31个解题技巧轻松搞定物理高考:“死结”和“活结”模型
- 格式:ppt
- 大小:86.50 KB
- 文档页数:6
二、“死结”与“活结”及动态平衡问题易错分析“死结”与“活结”的比较(1)“死结”可理解为把绳子分成两段,且不可以沿绳子移动的结点。
“死结”两侧的绳因结而变成了两根独立的绳,因此由“死结”分开的两段绳子上的弹力不一定相等。
(2)“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点。
“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的。
绳子虽然因“活结”而弯曲,但实际上是同一根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线。
典例1 如图所示,AO 、BO 、CO 是完全相同的绳子,并将钢梁水平吊起,若钢梁足够重时,绳子AO 先断,则( )A.θ=120°B.θ>120°C.θ<120°D.不论θ为何值,AO 总是先断答案 C 以结点O 为研究对象,受力情况如图所示,根据对称性可知,BO 绳与CO 绳拉力大小相等,由平衡条件得,F AO =2F BO cos θ2,当钢梁足够重时,AO 绳先断,说明F AO >F BO ,则有2F BO cos θ2>F BO ,解得θ<120°,故选项C 正确。
典例2 (多选)(2016课标Ⅰ,19,6分)如图,一光滑的轻滑轮用细绳OO'悬挂于O 点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b 。
外力F 向右上方拉b,整个系统处于静止状态。
若F 方向不变,大小在一定范围内变化,物块b 仍始终保持静止,则( )A.绳OO'的张力也在一定范围内变化B.物块b所受到的支持力也在一定范围内变化C.连接a和b的绳的张力也在一定范围内变化D.物块b与桌面间的摩擦力也在一定范围内变化答案BD 系统处于静止状态,连接a和b的绳的张力大小T1等于物块a的重力Ga,C项错误;以O'点为研究对象,受力分析如图甲所示,T1恒定,夹角θ不变,由平衡条件知,绳OO'的张力T2恒定不变,A项错误;以b为研究对象,受力分析如图乙所示,则F N +T1cos θ+F sin α-Gb=0f+T1sin θ-F cos α=0FN、f均随F的变化而变化,故B、D项正确。
高中物理知识点总结高考物理48 个解题模型
高中阶段的物理常常会以模型的形式出现,这些模型应用在解题中提供了支持和辅助作用。
1 高中物理解题模型汇总必修一
1、传送带模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题。
2、追及相遇模型:运动规律,临界问题,时间位移关系问题,数学法(函数极值法。
图像法等)
3、挂件模型:平衡问题,死结与活结问题,采用正交分解法,图解法,三角形法则和极值法。
4、斜面模型:受力分析,运动规律,牛顿三大定律,数理问题。
必修二
1、“绳子、弹簧、轻杆”三模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题。
2、行星模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心。
半径。
临界问题)。
3 、抛体模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动)
选修 3-1
1、“回旋加速器”模型:加速模型(力能规律),回旋模型(圆周运动),数理问题。
2、“磁流发电机”模型:平衡与偏转,力和能问题。
3、“电路的动态变化”模型:闭合电路的欧姆定律,判断方法和变压器的三。
高考物理建模型之活结和死结模型"活结"和"死结"模型是高考物理建模中经常考查的两种模型,易混淆,涉及高中物理方法较多,包括受力分析、合成法或正交分析法等知识。
考查方式灵活多样性,但共性基本利用的是共点力平衡知识进行处理,以达到解题目的。
下面就这种模型做详细区分及处理原则。
何为"活结"、"死结"1."活结"对象往往是绳子与光滑滑轮、绳子与光滑挂钩、绳子与光滑钉子组合一条绳子跨过(绕过)光滑的滑轮,看似两条绳子,实则是同一条绳子。
绳子可以沿滑轮移动,因"活结"而弯曲,因此这条绳子可以理解为两条绳子。
在受力上,这两条绳子的拉力必定大小相等,两条绳子拉力的合力必定在两条绳子所夹角的角平分线上。
如下图所示:解析:C处即为活结,对C点分析受力分别为:FAC、FCD和FC,其中FAC=FCD=Mg。
FC在∠ACD 的角平分线上,即FC是FAC与FCD的合力。
疑问:为什么FC的方向不沿BC杆方向呢?解析:这里还涉及轻杆模型(BC杆),这种杆的特点还在于末端(B端)是否与墙体固定有关系。
如果B端固定在墙内(如上图),则C端受到轻杆的弹力方向具有不确定性,不一定沿BC杆方向,具体的方向应该是与FAC与FCD的合力等值、反向、共线。
2."死结"对象往往是绳子打"结"后系在某点显然这是两条或多条绳子打"结"后系在一起,这不是同一条绳子,并且是"死结",不可以移动。
因此"死结"绳子的拉力大小不一定相等。
如下图所示:解析:在C点就是一个"死结",同样对C点受力分别为:FAC、FCD和FC,而FAC≠FCD,但FCD=Mg,而FC也不再是∠ACD的角平分线上,但是FC依然与FAC和FCD的合力等值、反向、共线(共点力平衡原理)。
物理活结和死结的判断方法
在日常生活中,我们经常需要解开或系上各种结,如绳结、带结等。
然而,有时候我们可能会遇到一些特殊的结,如活结和死结。
这两种结在解开时有着很大的区别,因此了解如何判断活结和死结对于解决这类问题非常有帮助。
以下是4种常见的判断方法:
1. 观察法
通过观察结的形状和构造,可以初步判断出它是活结还是死结。
活结通常是比较松散的,可以通过拉扯或转动来解开。
而死结则比较紧凑,绳子的末端通常被紧紧地系在一起,难以解开。
2. 尝试法
尝试法是通过轻轻拉动绳子的一端,观察结的反应来判断它是活结还是死结。
如果结能够轻松地拉开,那么它就是活结;如果结无法拉开或者拉开时需要很大的力气,那么它就是死结。
3. 触摸法
触摸法是通过触摸绳子的末端和结的部位来判断它是活结还是死结。
如果绳子的末端比较平滑,没有打结或者系在一起的感觉,而结的部位则比较紧绷,那么这个结就是活结。
相反,如果绳子的末端有打结或者系在一起的感觉,而结的部位则比较松散,那么这个结就是死结。
4. 拉扯法
拉扯法是通过用力拉扯绳子的两端来判断它是活结还是死结。
如果绳子的一端能够自由地拉动,而另一端则无法拉动或者拉动时需要很大的力气,那么这个结就是活结。
如果绳子的两端都无法拉动或者拉动时都需要很大的力气,那么这
个结就是死结。
高中物理知识点总结高考物理48 个解题模型高中阶段的物理常常会以模型的形式出现,这些模型应用在解题中提供了支持和辅助作用。
1高中物理解题模型汇总必修一1、传送带模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题。
2、追及相遇模型:运动规律,临界问题,时间位移关系问题,数学法(函数极值法。
图像法等)3、挂件模型:平衡问题,死结与活结问题,采用正交分解法,图解法,三角形法则和极值法。
4、斜面模型:受力分析,运动规律,牛顿三大定律,数理问题。
必修二1、“绳子、弹簧、轻杆”三模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题。
2、行星模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心。
半径。
临界问题)。
3、抛体模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动)。
选修3-11、“回旋加速器”模型:加速模型(力能规律),回旋模型(圆周运动),数理问题。
2、“磁流发电机”模型:平衡与偏转,力和能问题。
3、“电路的动态变化”模型:闭合电路的欧姆定律,判断方法和变压器的三个制约问题。
4、“限流与分压器”模型:电路设计,串并联电路规律及闭合电路的欧姆定律,电能,电功率,实际应用。
选修3-21、电磁场中的单杆模型:棒与电阻,棒与电容,棒与电感,棒与弹簧组合,平面导轨,竖直导轨等,处理角度为力电角度,电学角度,力能角度。
2、交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题。
选修3-41、“对称”模型:简谐运动(波动),电场,磁场,光学问题中的对称性,多解性,对称性。
2、“单摆”模型:简谐运动,圆周运动中的力和能问题,对称法,图象法。
选修3-51、“爆炸”模型:动量守恒定律,能量守恒定律。
2、“能级”模型:能级图,跃迁规律,光电效应等光的本质综合问题。
1 高考物理必考知识点总结一、运动的描述1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。
物体位置的变化,准确描述用位移,运动快慢S 比t ,a 用Δv与t 比。
重难讲练1.“活结”和“死结”问题(1)活结:当绳绕过光滑的滑轮或挂钩时,由于滑轮或挂钩对绳无约束,因此绳上的力是相等的,即滑轮只改变力的方向不改变力的大小,例如图乙中,两段绳中的拉力大小都等于重物的重力.(2)死结:若结点不是滑轮,是固定点时,称为“死结”结点,则两侧绳上的弹力不一定相等.“死结”一般是由绳子打结而形成的,“死结”两侧的绳子因打结而变成两根独立的绳子。
死结的特点:a.绳子的结点不可随绳移动b.“死结”两侧的绳子因打结而变成两根独立的绳子,因此由“死结”分开的两端绳子上的弹力不一定相等2.“动杆”和“定杆”问题(1)动杆:若轻杆用光滑的转轴或铰链连接,当杆处于平衡时杆所受到的弹力方向一定沿着杆,否则会引起杆的转动.如图甲所示,若C为转轴,则轻杆在缓慢转动中,弹力方向始终沿杆的方向.(2)定杆:若轻杆被固定不发生转动,则杆所受到的弹力方向不一定沿杆的方向.如图乙所示.【典例1】(2016·全国卷Ⅲ·17)如图所示,两个轻环a和b套在位于竖直面内的一段固定圆弧上;一细线穿过两轻环,其两端各系一质量为m 的小球.在a 和b 之间的细线上悬挂一小物块.平衡时,a 、b 间的距离恰好等于圆弧的半径.不计所有摩擦.小物块的质量为( )A.m 2B.32m C.mD.2m【☆答案☆】 C 【解析】 如图所示,【典例2】 如图所示,一轻绳的两端分别固定在不等高的A 、B 两点,现用另一轻绳将一物体系于O 点,设轻绳AO 、BO 相互垂直,α>β,且两绳中的拉力分别为F A 、F B ,物体受到的重力为G ,下列表述正确的是( )A.F A一定大于G B.F A一定大于F BC.F A一定小于F B D.F A与F B大小之和一定等于G【☆答案☆】 B【解析】分析O点受力如图所示,由平衡条件可知,F A与F B的合力与G等大反向,因F A⊥F B,故F A、F B均小于G;因α>β,故F A>F B,B正确,A、C错误;由三角形两边之和大于第三边可知,|F A|+|F B|>G,D错误.【典例3】如图甲所示,轻绳AD跨过固定的水平横梁BC右端的定滑轮挂住一个质量M1的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,轻杆的G点用细绳GF拉住一个质量M2的物体,求:(1)轻绳AC段的张力F T AC与细绳EG的张力F T EG之比;(2)轻杆BC对C端的支持力;(3)轻杆HG对G端的支持力.【☆答案☆】(1)M12M2(2)M1g方向和水平方向成30°指向右上方(3)3M2g方向水平向右【解析】题图甲和乙中的两个物体M1、M2都处于平衡状态,根据平衡的条件,首先判断与物体相连的细绳,其拉力大小等于物体的重力;分别取C点和G点为研究对象,进行受力分析如图甲和乙所示,根据平衡规律一一求解.【跟踪训练】1. 如图所示,将一细绳的两端固定于两竖直墙的A、B两点,通过一个光滑的挂钩将某重物挂在绳上,下面给出的四幅图中有可能使物体处于平衡状态的是( )【☆答案☆】C2.如图所示,当重物静止时,节点O 受三段绳的拉力,其中AO 沿水平方向,关于三段绳中承受拉力的情况,下列说法中正确的是A . AO 承受的拉力最大B . BO 承受的拉力最大C . CO 承受的拉力最大D . 三段绳承受的拉力一样大 【☆答案☆】B【解析】以结点O 为研究对象,分析受力情况,受力分析如图:由平衡条件得: 1tan T G θ=,2cos GT θ=,故T1小于T2,G 小于T2;所以BO 承受的拉力最大;故B 正确。
“活结”和“死结”、“动杆”和“定杆”模型重难讲练1.“活结”和“死结”问题(1)活结:当绳绕过光滑的滑轮或挂钩时,由于滑轮或挂钩对绳无约束,因此绳上的力是相等的,即滑轮只改变力的方向不改变力的大小,例如图乙中,两段绳中的拉力大小都等于重物的重力.(2)死结:若结点不是滑轮,是固定点时,称为“死结”结点,则两侧绳上的弹力不一定相等.“死结”一般是由绳子打结而形成的,“死结”两侧的绳子因打结而变成两根独立的绳子。
死结的特点:a.绳子的结点不可随绳移动b.“死结”两侧的绳子因打结而变成两根独立的绳子,因此由“死结”分开的两端绳子上的弹力不一定相等2.“动杆”和“定杆”问题(1)动杆:若轻杆用光滑的转轴或铰链连接,当杆处于平衡时杆所受到的弹力方向一定沿着杆,否则会引起杆的转动.如图甲所示,若C为转轴,则轻杆在缓慢转动中,弹力方向始终沿杆的方向.(2)定杆:若轻杆被固定不发生转动,则杆所受到的弹力方向不一定沿杆的方向.如图乙所示.【例1】(2016·全国卷Ⅲ·17)如图所示,两个轻环a和b套在位于竖直面内的一段固定圆弧上;一细线穿过两轻环,其两端各系一质量为m的小球.在a和b之间的细线上悬挂一小物块.平衡时,a、b间的距离恰好等于圆弧的半径.不计所有摩擦.小物块的质量为( )A.m2B.√32mC.mD.2m【答案】C【解析】如图所示,圆弧的圆心为0,悬挂小物块的点为c,由于ab=R,则△aOb为等边三角形,同一条细线上的拉力相等, F T=mg,,合力沿Oc方向,则Oc为角平分线,由几何关系知,∠acb=120°,故线的拉力的合力与物块的重力大小相等,即每条线上的拉力F T= G=mg,,所以小物块质量为m,故C对.【例2】如图甲所示,轻绳AD跨过固定的水平横梁BC右端的定滑轮挂住一个质量M₁的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG 拉住,EG与水平方向也成30°,轻杆的G点用细绳GF拉住一个质量M₂的物体,求:(1)轻绳AC段的张力F TAC与细绳EG的张力F TEG;之比;(2)轻杆BC对C端的支持力;(3)轻杆HG对G端的支持力.【答案】(1)M12M2(2)M1g方向和水平方向成30°指向右上方(3)√3M2g方向水平向右【解析】题图甲和乙中的两个物体M₁、M₂都处于平衡状态,根据平衡的条件,首先判断与物体相连的细绳,其拉力大小等于物体的重力;分别取C点和G点为研究对象,进行受力分析如图甲和乙所示,根据平衡规律一一求解.(1)图甲中轻绳AD跨过定滑轮拉住质量为M₁的物体,物体处于平衡状态,轻绳AC段的拉力F24c=F TCD=M1g图乙中由.F TEG sin30∘=M2g,得F TEG=2M2g.所以F14CF126=M12M2(2)图甲中,三个力之间的夹角都为120°,根据平衡规律有F AC=F DAC=Mg,方向和水平方向成30°,指向右上方.(3)图乙中,根据平衡方程有F TEG sin30∘=Mg,F TBG cos30∘=F XG,所以F NG=M2gcot30∘=√3M2g,方向水平向右.专项训练1.如图所示,当重物静止时,节点O受三段绳的拉力,其中AO沿水平方向,关于三段绳中承受拉力的情况,下列说法中正确的是A.AO承受的拉力最大B.BO承受的拉力最大C.CO承受的拉力最大D.三段绳承受的拉力一样大【答案】B【解析】以结点O为研究对象,分析受力情况,受力分析如图:由平衡条件得:T₁=Gtanθ,T2=Gcosθ,故T1小于T2,G小于T2;所以BO承受的拉力最大;故B正确。
高考物理常考的24个模型,经典解题思维,最有用的公式总结!考前最有用的公式总结高中物理五种经典解题思维,记住就拿分直线运动问题题型概述:直线运动问题是高中物理考试的热点,可以单独考查,也可以与其他知识综合考查。
单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题。
思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系。
物体的动态平衡问题题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。
物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题。
思维模板:(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化.运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类。
一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等。
(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。
抛体运动问题题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上。
物理建模系列(三)绳上的“死结”和“活结”模型[模型概述]1的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG 拉住,EG与水平方向也成30°,在轻杆的G点用细绳GF拉住一个质量为M2的物体,求:(1)细绳AC段的张力F T AC与细绳EG的张力F T EG之比;(2)轻杆BC对C端的支持力;(3)轻杆HG对G端的支持力.【思路点拨】图甲中细绳跨过定滑轮与物体M1相连,属于“活结”模型,细绳AC 和CD张力大小相等,细绳对定滑轮的合力方向沿∠ACD的角平分线方向;图乙中细绳EG 和细绳GF为连接于G点的两段独立的绳,属于“死结”模型,细绳EG和细绳GF的张力不相等,轻杆对G点的弹力沿轻杆方向.【解析】题图甲和乙中的两个物体M1、M2都处于平衡状态,根据平衡的条件,首先判断与物体相连的细绳,其拉力大小等于物体的重力;分别取C点和G点为研究对象,进行受力分析如图甲和乙所示,根据平衡规律可求解.(1)图甲中细绳AD跨过定滑轮拉住质量为M1的物体,物体处于平衡状态,细绳AC段的拉力F TAC=F T CD=M1g图乙中由F T EG sin 30°=M2g,得F T EG=2M2g.所以F T ACF T EG=M12M2.(2)图甲中,三个力之间的夹角都为120°,根据平衡规律有F N C=F T AC=M1g,方向与水平方向成30°,指向右上方.(3)图乙中,根据平衡规律有F T EG sin 30°=M2g,F T EG cos 30°=F N G,所以F N G=M2g cot 30°=3M2g,方向水平向右.【答案】(1)M12M2(2)M1g,方向与水平方向成30°指向右上方(3)3M2g,方向水平向右[高考真题]1.(2013·重庆卷,1)如图所示,某人静躺在椅子上,椅子的靠背与水平面之间有固定倾斜角θ.若此人所受重力为G,则椅子各部分对他的作用力的合力大小为()A.G B.G sin θC.G cos θD.G tan θ【解析】运用力的平衡条件,可求得椅子对人的作用力.选人为研究对象,人受到重力和椅子各部分对他的作用力的合力,根据力的平衡条件可知,椅子对他的作用力的合力与重力等大、反向,故选项A正确.【答案】 A2.(2013·课标卷Ⅱ,15)如图,在固定斜面上的一物块受到一外力F的作用,F平行于斜面向上.若要物块在斜面上保持静止,F的取值应有一定范围,已知其最大值和最小值分别为F1和F2(F2>0).由此可求出()A.物块的质量B.斜面的倾角C.物块与斜面间的最大静摩擦力D.物块对斜面的正压力【解析】物块受与斜面平行的外力F作用,而在斜面上静止,此时摩擦力的大小和方向将随F的变化而变化.设斜面倾角为θ,由平衡条件F1-mg sin θ-F fmax=0,F2-mg sinθ+F fmax=0,解得F fmax=F1-F22,故选项C正确.【答案】 C3.(2016·课标卷Ⅲ,17)如图,两个轻环a 和b 套在位于竖直面内的一段固定圆弧上;一细线穿过两轻环,其两端各系一质量为m 的小球.在a 和b 之间的细线上悬挂一小物块.平衡时,a 、b 间的距离恰好等于圆弧的半径.不计所有摩擦.小物块的质量为( )A.m 2 B .32m C.mD .2m【解析】 根据题意设悬挂小物块的点为O ′,圆弧的圆心为O ,由于ab =R ,所以三角形Oab 为等边三角形,根据几何知识可得∠aO ′b =120°,而一条绳子上的张力大小相等,故T =mg ,小物块受到两条绳子的拉力作用大小相等,夹角为120°,故受到的拉力的合力等于mg ,因为小物块受到绳子的拉力和自身重力作用,处于平衡状态,故拉力的合力等于小物块的重力为mg ,所以小物块的质量为m ,C 正确.【答案】 C[名校模拟]4.(2018·安徽合肥段考)将两个质量均为m 的小球a 、b 用细线相连后,再用细线悬挂于O 点,如图所示,用力F 拉小球b ,使两个小球都处于静止状态,且细线Oa 与竖直方向的夹角保持θ=30°,则F 达到最小时Oa 绳上的拉力为( )A.3mg B .mg C.32mg D .12mg【解析】 以两个小球组成的整体为研究对象,分析受力,作出F 在不同方向时整体的受力图,根据平衡条件可知,F 与T 的合力与重力2mg 总是大小相等、方向相反,由力的合成图可知,当F 与绳子Oa 垂直时,F 有最小值,即图中2位置,F 的最小值为F min =2mg sin 30°=mg ,T =2mg cos 30°=3mg ,A 正确.【答案】 A5.(2018·广东仲元中学月考)如图所示,跳伞运动员打开伞后经过一段时间,将在空中保持匀速降落.已知运动员和他身上装备的总重力为G 1(不包括伞面),圆顶形降落伞伞面的重力为G 2,有8条相同的拉线,一端与飞行员相连(拉线重力不计),另一端均匀分布在伞面边缘上(图中没有把拉线都画出来),每根拉线和竖直方向都成30°角.那么每根拉线上的张力大小为( )A.G 14 B .3G 112 C.G 1+G 28D .3G 1+G 212【解析】 对运动员进行受力分析可知,8条拉线拉力的合力与运动员的重力等大反向,即8条拉线在水平方向的分力的合力为零,竖直方向分力的合力与运动员的重力等大反向,根据对称性可知,8条拉线的张力大小都相等,每条拉线的张力在竖直方向的分力F y =F cos 30°,且8F y =G 1,可得F =G 18cos 30°=G 143=3G 112,故B 正确,A 、C 、D 错误.【答案】 B 6.(2018·山东泰安高三上学期期中)在日常生活中,力的分解有着广泛的应用.如图为用斧子把树桩劈开的图示,斧子对木桩施加一个向下的力F 时,产生了大小相等的两个侧向分力F 1、F 2,下列关系正确的是( )A .F =2F 1sin(θ2)B .F =2F 1sin θC .F =2F 1cos(θ2)D .F =2F 1cos θ【解析】 F 1、F 2与水平方向的夹角为θ2,则F =2F 1sin θ2,A 对.【答案】 A课时作业(五)[基础小题练]1.(2018·广州调研)如图,三个大小相等的力F,作用于同一点O,则合力最小的是()【解析】根据矢量合成的平行四边形定则可知,C选项的合力为零,即合力最小,C 正确.【答案】 C2.(2018·淮安模拟)我国海军在南海某空域举行实兵对抗演练,某一直升机在匀速水平飞行过程中遇到突发情况,立即改为沿虚线方向斜向下减速飞行,则空气对其作用力可能是()A.F1B.F2C.F3D.F4【解析】因为直升机沿虚线方向斜向下减速飞行,故合力沿虚线向上,直升机受到竖直向下的重力以及空气作用力两个力,要想合力沿虚线向上,则根据矢量三角形可得空气对其作用力可能为F1,如图所示.【答案】 A3.(2018·石家庄模拟)如图所示,一个“Y”形弹弓顶部跨度为L,两根相同的橡皮条自由长度均为L,在两橡皮条的末端用一块软羊皮(长度不计)做成裹片.若橡皮条的弹力与形变量的关系满足胡克定律,且劲度系数为k,发射弹丸时每根橡皮条的最大长度为2L(弹性限度内),则发射过程中裹片对弹丸的最大作用力为()A .kLB .2kL C.32kL D .152kL 【解析】 设发射弹丸瞬间两橡皮条间的夹角为2θ,则sin θ=L 22L =14,cos θ=1-sin 2θ=154.发射过程中裹片对弹丸的最大作用力为F 合=2F cos θ,F =kx =kL ,故F 合=2kL ·154=152kL ,D 正确. 【答案】 D4.手握轻杆,杆的另一端安装有一个小滑轮C ,支持着悬挂重物的绳子,如图所示,现保持滑轮C 的位置不变,使杆柄向上转动一个角度,则杆对滑轮C 的作用力将()A .变大B .不变C .变小D .无法确定【解析】 杆对滑轮C 的作用力大小等于两绳上拉力的合力,由于两绳上拉力的合力不变,故杆对滑轮C 的作用力不变.【答案】 B5.如图所示,作用于O 点的三个力F 1、F 2、F 3合力为零,F 1沿-y 方向,大小已知.F 2与+x 方向夹角为θ(θ<90°),大小未知.下列说法正确的是()A .F 3可能指向第二象限B .F 3一定指向第三象限C .F 3与F 2的夹角越小,则F 3与F 2的合力越小D .F 3的最小可能值为F 1cos θ【解析】 因F 1、F 2、F 3的合力为零,故F 3应与F 2、F 1的合力等大反向,故F 3可能指向第二象限,也可能指向第三象限,选项A 正确,B 错误;F 3、F 2的合力与F 1等大反向,而F 1大小、方向均已知,故F 3与F 2的合力与其夹角大小无关,选项C 错误;当F 3与F 2垂直时,F3最小,其最小值为F1cos θ,选项D正确.【答案】AD6.(2018·六安一中二模)如图所示,两个质量为m1的小球套在竖直放置的光滑支架上,支架的夹角为120°,用轻绳将两球与质量为m2的小球连接,绳与杆构成一个菱形,则m1∶m2为()A.1∶1 B.1∶2C.1∶ 3 D.3∶2【解析】将小球m2的重力按效果根据平行四边形定则进行分解如图,由几何知识得T=m2g,对m1受力分析,由平衡条件,在沿杆的方向有:m1g sin 30°=T sin 30°,得:T=m1g,可见m1∶m2=1∶1,故选A.【答案】 A[创新导向练]7.生活实际——千斤顶中的力学原理(2018·贵阳监测)如图所示是轿车常用的千斤顶,当摇动把手时,螺纹轴就能迫使千斤顶的两臂靠拢,从而将汽车顶起.当车轮刚被顶起时汽车对千斤顶的压力为1.0×105 N,此时千斤顶两臂间的夹角为120°.下列判断正确的是()A.此时千斤顶每臂受到的压力大小均为5.0×104 NB.此时千斤顶对汽车的支持力为1.0×104 NC.若继续摇动把手,将汽车顶起,千斤顶每臂受到的压力将增大D.若继续摇动把手,将汽车顶起,千斤顶每臂受到的压力将减小【解析】车轮刚被顶起时,千斤顶两臂支持力的合力为千斤顶对汽车的支持力,等于汽车对千斤顶的压力,大小为1.0×105 N,B项错误;两臂夹角为120°,由力的合成可知千斤顶每臂受到的压力为1.0×105 N,A项错误;继续摇动把手,将汽车顶起,千斤顶两臂夹角减小,每臂受到的压力减小,D项正确,C项错误.【答案】 D8.生活实际——以“减速带”为背景考查力的合成问题减速带是交叉路口常见的一种交通设施,车辆驶过减速带时要减速,以保障行人的安全.当汽车前轮刚爬上减速带时,减速带对车轮的弹力为F ,下图中弹力F 画法正确且分解合理的是( )【解析】 减速带对车轮的弹力方向垂直车轮和减速带的接触面,指向受力物体,故A 、C 错误;按照力的作用效果分解,将F 可以分解为水平方向和竖直方向,水平方向的分力产生的效果减慢汽车的速度,竖直方向上分力产生向上运动的作用效果,故B 正确,D 错误.【答案】 B9.人体生理——关节运动中所包含的力学问题如右图所示,人屈膝下蹲时,膝关节弯曲的角度为θ.设此时大小腿部的肌肉群对膝关节的作用力F 的方向水平向后,且大腿骨和小腿骨对膝关节的作用力大致相等,那么脚掌所受小腿骨沿竖直方向的力约为( )A.F 2sin (θ2)B .F 2cos (θ2)C.F 2tan (θ2)D .F 2tan(θ2)【解析】 根据题意先将肌肉群对膝关节的作用力F 沿大腿骨和小腿骨方向分解,然后再分解小腿骨方向的分力,即可知D 正确.【答案】 D10.科技生活——缓冲门中的力学问题分析如图所示为缓慢关门时(图中箭头方向)门锁的示意图,锁舌尖角为37°,此时弹簧弹力为24 N ,锁舌表面较光滑,摩擦不计(sin 37°=0.6,cos 37°=0.8),下列说法正确的是( )A .此时锁壳碰锁舌的弹力为40 NB .此时锁壳碰锁舌的弹力为30 NC .关门时锁壳碰锁舌的弹力逐渐增大D .关门时锁壳碰锁舌的弹力保持不变【解析】 锁壳碰锁舌的弹力分解如图所示,其中F 1=F N sin 37°,且此时F 1大小等于弹簧的弹力为24 N ,解得锁壳碰锁舌的弹力为40 N ,选项A 正确,B 错误;关门时,弹簧的压缩量增大,弹簧的弹力增大,故锁壳碰锁舌的弹力逐渐增大,选项C 正确,D 错误.【答案】 AC[综合提升练]11.(2018·山东泰安高三上学期期中)质量为m 的物体置于倾角为θ=37°的固定斜面上,物体与斜面之间的动摩擦因数为μ=0.2.如图甲所示,先用平行于斜面的推力F 1作用于物体上,使其能沿斜面匀速上滑;若改用水平推力F 2作用于物体上,也能使物体沿斜面匀速上滑,如图乙所示.求两次推力大小之比F 1F 2.(sin 37°=0.6,cos 37°=0.8)【解析】 根据共点力平衡条件可得F 1=mg sin θ+μF N F N =mg cos θ F 2cos θ=mg sin θ+μF ′N F ′N =mg cos θ+F 2sin θ 整理得F 1F 2=cos θ-μsin θ代入数值得F 1F 2=0.68.【答案】 0.6812.电梯修理员或牵引专家常常需要监测金属绳中的张力,但不能到绳的自由端去直接测量.某公司制造出一种能测量绳中张力的仪器,工作原理如图所示,将相距为L 的两根固定支柱A 、B (图中的小圆圈表示支柱的横截面)垂直于金属绳水平放置,在A 、B 的中点用一可动支柱C 向上推动金属绳,使绳在垂直于A 、B 的方向竖直向上发生一个偏移量d (d ≪L ),这时仪器测得金属绳对支柱C 竖直向下的作用力为F .(1)试用L 、d 、F 表示这时金属绳中的张力F T ;(2)如果偏移量d =10 mm ,作用力F =400 N ,L =250 mm ,计算金属绳中张力的大小.【解析】 (1)设C ′点受两边金属绳的张力分别为F T1和F T2,BC 与BC ′的夹角为θ,如图所示.依对称性有:F T1=F T2=F T由力的合成有:F =2F T sin θ 根据几何关系有sin θ=d d 2+L 24联立上述二式解得F T =F2dd 2+L 24则d ≪L ,故F T =FL4d.(2)将d =10 mm ,F =400 N ,L =250 mm 代入F T =FL4d解得F T =2.5×103 N ,即金属绳中的张力为2.5×103 N. 【答案】 (1)FL4d (2)2.5×103 N。
绳的活结与死结模型、动杆和定杆模型特训目标特训内容目标1绳子类的“死结”问题(1T -4T )目标2绳子类的“活结”问题(5T -8T )目标3有关滑轮组的“活结”问题(9T -12T )目标4定杆和动杆问题(13T -16T )【特训典例】一、绳子类的“死结”问题1如图所示,质量为m =2.4kg 的物体用细线悬挂处于静止状态。
细线AO 与天花板之间的夹角为53°,细线BO 水平,若三根细线能承受最大拉力均为100N ,重力加速度g 取10m/s 2,不计所有细线的重力,sin37°=0.6,cos37°=0.8。
下列说法正确的是()A.细线BO 上的拉力大小30NB.细线AO 上的拉力大小18NC.要使三根细线均不断裂,则细线下端所能悬挂重物的最大质量为8kgD.若保持O 点位置不动,沿顺时针方向缓慢转动B 端,则OB 绳上拉力的最小值为19.2N 【答案】C【详解】AB .以结点O 为研究对象,受到重力、OB 细线的拉力和OA 细线的拉力,如图所示根据平衡条件结合图中几何关系可得细线BO 上的拉力大小为F BO =mg tan37°=18N 同理,可解得细线AO 上的拉力大小F AO =mgcos37°=30N 故AB 错误;C .若三根细线能承受的最大拉力均为100N ,根据图中力的大小关系可得,只要OA 不拉断,其它两根细线都不会拉断,故有m max g =F max cos37°解得m max =F max cos37°g =100×0.810kg =8kg ,故C 正确;D .当OB 与OA 垂直时,OB 细线的拉力最小,根据几何关系结合平衡条件可得F min =mg sin37°=2.4×10×0.6N =14.4N 故D 错误。
故选C 。
2如图所示,两个质量均为m 的小球a 和b 套在竖直固定的光滑圆环上,圆环半径为R ,一不可伸长的细线两端各系在一个小球上,细线长为23R 。
“绳上的‘死结’和‘活结’模型”“活动杆”与“固定杆”一、“活动杆”与“固定杆”轻杆是物体间连接的另一种方式,根据轻杆与墙壁连接方式的不同,可以分为“活动杆”与“固定杆”.所谓“活动杆”,就是用铰链将轻杆与墙壁连接,其特点是杆上的弹力方向一定沿着杆的方向;而“固定杆”就是将轻杆固定在墙壁上(不能转动),此时轻杆上的弹力方向不一定沿着杆的方向。
【典例1】甲、乙两图中的杆都保持静止,试画出甲、乙两图O点受杆的作用力的方向.(O为结点)图2-1-8【答案】如解所示【典例2】如图甲所示,轻绳AD跨过固定的水平横梁BC右端的定滑轮挂住一个质量M1的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,轻杆的G点用细绳GF拉住一个质量M2的物体,求:(1)轻绳AC段的张力F T AC与细绳EG的张力F T EG之比;(2)轻杆BC对C端的支持力;(3)轻杆HG对G端的支持力.【答案】(1)2M2M1(2)M 1g 方向和水平方向成30°指向右上方 (3)M 2g 方向水平向右二、“活结”与“死结”绳是物体间连接的一种方式,当多个物体用绳连接的时候,其间必然有“结”的出现,根据“结”的形式不同,可以分为“活结”和“死结”两种.1. “活结”“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点.“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的.绳子虽然因“活结”而弯曲,但实际上是同根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线.2. “死结” “死结”可理解为把绳子分成两段,且不可沿绳子移动的结点。
“死结”一般是由绳子打结而形成的,“死结”两侧的绳子因打结而变成两根独立的绳子。
死结的特点:1.绳子的结点不可随绳移动2.“死结”两侧的绳子因打结而变成两根独立的绳子,因此由“死结”分开的两端绳子上的弹力不一定相等【典例1】如图所示,将一细绳的两端固定于两竖直墙的A、B两点,通过一个光滑的挂钩将某重物挂在绳上,下面给出的四幅图中有可能使物体处于平衡状态的是( )【答案】C【典例2】如图所示,一轻绳的两端分别固定在不等高的A、B两点,现用另一轻绳将一物体系于O点,设轻绳AO、BO相互垂直,α>β,且两绳中的拉力分别为F A、F B,物体受到的重力为G,下列表述正确的是( )A.F A一定大于GB.F A一定大于F BC.F A一定小于F BD.F A与F B大小之和一定等于G【答案】 B【典例3】如图所示,在水平天花板的A点处固定一根轻杆a,杆与天花板保持垂直.杆的下端有一个轻滑轮O.另一根细线上端固定在该天花板的B点处,细线跨过滑轮O,下端系一个重为G的物体,BO段细线与天花板的夹角为θ=30°.系统保持静止,不计一切摩擦.下列说法中正确的是( )GA.细线BO对天花板的拉力大小是2GB.a杆对滑轮的作用力大小是2C.a杆和细线对滑轮的合力大小是GD.a杆对滑轮的作用力大小是G【答案】 D。
考点3 “活结”与“死结”“动杆”与“定杆”模型模型结构模型解读模型特点“活结”模型“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点.“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的.绳子虽然因“活结”而弯曲,但实际上是同一根绳“活结”两侧的绳子上的张力大小处处相等,两侧绳子拉力的合力方向一定沿绳子夹角的角平分线“死结”模型“死结”可理解为把绳子分成两段,且不可以沿绳子移动的结点.“死结”两侧的绳因结而变成了两根独立的绳“死结”两侧的绳子上张力不一定相等“动杆”模型轻杆一端用光滑的转轴或铰链连接,轻杆可围绕转轴或铰链自由转动当杆处于平衡状态,且只有杆两端受力时,杆所受的弹力方向一定沿杆(否则杆会转动)“定杆”模型轻杆被固定在接触面上(如一端“插入”墙壁或固定于地面),不发生转动杆所受的弹力方向不一定沿杆,力的方向只能根据具体情况进行分析,如根据平衡条件或牛顿第二定律确定杆中弹力的大小和方向研透高考明确方向命题点1“活结”与“死结”模型6.[“活结”模型/多选]如图所示,轻质不可伸长的晾衣绳两端分别固定在竖直杆M、N上的a、b两点,悬挂衣服的衣架挂钩是光滑的,挂于绳上处于静止状态.如果只人为改变一个条件,当衣架静止时,下列说法正确的是(AB)A.绳的右端上移到b',绳子拉力不变B.将杆N向右移一些,绳子拉力变大C.绳的两端高度差越小,绳子拉力越小D.若换挂质量更大的衣服,则衣架悬挂点右移解析 设衣架挂于绳上O 点,衣架与衣服质量之和为m ,绳aOb 长为L ,M 、N 的水平距离为d ,bO 延长线交M 于a',由几何关系知a'O =aO ,sin θ=dL ,由平衡条件有2F cosθ=mg ,则F =mg2cosθ.当绳右端从b 上移到b'时,d 、L 不变,θ不变,故F 不变,选项A 正确,C 错误.将杆N向右移一些,L 不变,d 变大,θ变大,cos θ变小,则F 变大,选项B 正确.只改变衣服的质量,则m 变化,其他条件不变,则sin θ不变,θ不变,衣架悬挂点不变,选项D 错误. 命题拓展命题情境变化:挂钩自由滑动→固定不动(1)[“死结”模型]如图所示,轻质不可伸长的晾衣绳两端分别固定在两根竖直杆上,A 端高于B 端,绳上挂有一件衣服,为防止滑动,将悬挂衣服的衣架钩固定在绳上,当固定在适当位置O 处时,绳子两端对两杆的拉力大小相等,则( D )A .绳子OA 段与竖直杆夹角比OB 段与竖直杆夹角大B .O 点位置与衣服重力有关,衣服重力越大,O 点离B 端越近C .若衣架钩固定在绳子上中点处,则绳子两端对杆的拉力大小仍然相等D .若衣架钩固定在绳子上中点处,则绳子A 端对杆的拉力大于B 端对杆的拉力解析 设左、右两段绳的拉力大小分别为F 1、F 2,左、右两段绳与竖直方向的夹角分别为α、β,根据水平方向受力平衡可得F 1sin α=F 2sin β,由于F 1=F 2,故α=β,选项A 错误;结合上述分析可知,O 点的位置取决于绳长和两杆间的距离,与衣服重力无关,选项B 错误;若衣架钩固定在绳子的中点处,由于杆A 高于杆B ,即cos α>cos β,故sin α<sin β,结合F 1sin α=F 2sin β可得F 1>F 2,选项C 错误,D 正确.命题情境变化:平面→立体空间(2)[“活结”模型]某小区晾晒区的并排等高门形晾衣架A'ABB'-C'CDD'如图所示,AB 、CD 杆均水平,不可伸长的轻绳的一端M 固定在AB 中点上,另一端N 系在C 点,一衣架(含所挂衣物)的挂钩可在轻绳上无摩擦滑动.将轻绳N 端从C 点沿CD 方向缓慢移动至D 点,整个过程中衣物始终没有着地,则此过程中轻绳上张力大小的变化情况是( B )A.一直减小B.先减小后增大C.一直增大D.先增大后减小解析 轻绳N 端由C 点沿CD 方向缓慢移动至D 点的过程中,衣架两侧轻绳与水平方向的夹角先增大后减小,设该夹角为θ,轻绳上的张力为F ,由平衡条件有2F sin θ=mg ,故F =mg2sinθ,可见张力大小先减小后增大,B 项正确. 方法点拨“晾衣绳”模型1.识别条件(1)重物挂在长度不变的轻绳上.(2)悬挂点可在轻绳上自由移动. 2.模型特点(1)悬挂点两侧轻绳上拉力大小相等.(2)悬挂点两侧轻绳与竖直方向夹角相等,绳长为L 、横向间距为d .结论:sin θ=d L,F =mg 2cosθ.3.结论(1)夹角θ只与横向间距d 和绳长L 有关,与悬挂的重物质量m 无关,而拉力F 的大小与夹角θ和重物质量m 有关.(2)若横向间距d 不变,在竖直方向上移动结点a 或b ,夹角θ与轻绳拉力均不变.若横向间距d 变大,则夹角θ增大,轻绳拉力也增大.命题点2 “动杆”与“定杆”模型7.如图甲所示,细绳AD 跨过固定在轻杆BC 右端的定滑轮挂住一个质量为m 1的物体,∠ACB =30°;如图乙所示,轻杆HG 一端用铰链固定在竖直墙上,另一端G 通过细绳EG 拉住,EG 与水平方向成30°角,在轻杆的G 点上用细绳GF 拉住一个质量为m 2的物体,重力加速度为g ,则下列说法正确的是( D )A.图甲中BC 对滑轮的作用力为m 1g 2B.图乙中HG 受到绳的作用力为m 2gC.细绳AC 段的拉力F AC 与细绳EG 段的拉力F EG 之比为1∶1D.细绳AC 段的拉力F AC 与细绳EG 段的拉力F EG 之比为m 1∶2m 2解析 根据题意知两个物体都处于平衡状态,根据平衡条件,易知直接与物体相连的细绳,其拉力大小等于物体的重力大小;分别取C 点和G 点为研究对象,进行受力分析如图甲和图乙所示.图甲中,根据F AC =F CD =m 1g 且夹角为120°,有F BC =F AC =m 1g ,方向与水平方向成30°角,指向右上方,A 选项错误;图乙中,根据平衡条件有F EG sin30°=F GF =m2g、F EG cos30°=F HG,联立解得F HG=√3m2g,根据牛顿第三定律可知,HG杆受到绳的作用力大小也为√3m2g,B选项错误;图乙中有F EG sin30°=F GF=m2g,得F EG=2m2g,所以F AC∶F EG=m1∶2m2,C选项错误,D选项正确.方法点拨1.无论“死结”还是“活结”,一般均以结点为研究对象进行受力分析.2.如果题目搭配杆出现,一般情况是“死结”搭配有转轴的杆即“动杆”,“活结”搭配无转轴的杆即“定杆”.。
模型02 活结与死结(原卷版)死结:可理解为把绳子分成两段,且不可以沿绳子移动的结点。
“死结”两侧的绳因结而变成了两根独立的绳,因此由“死结”分开的两段绳子上的弹力不一定相等。
活结:可理解为把绳子分成两段,且可以沿绳子移动的结点。
“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的。
绳子虽然因“活结”而弯曲,但实际上是同一根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的角平分线。
【典例1】[2017·全国卷Ⅲ]一根轻质弹性绳的两端分别固定在水平天花板上相距80cm的两点上,弹性绳的原长也为80cm.将一钩码挂在弹性绳的中点,平衡时弹性绳的总长度为100cm;再将弹性绳的两端缓慢移至天花板上的同一点,则弹性绳的总长度变为(弹性绳的伸长始终处于弹性限度内)() A.86cm B.92cm C.98cm D.104cm【变式训练1】(2019·天津卷)2018年10月23日,港珠澳跨海大桥正式通车。
为保持以往船行习惯,在航道处建造了单面索(所有钢索均处在同一竖直面内)斜拉桥,其索塔与钢索如图所示。
下列说法正确的是A.增加钢索的数量可减小索塔受到的向下的压力B.为了减小钢索承受的拉力,可以适当降低索塔的高度C.索塔两侧钢索对称且拉力大小相同时,钢索对索塔的合力竖直向下D.为了使索塔受到钢索的合力竖直向下,索塔两侧的钢索必须对称分布【典例2】(2019·西南名校联盟模拟)两物体M、m用跨过光滑定滑轮的轻绳相连,如图所示,OA、OB与水平面的夹角分别为α、β,已知α<β,M、m均处于静止状态。
则A.水平面一定是粗糙的B .水平面可能是光滑的C .OA 绳的拉力大于OB 绳的拉力D .OA 绳的拉力等于OB 绳的拉力【变式训练2】(2019·山东省聊城市高三下学期三模)在港珠澳大桥建设中,将一个根直径22 m ,高40.5 m 的钢筒,打入海底围成人工岛,创造了快速筑岛的世界记录。
常见连接体问题(一)“死结”“活结”1.如图甲所示,轻绳AD跨过固定在水平横梁BC右端的定滑轮挂住一个质量为10 kg 的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,轻杆的G点用细绳GF拉住一个质量也为10 kg 的物体.g取10 m/s2,求(1)细绳AC段的张力FAC与细绳EG的张力FEG之比;(2)轻杆BC对C端的支持力;(3)轻杆HG对G端的支持力.(二)突变问题2。
在动摩擦因数μ=0.2的水平质量为m=1kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零,当剪断轻绳的瞬间,取g=10m/s2,求:(1)此时轻弹簧的弹力大小(2)小球的加速度大小和方向.(三)力的合成与分解3.如图所示,用一根细线系住重力为、半径为的球,其与倾角为的光滑斜面劈接触,处于静止状态,球与斜面的接触面非常小,当细线悬点固定不动,斜面劈缓慢水平向左移动直至绳子与斜面平行的过程中,下述正确的是().A.细绳对球的拉力先减小后增大B.细绳对球的拉力先增大后减小C.细绳对球的拉力一直减小D.细绳对球的拉力最小值等于G(四)整体法4.如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接。
在力F的作用下一起沿水平方向做匀速直线运动(m1在地面,m2在空中),力F与水平方向成θ角,则m1所受支持力N和摩擦力f正确的是()A.N=m1g+m2g-FsinθB.N=m1g+m2g-FcosθC.f=FcosθD.f=Fsinθ(五)隔离法5.如图所示,水平放置的木板上面放置木块,木板与木块、木板与地面间的摩擦因数分别为μ1和μ2。
已知木块质量为m,木板的质量为M,用定滑轮连接如图所示,现用力F匀速拉动木块在木板上向右滑行,求力F的大小?6.跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,已知人的质量为70 kg,吊板的质量为10 kg,绳及定滑轮的质量,滑轮的摩擦均可不计,取重力加速度g=10 m/s2 ,当人以440 N的力拉绳时,人与吊板的加速度a和人对吊板的压力F分别为()A.a=1 m/s2,FN=260 NB.a=1 m/s2,FN=330 NC.a=3 m/s2,FN=110 ND.a=3 m/s2,FN=50 N7.如图所示,静止在水平面上的三角架的质量为M,它中间用两根质量不计的轻质弹簧连着一质量为m的小球,当小球上下振动,三角架对水平面的压力为零的时刻,小球加速度的方向与大小是()A.向下,mMgB.向上,gC.向下,gD.向下,m gmM)(+(六)综合8. 如图所示,一夹子夹住木块,在力F作用下向上提升,夹子和木块的质量分别为m、M,夹子与木块两侧间的最大静摩擦均为f,若木块不滑动,力F的最大值是()答案1。