机械原理第5章-连杆机构设计
- 格式:ppt
- 大小:6.96 MB
- 文档页数:79
机械原理平面连杆机构及设计平面连杆机构是机械原理中最经典也是最重要的一种机构类型之一。
这种机构由多个刚性杆件组成,每个杆件都能在平面内移动,它们通过连接点(铰链/球头)相互连接。
平面连杆机构在机械工程领域中有着广泛的应用,能够实现很多不同的机械运动和工作原理。
平面连杆机构中最重要的构件是连杆,也就是连接各个零件的关键杆件,如果连杆设计不合适可能导致机构性能的下降。
因此,平面连杆机构的设计要受到重视,需要考虑以下几个因素。
一、长度比例连杆不同长度比例的设置,对整个机构的运动特性和反应速度有着很大的影响。
在设计平面连杆机构时,需要根据机构所要完成的任务,选择恰当的连杆长度比例,保证机构的平衡性和可靠性,以及使机构的工作效率更高。
二、铰链/球头的位置铰链/球头是平面连杆机构中的关键组成部分。
在设计平面连杆机构时,需要合理选择铰链/球头的位置,以达到机构所要完成的特定任务。
如果铰链/球头设置不当,或者位置过分集中,会使机构不平衡或失效。
因此,设计者需要考虑连杆的长度、位置、形状和角度等因素。
三、材质选择平面连杆机构的设计材料非常重要,它将直接影响到机构的质量和强度。
不同材料的连接部分,对于平面连杆机构的工作效率和稳定性有着非凡的意义。
因此,在设计时,应本着安全、可靠、实用的原则,选用优质、耐用的材料,确保机构长期稳定、可靠的工作。
以汽车减震器为例,汽车减震器中使用的是多连杆机构原理,作为一种基于平面连杆机构的机构类型,它通过几个连杆的特定结构和布局,使得整个减震器能够更好地适应路况,缓解车辆的震动和冲击。
汽车减震器的设计考虑了多个因素,包括结构的稳定性和可靠性,杆件的材质和尺寸比例等。
总结来说,平面连杆机构是机械原理中非常重要的一种机构类型,广泛应用于机械和工程领域,需要经过仔细的设计和考虑,才能达到最好的运转效果。
设计者需要从多个维度进行考虑,包括长度比例、铰链/球头的位置、材质选择等等。
这些因素的合理应用,能够使平面连杆机构能够更好地适应不同的任务需求,达到最高的技术性能和质量水平。
机械原理课程设计编程说明书一设计任务-------------------------------2二设计过程-------------------------------22.1设计思想-------------------------------22.2参数的定义-----------------------------22.3数学模型-------------------------------32.4程序流程图-----------------------------42.5源程序设计-----------------------------5三设计结果--------------------------------123.1 连杆运动示意图-----------------------123.2 连杆参数的计算结果-------------------123.3 位移、角速度、加速度曲线绘制---------16 四课程设计总结------------------------17五参考文献---------------------------18一设计任务任务:连杆机构的设计及运动分析已知:中心距X1=70mm,X2=190mm,Y=330mm。
构件3的上、下极限Φ=60、Φ=120,滑块的冲程H=220mm,比值CE/CD=1/2,EF/DE=1/4,各构件S重心的位置,曲柄每分钟转速N1=120r/min。
要求:1)建立数学模型;2)用C语言编写计算程序、并运行;3)绘制从动件运动规律线图,并进行连杆机构的动态显示;4)用计算机打印出计算说明;二设计过程2.1 设计思想根据主动杆AB的转角变化和DE杆的极限位置的确定得出其它各杆件的运动规律。
确定初始角度通过循环模拟连杆的运动过程。
数学模型的建立运用矢量方程解析法。
2.2参数的定义theta-------转角omga-----角速度epsl------角加速度2.3 数学模型04321=--+ZZ Z Z (1)按复数式可以写成)sin (cos )sin (cos )sin (cos )sin (cos 44332211=+-+-+++θθθθθθθθi d i c i b i a 由于04 =θ,上式可简化为0)sin (cos )sin (cos )sin (cos 332211=-+-+++d i c i b i a θθθθθθ (2)根据(2)式中实部、虚部分别相等得0cos cos cos 321=--+d c b a θθθ (3)0sin sin sin 321=-+θθθc b a (4)由(3)、(4)式联立消去θ2得)cos 2(sin )sin 2(cos )2cos 2(122223131θθθθθad ac cd ac b d c a --++=+- (5) 令:θθθ1222211111cos 2,sin 2,2cos 2ad ac cd ac b d c a N M L --++==-=,则(5)式可简化为N M L 13131s i n c o s =+θθ(6)解得之ML LML N21211212113a r c s i na r c s i n +-+=θ(7)同理,根据(3)、(4)式消去θ3可解得ML LML N22222222222arcsinarcsin+-+=θ (8)其中:θθθ1222221212cos 2,sin 2,2cos 2ad ab bd ab b d a c N M L +---==-=)sin()cos()cos()sin(2)sin()cos()cos()sin()sin()sin(,)sin()sin(43873232232221212113232323223121311212321313213223θθθθωωθθωθθεεθθωθθωθθωθθεεωθθθθωωθθθθωθθ--+-----=---+-+-=--=--=c c b a a b c b a a c a b ad c ,求解得)式对时间求二介导数将()式对时间求导,得)、(为简便,将(都是时间的函数,、杆的角位移方程。
机械原理平面连杆机构及设计平面连杆机构是一种最为基本的机械结构,由于其结构简单、运动可靠等特点,被广泛应用于各种机械设备中。
本文将对平面连杆机构进行介绍,并探讨其设计原理。
平面连杆机构是由至少一个定点和至少三个连杆组成的机构。
定点为固定参考点,连杆是由铰链连接的刚性杆件。
连杆可以分为连杆和曲柄,连杆连接在定点上,曲柄则旋转。
平面连杆机构的运动由这些连杆的位置和相互连接方式决定。
平面连杆机构的设计原理基于以下几个方面:1.运动分析:在设计平面连杆机构之前,首先需要进行运动分析,确定所需的运动类型。
运动类型可以是旋转、平移、摆动、滑动等。
通过运动分析,可以确定连杆的长度和相互连接的方式。
2.运动性能:平面连杆机构的优点是运动可靠,但运动性能也是需要考虑的重要因素。
例如,设计中需要考虑速度、加速度、力和力矩等参数,以满足机构的运动要求。
3.静力学分析:平面连杆机构在工作过程中可能会受到外力的作用,因此需要进行静力学分析。
静力学分析可以确定机构的力矩和应力,从而确定设计的合理性。
4.运动合成:在进行平面连杆机构的设计过程中,需要进行连杆的运动合成。
运动合成是指通过选择适当的连杆长度和连接方式,实现所需的运动类型。
5.运动分解:运动分解是指将合成的运动分解为各个连杆的运动。
通过运动分解,可以确定每个连杆的运动规律,从而进行设计。
当以上原理得到了充分的了解和运用后,可以进行平面连杆机构的具体设计。
具体的设计包括以下几个步骤:1.确定所需的运动类型:根据机械设备的需求,确定所需的运动类型,例如旋转、平移、摆动等。
2.运动分析:对机构进行运动分析,确定连杆的位置和连接方式。
根据机构的运动要求和外力作用,确定连杆的长度。
3.动力学分析:进行动力学分析,确定机构运动时的力学参数,如速度、加速度、力和力矩等。
4.运动合成与分解:根据所需的运动类型,进行运动合成和分解,确定连杆的运动规律。
5.结构设计:根据上述分析和计算结果,进行结构设计。
工程技术学院课程设计题目:图解法设计平面连杆机构摘要设计内容:设计曲柄摇杆机构。
已知摇杆长度l,摆角ψ,摇杆3的行程速比系数K,要求摇杆CD靠近曲柄回转中心A一侧的极限位置与机架间的夹角为∠CDA,试用图解法设计其余三杆的长度,并计算机构的最小传动角γ。
设计方法:在设计时首先需计算极位夹角θ,再绘制机架位置线及摇杆的两个极限位置,然后确定曲柄回转中心和各杆长度最后验算最小传动角 。
最后根据已知数据和所计算的数据进行图解,画出平面四杆机构图。
平面连杆机构是由若干构件用平面低副(转动副和移动副)联接而成的平面机构,用以实现运动的传递、变换和传送动力。
平面连杆机构的使用很广泛,它被广泛地使用在各种机器、仪表及操纵装置中。
例如内燃机、牛头刨、钢窗启闭机构、碎石机等等,这些机构都有一个共同的特点:其机构都是通过低副连接而成,故此这些机构又称低副机构低副机构低副机构低副机构。
关键词:机械设计基础机械设计基础课程设计平面四杆机构图解法极位夹角云南农业大学工程技术学院目录1题目 (3)1.1原始数据及要求 (3)1.2 工作量 (3)1.3 制图说明 (3)1.4 设计计算说明书包括的内容 (3)2 设计方案的讨论 (4)3 设计过程 (5)3.1 各杆长度的确定 (5)3.2 盐酸最小传动角 (6)4 小结 (7)5 参考文献 (8)1、题目1.1原始数据及要求:设计曲柄摇杆机构。
已知摇杆长度l,摆角ψ,3摇杆的行程速比系数K,要求摇杆CD靠近曲柄回转中心A一侧的极限位置与机架间的夹角为∠CDA,试用图解法设计其余三杆的长度,并计算机构的最小传动角γ。
1.2工作量:1.平面连杆机构图解法设计图纸一张。
2.计算说明书一份。
1.3制图说明:1.用3号图纸作图。
2.标注尺寸。
3.辅助线用细实线。
4.杆的一个极限位置用粗实线,另一个极限位置用虚线。
1.4设计计算说明书包括的内容:1.设计任务书2.目录3.设计过程3.1.计算极位夹角θ3.2.绘制机架位置线及摇杆的两个极限位置3.3.确定曲柄回转中心3.4.确定各杆长度3.5.验算最小传动角γ参考文献2、设计方案的讨论平面连杆机构是将各构件用转动副或移动副联接而成的平面机构。
华东理工大学网络教育学院机械原理课程阶段练习二(第5-6章)第五章平面连杆机构及其设计一:选择题1、铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和( A )其他两杆长度之和。
A <=;B >=;C > 。
2、当行程速度变化系数k B时,机构就具有急回特性。
A <1;B >1;C =1。
3、当四杆机构处于死点位置时,机构的压力角( B ).A.为0o;B.为90o;C.与构件尺寸有关.4、对于双摇杆机构,最短构件与最长构件长度之和( A )大于其余两构件长度之和.A.一定;B.不一定;C.一定不.5、若将一曲柄摇杆机构转化为双曲柄机构,可将( B ).A.原机构曲柄为机构;B.原机构连杆为机架;C.原机构摇杆为机架.6、曲柄摇杆机构处于死点位置时( B )等于零度.A.压力角;B.传动角;C.极位角.7、偏置曲柄滑动机构中,从动件滑动的行程速度变化系数K( A )1.A.大于;B.小于;C.等于.8、曲柄为原动件的曲柄摇杆机构, 若知摇杆的行程速比系数K=1.5,那么极位角等于( C ).A.18;B.-18;C.36;D.72.9、曲柄滑块机构的死点只能发生在( B ).A.曲柄主动时;B.滑块主动时;C.连杆与曲柄共线时.10、当曲柄为主动件时,曲柄摇杆机构的最小传动角 min总是出现在( C ).A.连杆与曲柄成一条直线;B.连杆与机架成一条直线时;C.曲柄与机架成一条直线.11、四杆机构的急回特性是针对主动件作( A )而言的.A.等速运动;B.等速移动;C.与构件尺寸有关.12、平面连杆机构的行程速比系数K值的可能取值范围是( C ).A 0≤ K≤1B 0≤ K≤2C 1≤ K≤3D 1≤ K≤213、摆动导杆机构,当导杆处于极限位置时,导杆( A )与曲柄垂直.A.一定;B.不一定;C.一定不.14、曲柄为原动件的偏置曲柄滑动机构,当滑块上的传动角最小时,则( B ).A.曲柄与导路平行;B.曲柄与导路垂直;C.曲柄与连杆共线;D.曲柄与连杆垂直.15、在曲柄摇杆机构中,若增大曲柄长度,则摇杆摆角将( A )A.加大;B.减小;C.不变;D.加大或不变.16、铰链四杆机构有曲柄存在的必要条件是( A )A.最短杆与最长杆长度之和小于或等于其他两杆长度之和B.最短杆与最长杆长度之和大于其他两杆长度之和C.以最短杆为机架或以最短杆相邻的杆为机架二:填空题1、平面四杆机构有无急回特性取决于极位夹角θ的大小.2、曲柄滑快机构,当以滑块为原动件时,可能出现死点。
机械原理连杆
连杆是机械原理中的一个重要组成部分,它通常是由两个或多个杆件组成的。
连杆可以将旋转运动转化为直线运动,或者将直线运动转化为旋转运动。
它在许多机械装置中被广泛应用,如发动机、发电机、汽车零部件等。
连杆的工作原理是基于杆件的运动约束,其运动能够满足特定的几何关系。
一般来说,连杆可以分为滑动连杆和转动连杆两种类型。
滑动连杆是指其中至少有一个杆件进行直线滑动运动的连杆。
在滑动连杆中,一端通常是固定的,而另一端可以在轴承的支持下做直线滑动。
通过改变杆件的长度或角度,可以实现连杆的运动控制。
转动连杆是指其中所有杆件都进行旋转运动的连杆。
在转动连杆中,两个杆件通过一个固定的转轴连接,从而实现转动运动。
通过改变杆件的长度或角度,可以实现连杆的运动控制。
连杆具有很多的应用,其中最常见的是作为曲柄连杆机构。
曲柄连杆机构是一种将旋转运动转化为直线运动的装置,广泛应用于发动机、泵、压缩机等领域。
在曲柄连杆机构中,连杆的长度和角度决定了输入转动运动的幅度和速度。
此外,连杆还可以用于构建机械传动系统,如齿轮传动、皮带传动等。
连杆在这些传动系统中起到了传递运动和力量的作用,实现了机械装置的正常工作。
总而言之,连杆是机械装置中非常重要的一个部件,它可以将旋转运动转化为直线运动,或者将直线运动转化为旋转运动。
通过改变连杆的长度和角度,可以实现连杆的运动控制,从而实现机械装置的正常工作。
机械原理与设计之平面连杆机构引言平面连杆机构是一种常见的机械装置,用于将旋转运动转化为直线运动或者将直线运动转化为旋转运动。
在机器设计中,平面连杆机构被广泛应用于各种机械装置,如发动机、机械手臂和汽车悬挂系统等。
本文将介绍平面连杆机构的基本原理、设计方法以及一些常见的平面连杆机构。
基本原理平面连杆机构由多个连杆组成,其中至少一个连杆可以旋转。
连杆通过连接处的铰链相互连接,形成一个闭合的链条。
其中一个连杆称为曲柄杆,用于提供旋转驱动力,而其他连杆则用于将驱动力传递给要执行的任务。
平面连杆机构的运动分析主要基于几何学原理和运动学原理。
平面连杆机构的运动是由各个连杆的长度、角度和运动速度决定的。
通过对各个连杆的长度和角度进行合理设计,可以实现所需的运动轨迹和速度。
平面连杆机构的设计必须考虑到各个连杆的运动约束、力学平衡以及运动的精确性和可靠性。
设计方法设计一个平面连杆机构需要经过以下几个步骤:1.确定设计需求:首先需要明确所需的运动特性和任务要求。
例如,是需要将旋转运动转化为直线运动还是将直线运动转化为旋转运动,还需要考虑到运动的速度、力量和精确性等因素。
2.确定连杆的长度和角度:通过几何学原理和运动学原理,可以根据设计需求确定各个连杆的长度和角度。
连杆的长度和角度直接影响着机构的运动轨迹和速度。
3.确定连杆的连接位置:在设计过程中,还需要确定各个连杆的连接位置,即铰链的位置。
铰链的位置直接决定了连杆之间的运动关系。
4.分析运动特性:通过运动学分析,可以计算出机构的运动特性,如连杆的位移、速度和加速度等。
这些数据可以用于评估机构的性能和合理性。
5.进行力学分析:在设计过程中,还需要进行力学分析,以确保机构的稳定性和可靠性。
力学分析可以确定机构的最大负载和各个连杆之间的力传递情况。
6.优化设计:根据运动特性和力学分析的结果,可以对设计进行优化。
通过调整连杆的长度、角度和连接位置等参数,可以改进机构的性能和可靠性。
机械原理连杆机构的应用1. 引言机械原理是工程学中的一门基础课程,它研究的是机械工程中各种机械部件运动与力学性能的基本原理和方法。
连杆机构是机械原理中的一个重要内容,它由多个刚体连接而成,用于将旋转运动转化为直线运动或者将直线运动转化为旋转运动。
本文将探讨连杆机构的应用领域及其在一些具体行业中的运用。
2. 连杆机构的基本原理连杆机构由连杆和连杆的连接副构成,常见的连杆有曲柄、摇杆、滑块等。
连杆机构的运动特点主要包括以下几个方面: - 连杆的长度和角度决定了机构的运动轨迹; - 连杆可以传递和转换动力; - 连杆的长度和角度对机构的性能和运动速度有影响; - 通过改变连杆的连接方式和结构,可以实现不同的运动规律和功能。
3. 连杆机构的应用领域连杆机构作为一种基本的运动转换机构,在工程学中有广泛的应用。
以下是一些常见的应用领域:3.1 汽车工业连杆机构在汽车工业中起着关键作用,主要应用于发动机和悬挂系统。
在发动机中,连杆机构将活塞的上下运动转化为曲轴的旋转运动,从而驱动汽车前进。
而在悬挂系统中,连杆机构用于连接车轮和车身,通过调节连杆的长度和角度来实现车身的稳定性和操控性。
3.2 机械制造在机械制造领域,连杆机构常常用于实现复杂的运动转换和工艺操作。
例如,在机床加工中,连杆机构能够将旋转运动转化为直线运动,实现工件的切削加工。
此外,连杆机构还被广泛运用于起重机械、输送设备等工程机械的设计和制造过程中。
3.3 机器人领域机器人是现代工业生产中不可或缺的一部分,而连杆机构在机器人的运动机构中占有很重要的地位。
机器人的各种关节和手臂动作都是通过引入连杆机构实现的,使得机器人能够具备多自由度的灵活运动,从而适应不同的工作环境和任务。
3.4 传输系统连杆机构在传输系统中也有广泛的应用。
比如,在工业生产中,连杆机构可以用来传输物料,实现物料的输送、分拣和定位等功能。
此外,连杆机构还可以应用于流水线装配系统、飞行器起落架等领域。
第1章绪论本章讲述了机械原理研究的对象与内容、机械原理课程的重要性与学习方法、机械原理学科的发展概况,主要内容如下:1.“机械”是“机器”和“机构”的总称。
机器具有三个特点,即(1)都是人为的实体组合;(2)在工作中,其中各实体具有确定的运动;(3)在生产劳动中,能实现能的转换、代替或减轻人类的劳动以完成有用的功。
机构具有机器的前两个特点。
2.本课程是研究机器和机构理论的一门科学,主要内容有:各种机构共同的基本问题、几种常用机构所特有的问题、机器动力学问题、机械系统运动方案的设计。
3.本课程在专业教学计划中占有十分重要的地位,在发展国民经济方面也具有重要意义;机械原理是一门技术基础课程,为以后学习机械设计和有关专业课程,以及掌握机械方面的最新成就打下理论基础。
复习思考题1.什么叫机构? 什么叫机器? 什么叫机械? 它们之间有何联系? 试举例说明之。
2.机械原理的课程内容是什么? 学习本课程应注意哪些方面?第2章平面机构的结构分析本章讨论平面机构的结构分析的有关问题,主要内容如下:1.从运动的角度来看,机构是由具有确定的相对运动的构件组成的,而构件之间是通过运动副联接的。
根据运动副元素是面、点或线,有低副、高副之分。
两个以上的构件通过运动副的联接而构成的系统称为运动链,机构可以看作具有机架和原动件且有确定的相对运动的运动链。
2.机构运动简图是用简单的线条和规定的符号表示构件和运动副,并按一定比例表示出各运动副相对位置的简单图形。
运动副的符号和常用机构的运动简图都有规定画法。
机构运动简图要表示出机构中构件的相对运动关系。
3.机构具有确定的相对运动的条件是机构自由度等于原动件数目。
自由度F的基本计算公式为:F=3n-2PL-PH在利用机构运动简图计算机构自由度时要注意复合铰链、局部自由度及虚约束等问题。
4.引入基本杆组的概念后,机构是由原动件、机架和若干基本杆组所组成。
常用的基本杆组有Ⅱ级杆组、Ⅲ级杆组和Ⅳ级杆组。
机械原理与设计平面连杆机构引言连杆机构是机械工程中非常重要的一类机构,广泛应用于各种机械装置中。
平面连杆机构是其中最简单、常见的一种连杆机构。
本文将介绍机械原理与设计平面连杆机构的基本概念、工作原理及设计要点。
一、连杆机构的基本概念连杆机构是指由刚性杆件连接而成的机械系统,它具有一定的自由度和特定的运动特性。
平面连杆机构是指所有杆件均在同一平面内运动的连杆机构。
平面连杆机构由连杆、铰链和主动副组成。
连杆:连杆是连接其他杆件的刚性杆件,具有一定的长度和形状。
铰链:铰链是连接连杆的关节,它允许连杆相对旋转,保持一定的约束。
主动副:主动副是指能够驱动整个机构运动的关节,通常由电机或气动装置驱动。
二、平面连杆机构的工作原理平面连杆机构的工作原理是利用连杆的长度、角度和铰链的位置来实现特定的运动。
在平面连杆机构中,主要有以下几种常见的运动形式:1.顺序运动:当主动副驱动时,各个连杆按照一定的顺序依次运动。
这种运动形式常见于内燃机的活塞连杆机构。
2.并联运动:当多个连杆同时受到主动副驱动时,它们以同步的方式进行运动。
这种运动形式可以用来实现机械手臂等装置的运动。
3.逆运动:当主动副驱动时,连杆和铰链的位置发生变化,使机构实现逆向运动。
这种运动形式常见于一些特殊装置的设计。
平面连杆机构的工作原理和运动形式可以通过机械原理的分析和运动学的计算来实现。
其中,机械原理用来推导连杆运动的基本方程,而运动学则用来分析连杆机构的运动特性和运动关系。
三、平面连杆机构的设计要点在设计平面连杆机构时,需要考虑以下几个要点:1.运动要求:根据具体的工作要求,确定机构需要实现的运动形式和工作速度等指标。
2.运动范围:根据工作空间和杆件的长度等约束条件,确定连杆机构的运动范围。
3.结构强度:根据承载力和杆件的材料等因素,设计连杆机构的结构强度和刚度,以确保机构的正常工作。
4.运动平稳性:通过运动学计算和动力学分析,确定机构的运动是否平稳,以及如何减小振动和冲击力。