高中《不等式》知识点总结(精选.)
- 格式:doc
- 大小:185.00 KB
- 文档页数:2
高中不等式全套知识点总结一、不等式的基本概念1. 不等式定义不等式是指两个数量在大小上的关系,包含大于、小于、大于等于、小于等于四种关系。
一般用符号“>”表示大于,“<”表示小于,“≥”表示大于等于,“≤”表示小于等于。
2. 不等式的解不等式的解是指满足不等式关系的所有实数集合,解集可以是一个区间、一个集合或者一个无穷集合。
3. 不等式的性质(1)两个不等式如果左右两边分别相等,那么其关系也相等;(2)两个不等式如果相互交换左右两边,那么关系会相反;(3)不等式两边同时加或减同一个数,不等式关系不变;(4)不等式两边同时乘或除同一个正数,不等式关系不变;(5)不等式两边同时乘或除同一个负数,不等式关系反转。
二、一元一次不等式1. 线性不等式线性不等式的一般形式为 ax+b>c 或者ax+b≥c,其中a≠0。
2. 一次不等式的解法(1)基本不等式直接解法:按照不等式的性质逐步解题;(2)图像法:将不等式转化为直线或者直线段的图像,然后通过图像解题;(3)分情况讨论法:根据不等式的取值范围分情况进行讨论,再分别求解。
3. 一次不等式的应用(1)生活中常见的线性不等式问题,比如买苹果不超过20元;(2)工程建设中的线性不等式问题,比如某公式里的参数要求取值范围。
三、一元二次不等式1. 二次不等式定义二次不等式的一般形式为 ax²+bx+c>0 或者ax²+bx+c≥0,其中a≠0。
2. 一元二次不等式解法(1)解法一:配方法、图像法;(2)解法二:利用一元二次不等式的图像特点;3. 一元二次不等式的应用(1)生活中常见的二次不等式问题,比如某项业务的收入和支出之间的关系;(2)工程建设中的二次不等式问题,比如求最大值、最小值。
四、多项式不等式1. 多项式不等式的定义多项式不等式是指由多项式构成的不等式,一般形式为 f(x)>0 或者f(x)≥0。
2. 多项式不等式的解法(1)概念法:直接按照多项式不等式的定义和性质进行解题;(2)函数法:将多项式在坐标系中的图像出发,进行解题。
高考不等式知识点汇总不等式是高考数学中的重要知识点,是解决数学问题中常用的一种工具。
它不仅涉及到基本的不等式性质,还包括不等式的求解、图像表示以及应用等方面。
下面将对高考中常见的不等式知识点进行汇总。
一、不等式的基本性质1. 不等式的传递性:若a < b,且b < c,则有a < c。
传递性是不等式推导中常用的重要性质。
2. 不等式的加减性:若a < b,则有a±c < b±c,其中c为实数。
加减性运算是在不等式两边同时加减一个数时成立的性质。
3. 不等式的倍乘性:若a < b,且c > 0,则有ac < bc;若a < b,且c < 0,则有ac > bc。
倍乘性是在不等式两边同时乘以一个正数或负数时成立的性质。
二、不等式的求解1. 一元一次不等式:例如ax + b < c或ax + b > c,其中a、b、c 为已知实数,x为未知数。
求解一元一次不等式时,可以采用移项和分段讨论等方法。
2. 一元二次不等式:例如ax^2 + bx + c < 0或ax^2 + bx + c > 0,其中a、b、c为已知实数,x为未知数。
求解一元二次不等式时,可以利用函数图像、判别式、因式分解等方法来进行求解。
3. 绝对值不等式:例如|ax + b| < c或|ax + b| > c,其中a、b、c为已知实数,x为未知数。
求解绝对值不等式时,可以利用绝对值的性质,将其转化为对应的复合不等式进行求解。
三、不等式的图像表示1. 不等式的区间表示:例如a < x < b或a ≤ x ≤ b,其中a、b为已知实数,x为未知数。
不等式的区间表示可以通过画数轴,标示出解集所在的区间。
2. 不等式的图像表示:例如y < ax + b或y > ax + b,其中a、b 为已知实数,x、y为未知数。
高中不等式知识点高中阶段,不等式是数学中的重要内容之一。
不等式不仅在数学中有广泛的应用,也在生活中有很多实际意义。
下面我将重点介绍高中阶段学习不等式的一些重要知识点。
1. 不等式的基本性质:(1) 加减性质:对于不等式两边同时加减同一个数,不等号的方向保持不变;(2) 乘除性质:如果同一个正数或同一个负数同时乘或除不等式两边,不等号方向不变,如果同一个正数乘或除不等式两边,不等号的方向保持不变,如果同一个负数乘或除不等式两边,不等号的方向发生改变;(3) 倒置性质:不等号两边同时倒置,不等号的方向也要倒置。
2. 不等式的解集表示法:(1) 常用解集表示法:使用不等号来表示解集,如x>2表示x 大于2;(2) 区间表示法:使用数轴上的区间来表示解集,如[2, +∞)表示大于或等于2的所有实数。
3. 一元一次不等式:一元一次不等式指的是只含有一个未知数(一元)和一次方程的不等式。
对于一元一次不等式的求解,可以进行类似于方程的运算,通过移项和化简得出解集。
4. 一元二次不等式:一元二次不等式指的是含有一个未知数(一元)以及二次项(平方项)的不等式。
对于一元二次不等式的求解,可以通过变换成二次方程,求出方程的解集,再用数轴上的区间来表示解集。
5. 系统不等式:系统不等式指的是多个不等式组成的一个问题。
对于系统不等式的求解,可以通过图像法,通过画出各个不等式的直线图像,找出满足全部条件的交集部分来表示解集。
6. 约束条件的不等式:在一些实际问题中,不仅有不等式的限制条件,还有其他的约束条件。
对于这种情况,需要将不等式的解集与其他条件进行比较来确定最终的解集。
不等式作为数学中的重要内容,不仅仅是应试的一部分,更是对学生逻辑思维和数学思考能力的考验。
通过学习不等式,可以培养学生的分析问题和解决问题的能力,使他们在解决实际问题时能够灵活运用数学知识。
在生活中,不等式也有很多实际应用,如求解最大值、最小值问题、经济学中的供求关系等等。
高中不等式知识点总结摘要:一、不等式的基本概念1.不等式的定义2.不等式的符号表示二、不等式的基本性质1.对称性2.传递性3.可加性4.乘法原则三、常见不等式的解法1.作差比较法2.作商比较法3.韦达定理四、实际应用1.生活中的应用2.数学中的应用正文:一、不等式的基本概念不等式是数学中的一种基本概念,用于表示两个数的大小关系。
不等式的定义很简单,就是一个比较式,用符号">"或"<"来表示大小关系。
例如,x > y表示x大于y,x < y表示x小于y。
二、不等式的基本性质不等式有许多基本性质,这里我们介绍四个常见的性质。
1.对称性:如果x > y,则y < x。
这就是说,不等式两边同时改变符号,不等式的方向不会改变。
2.传递性:如果x > y,且y > z,则x > z。
这就是说,如果一个数大于另一个数,而另一个数又大于第三个数,那么第一个数一定大于第三个数。
3.可加性:如果x > y,且a > 0,则x + a > y + a。
这就是说,如果一个数大于另一个数,而加上的一个正数,那么第一个数一定大于第二个数。
4.乘法原则:如果x > y,且m > 0,则x * m > y * m。
这就是说,如果一个数大于另一个数,而乘上的一个正数,那么第一个数一定大于第二个数。
三、常见不等式的解法有许多方法可以解不等式,这里我们介绍三种常用的方法。
1.作差比较法:如果x > y,则x - y > 0。
我们可以通过作差来比较两个数的大小。
2.作商比较法:如果x > y,则x / y > 1。
我们可以通过作商来比较两个数的大小。
3.韦达定理:如果x > y,则(x + y) / 2 > (x - y) / 2。
我们可以通过韦达定理来比较两个数的大小。
完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。
②传递性:a>b。
b>c则a>c。
③可加性:a>b等价于a+c>b+c,其中c为任意实数。
同向可加性:a>b,c>d,则a+c>b+d。
异向可减性:a>b,cb-d。
④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。
⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。
异向正数可除性:a>b>0,0bc。
a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。
⑧倒数法则:a>b>0,则1/a<1/b。
2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。
a^2+b^2>=2ab,当且仅当a=b时取等号。
a+b/2>=√ab,当且仅当a=b时取等号。
a+b+c/3>=∛abc,当且仅当a=b=c时取等号。
a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。
a+b+c>=3√abc,当且仅当a=b=c时取等号。
a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。
a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。
3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。
a+b)/2<=√(a^2+b^2),对任意实数a,b成立。
a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。
a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。
a+b)/2>=√ab,对任意正实数a,b成立。
完整版高中数学不等式知识点总结高中数学中的不等式是学习数学中非常重要的一部分,在中高考中,不等式占据了较多的分数比重。
本文将对高中数学中的不等式进行全面的总结,内容涵盖了不等式的概念、基础知识、理论与定理、解题思路、常用不等式以及与其他章节的联系等方面。
一、不等式的概念与基础知识不等式是指含有不等关系的算式,一般表示成 a<b 或a>b,其中 a、b 可以是实数、分数或代数式等。
当 a<b 时,称 a 小于 b,也可以写成 b 大于 a;当 a>b 时,称 a 大于b,也可以写成 b 小于 a。
在不等式中,表示关系的符号“<”和“>”称为不等号。
解不等式可以用图像法、正推反证法和直接法等方法。
图像法:绘制不等式所代表的曲线或图形,在图形中表示不等关系所代表的区域,最终得出解不等式的集合。
正推反证法:通过推理判断得出不等式的解,其中正推法是根据不等式的性质进行推导和运算,而反证法则是通过推翻假设得出结论。
直接法:对不等式进行变形、化简和运算,得出解的过程。
不等式的基础知识:1. 加减法原则:若 a<b,则 a+c<b+c,a-c<b-c(c 为任意实数)。
2. 乘除法原则:若 a<b 且 c>0,则 ac<bc,a/c<b/c;若 a<b 且 c<0,则 ac>bc,a/c>b/c。
3. 平均值不等式:对于任意两个正数 a 和 b,有(a+b)/2>=√ab,等号当且仅当 a=b 时取到。
二、不等式的理论与定理1. 不等式传递性:若 a<b,b<c,则 a<c。
2. 柯西-施瓦茨不等式:对于任意两个实数序列a1,a2,...,an 和 b1,b2,...,bn,有(a1b1+a2b2+...+anbn)^2<=((a1^2+a2^2+...+an^2)(b1^2+b2^ 2+...+bn^2)),等号当且仅当 a1/b1=a2/b2=...=an/bn 时取到。
不等式知识点总结一、不等式的基本概念。
1. 不等式的定义。
- 用不等号(>、≥、<、≤、≠)表示不等关系的式子叫做不等式。
例如:3x + 2>5,x - 1≤slant2x等。
2. 不等式的解与解集。
- 不等式的解:使不等式成立的未知数的值叫做不等式的解。
例如对于不等式x+1 > 0,x = 1是它的一个解,因为1 + 1>0成立。
- 不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
例如不等式x - 2>0的解集是x>2,这表示所有大于2的数都是这个不等式的解。
3. 解不等式。
- 求不等式解集的过程叫做解不等式。
例如解不等式2x+3 < 7,通过移项可得2x<7 - 3,即2x<4,再两边同时除以2得到x < 2,这个过程就是解不等式。
二、不等式的基本性质。
1. 性质1(对称性)- 如果a>b,那么b < a;如果b < a,那么a>b。
例如5>3,那么3 < 5。
2. 性质2(传递性)- 如果a>b,b>c,那么a>c。
例如7>5,5>3,那么7>3。
3. 性质3(加法法则)- 如果a>b,那么a + c>b + c。
例如3>1,那么3+2>1 + 2,即5>3。
- 推论:如果a>b,c>d,那么a + c>b + d。
例如4>2,3>1,那么4 + 3>2+1,即7>3。
4. 性质4(乘法法则)- 如果a>b,c>0,那么ac>bc;如果a>b,c < 0,那么ac < bc。
例如2>1,当c = 3时,2×3>1×3,即6>3;当c=-1时,2×(-1)<1×(-1),即-2 < - 1。
高中不等式知识点总结(最新最全)不等式的定义a^2+b^2≥2ab,通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。
总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
1.不等式的解法(1)同解不等式((1)与同解;(2)与同解,与同解;(3)与同解);2.一元一次不等式情况分别解之。
3.一元二次不等式或分及情况分别解之,还要注意的三种情况,即或或,最好联系二次函数的图象。
4.分式不等式分式不等式的等价变形:>0f(x)·g(x)>0,≥0。
5.简单的绝对值不等式解绝对值不等式常用以下等价变形:|x|0),|x|>ax2>a2x>a或x<-a(a>0)。
一般地有:|f(x)|g(x)f(x)>g(x)或f(x)6.指数不等式;;8.线性规划(1)平面区域一般地,二元一次不等式在平面直角坐标系中表示某一侧所有点组成的平面区域。
我们把直线画成虚线以表示区域不包括边界直线。
当我们在坐标系中画不等式所表示的平面区域时,此区域应包括边界直线,则把直线画成实线。
说明:由于直线同侧的所有点的坐标代入,得到实数符号都相同,所以只需在直线某一侧取一个特殊点,从的正负即可判断表示直线哪一侧的平面区域。
特别地,当时,通常把原点作为此特殊点。
(2)有关概念引例:设,式中变量满足条件,求的最大值和最小值。
由题意,变量所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域。
由图知,原点不在公共区域内,当时,,即点在直线:上,作一组平行于的直线:,,可知:当在的右上方时,直线上的点满足,即,而且,直线往右平移时,随之增大。
弹性学制数学讲义不等式(4课时)★知识梳理1、不等式的基本性质①(对称性)a b b a >⇔>②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>,(异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d >><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b +≥()a b R +∈,,(当且仅当a b =时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立. ⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式: 2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法 常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)k k k<-211,(1)k k k>+=⇒<*,1)k N k>∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c++><或2(0,40)a b ac≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()()0()f xf xg xg xf xg xf xg xg x>⇔⋅>⋅≥⎧≥⇔⎨≠⎩(<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解⑴2()0(0)()f xa af x a≥⎧>>⇔⎨>⎩⑵2()0(0)()f xa af x a≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f xf xg x g xg xf xg x>⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时, ()()()()f x g x a a f x g x >⇔<规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f xg x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时 0,0;b c ⇒=> ②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=< ②当0a ≠时00.a <⎧⇒⎨∆<⎩ ⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y b z x a-=-③“距离”型:22z x y =+或z =22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.. .。
《不等式》知识点一、不等式及其解法:1.一元二次不等式: 化标准式(即二次项系数为正)⇒“大于取两边,小于取中间”如:解不等式(1)0322≤-+x x ; (2)0122≤++-x x解:(1)原不等式等价于 0)1)(3(≤-+x x , 方程0)1)(3(=-+x x 的根为3-,1故解集为}{}13≤≤-x x .(2)原不等式等价于0122≥--x x , 方程0122=--x x 的根为21+,21-, 故解集为}{}2121+≥-≤x x x 或. 2.高次不等式:“穿根法”. 化标准式(即每一项的x 系数为都为正)⇒穿根(从右上方出发,依次穿过每个根,如遇“重根”,奇穿偶回)如:解不等式(1)0)1)(1(≤-+x x x ; (2)0)1)(2(≥-+x x ; (3)0)1(2<-x解:(1)解集为{}101≤≤-<x x x 或; (2)解集为{312>≤≤-x x x 或; (3)解集为]1,2[--3.分式不等式:移项⇒通分.如:解不等式12≤x . 解:移项后012≤-x ,通分后02≤-x x ,化标准式为02≥-xx ,故解集为{}20≥<x x x 或 4.绝对值不等式:a x <)0(>a 的解集为{}a x a x <<-; a x >)0(>a 的解集为{}a x a x x -<>或 二、1.重要不等式:),(222Rb a ab b a ∈≥+,当且仅当b a =时,等号成立 变形:222b a ab +≤ 应用:22b a +为定值时,求ab 的最大值. 2.基本不等式:)0,0(2>>+≤b a b a ab 当且仅当b a =时,等号成立 变形一:ab b a 2≥+ 应用:ab 为定值时,求b a +的最小值.变形二:2)2(b a ab +≤ 应用:b a +为定值时,求ab 的最大值. 注:利用基本不等式求最值的条件:一正、二定、三相等.三、线性规划问题1.能画出二元一次不等式组表示的平面区域.2.相关概念:约束条件、目标函数、可行域、可行解、最优解.3.目标函数常见类型:(1)求线性目标函数By Ax z +=的最值时,先令0=z ,画出直线l :0=+By Ax ,①若0>B ,则l 向上平移,z 变大,向下平移,z 变小;②若0<B ,则l 向上平移,z 变小,向下平移,z 变大(2)“斜率型”目标函数ax b y z --=,z 表示可行域内动点),(y x 与定点),(b a 连线的斜率. (3)“距离型”目标函数22222))()(()()(b y a x b y a x z -+-=-+-=,z 表示可行域内动点),(y x 到定点),(b a的距离的平方.。
《不等式》知识点
一、不等式及其解法:
1.一元二次不等式: 化标准式(即二次项系数为正)⇒“大于取两边,小于取中间”
如:解不等式(1)0322≤-+x x ; (2)0122
≤++-x x
解:(1)原不等式等价于 0)1)(3(≤-+x x , 方程0)1)(3(=-+x x 的根为3-,1
故解集为}{}13≤≤-x x .
(2)原不等式等价于0122≥--x x , 方程0122=--x x 的根为21+,21-, 故解集为}{}
2121+≥-≤x x x 或. 2.高次不等式:“穿根法”. 化标准式(即每一项的x 系数为都为正)⇒穿根
(从右上方出发,依次穿过每个根,如遇“重根”,奇穿偶回)
如:解不等式(1)0)1)(1(≤-+x x x ; (2)0
)1)(2(≥-+x x ; (3)0
)1(2<-x
解:(1)解集为{}101≤≤-<x x x 或; (2)解集为{312>≤≤-x x x 或; (3)解集为]1,2[--
3.分式不等式:移项⇒通分.
如:解不等式12≤x . 解:移项后012≤-x ,通分后02≤-x x ,化标准式为02≥-x
x ,故解集为{}20≥<x x x 或 4.绝对值不等式:a x <)0(>a 的解集为{}a x a x <<-; a x >)0(>a 的解集为{}
a x a x x -<>或 二、1.重要不等式:),(222R
b a ab b a ∈≥+,当且仅当b a =时,等号成立 变形:2
2
2b a ab +≤ 应用:22b a +为定值时,求ab 的最大值. 2.基本不等式:)0,0(2
>>+≤b a b a ab 当且仅当b a =时,等号成立 变形一:ab b a 2≥+ 应用:ab 为定值时,求b a +的最小值.
变形二:2)2
(b a ab +≤ 应用:b a +为定值时,求ab 的最大值. 注:利用基本不等式求最值的条件:一正、二定、三相等.
三、线性规划问题
1.能画出二元一次不等式组表示的平面区域.
2.相关概念:约束条件、目标函数、可行域、可行解、最优解.
3.目标函数常见类型:
(1)求线性目标函数By Ax z +=的最值时,先令0=z ,画出直线l :0=+By Ax ,
①若0>B ,则l 向上平移,z 变大,向下平移,z 变小;②若0<B ,则l 向上平移,z 变小,向下平移,z 变大
(2)“斜率型”目标函数a
x b y z --=,z 表示可行域内动点),(y x 与定点),(b a 连线的斜率. (3)“距离型”目标函数22222))()(()()(b y a x b y a x z -+-=-+-=,z 表示可行域内动点),(y x 到定点),(b a
的距离的平方.
最新文件仅供参考已改成word文本。
方便更改。