2020-2021初中数学投影与视图专项训练解析附答案(1)
- 格式:doc
- 大小:288.00 KB
- 文档页数:11
2020-2021初中数学投影与视图专项训练解析附答案(1)
一、选择题
1.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为( )
A. B. C. D.
【答案】C
【解析】
试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.
故选C
2.如图所示,该几何体的左视图是( )
A. B.
C. D.
【答案】B
【解析】
【分析】
根据几何体的三视图求解即可.
【详解】
解:从左边看是一个矩形,中间有两条水平的虚线, 故选:B.
【点睛】
本题考查的是几何体的三视图,熟练掌握几何体的三视图是解题的关键.
3.如图是某几何体的三视图,该几何体是( )
A.三棱柱 B.三棱锥 C.长方体 D.正方体
【答案】A
【解析】
【分析】
根据几何体的三视图,对各个选项进行分析,用排除法得到答案.
【详解】
根据俯视图是三角形,长方体和正方体以及三棱锥不符合要求,B、C、D错误,
根据几何体的三视图,三棱柱符合要求,
故选A.
【点睛】
本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.
4.如图是一个由5个完全相同的小正方体组成的几何图形,则它的主视图为( )
A. B. C. D.
【答案】A
【解析】
【分析】
根据从正面看得到的图形是主视图,可得答案.
【详解】
从正面看第一层是三个小正方形,第二层右边一个小正方形,
故选A.
【点睛】 本题考查了简单组合体的三视图,解题的关键是掌握三视图的原理.
5.六个大小相同的正方体搭成的几何体如图所示,其俯视图是( )
A. B. C. D.
【答案】B
【解析】
分析:俯视图有3列,从左到右正方形个数分别是2,1,2,并且第一行有三个正方形.
详解:俯视图从左到右分别是2,1,2个正方形,并且第一行有三个正方形.
故选B.
点睛:本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.
6.下面是一个几何体的俯视图,那么这个几何体是( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据各个选项中的几何体的俯视图即可解答.
【详解】
解:由图可知,
选项B中的图形是和题目中的俯视图看到的一样,
故选:B.
【点睛】
本题考查由三视图判断几何体,俯视图是从上向下看得到的图纸,熟练掌握是解题的关键.
7.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )
A. B. C. D.
【答案】B
【解析】
试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.
考点:三视图.
8.如图所示,该几何体的主视图是( )
A. B. C. D.
【答案】D
【解析】
【分析】
从前往后看到一个矩形,后面的轮廓线用虚线表示.
【详解】
该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.
故选D.
【点睛】
本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图的画法.
9.一个几何体的三视图如图所示,则该几何体的表面积是( )
A.24+2π B.16+4π C.16+8π D.16+12π
【答案】D
【解析】
【分析】
根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.
【详解】
该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,
故选D.
【点睛】
本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.
10.小亮领来n盒粉笔,整齐地摆在讲桌上,其三视图如图,则n的值是( )
A.7 B.8 C.9 D.10
【答案】A
【解析】
【分析】
【详解】
解:由俯视图可得最底层有4盒,由正视图和左视图可得第二层有2盒,第三层有1盒,共有7盒,则n的值是7.
故选A.
【点睛】
本题考查由三视图判断几何体.
11.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是( )
A. B. C. D.
【答案】C
【解析】
【分析】
由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.
【详解】
解:从左面看可得到从左到右分别是3,1个正方形.
故选C.
【点睛】
查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.
12.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图( )
A. B. C. D.
【答案】C
【解析】
【分析】
依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.
【详解】
A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;
B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;
C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;
D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.
故选C.
【点睛】
考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.
13.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是( )
A. B.
C. D.
【答案】C
【解析】
【分析】
根据轴对称图形和中心对称图形的概念结合各几何体的主视图逐一进行分析即可.
【详解】
A、主视图是正方形,正方形是轴对称图形,也是中心对称图形,故不符合题意;
B、主视图是矩形,矩形是轴对称图形,也是中心对称图形,故不符合题意;
C、主视图是等腰三角形,等腰三角形是轴对称图形,不是中心对称图形,故符合题意;
D、主视图是圆,圆是轴对称图形,也是中心对称图形,故不符合题意,
故选C.
【点睛】
本题考查了立体图形的主视图,轴对称图形、中心对称图形,熟练掌握相关知识是解题的关键.
14.图甲是由若干个小正方体搭成的几何体的俯视图,小正方体中的数字表示在该位置的小正方体的个数,那么这个几何体的主视图是( )
A. B. C. D.
【答案】B
【解析】
【分析】
【详解】
解:根据题意画主视图如下:
故选B.
考点:由三视图判断几何体;简单组合体的三视图.
15.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( )
A. B. C. D.
【答案】A
【解析】
【分析】
根据俯视图即从物体的上面观察得得到的视图,进而得出答案.
【详解】
该几何体的俯视图是:.
故选A.
【点睛】
此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.
16.如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为( )
A. B. C. D. 【答案】D
【解析】
【分析】
找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.
【详解】
解:从左面看去,是两个有公共边的矩形,如图所示:
故选D.
【点睛】
本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.
17.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有( )
A.8 B.7 C.6 D.5
【答案】B
【解析】
【分析】
易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由主视图可得第二层小正方体的最多个数,相加即可.
【详解】
解:由俯视图易得最底层有4个小正方体,第二层最多有3个小正方体,那么搭成这个几何体的小正方体最多为437个.
故选:B
【点睛】
考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.
18.如图,由若干个大小相同的小正方体搭成的几何体的左视图是( )