30)]∴y=﹣5x2+350x﹣5000,②∵y=﹣5x2+350x﹣5000=﹣5(x﹣35)2+1125,∴当x=35时,y最大=1125,∴销售单价为35元时,B商品每天的销售利润最大,最大利润是1125元.19.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为x m,矩形区域ABCD的面积为y m2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?解答:(1)∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BE=a,则AE=2a,∴8a+2x=80,∴a=﹣14x+10,2a=﹣12x+20,∴y=(﹣12x+20)x+(﹣14x+10)x=﹣34x2+30x,∵a=﹣14x+10>0,∴x<40,则y=﹣34x2+30x(0<x<40);(2)∵y=﹣34x2+30x=﹣34(x﹣20)2+300(0<x<40),且二次项系数为﹣34<0,∴当x=20时,y有最大值,最大值为300平方米.20.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?解答:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴20.50.850.8 3.5c a c =⎧⎨+⨯+=⎩, 解得:251612a c⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的解析式为:y =﹣2516t 2+5t +12, ∴当t =85时,y 最大=4.5; (2)把x =28代入x =10t 得t =2.8,∴当t =2.8时,y =-2516×2.82+5×2.8+12=2.25<2.44, ∴他能将球直接射入球门.21.如图,正方形ABCD 的边长为3a ,两动点E ,F 分别从顶点B ,C 同时开始以相同速度沿边BC ,CD 运动,与△BCF 相应的△EGH 在运动过程中始终保持△EGH ≌△BCF ,对应边EG =BC ,B ,E ,C ,G 在一条直线上.(1)若BE =a ,求DH 的长;(2)当E 点在BC 边上的什么位置时,△DHE 的面积取得最小值?并求该三角形面积的最小值.解答:(1)连接FH ,∵△EGH ≌△BCF ,∴HG =FC ,∠G =∠BCF ,∴HG ∥FC ,∴四边开FCGH 是平行四边形,∴FH ∥CG ,且FH =CG ,又∵EG =BC ,∴EG -EC =BC -EC ,即CG =BE ,∴FH=BE,∵FH∥CG,∴∠DFH=∠DCG=90°,由题意可知:CF=BE=a,在Rt△DFH中,DF=3a-a=2a,FH=a,∴DH;(2)设BE=x,△DHE的面积为y,根据题意得:y=S△CDE +S梯形CDHG-S△EGH=12×3a(3a-x)+12(3a+x)x-12×3a×x,∴y=12x2-32ax+92a2=12(x-32a)2+278a2,∴当x=32a,即E为BC的中点时,y取得最小值,即△DHE的面积取得最小值,最小值是278a2.。
人教版九年级上册数学第二十二章二次函数应用题专题训练1.某超市购进一批水果,成本为8元/kg ,根据市场调研发现,这种水果在未来10天的售价m (元/kg )与时间第x 天之间满足函数关系式1182m x =+(110x ≤≤,x 为整数),又通过分析销售情况,发现每天销售量()kg y 与时间第x 天之间满足一次函数关系,下表是其中的三组对应值.(1)求y 与x 的函数解析式;(2)在这10天中,哪一天销售这种水果的利润最大,最大销售利润为多少元?2.荔枝是夏季的时令水果,储存不太方便.某水果店将进价为18元/千克的荔枝,以28元/千克售出时,每天能售出40千克.市场调研表明:当售价每降低1元/千克时,平均每天能多售出10千克.设降价x 元.(1)降价后平均每天可以销售荔枝 千克(用含x 的代数式表示). (2)设销售利润为y ,请写出y 关于x 的函数关系式.(3)该水果店想要使荔枝的销售利润平均每天达到480元,且尽可能地减少库存压力,应将价格定为多少元/千克?3.来商店经市场调查发现:某种商品的周销售量y (件)与售价x (元/件)的关系为2200y x =-+,其售价与周销售利润w (元)的三组对应值如下表:注:周销售利润=周销售量×(售价-进价) (1)求该商品的进价;(2)求当该商品的售价是多少元/件时,周销售利润为1600元?4.某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y (件)与每件售价x (元)之间存在一次函数关系(其中8≤x ≤15,且x 为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件. (1)求y 与x 之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w (元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?5.某商场经市场调查,发现进价为40元的某童装每月的销售量y (件)与售价x (元)的相关信息如下:(1)试用你学过的函数来描述y 与x 的关系,这个函数可以是______(填一次函数或二次函数),求这个函数关系式;(2)若当月销售量不低于300件,售价为多少时,当月利润最大?最大利润是多少?6.在学习一次函数时,我们经历了列表、描点、连线画函数图像,并结合图像研究函数性质的过程下面我们尝试利用之前的学习经验研究函数2y x 的性质及其应用,请按要求完成下列各题.(1)函数2yx 中自变量x 的取值范围是:_________.(2)请同学们通过列表、描点、连线画出此函数的图像; (3)根据函数图像,写出此函数的三条性质; (4)写出不等式26x x -+<的解集.7.某商家出售一种商品的成本价为20元/千克,市场调查发现,该商品每天的销售量y (千克)与销售价x (元/千克)有如下关系:280y x =-+.设这种商品每天的销售利润为w 元. (1)求w 与x 之间的函数关系式;(2)该商品销售价定为每干克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种商品的销售价不高于每千克28元,该商家想要每天获得150元的销售利润,销售价应定为每千克多少元?8.为落实国家精准扶贫政策,我市助农办决定帮助扶贫对象推销当地特色农产品,该农产品成本价为每千克18元,售价不低于成本,且不超过30元/千克,根据市场的销售情况,发现该农产品一天的销售量y (千克)与该天的售价x(元/千克)满足如表所示的一次函数关系.(1)请利用所学过的函数知识求该农产品一天的销售量y(千克)与该天的售价x(元/千克)之间的函数关系,并写出x的取值范围.(2)如果某天销售这种农产品获利4000元,那么这天该农产品的售价为多少元/千克?(3)这种农产品售价定为多少元/千克时,当天获利最大?最大利润为多少?9.某商店销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的两组对应值如表:注:周销售利润=周销售量×(售价-进价)(1)直接完成下列填空①每件商品的进价为元/件①y与x的函数关系式为(不要求写出自变量的取值范围);(2)当每件商品售价为多少元时,周销售利润w最大?并求出此时的最大利润;(3)若该商品每件进价提高了4元,其每件售价不超过m元(50<m<70),该商店在销售中,周销售量与售价仍满足(1)中的函数关系,求出周销售的最大利润.10.某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?11.某商场销售一款工艺品,每件工艺品的进价为11元,经过一段时间的销售发现,每天的销量y(件)与每件工艺品的售价x(元)满足一次函数关系,当每件售价为15元时,每天销售150件;当每件售价为20元时,每天销售100件.(1)求y与x之间的函数关系式;(2)设商场销售该工艺品每天获得的利润为W(元),试求W与x的函数表达式;(3)既要保障商场每天的获利最大,还要尽快减少库存,问每件工艺品售价应定为多少?商场每天获得的最大利润是多少?12.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x (元)( x≥30)满足一次函数关系m=162﹣3x.(提示:注意m的取值范围.)(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式(写出自变量x 的取值范围).(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.13.在平面直角坐标系中已知抛物线L1:y=ax2+bx﹣3经过点A(﹣1,0)和点B(3,0),点D为抛物线的顶点.(1)求抛物线L1的表达式及点D的坐标;(2)将抛物线L1关于点A对称后的抛物线记作L2,抛物线L2的顶点记作点E,求抛物线L2的表达式及点E 的坐标;(3)是否在x轴上存在一点P,在抛物线L2上存在一点Q,使D、E、P、Q为顶点的四边形是平行四边形?若存在,请求出Q点坐标,若不存在,请说明理由.14.丹东是我国的边境城市,拥有丰富的旅游资源.某景区研发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于54元,销售一段时间调研发现,每天的销售数量y (件)与销售单价x(元/件)满足一次函数关系,部分数据如下表所示:(1)直接写出y与x的函数关系式;(2)若每天销售所得利润为1200元,那么销售单价应定为多少元?(3)当销售单价为多少元时,每天获利最大?最大利润是多少元?15.“国庆节期间”某商场销售一款商品,每件的成本是50元.销售期间发现:销售单价是100元时,每天销售量是50件,而销售单价每降低1元,每天就可多售出5件.但要求销售单价不得低于成本.设当销售单价为x元时,每天销售利润为y元.(1)求y与x之间的函数表达式.(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果每天的销售利润不低于4000元,那么每天的总成本至少需要元.16.某超市采购了两批同样的冰墩墩挂件,第一批花了6600元,第二批花了8000元,第一批每个挂件的进价是第二批的1.1倍,且第二批比第一批多购进50个.(1)求第二批每个挂件的进价;(2)两批挂件售完后,该超市以第二批每个挂件的进价又采购一批同样的挂件,经市场调查发现,当售价为每个60元时,每周能卖出40个,若每降价1元,每周多卖10个,由于货源紧缺,每周最多能卖90个,求每个挂件售价定为多少元时,每周可获得最大利润,最大利润是多少?17.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆,已知2盆盆景与1盆花卉的利润共300元,1盆盆景与3盆花卉的利润共200元.(1)求1盆盆景和1盆花卉的利润各为多少元?(2)调研发现:盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆;花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后利润分别为W1,W2(单位:元).①求W1,W2关于x的函数关系式;①当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少元?18.网络销售已经成为一种热门的销售方式,某公司在某网络平台上进行直播销售板栗.已知板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足一次函数关系,下表记录的是有关数据,经销售发现,销售单价不低于成本价且不高于30元/kg.设公司销售板栗的日获利为w(元).(1)请求出日销售量y与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利w最大?最大利润为多少元?(3)当销售单价在什么范围内时,日获利w不低于42000元?19.某件产品的成本是每件10元,试销售阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表所示.(1)观察以上数据,根据我们所学到的一次函数、二次函数,回答:y是x的什么函数?并求出解析式.(2)要使得每日的销售利润最大,每件产品的销售价应定为多少?此时每日的销售利润是多少?20.某商场销售一种进价为每件20元的日用商品,经调查发现,该商品每天的销售量y(件)与销售单价(元)满足y=﹣10x+400,设销售这种商品每天的利润为w(元).(1)求w与x之间的函数关系式;(2)在保证销售量尽可能大的前提下,该商场每天还想获得750元的利润,应将销售单价定为多少元?(3)当每天销售量不少于30件,且销售单价至少为35元时,该商场每天获得的最大利润是多少?答案1.(1)y =−x +35(1≤x ≤10,x 为整数);(2)在这10天中,第7天和第8天销售这种水果的利润最大,最大销售利润为378元. 2.(1)()4010x + (2)21060400y x x =-++ (3)24元/千克3.(1)该商品的进价为40元/件(2)当售价为60元/件或80元/件时,周销售利润为1600元 4.(1)5150y x =-+ (2)13(3)每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是2050元. 5.(1)一次函数,10900y x =-+(2)当售价定为60元时,利润最大,最大值为6000元 6.(1)x 取任意实数 (2)见解析(3)①图像关于y 轴对称;①此函数有最小值0;①当0x >时,y 随x 的增大而增大.(答案不唯一) (4)3x <-或2x >7.(1)221201600w x x =-+-(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元 (3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元 8.(1)()209601830y x x =-+≤≤ (2)这天该农产品的售价为28元/千克(3)当销售单价为30元时,当天获得的利润最大,最大利润是4320元 9.(1)①20;①y =-2x +200(2)每件售价为60元时,利润W 最大,为3200元(3)当50<m <62时,周销售最大利润为2(22484800)m m -+-元;当62≤m <70时,周销售最大利润为2888元10.(1)401016()y x x =-+≤≤(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元. 11.(1)10300y x =-+; (2)2104103300W x x =-+-;(3)每件工艺品售价应定为20元,商场每天获得的最大利润是900元 12.(1)32524860y x x -+-=(30≤x ≤54)(2)商场每天销售这种商品的销售利润不能达到500元13.(1)抛物线1L 的函数表达式为223y x x =--,顶点D 的坐标为()1,4- (2)抛物线2L 的函数表达式为265y x x =---,点E 的坐标为()3,4-(3)点Q 的坐标为()5,0-或()38---或()38-+- 14.(1)y =﹣2x +160 (2)销售单价应定为50元(3)当销售单价为54元时,每天获利最大,最大利润1248元 15.(1)2580027500y x x =-+- (2)80元,最大利润4500元 (3)500016.(1)第二批每个挂件的进价为40元(2)当每个挂件售价定为58元时,每周可获得最大利润,最大利润是1080元 17.(1)140元,20元(2)①W 1=﹣6x 2+40x +7000;W 2=﹣20x +1000 ①5,805018.(1)1005000y x =-+;(2)销售单价定为28元时,销售这种板栗日获利w 最大,最大利润为48400元; (3)当2030x ≤≤时,日获利w 不低于42000元 19.(1)y 是x 的一次函数,40y x =-+(2)产品的销售价应定为25元,此时每日的销售利润最大,为225元 20.(1)W =﹣10x 2+600x ﹣8000 (2)应将销售单价定为25元(3)该商场每天获得的最大利润是750元。
第四章 指数函数与对数函数 第5节 函数的应用(二)一、基础巩固1.(2020·全国高一课时练习)函数ln y x =的零点是( ) A .(0,0) B .0x =C .1x =D .不存在【答案】C【解析】函数ln y x =的零点等价于方程ln 0x =的根,∴函数ln y x =的零点是1x =,故选:C.2.(2020·全国高一课时练习)若函数f (x )的图象在R 上连续不断,且满足f (0)<0,f (1)>0,f (2)>0,则下列说法正确的是( )A .f (x )在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点B .f (x )在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点C .f (x )在区间(0,1)上一定有零点,在区间(1,2)上可能有零点D .f (x )在区间(0,1)上可能有零点,在区间(1,2)上一定有零点 【答案】C【解析】由题知()()010f f ⋅<,所以根据函数零点存在定理可得()f x 在区间()0,1上一定有零点, 又()()120f f ⋅>,因此无法判断()f x 在区间()1,2上是否有零点.3.(2020·全国高一课时练习)下列函数中,随x 的增大,增长速度最快的是( ) A .50y x = B .50y x =C .50x y =D .()*50log y x x N=∈【答案】C 【解析】随x 的增大,指数函数的增长速度最快,∴50x y =的增长速度最快,故选:C.4.(2020·全国高一课时练习)某物体一天中的温度T (单位:℃)是时间t (单位:h)的函数:3()360,0T t t t t =-+=表示中午12:00,其后t 取正值,则下午3时温度为( )A .8℃B .78℃C .112℃D .18℃【答案】B【解析】将3t =的值代入解析式可得:3(3)3336078T =-⨯+=, 故选:B.5.(2020·浙江高一课时练习)某研究小组在一项实验中获得一组关于,y t 之间的数据,将其整理得到如图所示的散点图,下列函数中最能近似刻画y 与t 之间关系的是( )A .22y t =B .2t y =C .2log y t =D .3y t =【答案】C【解析】根据图中的特殊点(2,1),(4,2),通过选项可知只有C :2log y t =满足题意.故选C. 6.(2020·浙江高一单元测试)利用计算器,列出自变量的函数值的对应值如下表:0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4…1.1491.5162.02.6393.4824.5956.0638.010.556…0.040.361.01.96[学3.244.846.769.011.56…那么方程的一个根位于下列区间 ( )A .(0.6,1.0)B .(1.4,1.8)C .(1.8,2.2)D .(2.6,3.0)【答案】C【解析】构造f (x )=2x -x 2,则f (1.8)=0.242,f (2.2)=-0.245,故在(1.8,2.2)内存在一点使f (x )=2x -x 2=0,所以方程2x =x 2的一个根就位于区间(1.8,2.2)上.选C 7.(2020·浙江高一课时练习)设函数1()ln (0)3f x x x x =->,则下列说法中正确的是( ). A .()f x 在区间1,1e ⎛⎫ ⎪⎝⎭,(1,e)内均有零点B .()f x 在区间1,1e ⎛⎫ ⎪⎝⎭,(1,e)内均无零点C .()f x 在区间1,1e ⎛⎫ ⎪⎝⎭内有零点,在区间(1,e)内无零点D .()f x 在区间1,1e ⎛⎫ ⎪⎝⎭内无零点,在区间(1,e)内有零点 【答案】D【解析】由题可知:1()ln (0)3f x x x x =-> 则113()33-'=-=x f x x x若()0,3x ∈,()0f x '<,函数()f x 单调递减 若(3,)x ∈+∞,()0f x '>,函数()f x 单调递增 所以函数()f x 在1,1e ⎛⎫⎪⎝⎭,(1,)e 单调递减,又1111ln 1033f e ee e ⎛⎫=-=+> ⎪⎝⎭,(1)031f =>,1()103f e e =-< 所以函数()f x 在1,1e ⎛⎫ ⎪⎝⎭无零点,在(1,)e 有零点8.(2020·陕西新城�西安中学高二期末(文))若函数()2020xlog x x f x a x ⎧=⎨--≤⎩,>,有且只有一个零点,则a 的取值范围是( ) A .(﹣∞,﹣1)∪(0,+∞) B .(﹣∞,﹣1)∪[0,+∞) C .[﹣1,0) D .[0,+∞)【答案】B【解析】当x >0时,因为log 21=0,所以有一个零点,所以要使函数()2020x log x x f x a x ⎧=⎨--≤⎩,>,有且只有一个零点,则当x ≤0时,函数f (x )没有零点即可,当x ≤0时,0<2x ≤1,∴﹣1≤﹣2x <0,∴﹣1﹣a ≤﹣2x ﹣a <﹣a , 所以﹣a ≤0或﹣1﹣a >0,即a ≥0或a <﹣1. 故选:B9.(2020·沈阳二中北校高三其他(文))函数()()2ln 1f x x x=+-的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2,)eD .(3,4)【答案】B【解析】解:�()2ln 22ln 201f e =-<-=,()2ln31ln 10f e =->-=,则(1)(2)0f f <, �函数()()2ln 1f x x x=+-的零点所在区间是 (1,2), 当0x >,且0x →时,()()2ln 10f x x x=+-< ()()22ln 1ln 0e e e e f e =+->->, ()()3322ln 3103ln f e =+->->, ()()1442ln 41ln 20f e =+->->, ACD 中函数在区间端点的函数值均同号,根据零点存在性定理,B 为正确答案. 故选:B.10.(2020·黑龙江松北�哈九中高三三模(文))下列函数在其定义域内,既是奇函数又存在零点的是( ) A .()1x f x e =- B .1()f x x x=+ C .2()f x x x =- D .22()f x x x=- 【答案】C【解析】根据函数奇偶性的概念可判断A 选项与D 选项所给函数不具有奇偶性; 对于B 选项,1()f x x x=+为奇函数,但不存在零点;对于C 选项,2()f x x x=-为奇函数,且(0f =; 故答案选:C.11.(2020·全国高三其他(文))已知函数()2,1ln ,1x x x f x x x ⎧-≤=⎨>⎩,()()g x f x ax a =-+,若()g x 恰有1个零点,则a 的取值范围是( ) A.0,B .(],2-∞C .[]1,2D .[)1,+∞【答案】D【解析】()g x 恰有1个零点即()y f x =与y ax a =-的图像恰有一个交点,y ax a =-恒过()1,0点, 由ln y x =得'1y x=,所以曲线ln y x =在点()1,0处的切线的斜率为1, 由2yx x 得'21y x =-,所以曲线2yx x 在点()1,0处的切线的斜率为1,所以结合图像可知,()g x 恰有1个零点当且仅当1a ≥. 故选:D12.(2020·全国高三课时练习(理))在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名【答案】B【解析】由题意,第二天新增订单数为50016001200900+-=,故需要志愿者90018 50=名.故选:B13.(2020·全国高一课时练习)某大型超市为了满足顾客对商品的购物需求,对超市的商品种类做了一定的调整,结果调整初期利润增长迅速,随着时间的推移,增长速度越来越慢,如果建立恰当的函数模型来反映该超市调整后利润y与售出商品的数量x的关系,则可选用()A.一次函数B.二次函数C.指数型函数D.对数型函数【答案】D【解析】由题目信息可得:初期增长迅速,后来增长越来越慢,故可用对数型函数模型来反映y与x的关系.故选:D.14.(2020·全国高一课时练习)四人赛跑,假设他们跑过的路程f i(x)(其中i∈{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)�x2�f2(x)�4x�f3(x)�log2x�f4(x)�2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是()A.f1(x)�x2B.f2(x)�4x C.f3(x)�log2x D.f4(x)�2x【答案】D【解析】由函数的增长趋势可知,指数函数增长最快,所以最终最前面的具有的函数关系为()42xf x =�故选D�15.(2020·全国高一课时练习)能使不等式22log 2xx x <<一定成立的x 的取值范围是( )A .(0,)+∞B .(2,)+∞C .(,2)-∞D .(4,)+∞【答案】D【解析】作出2log y x =、2y x (红色)、2xy =图像由图像可知,当4x >时,22log 2xx x <<16.(2020·浙江高一课时练习)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=,x A xx A A<≥(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16【答案】D【解析】由题意可得:f (A )A =15,所以A f (4)4=30, 可得出15A2=30A ,可得A=16从而 故答案为D17.(2020·全国高三其他(文))已知函数()2,1,2,1,x a m x f x x a m x ⎧⋅->=⎨+-≤⎩其中0a >且1a ≠,若m ∃∈R ,使得函数()f x 有2个零点,则实数a 的取值范围为( ) A .()10,1,22⎛⎫ ⎪⎝⎭B .()()0,11,2C .()()0,12,⋃+∞D .()10,2,2⎛⎫+∞ ⎪⎝⎭【答案】B【解析】令()0f x =,()2,1,2,1,x a x g x x a x ⎧⋅>=⎨+≤⎩,则()g x m =,故问题转化为()y g x =,y m =的图像有两个交点, 显然当01a <<时,()y g x =,y m =的图像有两个交点; 当1a >时,只需22a a +>,解得12a <<; 综上所述,实数a 的取值范围为()()0,11,2,故选:B.18.(2020·辽宁省本溪满族自治县高级中学高三其他(理))已知函数()34f x x x =-,过点()2,0A -的直线l 与()f x 的图象有三个不同的交点,则直线l 斜率的取值范围为( ) A .()1,8-B .()()1,88,-⋃+∞C .()()2,88,-⋃+∞D .()1,-+∞【答案】B【解析】函数()34f x x x =-,可得()()()322420f -=--⨯-=,设直线l 的斜率为k ,方程为()2y k x =+,由题意可得()()()32422k x x x x x x +=-=+-有三个不等的实根,显然2x =-是其中的一个根,则22k x x =-有两个不等的实根,且2x ≠-,即8k ≠, 由220--=x x k 的>0∆,可得440k +>,解得1k >-� 则k 的范围是()()1,88,-⋃+∞.19.(多选题)(2020·化州市第一中学高二月考)(多选)已知函数()2211x f x x-=+,则下列对于()f x 的性质表述正确的是( ) A .()f x 为偶函数 B .()1f f x x ⎛⎫=-⎪⎝⎭C .()f x 在[]2,3上的最大值为35D .()()g x f x x =+在区间()1,0-上至少有一个零点 【答案】ABCD【解析】因为()2211x f x x-=+,所以其的定义域为R , A 选项,()22221()1()1()1----===+-+x x f x f x x x ,所以函数()f x 为偶函数,故A 正确; B 选项,22221111()111⎛⎫- ⎪-⎛⎫⎝⎭===- ⎪+⎝⎭⎛⎫+ ⎪⎝⎭x x f f x x x x ,故B 正确; C 选项,因为()22212111-==-+++x f x x x,当[]2,3x ∈,21y x =+单调递增,所以()2211=-++f x x 单调递减,因此()()max 2321145==-+=-+f x f ,故C 正确; D 选项,因为()()g x f x x =+,所以()()1111-=--=-g f ,()()0001=+=g f ,即()1(0)0-⋅<gg ,由零点存在性定理可得:()()g x f x x =+在区间()1,0-上存在零点,故D 正确;20.(多选题)(2019·山东枣庄�高二期末)有如下命题,其中真命题的标号为( )A .若幂函数()y f x =的图象过点12,2⎛⎫ ⎪⎝⎭,则1(3)2f > B .函数1()1x f x a -=+(0a >,且1a ≠)的图象恒过定点(1,2)C .函数212()1log f x x x =--有两个零点 D .若函数2()24f x x x =-+在区间[0,]m 上的最大值为4,最小值为3,则实数m 的取值范围是[1,2] 【答案】BD【解析】A. 设幂函数()f x x α=,代入12,2⎛⎫ ⎪⎝⎭,得到1121()2f x x αα=∴=-∴=,11(3)32f =<故A 不成立;B. 由于x y a =恒过定点(0,1),因此令10x -=,即1x =时,恒有(1)2f =,即图象恒过定点(1,2),故B 正确;C.转化212()1log 0f x x x =--=为2121=log x x -函数21y x =-与12log y x =在同一直角坐标系下的图像如图:两个函数只有一个交点,故函数()f x 只有一个零点,C 选项不正确. D.函数2()24f x x x =-+的图像如图所示,(0)(2)4,(1)3f f f ===数形结合,可得若函数在区间[0,]m 上的最大值为4,最小值为3,则实数m 的取值范围是[1,2],D 选项正确. ��:BD二、拓展提升1.(2020·全国高一)判断下列函数是否存在零点,如果存在,请求出.(1)f (x )=;(2)f (x )=x 2+2x +4;【解析】(1)令3x x +=0,解得x =-3,所以函数f (x )=3x x+的零点是x =-3. (2)令x 2+2x +4=0,由于Δ=22-4×1×4=-12<0,所以方程x 2+2x +4=0无实数根,所以函数f (x )=x 2+2x +4不存在零点.2.(2020·全国高一)函数f (x )=x 2-ax -b 的两个零点是1和2,求函数g (x )=ax 2-bx -1的零点.【解析】因为函数f (x )=x 2-ax -b 的两个零点是1和2,所以123122a a b b =+=⎧⎧⇒⎨⎨-=⨯=-⎩⎩, 所以g (x )=3x 2+2x -1,令()0g x =,解得1x =-或13, 故函数g (x )的零点为-1和13. 3.(2020·上海浦东新�华师大二附中高一期末)已知函数()f x 是定义在R 上的偶函数,且当0x ≥时,()22f x x x =-.(1)求()0f 及()()1f f 的值;(2)若关于x 的方程()0f x m -=有四个不同的实数解,求实数m 的取值范围.【解析】(1)()f x 是定义在R 上的偶函数,且当0x ≥时,()22f x x x =-, ()()1(1)(1)1(0)0,f f f f f ==-==-;(2)函数()f x 是定义在R 上的偶函数,关于x 的方程()0f x m -=有四个不同的实数解,只需0x >时,()f x m =有两个解,当0x ≥时,()222(1)1f x x x x =-=--, 所以10m -<<4.(2020·山东省枣庄市第十六中学高一月考)某厂家举行大型的促销活动,经测算某产品当促销费用为x万元时,销售量P 万件满足P =3﹣21x +(其中0≤x ≤2).现假定生产量与销售量相等,已知生产该产品P 万件还需投入成本(10+2P )万元(不含促销费用),产品的销售价格定为(4+20P )万元/万件. (1)将该产品的利润y 万元表示为促销费用x 万元的函数;(2)当促销费用投入多少万元时,厂家的利润最大?并求出最大利润.【解析】(1)当促销费用为x 万元时, 付出的成本是:210231x x ⎛⎫++- ⎪+⎝⎭ 销售收入是:220342131x x ⎛⎫ ⎪⎛⎫-⨯+ ⎪ ⎪+⎝⎭ ⎪-+⎝⎭, 故220234102321131y x x x x ⎛⎫ ⎪⎡⎤⎛⎫⎛⎫=-⨯+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦ ⎪-+⎝⎭ 整理可得4161y x x ⎛⎫=-+ ⎪+⎝⎭,0≤x ≤2. (2)根据(1)中所求,416111611y x x ⎛⎫⎛⎫=-++-≤- ⎪ ⎪ ⎪+⎝⎭⎝⎭16313=-=,当且仅当1x =时取得最大值.故当促销费用投入1万元时,厂家的利润最大,最大利润为13万元.5.(2019·浙江高一期中)已知函数()()(23)6f x x a x =-+-(Ⅰ)若1a =-,求()f x 在[3,0]-上的最大值和最小值;(Ⅱ)若关于x 的方程()140f x +=在(0,)+∞上有两个不相等实根,求实数a 的取值范围.【解析】(Ⅰ)若1a =-,则22549()(1)(23)62532()48f x x x x x x =++-=+-=+-, 因为二次函数()f x 开口向上,对称轴为:54x =-;又[3,0]x ∈-, 所以函数()f x 在53,4⎡⎫--⎪⎢⎣⎭上单调递减,在5,04⎛⎤- ⎥⎝⎦上单调递增; 因此min 549()()48f x f =-=-;又(3)0f -=,(0)3f =-, 所以max ()(3)0f x f =-=;(Ⅱ)由关于x 的方程()140f x +=在(0,)+∞上有两个不相等实根,可得方程22(32)380x a x a +--+=有两个不相等正根, 则2(32)8(38)032023802a a a a ⎧⎪∆=---+>⎪-⎪>⎨-⎪-+⎪>⎪⎩,解得5823a <<. 26.(2020·辽阳市第四高级中学高三月考)已知函数221,2()121.2x x x f x x x a x ⎧⎛⎫-> ⎪⎪⎪⎝⎭=⎨⎛⎫⎪++- ⎪⎪⎝⎭⎩(1)若1a =,求函数()f x 的零点;(2)若函数()f x 在[)1-+∞,上为增函数,求a 的取值范围. 【解析】(1)当12x >时,由20x x-=,得x =;当12x ≤时,由220x x +=得0x =或2x =-.∴1a =时,函数()f x 的零点为-2,0. (2)函数()g x x x 2=-在1,2⎡⎫+∞⎪⎢⎣⎭上是增函数,且1722g ⎛⎫=- ⎪⎝⎭, 函数()221h x x x a =++-在11,2⎡⎤-⎢⎥⎣⎦上为增函数,且1124h a ⎛⎫=+ ⎪⎝⎭, 若()f x 在[-1,+∞)上为增函数,则1742a +-,∴154a -.。
函数的应用(二)专题训练卷一、单选题1.(2020·大通回族土族自治县第一完全中学高二期中(文))今有一组实验数据如下: t 1.99 3.0 4.0 5.1 6.12 v1.54.047.51218.01现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是( ) A .2log v t =B .12log v t =C .212t v -=D .22v t =-2.(2020·山东省高三其他)函数()34f x x x =+-的零点所在的区间为( ) A .1,0 B .0,1 C .1,2D .()2,33.已知f (x )=1x -ln x 在区间(1,2)内有一个零点x 0,若用二分法求x 0的近似值(精确度0.2),则最多需要将区间等分的次数为( ) A .3 B .4 C .5D .64.(2020·山西省太原五中高三月考(理))已知方程ln 112x x =-的根为0x ,且()0,1x k k ∈+,*k N ∈,则k =( ) A .2B .3C .4D .55.(2020·上海高一课时练习)某商厦去年1月份的营业额为100万元.如果该商厦月营业额的平均增长率为2%,则该商厦的月营业额首次突破120万元是在去年的( ) A .9月份B .10月份C .11月份D .12月份6.(2020·调兵山市第一高级中学高二月考)函数()22log 3x f x x =+-的零点所在区间( )A .()0,1B .()1,2C .()2,3D .()3,4 7.(2020·上海高三专题练习)若是方程式的解,则属于区间( )A .(0,1)B .(1,1.25)C .(1.25,1.75)D .(1.75,2)8.(2020·四川省泸县第一中学高二月考(文))已知函数()()22,22,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()(2)g x b f x =--,其中b ∈R ,若函数()y g x =恰有3个零点,则b 的取值范围是( ) A .[]0,2B .[)0,2C .(]0,2D .()0,29.(2020·泊头市第一中学高二开学考试)已知函数()2,01ln ,0x x f x x x-⎧≤⎪=⎨>⎪⎩,()()g x f x x a =--.若()g x 有2个零点,则实数a 的取值范围是( )A .[)1,0-B .[)0,+∞C .[)1,-+∞D .[)1,+∞10.(2020·广东省高三其他(文))已知函数2,0,()1(),02x x x f x x ⎧->⎪=⎨-≤⎪⎩且函数2()(())()g x f x af x =-恰有2个不同的零点,则实数a 的取值范围为( ) A .(,0][3,)-∞+∞ B .[2,)+∞ C .(,1][2,)-∞-+∞ D .(,0][2,)-∞+∞二、多选题11.(2019·滨州行知中学高一期末)已知函数()()2222log log 3f x x x =--,则( ) A .()43f =-B .函数()y f x =的图象与x 轴有两个交点C .函数()y f x =的最小值为-4D .函数()y f x =的最大值为412.(2020·四川省棠湖中学高三一模(文))已知函数()22log x f x x =+,且实数0a b c >>>,满足()()()0f a f b f c <,若实数0x 是函数()y f x =的一个零点,那么下列不等式中可能成立的是( )A .0x a <B .0x a >C .0x b <D .0x c <13.(2019·滨州市博兴县第一中学高一期中)已知函数22,0(),0x a x f x x ax x +<⎧=⎨-≥⎩,若关于x 的方程(())0f f x =有8个不同的实根,则a 的值可能为( ). A .-6B .8C .9D .1214.(2020·山东省济宁一中高三月考)已知函数()y f x =是R 上的偶函数,对于任意x ∈R ,都有(6)()(3)f x f x f +=+成立,当12,[0,3]x x ∈,且12x x ≠时,都有()()12120f x f x x x ->-,给出下列命题,其中所有正确命题为( ). A .(3)0f =B .直线6x =-是函数()y f x =的图象的一条对称轴C .函数()y f x =在[9,6]--上为增函数D .函数()y f x =在[9,9]-上有四个零点 三、填空题15.(2020·广东省高一月考)函数()1ln 52xf x x ⎛⎫=-+ ⎪⎝⎭的零点个数为______. 16.(2020·哈尔滨市第三十二中学校高二期末)已知函数()2,21,2x f x x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是______.17.(2020·西藏自治区高三二模(文))函数()f x 的定义域为[)1,1-,其图象如图所示.函数()g x 是定义域为R 的奇函数,满足()()20g x g x -+=,且当()0,1x ∈时,()()g x f x =.给出下列三个结论:①()00g =;②函数()g x 在()1,5-内有且仅有3个零点; ③不等式()0f x -<的解集为{}10x x -<<. 其中,正确结论的序号是________. 四、双空题18.(2019·全国高一)用二分法研究函数f(x)=x 2+3x -1的零点时,第一次经过计算f(0)<0,f(0.5)>0,可得其中一个零点x 0∈________,第二次应计算________.19.(2020·广东省高一期末)已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.20.(2020·北京市建华实验学校高三月考)科学家在研究物体的热辐射能力时定义了一个理想模型叫“黑体”,即一种能完全吸收照在其表面的电磁波(光)的物体.然后,黑体根据其本身特性再向周边辐射电磁波,科学研究发现单位面积的黑体向空间辐射的电磁波的功率B 与该黑体的绝对温度T 的4次方成正比,即4B T σ=,σ为玻尔兹曼常数.而我们在做实验数据处理的过程中,往往不用基础变量作为横纵坐标,以本实验结果为例,B 为纵坐标,以4T 为横坐标,则能够近似得到______(曲线形状),那么如果继续研究该实验,若实验结果的曲线如图所示,试写出其可能的横纵坐标的变量形式______.21.(2020·河南省高三一模(文))已知函数()f x 是定义域为R 的奇函数,满足()()20,f x f x +-=且当()0,1x ∈时,2().f x x =则()1f =_____.()()lg g x f x x =-,则函数()g x 的零点共有_____个.五、解答题22.(2020·上海高一课时练习)求证:函数()3221f x x x x =+++的零点有且只有一个,且该零点位于区间()1,0-.23.(2019·安徽省肥东县第二中学高一期中)已知函数21,1,()log , 1.a x x f x x x ⎧-<⎪=⎨⎪⎩≥若(2)1f =-.(1)求a 的值.(2)若函数k x f x g -=)()(有三个零点,求k 的取值范围.24.(2020·上海高三专题练习)为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量()mg y 与时间()h t 成正比,药物释放完毕后,y 与t 的函数关系式为116t ay -⎛⎫= ⎪⎝⎭(a 为常数).如图所示,根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量()mg y 与时间()h t 之间的函数关系式为________; (2)据测定,当空气中每立方米的含药量降低到0.25mg 以下时,学生方可进教室,那么从药物释放开始,至少需要经过多少时间学生才能回到教室?25.(2019·广东省增城中学高一期中)已知定义在R 上奇函数f (x )在0x ≥时的图象是如图所示的抛物线的一部分.(1)请补全函数f (x )的图象; (2)写出函数f (x )的表达式; (3)讨论方程|f (x )|=a 的解的个数.26.(2020·山东省莱州一中高二月考)某种出口产品的关税税率t ,市场价格x (单位:千元)与市场供应量p (单位:万件)之间近似满足关系式:p ()21()2kt x b --=,其中k ,b 均为常数.当关税税率为75%时,若市场价格为5千元,则市场供应量均为1万件;若市场价格为7千元,则市场供应量约为2万件. (1)试确定k 、b 的值;(2)市场需求量q (单位:万件)与市场价格x 近似满足关系式:q =2﹣x .p =q 时,市场价格称为市场平衡价格.当市场平衡价格不超过4千元时,试确定关税税率的最大值.27.(2020·湖北省高一期末)已知函数2()21f x ax x =-+.(Ⅰ)若()f x 的值域为[)0,+∞,求a 的值; (Ⅱ)巳12a ≤,是否存在这祥的实数a ,使函数2()log 4xy f x =-在区间[]1,2内有且只有一个零点.若存在,求出a 的取值范围;若不存在,请说明理由.一、单选题1.(2020·大通回族土族自治县第一完全中学高二期中(文))今有一组实验数据如下:现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是( ) A .2log v t = B .12log v t =C .212t v -=D .22v t =-【答案】C 【解析】由表可知:v 随着t 的增大而增大;所以B 不适合;对于A:22log 1.992,log 230.3,log 42;≈≈=所以A 不接近;对于C 22221,9913141 5.111.5,4,7.5,12.52222----≈==≈,26.12118.2.2-≈C 接近;对于D:2 1.992 1.98,2324,2426,2 5.128.2,2 6.12210.24.⨯-=⨯-=⨯-=⨯-=⨯-=D 不接近;故选C2.(2020·山东省高三其他)函数()34f x x x =+-的零点所在的区间为( )A .1,0 B .0,1 C .1,2D .()2,3【答案】C 【解析】3()4f x x x =+-,易知函数单调递增,(0)40f =-<,(1)20f =-<,(2)20f =>,故函数在(1,2)上有唯一零点.故选:C.3.已知f (x )=1x -ln x 在区间(1,2)内有一个零点x 0,若用二分法求x 0的近似值(精确度0.2),则最多需要将区间等分的次数为( ) A .3 B .4 C .5 D .6【答案】A【解析】由用二分法求函数零点近似值的步骤可知分一次f (32)>0,区间长度|2-32|=0.5>0.2,分二次,f (74)>0,区间长度|2-74|=0.25>0.2,分三次f (158)<0,区间长度|74-158|=18<0.2,所以最多分三次可以使x 0的近似值达到精确度0.2.4.(2020·山西省太原五中高三月考(理))已知方程ln 112x x =-的根为0x ,且()0,1x k k ∈+,*k N ∈,则k =( ) A .2 B .3C .4D .5【答案】C 【解析】由题意,设函数()ln 211f x x x =+-,则()120f x x'=+>恒成立, 即函数()f x 在()0,∞+上单调递增,又()3ln32311ln350f =+⨯-=-<,()4ln 42411ln 430f =+⨯-=-<,()5ln52511ln510f =+⨯-=->,由零点存在性定理可知,函数()f x 的零点在区间()4,5,即()04,5x ∈, 又()0,1x k k ∈+,*k N ∈,所以4k =. 故选:C.5.(2020·上海高一课时练习)某商厦去年1月份的营业额为100万元.如果该商厦月营业额的平均增长率为2%,则该商厦的月营业额首次突破120万元是在去年的( ) A .9月份 B .10月份 C .11月份 D .12月份【答案】C 【解析】由题,x 月份的营业额为()110010.02,1,2,3...11,12x x -+=,故超过120万元的月份满足()110010.02120x -+≥,即11.02 1.2x -≥, 1.02log 1.2110.2x ≥+≈.故月营业额首次突破120万元是在去年的11月份. 故选:C6.(2020·调兵山市第一高级中学高二月考)函数()22log 3xf x x =+-的零点所在区间( )A .()0,1B .()1,2C .()2,3D .()3,4【答案】B 【解析】由题意,可得函数在定义域上为增函数,()2f 12log 1310=+-=-<,()22f 22log 235320=+-=-=>,所以()()120f f <,根据零点存在性定理,()f x 的零点所在区间为()1,2 故选B .7.(2020·上海高三专题练习)若是方程式的解,则属于区间( )A .(0,1)B .(1,1.25)C .(1.25,1.75)D .(1.75,2)【答案】D 【解析】设()lg 2,(2)lg 20;f x x x f =+-=>71(1.75)lg1.750.25lg 44f =-=-,14447725014102560,10,4=<⨯=∴<则1471111(1.75)lg1.750.25lg lg100.44444f =-=-<-<-=属于区间(1.75,2),故选D8.(2020·四川省泸县第一中学高二月考(文))已知函数()()22,22,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()(2)g x b f x =--,其中b ∈R ,若函数()y g x =恰有3个零点,则b 的取值范围是( ) A .[]0,2 B .[)0,2 C .(]0,2 D .()0,2【答案】D 【解析】当22x -≤时,0x ≥;当22x ->时,0x <,所以()()222,0222,0x x f x x x ⎧--≥⎪-=⎨--<⎪⎩,即()2,0224,2,0x x f x x x x x ≤≤⎧⎪-=->⎨⎪<⎩,画出()2f x -的图像如下图所示,要使函数()y g x =恰有3个零点,则y b =与()2f x -的图像有3个交点,由图可知,b 的取值范围是()0,2.故选:D9.(2020·泊头市第一中学高二开学考试)已知函数()2,01ln ,0x x f x x x-⎧≤⎪=⎨>⎪⎩,()()g x f x x a =--.若()g x 有2个零点,则实数a 的取值范围是( )A .[)1,0-B .[)0,+∞C .[)1,-+∞D .[)1,+∞【答案】D 【解析】令()0g x =可得()f x x a =+,作出函数()y f x =与函数y x a =+的图象如下图所示:由上图可知,当1a ≥时,函数()y f x =与函数y x a =+的图象有2个交点, 此时,函数()y g x =有2个零点. 因此,实数a 的取值范围是[)1,+∞. 故选:D.10.(2020·广东省高三其他(文))已知函数2,0,()1(),02x x x f x x ⎧->⎪=⎨-≤⎪⎩且函数2()(())()g x f x af x =-恰有2个不同的零点,则实数a 的取值范围为( ) A .(,0][3,)-∞+∞ B .[2,)+∞ C .(,1][2,)-∞-+∞ D .(,0][2,)-∞+∞【答案】C 【解析】函数2,0,()1(),02x x x f x x ⎧->⎪=⎨-≤⎪⎩的图象,如图所示.当2()(())()0g x f x af x =-=时,有()0f x =或()f x a =,故由题可知,函数()0f x =时有一个零点,函数()f x a =时有一个零点,则实数a 的取值范围为(,1][2,)-∞-+∞, 故选:C .二、多选题11.(2019·滨州行知中学高一期末)已知函数()()2222log log 3f x x x =--,则( ) A .()43f =-B .函数()y f x =的图象与x 轴有两个交点C .函数()y f x =的最小值为-4D .函数()y f x =的最大值为4【答案】ABC 【解析】A 选项:2222(4)(log 4)log 433f =--=-,正确;B 选项:因为222()(log )2log 3,(0,)f x x x x =--∈+∞,令()0f x =得:22(log 1)(log 3)0x x +-=,即得2log 1x =-或2log 3x =,所以12x =或8x =, 即()f x 的图像与x 有两个交点,正确.C 选项:因为22()(log 1)4,(0,)f x x x =--∈+∞,所以当2log 1x =,即2x =时,min ()4f x =-,正确.D 选项:由上可知,()f x 没有最大值. 所以答案为ABC.12.(2020·四川省棠湖中学高三一模(文))已知函数()22log xf x x =+,且实数0a b c >>>,满足()()()0f a f b f c <,若实数0x 是函数()y f x =的一个零点,那么下列不等式中可能成立的是( )A .0x a <B .0x a >C .0x b <D .0x c <【答案】ABC 【解析】由函数的单调性可得,函数()22log xf x x =+在()0,∞+为增函数,由()()()0f a f b f c <, 则()()()f a f b f c ,,为负数的个数为奇数, 对于选项A B C ,,,选项可能成立对于选项D ,当0x c <时,函数的单调性可得:()()()000f a f b f c >>>,, 即不满足()()()0f a f b f c <,故选项不可能成立,故选:ABC 13.(2019·滨州市博兴县第一中学高一期中)已知函数22,0(),0x a x f x x ax x +<⎧=⎨-≥⎩,若关于x 的方程(())0f f x =有8个不同的实根,则a 的值可能为( ). A .-6 B .8 C .9 D .12【答案】CD 【解析】当0a ≤时, ()0f x =仅0x =一根,故(())0f f x =有8个不同的实根不可能成立. 当0a >时, 画出图象,当(())0f f x =时, 1()2f x a =-,2()0f x =,3()f x a =又(())0f f x =有8个不同的实根,故1()2f x a =-有三根,且22224a a y x ax x ⎛⎫=-=--⎪⎝⎭. 故2284a a a ->-⇒>.又2()0f x =有三根, 3()f x a =有两根,且满足20a a a <⇒>.综上可知,8a >.故选:CD14.(2020·山东省济宁一中高三月考)已知函数()y f x =是R 上的偶函数,对于任意x ∈R ,都有(6)()(3)f x f x f +=+成立,当12,[0,3]x x ∈,且12x x ≠时,都有()()12120f x f x x x ->-,给出下列命题,其中所有正确命题为( ). A .(3)0f =B .直线6x =-是函数()y f x =的图象的一条对称轴C .函数()y f x =在[9,6]--上为增函数D .函数()y f x =在[9,9]-上有四个零点 【答案】ABD 【解析】:A 令3x =-,则由()()()63f x f x f +=+,得()()()()33323f f f f =-+=, 故()30f =,A 正确;:B 由()30f =得:()()6f x f x +=,故()f x 以6为周期.又()f x 为偶函数即关于直线0x =对称,故直线6x =-是函数()y f x =的图象的一条对称轴,B 正确;:C 因为当1x ,[]20,3x ∈,12x x ≠时,有()()12120f x f x x x ->-成立,故()f x 在[]0,3上为增函数, 又()f x 为偶函数, 故在[]3,0-上为减函数, 又周期为6.故在[]9,6--上为减函数, C 错误;该抽象函数图象草图如下::D 函数()f x 周期为6,故()()93f f -=- ()()390f f ===,故()y f x =在[]9,9-上有四个零点, D 正确. 故答案为:ABD . 三、填空题15.(2020·广东省高一月考)函数()1ln 52xf x x ⎛⎫=-+ ⎪⎝⎭的零点个数为______. 【答案】1 【解析】由于函数ln 5y x =+是增函数,函数12x y ⎛⎫= ⎪⎝⎭为减函数,所以,函数()1ln 52xf x x ⎛⎫=-+ ⎪⎝⎭为增函数,又5151102e f e ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭,()10f >,由零点存在定理可知,函数()y f x =有且只有一个零点,且该零点位于区间51,1e ⎛⎫⎪⎝⎭. 故答案为:1.16.(2020·哈尔滨市第三十二中学校高二期末)已知函数()2,21,2x f x x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是______. 【答案】()0,1 【解析】()2,21,2x f x x x x ⎧≥⎪=⎨⎪-<⎩可画函数图象如下所示:因为关于x 的方程()f x k =有两个不同的实根,即函数()y f x =与函数y k =有两个不同的交点,从函数图象可得01k <<时,函数()y f x =与函数y k =有两个不同的交点, 故()0,1k ∈ 故答案为:()0,117.(2020·西藏自治区高三二模(文))函数()f x 的定义域为[)1,1-,其图象如图所示.函数()g x 是定义域为R 的奇函数,满足()()20g xg x -+=,且当()0,1x ∈时,()()g x f x =.给出下列三个结论:①()00g =;②函数()g x 在()1,5-内有且仅有3个零点; ③不等式()0f x -<的解集为{}10x x -<<. 其中,正确结论的序号是________. 【答案】①③【解析】因为函数()y g x =是奇函数,所以()()g x g x =--,又()()20g x g x -+=,所以()()2g x g x -=-,即()()2g x g x +=, 所以,函数()y g x =的周期为2.对于①,由于函数()y g x =是R 上的奇函数,所以,()00f =,故①正确; 对于②,()()20g x g x -+=,令1x =,可得()210g =,得()10g =,所以,函数()y g x =在区间[]1,1-上的零点为0和1.因为函数()y g x =的周期为2,所以函数()y g x =在()1,5-内有5个零点,分别是0、1、2、3、4,故②错误;对于③,令t x =-,则需求()0f t <的解集,由图象可知,01t <<,所以10x -<<,故③正确. 故答案为:①③. 四、双空题18.(2019·全国高一)用二分法研究函数f(x)=x 2+3x -1的零点时,第一次经过计算f(0)<0,f(0.5)>0,可得其中一个零点x 0∈________,第二次应计算________. 【答案】(0,0.5) f(0.25) 【解析】因为f(x)=x 3+3x -1是R 上的连续函数,且f(0)<0,f(0.5)>0,则f(x)在x ∈(0,0.5)上存在零点,且第二次验证时需验证f(0.25)的符号.19.(2020·广东省高一期末)已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________. 【答案】(1,4) (1,3](4,)+∞【解析】由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =->,此时2()430,1,3f x x x x =-+==,即在(,)λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由2()43f x x x =-+在(,)λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)+∞.20.(2020·北京市建华实验学校高三月考)科学家在研究物体的热辐射能力时定义了一个理想模型叫“黑体”,即一种能完全吸收照在其表面的电磁波(光)的物体.然后,黑体根据其本身特性再向周边辐射电磁波,科学研究发现单位面积的黑体向空间辐射的电磁波的功率B 与该黑体的绝对温度T 的4次方成正比,即4B T σ=,σ为玻尔兹曼常数.而我们在做实验数据处理的过程中,往往不用基础变量作为横纵坐标,以本实验结果为例,B 为纵坐标,以4T 为横坐标,则能够近似得到______(曲线形状),那么如果继续研究该实验,若实验结果的曲线如图所示,试写出其可能的横纵坐标的变量形式______.【答案】射线 B 为纵坐标,以8T 为横坐标. 【解析】(1)因为4B T σ=,σ为玻尔兹曼常数.B 为纵坐标,以4T 为横坐标,因为40x T =≥,所以(0)B x x σ=≥,所以曲线是一条射线; (2)由于曲线的形状类似y x =B 为纵坐标,以8T 为横坐标,故答案为:B 为纵坐标,以8T 为横坐标.故答案为:(1)射线;(2)B 为纵坐标,以8T 为横坐标.21.(2020·河南省高三一模(文))已知函数()f x 是定义域为R 的奇函数,满足()()20,f x f x +-=且当()0,1x ∈时,2().f x x =则()1f =_____.()()lg g x f x x =-,则函数()g x 的零点共有_____个.【答案】0 5 【解析】由()()20,f x f x +-=令1x =,则()()110,f f +=解得()10f =; 由()()20,f x f x +-=则()()2f x f x -=-,又因为函数()f x 是定义域为R 的奇函数,则()()2f x f x -=-,所以()f x 是以2为周期的函数,()g x 的零点个数,即函数()y f x =与lg y x =的交点个数,在同一坐标系中作出两函数图像:由图可知两函数有5个交点, 即函数()g x 的零点共有5. 故答案为:5 五、解答题22.(2020·上海高一课时练习)求证:函数()3221f x x x x =+++的零点有且只有一个,且该零点位于区间()1,0-. 【答案】证明见解析. 【解析】任取1x 、2x R ∈,且12x x <,则()()()()3232121112222121f x f x x x x x x x -=+++-+++()()()32221212122x x x x x x =-+-+-()()()()()221211*********x x x x x x x x x x x x =-+++-++-()()22121122122x x x x x x x x =-+++++()()()()222121************x x x x x x ⎡⎤=-++++++⎢⎥⎣⎦,12x x <,120x x ∴-<,()()()22212121111110222x x x x ++++++>,()()12f x f x ∴<, 则函数()3221f x x x x =+++在R 上为增函数, 又()11f -=-,()010f =>,由零点存在定理可知,函数()3221f x x x x =+++的零点有且只有一个,且该零点位于区间()1,0-.23.(2019·安徽省肥东县第二中学高一期中)已知函数21,1,()log , 1.a x x f x x x ⎧-<⎪=⎨⎪⎩≥若(2)1f =-.(1)求a 的值.(2)若函数k x f x g -=)()(有三个零点,求k 的取值范围. 【答案】(1)12a =(2)10k -<< 【解析】(1)x≥1,log a 2=-1,12a =; (2)函数f (x )的图象如图所示,∵函数g (x )=f (x )-k 有三个零点, ∴-1<k <024.(2020·上海高三专题练习)为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量()mg y 与时间()h t 成正比,药物释放完毕后,y 与t 的函数关系式为116t ay -⎛⎫= ⎪⎝⎭(a 为常数).如图所示,根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量()mg y 与时间()h t 之间的函数关系式为________;(2)据测定,当空气中每立方米的含药量降低到0.25mg 以下时,学生方可进教室,那么从药物释放开始,至少需要经过多少时间学生才能回到教室?【答案】(1)0.110,00.11,0.116t t t y t -≤≤⎧⎪=⎨⎛⎫> ⎪⎪⎝⎭⎩;(2)0.6 【解析】(1)观察图象,当1010t时是直线, 10y t ∴=. 当110t 时,图象过(0.1,1), ∴1101()16t y -=, ∴含药量y (毫克)与时间t (小时)之间的函数关系式为:110110,01011(),1610t t t y t -⎧⎪⎪=⎨⎪⎪⎩. (2)由题意可得10.254y <=,因为药物释放过程中室内药量一直在增加,即使药量小于0.25毫克, 学生也不能进入教室,所以只有当药物释放完毕,室内药量减少到0.25毫克以下时学生方可进入教室,即110111640.1t t -⎧⎛⎫⎪< ⎪⎨⎝⎭⎪>⎩,解得0.6t >,由题意至少需要经过0.6小时后,学生才能回到教室.25.(2019·广东省增城中学高一期中)已知定义在R 上奇函数f (x )在0x ≥时的图象是如图所示的抛物线的一部分.(1)请补全函数f (x )的图象;(2)写出函数f (x )的表达式;(3)讨论方程|f (x )|=a 的解的个数.【答案】(1)答案见解析;(2)2224,0()24,0x x x f x x x x ⎧-≥=⎨--<⎩;(3)答案见解析. 【解析】(1)补全f (x )的图象如图所示:(2)当0x ≥时,设2()(1)2f x a x =--,由f (0)=0得,a =2,所以此时,22()2(1)224f x x x x =--=-.当x <0时,−x >0,所以22()2()4()24f x x x x x -=---=+①又f (−x )=−f (x ),代入①得2()24f x x x =-- 综上可得,2224,0()24,0x x x f x x x x ⎧-≥=⎨--<⎩. (3)方程|f (x )|=a 的解的个数,即函数|f (x )|的图象和直线y =a 的交点个数,函数y =|f (x )|的图象如图2所示,由图象可得,当a <0时,方程无解;当a =0时,方程有三个解;当0<a <2时,方程有6个解;当a =2时,方程有4个解;当a >2时,方程有2个解.26.(2020·山东省莱州一中高二月考)某种出口产品的关税税率t ,市场价格x (单位:千元)与市场供应量p (单位:万件)之间近似满足关系式:p ()21()2kt x b --=,其中k ,b 均为常数.当关税税率为75%时,若市场价格为5千元,则市场供应量均为1万件;若市场价格为7千元,则市场供应量约为2万件. (1)试确定k 、b 的值;(2)市场需求量q (单位:万件)与市场价格x 近似满足关系式:q =2﹣x .p =q 时,市场价格称为市场平衡价格.当市场平衡价格不超过4千元时,试确定关税税率的最大值.【答案】(1) b =5,k =1; (2)500%【解析】(1)由已知可得:()()2210.75(5)10.75(7)1222k b k b ----⎧=⎪⎨=⎪⎩, ∴()()()()2210.755010.7571k b k b ⎧--=⎪⎨--=⎪⎩, 解得:b =5,k =1(2)当p =q 时,21-)(-5)22t x x -=( ∴(1﹣t )(x ﹣5)2=﹣x ⇒t =1()25xx +=-112510x x++-, 而f (x )=x 25x+在(0,4]上单调递减,∴当x =4时,f (x )有最小值414, 此时t =112510x x ++-取得最大值5; 故当x =4时,关税税率的最大值为500%27.(2020·湖北省高一期末)已知函数2()21f x ax x =-+.(Ⅰ)若()f x 的值域为[)0,+∞,求a 的值;(Ⅱ)巳12a ≤,是否存在这祥的实数a ,使函数2()log 4x y f x =-在区间[]1,2内有且只有一个零点.若存在,求出a 的取值范围;若不存在,请说明理由.【答案】(Ⅰ) 1a =;(Ⅱ)存在,11,2a ⎡⎤∈-⎢⎥⎣⎦【解析】(Ⅰ)函数()f x 的值域为[)0,+∞,则()20240a a >⎧⎪⎨∆=--=⎪⎩,解得1a =. (Ⅱ)由222()log 23log 04x y f x ax x x =-=-+-=, 即2223log ax x x -+=令2()23g x ax x =-+,2()log h x x =,x ∈[]1,2,原命题等价于两个函数()g x 与()h x 的图象在[]1,2内有唯一交点.(1)当0a =时,()23g x x =-+在[]1,2上递减,2()log h x x =在[]1,2上递增, 而g (1)=1>0=h (1),g (2)=-1<1=h (2),∴函数()g x 与()h x 的图象在[]1,2内有唯一交点.(2)当0a <时,()g x 图象开口向下,对称轴为10x a=<,()g x 在[]1,2上递减, 2()log h x x =在[]1,2上递增,()g x 与()h x 的图象在[]1,2内有唯一交点, 当且仅当(1)(1)(2)(2)g h g h ≥⎧⎨≤⎩,即10411a a +≥⎧⎨-≤⎩即112a -≤≤. ∴10a -≤<(3)当102a ≤<时,()g x 图象开口向上,对称轴为12x a=≥,()g x 在[]1,2上递减,2()log h x x =在[]1,2上递增,()g x 与()h x 的图象在[]1,2内有唯一交点,(1)(1)(2)(2)g h g h ≥⎧⎨≤⎩,即10411a a +≥⎧⎨-≤⎩即112a -≤≤,∴1 02a≤<.综上,存在实数11,2a⎡⎤∈-⎢⎥⎣⎦,使函数2()log4xy f x=-于在区间[]1,2内有且只有一个点.。