熵与信息生命赖负熵为生
- 格式:pptx
- 大小:502.42 KB
- 文档页数:47
薛定谔:生命以负熵为生生命是什么?1944年,来自奥地利的理论物理学家——薛定谔,发出了这样的疑问。
薛定谔(Schrodinger),量子力学的奠基人,由于薛定谔方程的发现获得1933年诺贝尔物理学奖,统计热力学集大成者,分子生物学的开山鼻祖,引领了一大批物理学家向探索生命的奥秘;不过,最让大众熟知的,其实是他提出的一个有趣的思想实验——“薛定谔的猫”。
薛定谔的猫——一只既死又活的猫1944年,薛定谔出了一本小册子——《生命是什么:生物细胞的物理学见解》,此书一出,吸引了一大批物理学家投身于分子生物学研究。
今天我们就借由一个伟大的物理学家的智慧,来从物理角度窥探生命的奥秘。
世界由原子组成我们日常接触的所有物质,其实都是数量超乎想象的原子(分子)。
有多么超乎想象呢?开尔文举过一个让人印象深刻的例子:假设你把一杯水倒入大海,只要充分搅拌后,再从七大洋中任意一处再舀出一杯水来,将会发现,这杯水中仍有大约100个水分子来自于原先那杯水!换言之,100个分子相比于一杯水,恰如一杯水相比于七大洋。
足见水分子之小。
具体有多小呢?一般我们认为,一个原子的直径约为1~2埃(1埃=米)。
其实,原子是没有确定的直径的,因为——原子并不是一个实体原子由原子核与电子组成,电子本身是“一个点”,没有半径,它围绕着原子核转动,它转动的范围姑且理解为原子的内部吧。
原子核更小了,是原子的十万分之一左右,那么,原子核是个实体吗?非也。
原子核由质子与中子组成,而质子与中子都是由3个夸克组成,而这个夸克也只是一个点而已,没有直径,不是实体!看到这里,我们才真正第一次明白了,什么叫“万物皆空”,因为原子本身只是由一些“点”组成的,原子是“空”的,万物也是“空”的!“色即是空,空即是色。
”——《心经》前面我们了解了一些宏观世界与微观世界的基本关系,帮助我们运用想象力在宏微世界中出入无碍,下面我们要提出一个重要的物理学思想——所有物理定律都是统计规律统计物理学(Statistical Physics)告诉我们,每一个原子虽然都在做着难以预测的运动,但是,一堆原子的“集体行为”却是可以预测的,而这就是所有物理学定律的基础。
熵,熵增,煽减,负熵的概念
@ #概念 #观点
熵是热力学第二定律的概念,用来度量体系的混乱程度。
热力学第二定律又称熵增定律:一切自发过程总是向着熵增加的方向发展。
特征解读
熵增混乱无效的增加,导致
功能减弱失效。
人的衰老、组织的滞怠是自然的熵增,表现为功
能逐渐丧失。
熵减更加有效,导致功能增
强。
通过摄入食物、建立效用机制,人和组织可以实
现熵减,表现为功能增强。
负熵带来熵减效应的活性因
子。
物质、能量、信息是人的负熵,新成员、新知
识、简化管理等是组织的负熵。
“熵”理论源于物理学,常被用于计算系统的混乱程度,进而可
用于度量大至宇宙、自然界、国家社会,小至组织、生命个体的盛衰。
我们这里不从过于宽泛抽象的层面来讲熵,我们紧扣系统的功能是增强还是减弱。
生命系统要能输出生命活力,企业系统要能为客户创造价值,国家系统要能够带来发展繁荣富强,每一个系统都要实现功能。
熵增就是功能减弱,人的衰老,组织的懈怠等等,这些都反映出功能的丧失。
熵减指功能增强,比如人通过摄入食物,组织通过建立秩序等等实现熵减,功能增强。
另一个概念是负熵,负熵是指能带来熵减的活性因子,比如物质、能量、信息这些都是人的负熵,新的成员、新的知识、简化管理这些就是组织的负熵。
比如说公司倡导的日落法,每增加一个新的流程环节要减少两个老的流程环节,这些简化管理的动作,也是一种负熵。
生命(life)与负熵(entropy)【提纲与简要分析】引子虽然负熵的知识现在我们还没开始学习,但是作为一个高中主学生物的学生来说,没有比用物理学解释生命原理的内容更吸引我的了。
1.熵与负熵的概念简单的按我的理解,熵是一种态函数,用来描述热力学系统中,某一过程初,终状太之间的巨大差异性,并对过程的方向性做出判断的新的状态量,所以叫做态函数。
至于负熵,顾名思义就是反向的熵(entropy),在系统与环境进行物质交换时,流进负熵会使系统的熵减少。
2.生命是什么?作为一个物理学变化,却可以解释生命是什么。
我们学习物理就要从物理学角度来看生命,生命系统是十分的复杂的,作为生命中的熵流,更是非常奇异,生命可以得以延续就要生命系统中的熵流发生有序和有组织的流动,有正向也有负向,这样生命才得以产生,这就是我理解的物理学解释生命学之本质。
负熵是由薛定谔(Erwin Schrödinger)首先提出的,理解他的《生命是什么》是理解物理学看生命的本质的关键。
比如说人,作为一个高等生命体,为什么会有成长,也会有死亡?因为任何生命体都要从外界的环境中吸取能量,如人要吃饭喝水。
从物理学角度去看,这就是从外界的事物和环境中吸取负熵。
任何物质都有有序和无序的状态,退化和死亡是无序状态,任何生命体要想维持自己的生命,就要不停的从外界环境汲取负熵,使自己维持自己相当高的有序能力。
这是我对负熵与生命体联系的理解。
可以看出生命体是赖环境的负熵为生的,吸取外界的负熵是生命体必须的能力。
3.负熵与生命运动(1)新陈代谢(metabolism)新陈代谢是解释负熵的很好案例,新陈代谢中的那个“新”字就是只生命体从外界汲取负熵,他们不断增加自己的熵维持自己的有序状态,但当生命体的汲取的负熵接近或达到最大值的熵值时,生命体也会死亡。
所以“陈”将有机体将自己活时产生的熵值进行消耗。
例如,人类吃食物是来增加自己的负熵,保持自己的有序状态,但排泄下来后减少了由于负熵满值导致机体死亡的无序状态的可能,这是正熵的排出。
人活着就是在对抗熵增定律,生命以负熵为生。
对科学研究的启示“人活着就是在对抗熵增定律,生命以负熵为生”这句话表达了一个重要的科学观点,即生命体系通过不断地从环境中摄取负熵来维持自身的秩序和稳定。
这对科学研究有以下启示:1. 热力学第二定律的重要性:熵增定律是热力学第二定律的一种表述,它指出在一个封闭系统中,熵总是趋向于增加。
这意味着系统会自然地趋向于更加无序和混乱的状态。
了解熵增定律对于理解许多自然现象和生命过程非常重要。
2. 生命体系的特殊性质:生命体系通过摄取负熵来对抗熵增定律,维持自身的秩序和稳定。
这表明生命体系具有一种特殊的能力,可以从环境中获取能量和物质,并将其转化为有用的形式。
这种能力使得生命体系能够在热力学上保持相对稳定的状态。
3. 能量和信息的关系:生命体系通过摄取负熵来维持自身的秩序和稳定,这涉及到能量和信息的转化。
能量是维持生命活动的动力,而信息则是指导生命体系如何利用能量的关键。
因此,研究能量和信息的转化过程对于理解生命现象至关重要。
4. 系统的复杂性和稳定性:生命体系是高度复杂的系统,但它们能够通过自我组织和调节来维持自身的稳定性。
这表明,在复杂系统中,稳定性并不一定依赖于简单的热力学平衡,而是可以通过引入负熵来实现。
这对于研究复杂系统的行为和稳定性具有重要启示。
“人活着就是在对抗熵增定律,生命以负熵为生”这句话提醒我们,生命体系是通过摄取负熵来维持自身的秩序和稳定的。
这一观点对于理解生命现象、热力学第二定律以及复杂系统的行为具有重要的科学启示。
3。
简论热力学熵、信息熵及熵的泛化热力学熵熵是克劳修斯1865年定义并命名的一个热力学系统的状态函数,它严格应用于系统的热运动,故又称“热力学熵”。
熵的英文为“entropy ”,是克劳修斯用两个希腊字拼合而成,“en ”是能量的词冠,“tropy ”意为转移和变化,因此,熵是一个与热力学过程中的能量变 化有关的量。
根据热力学第一、第二定律,有dA ≤−(dU −TdS) (1)式中U 、S 、T 分别为系统的内能、熵和温度,dA 为系统对外做的功。
式(1)表明:在热力学过程中,系统被消耗的内能分为两部分,能用来 对外做功的能量为(dU −TdS),而另一部分能量TdS 则不可利用,它失去了做功的潜力,是退化了的能量。
并且,这部分不可利用能在量值上与该过程中系统的熵增成正比。
因此,是熵将能量再分为两类;熵从反面量度系统的运动转化潜力,熵是系统能量品位的量度。
系统的熵越高,其能量的品位越低、对外做功的潜力越小、可用性越小。
在自然界中,一切真实的过程都是不可逆的过程,也是熵增加的过程,因此,一切真实过程的进行都会导致能量的退化、贬值。
熵的这种性质,也使其为一切热力学过程 发生的条件、进行的方向及进行的限度提供了普遍的判据。
从分子运动的观点看,熵是系统内分子运动紊乱程度的测度,即S=klnW (2) 式中W 为系统的微观态数,又称为热力学概率。
式(2)表明:分子运动越是无序,系统的熵就越髙。
玻尔兹曼对熵做出的这一统计解释,为熵的泛化奠定了理论基础。
信息熵从通讯的角度看,由于随机性的干扰(即噪音)是无法避免的,因此,通讯系统具有统计的特征,信号源可视为一组隨机事件的集合。
该集合所具有的随机性不确定度,与热 力学系统中因大量粒子无规则热运动所造成的微观状态的混乱度或无序度是类同的,所以,信息论的创始人申农(C.E.Shannon)采用了同样的思维方法——利用概率统计理论来定义具有一定概率分布的信号源的平均不确定性测度,即H =−k 1 P i n i lnP i (3)式中n 为信号源的信号种数,P i 为第i 种信号出现的概率。
生命与熵的关系1864年法国物理学家克牢修斯提出了一个物理量和新函数——熵,熵是热力学系统的态函数,在绝热系统中熵变永远不会为负。
统计物理学研究表明,熵就是混乱度的量度。
20 世纪60 年代,比利时普利高津提出了耗散结构理论(把那些在非平衡和开放条件下通过体系内部耗散能量的不可逆过程产生和维持的时-空有序结构称为耗散结构),将熵推广到了与外界有能量交换的非平衡态热力学体系。
熵的内涵不断扩大,逐渐形成了热力学熵,黑洞熵、信息熵等概念。
这种广义熵的提出, 阐明了非平衡态与平衡态热力学体系熵的本质是一致的,均受熵定律支配,从而也揭示了物理系统与生命系统的统一性。
各生命体的生命活动过程是具有耗散结构特征的、开放的非平衡系统, 生命现象也与熵有着密切关系, 生命体和一切无机物的一个根本区别是它具有高度有序性。
根据这一特点用“熵”来描述生命是较为恰当的。
引入广义熵的概念来度量生命活动过程的质量, 称为生物熵。
本研究将耗散结构理论用于生命过程的研究,建立了生物熵随年龄正常变化的宏观数学模型, 用以描述生命过程的熵变。
1 生命的自组织过程中的公式模拟一个无序的世界是不可能产生生命的,有生命的世界必然是有序的。
生物进化是由单细胞向多细胞、从简单到复杂、从低级向高级进化,也就是说向着更为有序、更为精确的方向进化,这是一个熵减的方向,与孤立系统向熵增大的方向恰好相反,可以说生物进化是熵变为负的过程,即负熵是在生命过程中产生的。
但是生命体是"耗散结构",耗散结构认为一个远离平衡态的开放体系,通过与外界交换物质和能量,在一定条件下,可能从原来的无序状态转变为一种在时间、空间或功能上有序的状态,这个新的有序结构是靠不断耗散物质和能量来维持的。
生命体通过不断与外界交换物质、能量、信息和负熵,可使生命系统的总熵值减小,从而有序度不断提高,生命体系才得以动态地发展。
生物进化是个熵变为负的过程,即负熵是在生命过程中产生的。