南京师范大学《工程热力学》考试重点笔记.doc
- 格式:doc
- 大小:13.00 KB
- 文档页数:1
第一部分 (第一章~第五章)一、概念(一)基本概念、基本术语1、工程热力学:工程热力学是从工程的观点出发,研究物质的热力性质、能量转换以及热能的直接利用等问题。
2、热力系统:通常根据所研究问题的需要,人为地划定一个或多个任意几何面所围成的空间作为热力学研究对象。
这种空间内的物质的总和称为热力系统,简称系统。
3、闭口系统:没有物质穿过边界的系统称为闭口系统。
系统内包含的物质质量为一不变的常量,所以有时又称为控制质量系统。
4、开口系统:有物质流穿过边界的系统称为开口系统。
开口系统总是一种相对固定的空间,故又称开口系统为控制体积系统,简称控制体。
5、绝热系统:系统与外界之间没有热量传递的系统,称为绝热系统。
6、孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统,称为孤立系统。
7、热力状态:我们把系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
8、状态参数:我们把描述工质状态特性的各种物理量称为工质的状态参数。
9、强度性状态参数:在给定的状态下,凡系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性的状态参数称为强度性参数。
10、广延性状态参数:在给定的状态下,凡与系统内所含物质的数量有关的状态参数称为广延性参数。
11、平衡状态:在不受外界影响(重力场除外)的条件下,如果系统的状态参数不随时间变化,则该系统所处的状态称为平衡状态。
12、热力过程:把工质从某一状态过渡到另一状态所经历的全部状态变化称为热力过程。
13、准静态过程:理论研究可以设想一种过程,这种过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,于是整个过程就可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。
14、可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,而不留下任何痕迹,这样的过程称为可逆过程。
工程热力学复习知识点一、知识点基本概念的理解和应用(约占40% ),基本原理的应用和热力学分析能力的考核(约占60% )。
1.基本概念掌握和理解:热力学系统 (包括热力系,边界,工质的概念。
热力系的分类:开口系,闭口系,孤立系统 )。
掌握和理解:状态及平衡状态 ,实现平衡状态的充要条件。
状态参数及其特性。
制冷循环和热泵循环的概念区别。
理解并会简单计算:系统的能量,热量和功(与热力学两个定律结合)。
2.热力学第一定律掌握和理解:热力学第一定律的实质。
理解并会应用基本公式计算:热力学第一定律的基本表达式。
闭口系能量方程。
热力学第一定律应用于开口热力系的一般表达式。
稳态稳流的能量方程。
理解并掌握:焓、技术功及几种功的关系(包括体积变化功、流动功、轴功、技术功)。
3.热力学第二定律掌握和理解:可逆过程与不可逆过程 (包括可逆过程的热量和功的计算 )。
掌握和理解:热力学第二定律及其表述(克劳修斯表述,开尔文表述等)。
卡诺循环和卡诺定理。
掌握和理解:熵(熵参数的引入,克劳修斯不等式,熵的状态参数特性)。
理解并会分析:熵产原理与孤立系熵增原理,以及它们的数学表达式。
热力系的熵方程(闭口系熵方程,开口系熵方程)。
温 - 熵图的分析及应用。
理解并会计算:学会应用热力学第二定律各类数学表达式来判定热力过程的不可逆性。
4.理想气体的热力性质熟悉和了解:理想气体模型。
理解并掌握:理想气体状态方程及通用气体常数。
理想气体的比热。
理解并会计算:理想气体的能、焓、熵及其计算。
理想气体可逆过程中,定容过程,定压过程,定温过程和定熵过程的过程特点,过程功,技术功和热量计算。
5.实际气体及蒸气的热力性质及流动问题理解并掌握:蒸汽的热力性质(包括有关蒸汽的各种术语及其意义。
例如:汽化、凝结、饱和状态、饱和蒸汽、饱和温度、饱和压力、三相点、临界点、汽化潜热等)。
蒸汽的定压发生过程(包括其在p-v 和 T-s 图上的一点、二线、三区和五态)。
工程热力学复习重点2 0 1 2 . 3 绪论[1] 理解和掌握工程热力学的研究对象、主要研究内容和研究方法[2] 理解热能利用的两种主要方式及其特点[3] 了解常用的热能动力转换装置的工作过程1.什么是工程热力学从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。
2.能源的地位与作用及我国能源面临的主要问题3. 热能及其利用[1] 热能:能量的一种形式[2] 来源:一次能源:以自然形式存在,可利用的能源。
如风能,水力能,太阳能、地热能、化学能和核能等。
二次能源:由一次能源转换而来的能源,如机械能、机械能等。
[3] 利用形式:直接利用:将热能利用来直接加热物体。
如烘干、采暖、熔炼(能源消耗比例大)间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能,4..热能动力转换装置的工作过程5.热能利用的方向性及能量的两种属性[1] 过程的方向性:如:由高温传向低温[2] 能量属性:数量属性、,质量属性(即做功能力)[3] 数量守衡、质量不守衡[4] 提高热能利用率:能源消耗量与国民生产总值成正比。
第1 章基本概念及定义1. 1 热力系统一、热力系统系统:用界面从周围的环境中分割出来的研究对象,或空间内物体的总和。
外界:与系统相互作用的环境。
界面:假想的、实际的、固定的、运动的、变形的。
依据:系统与外界的关系系统与外界的作用:热交换、功交换、质交换。
二、闭口系统和开口系统闭口系统:系统内外无物质交换,称控制质量。
开口系统:系统内外有物质交换,称控制体积。
三、绝热系统与孤立系统绝热系统:系统内外无热量交换(系统传递的热量可忽略不计时,可认为绝热)孤立系统:系统与外界既无能量传递也无物质交换=系统+相关外界=各相互作用的子系统之和=一切热力系统连同相互作用的外界四、根据系统内部状况划分可压缩系统:由可压缩流体组成的系统。
简单可压缩系统:与外界只有热量及准静态容积变化均匀系统:内部各部分化学成分和物理”性质都均匀一致的系统,是由单相组成的。
工程热力学知识点电子版
1.热力学基本概念:包括热力学系统、态函数、过程、平衡等基本概念。
2.热力学定律:包括热平衡第一定律(能量守恒),热平衡第二定律(熵增原理)以及热平衡第三定律(绝对零度定律)。
3.理想气体的热力学性质:包括状态方程、卡诺循环、理想气体的内能、焓、熵等性质,以及理想气体的不可逆过程等。
4.热功学:包括热力学势、热力学基本方程、热力学关系、开放系统
的热力学分析等。
5.蒸汽循环与汽轮机:包括蒸汽循环的基本原理、热力学效率、汽轮
机的工作原理和热力学分析等。
6.冷热交换过程:包括传热方式、传热定律、传热设备的热力学设计等。
7.蒸发和冷凝:包括蒸发和冷凝的热力学原理、热传导、传质机制等。
8.混合物与溶液的热力学性质:包括理想混合物的热力学分析、溶解度、等温吸收和等温蒸馏等。
9.平衡态的热力学:包括平衡态判定、化学反应的平衡和平衡常数等。
10.非平衡态的热力学:包括非平衡态的基本概念、非平衡态热力学
平衡准则等。
11.热力学循环与工作系统:包括往复式热机循环(如柴油循环、克
氏循环等)、蒸汽循环的分析、制冷循环等。
以上仅列举了一些工程热力学的基本知识点,具体内容还包括一些相关的热力学计算方法和应用,如热力学分析软件的应用、能源转化系统的分析等。
工程热力学复习重点及简答题HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】工程热力学复习重点2012. 3绪论[1]理解和掌握工程热力学的研究对象、主要研究内容和研究方法[2]理解热能利用的两种主要方式及其特点[3]了解常用的热能动力转换装置的工作过程1.什么是工程热力学从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。
2.能源的地位与作用及我国能源面临的主要问题3. 热能及其利用[1]热能:能量的一种形式[2]来源:一次能源:以自然形式存在,可利用的能源。
如风能,水力能,太阳能、地热能、化学能和核能等。
二次能源:由一次能源转换而来的能源,如机械能、机械能等。
[3]利用形式:直接利用:将热能利用来直接加热物体。
如烘干、采暖、熔炼(能源消耗比例大)间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能,4..热能动力转换装置的工作过程5.热能利用的方向性及能量的两种属性[1]过程的方向性:如:由高温传向低温[2]能量属性:数量属性、,质量属性 (即做功能力)[3]数量守衡、质量不守衡[4]提高热能利用率:能源消耗量与国民生产总值成正比。
第1章基本概念及定义1. 1 热力系统一、热力系统系统:用界面从周围的环境中分割出来的研究对象,或空间内物体的总和。
外界:与系统相互作用的环境。
界面:假想的、实际的、固定的、运动的、变形的。
依据:系统与外界的关系系统与外界的作用:热交换、功交换、质交换。
二、闭口系统和开口系统闭口系统:系统内外无物质交换,称控制质量。
开口系统:系统内外有物质交换,称控制体积。
三、绝热系统与孤立系统绝热系统:系统内外无热量交换 (系统传递的热量可忽略不计时,可认为绝热)孤立系统:系统与外界既无能量传递也无物质交换=系统+相关外界=各相互作用的子系统之和= 一切热力系统连同相互作用的外界四、根据系统内部状况划分可压缩系统:由可压缩流体组成的系统。
工程热力学期末复习考点归纳一、填空选择1、做功和传热的异同:相同点:①通过边界传递的能量;②过程量;不同点:①功传递由压力差推动,比体积变化是作功标志;热量传递由温差推动,比熵变化是传热的标志;②功是物系间通过宏观运动发生相互作用传递的能量;热是物系间通过杂乱的微粒运动发生相互作用而传递的能量。
③传热仅是热能的传递过程,而做功过程一般伴随能量形态的转化。
④功转化为热是无条件的,而热转化为功是有条件、有限度的。
2、某过程可在p-v图中用实线表示,则必为准静态过程3、某过程可在p-v图中用实线表示,则不一定为可逆过程。
4、系统处于平衡状态时,绝对压力不变。
5、不计恒力场作用,平衡态单相系统内各点的状态参数,如密度必定是均匀一致的。
6、经过一个不可逆循环,工质不能恢复原来状态,这种说法是错的。
7、无任何耗散效应的准平衡过程是可逆过程。
8、平衡状态:平衡必稳定,稳定未必平衡,平衡未必均匀。
9、热力学第一定律用于任意系统、任意工质、任意过程。
10、功不是状态参数,热力学能与推动功之和是状态参数。
11、①当n = 0→定压过程②当n = 1→定温过程③当n = k→定熵(绝热)过程④当n = ∞→定容过程12、实际气体的压缩因子,可大于、小于或等于113、气体的临界压缩因子小于114、物质的比定压热容大于或等于比定容热容15、某个管道是喷管还是扩压管,不取决于管道形状,而取于管道内流体流速和压力16、对一定大小气缸的活塞式压气机,因余隙容积的存在,生产1kg气体的理论消耗功不变,实际耗功增大,压气机生产量下降17、循环增压比越大,则实际循环的热效率越高18、工程上尚无进行卡诺循环的蒸汽动力装置的原因是湿饱和区温限太小且压缩两相介质困难19、实现再热循环是为了提高蒸汽膨胀终了的干度20、抽汽回热循环中,抽汽级数越多,循环效率越高,因为抽汽级数越多,平均放热温度不变,平均吸热温度越高21、在压缩气体制冷循环中,随循环增压比提高,制冷系数下降,循环制冷量下降22、与采用可逆膨胀机相比,压缩蒸汽制冷循环中采用节流阀简化了设备降低了制冷量,降低了制冷系数23、工程上,压缩蒸汽制冷装置中常采用使制冷工质在冷凝器中冷凝后继续降温,即所谓的过冷工艺,以达到增加制冷量,提高制冷系数24、①吸收热量温度升高,焓值上升,相对湿度减小,吸湿能力增大②放出热量温度降低,焓值降低,相对湿度增大,吸湿能力减弱25、秋天白天秋高气爽气温较高,此时的空气为未饱和空气26、能够直接确定湿空气是否饱和的物理量是相对湿度27、湿空气的相对湿度增大,含湿量的变化不确定二、计算参考题型课后题1-12、1-16例2-1、课后题2-3例3-2、课后题3-5例4-7、课后题4-10,4-13例5-3、课后题5-1,5-7。
工程热力学知识点1.热力学系统热力学系统是指被研究的物体或装置,可以根据其与周围环境的热交换和物质交换情况划分为开放系统、封闭系统和孤立系统。
2.状态方程和状态变化状态方程描述了热力学系统的状态,可以通过物质的温度、压力和体积等物理量进行定义。
状态变化是热力学系统从一个状态到另一个状态的过程,可以通过热力学过程描述。
3.热力学过程热力学过程是热力学系统从一个状态到另一个状态的变化过程。
常见的热力学过程包括等温过程、绝热过程、等容过程和等压过程。
热力学过程可以通过热力学循环描述,常见的热力学循环包括卡诺循环和斯特林循环等。
4.热力学定律热力学定律是热力学系统行为的基本规律。
包括热力学第一定律(能量守恒定律)、热力学第二定律(熵增加定律)和热力学第三定律(绝对零度定律)。
5.热力学性质热力学性质是描述热力学系统的特性的物理量。
常见的热力学性质包括温度、压力、体积、内能、焓等。
这些性质对于研究热力学过程和热力学系统的行为具有重要意义。
6.理想气体状态方程理想气体状态方程是描述理想气体状态的基本关系。
根据理想气体状态方程,可以推导出玻意耳-马略特定律和查理定律等关系。
理想气体状态方程对于研究气体的性质和行为具有重要意义。
7.熵和热力学效率熵是一个描述系统无序程度的物理量,也是热力学第二定律的核心概念。
热力学效率是衡量能量转化的有效性的指标,它可以通过熵增加原理计算和分析。
8.热力学循环和工质流程热力学循环是一系列热力学过程的组合,通常用来描述热力学系统的能量转化过程。
工质流程是热力学系统中流动的工质的循环或非循环过程。
以上是工程热力学的一些重要知识点。
工程热力学的应用广泛,包括能源转化设备、制冷空调设备、热力发电系统等。
通过对热力学系统特性、能量转移和能量转化的研究,可以优化工程设备和能源利用效率,提高系统的性能和可靠性。
工程热力学知识点笔记总结第一章热力学基本概念1.1 热力学的基本概念热力学是研究能量与物质的转化关系的科学,它关注热与功的转化、能量的传递和系统的状态变化。
热力学中最基本的概念包括系统、热力学量、状态量、过程、功和热等。
1.2 热力学量热力学量是描述系统的性质和状态的物理量,包括内能、焓、熵、自由能等。
内能是系统的总能量,焓是系统在恒压条件下的能量,熵是系统的无序程度,自由能是系统进行非体积恒定的过程中能够做功的能量。
1.3 热力学第一定律热力学第一定律是能量守恒的表达形式,在闭合定容系统中,系统的内能变化等于系统所接受的热量减去系统所做的功。
1.4 热力学第二定律热力学第二定律是描述系统不可逆性的定律,它包括开尔文表述和克劳修斯表述。
开尔文表述指出不可能将热量完全转化为功而不引起其他变化,克劳修斯表述指出热量自然只能从高温物体传递到低温物体。
根据第二定律,引入了熵增大原理和卡诺循环。
1.5 热力学第三定律热力学第三定律是指当温度趋于绝对零度时,系统的熵趋于零。
这一定律揭示了绝对零度对热力学过程的重要意义。
第二章热力学系统2.1 定态与非定态定态系统是指系统的性质在长时间内不发生变化,非定态系统是指系统的性质在长时间内发生变化。
2.2 开放系统与闭合系统开放系统是指与外界交换物质和能量的系统,闭合系统是指与外界不交换物质但可以交换能量的系统。
2.3 热力学平衡热力学平衡是指系统内各部分之间的温度、压力、化学势等性质达到一致的状态。
系统处于热力学平衡时,不会产生宏观的变化。
第三章热力学过程3.1 等温过程在等温过程中,系统的温度保持不变,内能的变化全部转化为热量输给外界。
3.2 绝热过程在绝热过程中,系统不与外界交换热量,内能的变化全部转化为对外界所做的功。
3.3 等容过程在等容过程中,系统的体积保持不变,内能的变化全部转化为热量。
3.4 等压过程在等压过程中,系统的压强保持不变,内能的变化转化为对外界所做的功和系统所吸收的热量。
⼯程热⼒学各章重点第1章基本概念⼀、名词解释1.热⼒系统:热⼒学分析中选取的, 由某种界⾯包围的特定物质或空间作为研究对象称为热⼒系统.2.闭⼝系统:与外界⽆物质交换,但可有功和热交换的系统。
3.开⼝系统:与外界既有物质交换,⼜有能量交换的系统。
4.孤⽴系统:系统与外界既⽆能量(功、热量)交换⼜⽆物质交换。
5.绝热系统:系统与外界⽆热量交换。
6.⾼温热源:在⼯程热⼒学中,把热容量很⼤且在放出有限量热量时⾃⾝温度及其它热⼒学参数没有明显改变的物体称为⾼温热源。
7.低温热源:在⼯程热⼒学中,把热容量很⼤且在吸收有限量热量时⾃⾝温度及其它热⼒学参数没有明显改变的物体称为低温热源。
8.温度:温度是⽤来标志物体冷热程度的物理量。
根据⽓体分⼦运动论,⽓体的温度是组成⽓体的⼤量分⼦平均移动动能的量度。
处于同⼀热平衡状态的热⼒系⽆论它们是否相互接触均有⼀个共同的物理性质,描述此物理性质的物理称为温度。
9.表压⼒:当绝对压⼒⾼于⼤⽓压⼒时,压⼒表指⽰的数值称为表压⼒。
10.真空度:当⼯质的绝对压⼒低于⼤⽓压⼒时,测压仪表指⽰的读数称为真空度。
11.平衡状态:在没有外界作⽤的情况下,⼯质(或系统)的宏观性质不随时间⽽变化的状态称为平衡状态。
12.准平衡过程:为了便于对实际过程进⾏分析和研究,假设过程中系统所经历的每⼀个状态都⽆限地接近平衡状态,这种过程称为准平衡过程,⼜称为准静态过程。
13.可逆过程:如果系统完成了某⼀过程之后,再沿着原路逆⾏⽽回复到原来的状态,外界也随之回复到原来的状态,⽽不留下任何变化,则这⼀过程称为可逆过程。
⼆、填空1、标准⼤⽓压为在纬度海平⾯上的常年平均⽓压。
(450)2、与外界既⽆能量交换也⽆物质交换的热⼒系称为_____热⼒系。
(孤⽴)3、可逆过程实现的条件是和。
(准平衡过程,没有耗散)三、选择题1、_________过程是可逆过程。
( )a) 可以从终态回复到初态的b) 没有摩擦的c) 没有摩擦的准平衡d) 没有温差的2、绝对压⼒p, 真空度p v,环境压⼒p a间的关系为( )a) p+p v+p a=0 b) p+p a-p v=0 c) p-p a-p v=0 d) p a-p v-p=03、摄⽒温标1℃的刻度与绝对温标1K的刻度相⽐a)前者⼤于后者 b)后者⼤于前者 c)⼆者相等 d)不定4、可逆过程实现的条件是。
2023大学工程热力学期末考试重点整理系统:在工程热力学中,通常选取一定的工质或者空间作为研究的对象,称之为热力系统,简称系统。
外界:系统以外的物体称为边界,也可表述为与系统发生质、能交换的物质系统。
边界:系统与外界之间的分界面称为边界。
闭口系统:与外界无物质交换的系统。
系统的质量始终保持恒定。
也称为控制质量系统。
开口系统:与外界有物质交换的系统。
由于开口系统是一个划定的空间范围,也称为控制容积系统。
绝热系统:与外界没有热量交换的系统。
孤立系统:与外界既无能量交换又无物质交换的系统。
与外界无任何形式的质能交换。
是热力学中抽象出来的概念。
平衡过程与可逆过程的关系:可逆过程一定是准平衡过程;但是准平衡过程不一定是可逆过程。
真空度:真空度是指处于真空状态下的气体稀薄程度。
比体积的定义:单位质量的物质所占有的体积称为比体积,也称为比容,用符号v表示,单位为 m3/kg 。
比体积与密度互为倒数。
功、热量正负的判断:吸热为正,放热为负。
系统储能包括哪几部分:热力学能(内部储存能)、宏观动能、宏观位能(外部储存能)闭口系统的热力学第一定律表达式:Q=ΔU+W开口系统的稳定流动能量方程式:q=Δh+w膨胀功:δw=pdv,即 w=∫pdv ,故膨胀功就是过程曲线与 v 轴投影所围成的面积;技术功:δwt=-vdp ,故wf=-∫vdp ,故技术功是过程曲线与 p 轴投影所围成的面积的负值;可逆过程技术功的计算式:技术功是哪几项之和:动能差、位能差及轴功三者之和,记作Wt。
自由膨胀问题QWU的变化:自由膨胀,W=0,因为不做体积功。
若为理想气体,则Q,△U=0,若非理想气体,则吸热,△U>0.热容:物体温度升高1K(或1℃)所需要的热量称为该物体的热容量,简称热容。
比热容:单位质量物质的热容,c,J/(kg*K)摩尔热容:1mol物质的热容,Cm,J/(mol*K)理想气体热力学能和焓与温度的关系:理想气体的热力学能与焓都是温度的单值函数。
工程热力学知识点总结1. 热力学基本概念1.1 热力学系统:研究对象,与周围环境有能量和物质交换。
1.2 环境:系统之外的一切,与系统形成对比。
1.3 边界:系统与环境之间的分界线。
1.4 状态:系统在某一时刻宏观性质的集合。
1.5 平衡态:系统状态不随时间变化的状态。
1.6 过程:系统从一个平衡态到另一个平衡态的演变。
2. 热力学第一定律2.1 能量守恒:系统内能量的变化等于热量与功的和。
2.2 内能:系统内部微观粒子动能和势能的总和。
2.3 热量:系统与环境之间由于温度差而交换的能量。
2.4 功:系统对环境或其他系统施加的力与其位移的乘积。
2.5 热力学第一定律公式:ΔU = Q - W。
3. 热力学第二定律3.1 熵:系统无序度的量度,是不可逆过程的度量。
3.2 孤立系统:不与外界交换能量或物质的系统。
3.3 熵增原理:孤立系统熵永不减少。
3.4 卡诺定理:所有热机的最大效率由卡诺循环确定。
4. 热力学性质4.1 温度:系统热动能的度量,是热力学过程的驱动力。
4.2 压力:分子对容器壁单位面积的平均作用力。
4.3 体积:系统占据的空间大小。
4.4 比热容:单位质量的物质温度升高1K所需吸收的热量。
4.5 热容:系统温度升高1K所需吸收的热量。
5. 理想气体行为5.1 理想气体状态方程:PV = nRT。
5.2 摩尔体积:1摩尔理想气体在标准状态下的体积。
5.3 气体常数:理想气体状态方程中的常数R。
5.4 马略特定律:理想气体在恒定温度下,体积与压力成正比。
5.5 波义耳定律:在恒温条件下,理想气体的压强与其体积成反比。
6. 热力学循环6.1 卡诺循环:理想化的热机循环,由四个可逆过程组成。
6.2 奥托循环:内燃机的理想循环,包括等容加热、绝热膨胀、等容放热和绝热压缩。
6.3 朗肯循环:蒸汽动力循环,包括泵吸、锅炉加热、涡轮膨胀和冷凝器排热。
7. 相变与潜热7.1 相变:物质从一种相态转变为另一种相态的过程。
一、基本概念:闭口系统:热力学系统与外界无质量交换的系统。
也叫控制质量系统开口系统:热力学系统与外界有物质交换的系统,也叫控制体积系统绝热系统:热力学系统与外界无热量交换的系统。
孤立系统:热力学系统和外界无任何能量和物质交换的系统。
热力状态反应着工质大量分子热运动的平均特点常有状态参数:压力:P 温度:T 比体积:v(m3/kg)内能:U 焓:H 熵:S与热力系的质量无关,切不可相加的状态参数称为强度参数,如P,T与热力系的质量有关,且可相加的状态参数称为广延参数,如S,U,H比体积:单位质量的工质所占有的体积温度T: 是确定一个系统是否与其他系统处于热平衡的状态函数。
温度是热平衡的唯一依据。
热力学温度:规定水的气、液、固三相平衡共存的状态点为基准点,273.16K功和热量:功是系统与外界之间在力差的推动下,通过宏观有序运动的方式传递能量。
换言之。
借着做功来传递能量总是和物体的宏观位移有关。
热量是系统与外界之间再温差的推动下,通过微观粒子的无序运动的方式传递能量,换言之,借传热来传递能量,不需要有物体的宏观位移循环可分为可逆循环和不可逆循环(按照性质来分)循环可分为正向循环(动力循环)和逆向循环(制冷循环或热泵循环)二:准静态过程、可逆过程与不可逆过程准静态过程:由一系列连续的平衡态组成的过程成为准静态过程准静态过程实现条件:推动过程进行的势差无限小,以保证系统在任意时刻都无限接近于平衡态意义:1、可以用确定的状态参数变化描述过程2、可以在参数坐标图上用一条连续曲线表示过程可逆过程实现的充要条件:过称为准静态过程过程中无任何耗散效应(通过摩擦、电阻、磁组等使功变成热的效应)。
也就是说无耗散的准平衡过程为可逆过程三、热力学第一定律表述:当热能与其他形式的能量相互转换时,能的总量保持不变。
进入系统的能量—离开系统的能量=系统储存能的变化焓的物理意义:H=U+PV0对于流动工质,它表示流动工质向流动方向传递的能量中取决于热力状态的那部分能量;对于不流动工质,焓只是一个复合状态参数,无明确的物理意义。
.南京师范大学《工程热力学》考研重点讲义专业课复习资料(最新版)封面工程热力学绪论1、热能及其利用2、工程热力学的研究内容3、工程热力学的研究方法4、工程热力学常用的计量单位1、热能及其利用2、工程热力学的研究内容3、工程热力学的研究方法4、工程热力学常用的计量单位能源转换利用的关系热能电能机械能风能风能水能水能化学能化学能核能核能地热能地热能太阳能太阳能一次能源二次能源光电反应燃料电池光电反应燃料电池光热转换聚变裂变燃烧水轮机风力机聚变裂变燃烧水轮机风力机热机电动机发电机电动机发电机90%直接利用直接利用传热磁流体发电1.热能及其利用热能利用的两种方式:热利用动力利用:热利用动力利用:热能机械能热机内燃机燃气轮机蒸汽轮机锅炉汽轮机锅炉汽轮机发电机水泵凝汽器水泵凝汽器例:蒸汽动力装置工质热力过程(循环)如何提高能量利用率2、工程热力学的研究内容研究对象:能量转换特别是热能转化为机械能的规律和方法,以及提高转化效率的途径。
的规律和方法,以及提高转化效率的途径。
研究内容: 1、能量转换的基本定律 2、热力过程及循环3、工质性质4、化学热力学有关内容1、能量转换的基本定律 2、热力过程及循环 3、工质性质 4、化学热力学有关内容热力学的两种研究方法:3、工程热力学的研究方法2)微观方法从物质微观结构出发,依据微观粒子力学规律,应用概率理论和统计平均方法,研究大量微观粒子运动表现出来的宏观性质。
从物质微观结构出发,依据微观粒子力学规律,应用概率理论和统计平均方法,研究大量微观粒子运动表现出来的宏观性质。
特点:复杂、近似。
可阐明热现象本质。
工程热力学主要采用宏观方法1)宏观方法工程热力学主要采用宏观方法1)宏观方法根据热力学基本定律,运用严密的逻辑推理,对物体宏观性质和宏观现象进行研究。
不涉及微观结构和微观粒子运动情况。
根据热力学基本定律,运用严密的逻辑推理,对物体宏观性质和宏观现象进行研究。
不涉及微观结构和微观粒子运动情况。
工程热力学重点工程热力学是工程学中的一个重要学科,它研究的是能量转化和传递的规律,以及热力系统的性能分析与优化。
在工程实践中,热力学的应用广泛,涉及到许多领域,如能源工程、机械工程、化工工程等。
本文将重点介绍工程热力学的基本概念、基本原理和应用。
工程热力学的基本概念包括热力学系统、热平衡、热力学过程等。
热力学系统是指通过能量交换与外界相互作用的物质集合,可以是封闭系统、开放系统或隔离系统。
热平衡是指系统中各部分之间不存在温度差,达到热平衡状态时,系统内部各点的温度是均匀的。
热力学过程是指系统由一个状态变为另一个状态的过程,可以是等温过程、绝热过程、等压过程等。
工程热力学的基本原理包括能量守恒定律和熵增定律。
能量守恒定律是指系统的能量总量在热力学过程中保持不变,能量可以相互转化,但总能量守恒。
熵增定律是指系统的熵在自然过程中不断增加,自然趋势是熵增加到最大值。
通过应用这些基本原理,可以对热力系统进行性能分析与优化。
工程热力学的应用主要包括热力系统的稳定性分析、热力系统的性能评价和热力系统的优化设计。
稳定性分析是指对热力系统的稳定性进行评估,判断系统是否能够长期稳定运行。
性能评价是指对热力系统的性能进行评估,如效率、能耗、工作质量等指标,以便优化系统的性能。
优化设计是指通过对热力系统的分析和计算,找到最优的工作参数和结构参数,以提高系统的性能。
在能源工程中,工程热力学的应用尤为重要。
能源系统的设计与运行涉及到能源的转化与利用,热力学原理可以帮助我们分析和优化能源系统的性能。
例如,在火力发电厂中,热力学原理可以帮助我们分析燃烧过程中的能量转化和损失,优化锅炉的结构和参数,提高发电效率。
在太阳能利用中,热力学原理可以帮助我们分析太阳能的收集和转换过程,优化太阳能系统的设计,提高能源利用效率。
在机械工程中,工程热力学的应用也非常广泛。
例如,在内燃机中,热力学原理可以帮助我们分析燃烧过程和工作过程,优化发动机的结构和参数,提高燃料的利用率和动力输出。
南京师范大学《工程热力学》考试重点笔记专业课复习资料(最新版)封面
南京师范大学工程热力学第第 1 章基本概念本章基本要求:深刻理解热力系统、外界、热力平衡状态、准静态过程、可逆过程、热力循环的概念,掌握温度、压力、比容的物理意义,掌握状态参数的特点。
本章重点:取热力系统,对工质状态的描述,状态与状态参数的关系,状态参数,平衡状态,状态方程,可逆过程。
1. 1 热力系统一、热力系统热力系统一、热力系统系统:用界面从周围的环境中分割出来的研究对象,或空间内物体的总和。
外界:与系统相互作用的环境。
界面:假想的、实际的、固定的、运动的、变形的。
依据:系统与外界的关系,系统与外界的作用:热交换、功交换、质交换。
二、闭口系统和开口系统(按系统与外界有无物质交换)闭口系统:系统内外无物质交换,称控制质量。
开口系统:系统内外有物质交换,称控制体积。
三、绝热系统与孤立系统绝热系统:系统内外无热量交换 (系统传递的热量可忽略不计时,可认为绝热)孤立系统:系统与外界既无能量传递也无物质交换=系统+相关外界=各相互作用的子系统之和= 一切热力系统连同相互作用的外界
四、根据系统内部状况划分可压缩系统:由可压缩流体组成的系统。
简单可压缩系统:与外界只有热量及准静态容积变化均匀系统:内部各部分化学成分和物理'性质都均匀一致的系统,是由单相组成的。
非均匀系统:由两个或两个以上的相所组成的系统。
单元系统:一种均匀的和化学成分不变的物质组成的系统。
多元系统:由两种或两种以上物质组成的系统。
单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。
复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。
注意:系统的选取方法仅影响解决问题的繁复程度,与研究问题的结果无关。
思考题:孤立系统一定是闭口系统吗。
反之怎样。
孤立系统一定不是开口的吗。
孤立系统是否一定绝热。
1 .2 工质的热力状态与状态参数一、状态与状态参数状态:工质的热力状态与状态参数一、状态与状态参数状态:热力系统中某瞬间表现的工质热力性质的总状况。
状态参数:描述工质状态特性的各种状态的宏观物理量。
如:温度(T)、压力(P)、比容()或密度()、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。
状态参数的数学特性:1.1212x x dx
有关,而与状态变化的途径无关。
2. dx =0
表明:状态参数的循环积分为零基本状态参数:可直接或间接地用仪表测量出来的状态参数。
如:温度、压力、比容或密度1 .温度:宏观上,是描述系统热力平衡状况时冷热程度的物理量。
微观上,是大量分子热运动强烈程度的量度BTw m22式中22w m分子平移运动的动能,其中 m 是一...。