高一数学必修二第二章小结
- 格式:ppt
- 大小:4.46 MB
- 文档页数:48
数学高一必修二章节知识点高一数学必修二章节知识点一、集合论基础知识1. 集合的概念及表示方法集合是指具有某种特定性质的对象的总体,可以用列举法、描述法和解析法表示。
2. 集合间的关系包含关系、相等关系、交集、并集、差集、互斥关系等。
3. 集合的运算并集运算、交集运算、差集运算、补集运算等。
4. 常见的数集自然数集、整数集、有理数集、无理数集、实数集等。
二、函数基本概念与表示1. 函数的定义与性质函数是一个元素之间的对应关系,一个自变量只能对应一个因变量。
2. 定义域与值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。
3. 函数的表示方法可以用表格、图像、解析式等方式表示函数。
4. 逆函数逆函数是指与原函数输入输出对调的函数。
三、指数函数与对数函数1. 指数函数指数函数是以底数为底的一个变量的幂函数。
2. 指数函数的性质指数函数的图像、定义域、值域、单调性以及与直线的关系等。
3. 对数函数对数函数是指数函数的反函数。
4. 对数函数的性质对数函数的图像、定义域、值域、单调性以及与直线的关系等。
四、三角函数基础知识1. 弧度制与角度制弧度制是一种用弧长来度量角的制度,角度制是一种用度来度量角的制度。
2. 常见角的三角函数值0°、30°、45°、60°、90°角的正弦、余弦、正切值等。
3. 三角函数的基本性质正弦函数、余弦函数、正切函数的图像、定义域、值域、单调性以及与坐标轴的交点等。
4. 三角函数的周期性三角函数的周期性及周期的计算方法。
五、平面向量基础知识1. 向量的概念与表示方法向量是有方向和大小的量,可以用有向线段、坐标等表示。
2. 向量的运算向量的加法、减法、数量积、向量积等运算。
3. 向量的共线与垂直向量共线的判断、垂直的判断及向量之间的夹角计算。
六、解析几何1. 平面直角坐标系平面直角坐标系的建立、直线与坐标轴的关系等。
2. 直线的方程直线的斜截式、截距式、两点式、一般式等方程形式。
数学必修1各章知识点总结第一章集合与函数概念一、集合(一)集合有关概念1.集合的含义2.集合的中元素的三个特性:确定性、互异性、无序性3.集合的表示:(1)常用数集及其记法(2)列举法(3)描述法4、集合的分类:有限集、无限集、空集5.常见集合的符号表示:数集自然数集正整数集整数集有理数集实数集符号N N或N Z Q R(二)集合间的基本关系1.子集、真子集、空集;2.有n个元素的集合,含有2n个子集,2n-1个真子集;3.空集是任何集合的子集,是任何非空集合的真子集.(三)集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B={x|x A,或x B}).设U是一个集合,A是U的一个子集,由U中所有不属于A的元素组成的集合,叫做U中子集A的补集(或余集)记作UC A,即C U A={|,}x xUx A且韦恩图示A B图1A B图2性质A A=AAΦ=ΦA B=B AA B AA B BA A=AAΦ=AA B=B AA BAA B B(C u A) (C u B)= C u(A B)(C u A) (C u B)= C u(A B)A (C u A)=UA (C u A)= Φ.二、函数(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.定义域:能使函数式有意义的实数x的集合称为函数的定义域.2.常用的函数表示法及各自的优点:○1解析法:必须注明函数的定义域;○2图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;○3列表法:选取的自变量要有代表性,应能反映定义域的特征.优点:解析法:便于算出函数值.列表法:便于查出函数值.图象法:便于量出函数值. 求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1;(5)如果函数是由一些基本函数通过四则运算结合而成的,那么它的定义域是使各部分都有意义的x的值组成的集合;(6)指数为零底不可以等于零;(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:(以下两点必须同时具备)(1)表达式相同(与表示自变量和函数值的字母无关);(2)定义域一致.求函数值域方法 :(先考虑其定义域)(1)函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2)应熟练掌握一次函数、二次函数、指数函数、对数函数的值域,它是求解复杂函数值域的基础.(3)求函数值域的常用方法有:直接法、换元法、配方法、分离常数法、判别式法、单调性法等.2. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据.(2) 画法:描点法;图象变换法常用变换方法有三种:平移变换;对称变换;*伸缩变换.3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射.记作“f(对应关系):A(原象集)B(象集)”对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象.5.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数;(2)各部分的自变量的取值情况;(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.(二)函数的性质1.函数的单调性(局部性质)(1)定义设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.UA定义的变形应用:如果对任意的12,x x D ,且21x x 有0)()(1212x x x f x f 或者2121(()())()0fx fxxx ,则函数)(x f 在区间D 上是增函数;如果对任意的12,x x D ,且21x x 有2121()()0f x f x x x 或者2121(()())()0f x f xxx ,则函数)(x f 在区间D 上是减函数.注意:函数的单调性是函数的局部性质. (2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3)函数单调区间与单调性的判定方法(A) 定义法:○1任取x 1,x 2∈D ,且x 1<x 2;○2作差f(x 1)-f(x 2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x 1)-f(x 2)的正负);○5下结论(指出函数f(x)在给定的区间D 上的单调性).(B)图象法(从图象上看升降) (C)复合函数的单调性复合函数f [g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2)奇函数一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y 轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:○1首先确定函数的定义域,并判断其是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x)或 f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .3.函数的解析表达式(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)求函数的解析式的主要方法有:凑配法;待定系数法;换元法;消参法.如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)4.函数最大(小)值(1)利用二次函数的性质(配方法)求函数的最大(小)值;(2)利用图象求函数的最大(小)值;(3)利用函数单调性的判断函数的最大(小)值:函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b).第二章基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果a xn,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.负数没有偶次方根;0的任何次方根都是0,记作00n.当n 是奇数时,a ann,当n 是偶数时,)0()0(||aa a aa ann2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*n N n m aa anmnm,)1,,,0(11*nN n m a aa anmnmnm0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质(1)rsr saaa(0,,)a r s R ;(2)()r sr sa a ),,0(R s r a;(3)()rr rab ab (0,)ar R .(二)指数函数及其性质1.指数函数的概念:一般地,函数)1,0(a aa y x且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.2.指数函数的图象和性质a>10<a<111定义域 R 定义域 R 值域y >0 值域y >0 在R 上单调递增在R 上单调递减非奇非偶函数非奇非偶函数函数图象都过定点(0,1)函数图象都过定点(0,1)利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上,)1a 0a(a )x (f x且值域是)]b (f ),a (f [(a>1)或)]a (f ),b (f [(0<a<1);(2)若0x,则1)x (f ;)x (f 取遍所有正数当且仅当R x ;(3)对于指数函数)1a 0a(a )x (f x且,总有a )1(f .二、对数函数(一)对数的概念:一般地,如果N a x)1,0(aa,那么数x 叫做以.a 为底..N 的对数,记作:N xa log (a —底数,N —真数,N a log —对数式)说明:○1注意底数的限制0a,且1a;○2x NNa a xlog .两个重要对数:○1常用对数:以10为底的对数N lg ;○2自然对数:以无理数71828.2e 为底的对数的对数N ln .指数式与对数式的互化幂值真数ba = Nlog a N = b底数指数对数(二)对数的运算性质如果0a ,且1a ,0M ,0N ,那么:○1M a (log ·)N M a log +N a log ;○2NM a log M a log -N a log ;○3na Mlog n Ma log )(R n.注意:换底公式ab bc c a log log log (0a ,且1a ;0c ,且1c ;0b ).利用换底公式可得下面的结论:(1)b mnb a na m log log ;(2)abb a log 1log .(三)对数函数1、对数函数的概念:函数0(log ax ya ,且)1a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:○1对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:x y2log 2,5log5x y都不是对数函数,而只能称其为对数型函数.○2对数函数对底数的限制:0a ,且1a .2、对数函数的图象和性质:a>10<a<11111定义域:(0,)定义域:(0,)值域为R值域为R 在R 上递增在R 上递减函数图象都过定点(1,0)函数图象都过定点(1,0)三、幂函数1.幂函数定义:一般地,形如x y )(R a 的函数称为幂函数,其中为常数.2.幂函数性质归纳:(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)当0时,幂函数的图象通过原点,并且在区间),0[上是增函数.特别地,当1时,幂函数的图象下凸;当10时,幂函数的图象上凸;(3)当0时,幂函数的图象在区间),0(上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于时,图象在x 轴上方无限地逼近x 轴正半轴.第三章函数的应用一、方程的根与函数的零点1.函数零点的概念:对于函数))((D x x f y,把使0)(x f 成立的实数x 叫做函数))((D xx f y 的零点.2.函数零点的意义:函数)(x f y 的零点就是方程0)(x f 实数根,亦即函数)(x f y的图象与x 轴交点的横坐标.即:方程0)(x f 有实数根函数)(x f y 的图象与x 轴有交点函数)(x f y有零点.3.函数零点的求法:○1(代数法)求方程0)(x f 的实数根;○2(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y 的图象联系起来,并利用函数的性质找出零点.4.二次函数的零点:二次函数)0(2ac bxaxy .(1)△>0,方程02c bx ax有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.(2)△=0,方程02cbxax有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程02c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点.二、函数的应用解答数学应用题的关键有两点:一是认真读题,缜密审题,确切理解题意,明确问题的实际背景,然后进行科学的抽象、概括,将实际问题归纳为相应的数学问题;二是要合理选取参变数,设定变元后,就要寻找它们之间的内在联系,选用恰当的代数式表示问题中的关系,建立相应的函数、方程、不等式等数学模型;最终求解数学模型使实际问题获解.数学必修2各章知识点总结第一章空间几何体1、柱、锥、台、球的结构特征(要补充直棱柱、正棱柱、正棱锥、正棱台、平行六面体的定义)结构特征性质图例棱柱(1)两底面相互平行,其余各面都是平行四边形;(2)侧棱平行且相等.圆柱(1)两底面相互平行;(2)侧面的母线平行于圆柱的轴;(3)是以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体.棱锥(1)底面是多边形,各侧面均是三角形;(2)各侧面有一个公共顶点.圆锥(1)底面是圆;(2)是以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体.棱台(1)两底面相互平行;(2)是用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分.圆台(1)两底面相互平行;(2)是用一个平行于圆锥底面的平面去截圆锥,底面和截面之间的部分.球(1)球心到球面上各点的距离相等;(2)是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体.2、空间几何体的三视图三视图定义:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度. 3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x 轴平行的线段仍然与x 轴平行且长度不变;②原来与y 轴平行的线段仍然与y 轴平行,长度为原来的一半.4、柱体、锥体、台体的表面积与体积(1)柱体、锥体、台体的表面积(几何体的表面积为几何体各个面的面积的和)表面积相关公式表面积相关公式棱柱2S S S 侧全底圆柱222S r r h 全(r :底面半径,h :高)棱锥S S S 侧全底圆锥2S rrl全(r :底面半径,l :母线长)棱台S S S S 侧全上底下底圆台22('')S r rr l rl 全(r :下底半径,r ’:上底半径,l :母线长)(2)柱体、锥体、台体的体积公式体积公式体积公式棱柱VS h 底高圆柱2Vr h棱锥13VS h 底高圆锥213Vr h棱台1('')3VS SS Sh 圆台221('')3Vr rr r h(3)球体的表面积和体积公式:V 球=343R ; S球面=24R第二章空间点、直线、平面之间的位置关系1、空间点、直线、平面之间的位置关系(1)平面①平面的概念:平面是无限伸展的.②平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC. ③点与平面的关系:点A 在平面内,记作A;点A 不在平面内,记作A.点与直线的关系:点A 在直线l 上,记作:A ∈l ;点A 在直线l 外,记作A l.直线与平面的关系:直线l 在平面α内,记作l α;直线l 不在平面α内,记作lα.(2)平面基本性质即三条公理的“文字语言”、“符号语言”、“图形语言”列表如下:公理 1公理2公理3图形语言文字语言如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 过不在一条直线上的三点,有且只有一个平面.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号语言,,A l B llAB,,,,ABC ABC 不共线确定平面,lPPPl公理2的三条推论:推论1:经过一条直线和这条直线外的一点,有且只有一个平面;推论2:经过两条相交直线,有且只有一个平面;推论3:经过两条平行直线,有且只有一个平面.(3)空间直线与直线之间的位置关系公理4:平行于同一条直线的两条直线互相平行①空间两条直线的位置关系:相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点.②异面直线判定:过平面外一点与平面内一点的直线与平面内不过该点的直线是异面直线③异面直线所成角:已知两条异面直线,a b ,经过空间任一点O 作直线//,//a a b b ,把,a b 所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角). ,a b 所成的角的大小与点O 的选择无关,为了简便,点O 通常取在异面直线的一条上;异面直线所成的角的范围为(0,90],如果两条异面直线所成的角是直角,则叫两条异面直线垂直,记作a b . 求两条异面直线所成角的步骤可以归纳为四步:选点→平移→定角→计算.④等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补. (4)空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示:a;a ∩=A ;a ∥.(5)平面与平面之间的位置关系:平行——没有公共点,记作∥β.相交——有一条公共直线,记作∩β=b.2、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.(线线平行线面平行)符号表示为:,,////a b a b a.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行线线平行符号表示为://// aa a bb(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行.(线面平行→面面平行),用符号表示为:,,////,//a b a b Pa b.*(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.(线线平行→面面平行),*(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么一个平面内的直线与另一个平面平行.(面面平行→线面平行)用符号表示为:∥β,a?β//a(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)用符号表示为:∥β,∩γ=a,β∩γ=b //a b3、空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.(线线垂直线面垂直)用符号表示为:l⊥m,l⊥n,m∩n=B,m,n l⊥性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.用符号表示为:a⊥,b⊥?//a b②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(线面垂直面面垂直)用符号表示为:a?,⊥β?⊥β.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.(面面垂直线面垂直)用符号表示为:,l,a,a l a.4、空间角问题(1)直线与直线所成的角①两平行直线所成的角:规定为0.②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线ba,,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.(2)直线和平面所成的角①平面的平行线与平面所成的角:规定为0.②平面的垂线与平面所成的角:规定为90.③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.(3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内..分别作垂直于...棱的两条射线,这两条射线所成的角叫二面角的平面角.③直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到二面角平面角.*垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角第三章直线与方程1、直线的倾斜角与斜率(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即tank.斜率反映直线与轴的倾斜程度.当90,0时,0k;当180,90时,0k;当90时,k不存在.②过两点的直线的斜率公式:)(211212xxxxyyk③设1122(,),A x yB xy,(),则线段AB中点坐标公式为1212(,)22x x y yβab2、直线的方程(1)直线方程的几种形式名称方程适用范围点斜式y -y 0=k (x -x 0)不含垂直于x 轴的直线斜截式y =kx +b不含垂直于x 轴的直线两点式y -y1y2-y1=x -x1x2-x1不含直线x =x 1(x 1≠x 2) 和直线y =y 1(y 1≠y 2)截距式xa +yb =1不含垂直于坐标轴和过原点的直线一般式Ax +By +C =0(A 2+B 2≠0) 平面直角坐标系内的直线都适用注意:○1各式的适用范围; ○2特殊的方程如:平行于x 轴的直线:b y (b 为常数);平行于y 轴的直线:a x (a 为常数).(2)直线系方程(即具有某一共同性质的直线)①平行直线系:平行于已知直线0000C y B x A (00,B A 是不全为0的常数)的直线系方程为:000C y B xA (C 为参数)②垂直直线系:垂直于已知直线0000C yB x A (00,B A 是不全为0的常数)的直线系方程为:000CyA xB (C 为参数)③过定点的直线系:(ⅰ)斜率为k 的直线系方程为0x xk y y,直线过定点00,y x ;*(ⅱ)过两条直线0:1111C yB xA l ,0:2222C y B xA l 的交点的直线系方程为0222111C y B x A C y B xA (为参数),其中直线2l 不在直线系中.3、两直线平行与垂直已知111:b x k y l ,222:b x k y l ,则212121,//b b k k l l ;12121k k l l 注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.4、两条直线的交点0:1111C y B x A l ,0:2222C y B x A l 相交,交点坐标即方程组0222111C yB xA C yB xA 的一组解.方程组无解21//l l ;方程组有无数解1l 与2l 重合5、距离公式:(1)平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离为|P 1P 2|=222121()()x x y y .特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x ;当12,P P 所在直线与y 轴平行时,1212||||P P y y ;(2)平面上任意一点P 0(x 0,y 0)到直线l :Ax +By +C =0(A ,B 不同时为0)的距离为d =|Ax0+By0+C|\r(A2+B2).(3)两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0(其中A ,B 不同时为0,且C 1≠C 2)间的距离为d=|C1-C2|\r(A2+B2).第三章圆与方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程222r by ax ,圆心b a,,半径为r ;(2)一般方程22FEy Dx yx 当0422F ED时,方程表示圆,此时圆心为2,2E D,半径为FEDr 42122当0422F E D 时,表示一个点;当0422F ED 时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需要求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F.另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置. 3、直线与圆的位置关系:位置关系几何特征方程特征几何法代数法相交有两个公共点方程组有两个不同实根d<r △>0 相切有且只有一公共点方程组有且只有一实根d=r △=0 相离没有公共点方程组无实根d>r△<0(1)弦长公式:利用圆被截得弦的性质(垂径定理):弦长222||drAB (2)过圆外一点的切线:①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,求解k ,得到方程【一定两解】;(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a)(x-a)+(y-b)(y-b)= r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定.设圆221211:r b ya xC ,222222:Rb y a xC 当r R d 时两圆外离,此时有公切线四条;当rRd时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当r R drR 时两圆相交,连心线垂直平分公共弦,有两条外公切线;当r R d时,两圆内切,连心线经过切点,只有一条公切线;当r Rd时,两圆内含;当0d 时,为同心圆.注意:已知两圆相切,两圆心与切点共线,圆的辅助线一般为连圆心与切线或者连圆心与弦中点.5.空间直角坐标系(1)定义:从空间某一个定点O 引三条互相垂直且有相同单位长度的数轴Ox 、Oy 、Oz ,这样的坐标系叫做空间直角坐标系O-xyz ,点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴. 通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面、yOz 平面、zOx 平面.(2)任意点坐标表示:空间一点M 的坐标可以用有序实数组(,,)x y z 来表示,有序实数组(,,)x y z 叫做点M 在此空间直角坐标系中的坐标,记作(,,)Mxyz (x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标)(3)空间两点距离坐标公式:212212212)()()(z z y y x x d。
高中数学必修知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即。
斜率反映直线与轴的倾斜程度。
当时,。
当时,;当时,不存在。
②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:,直线斜率为k,直线在y轴上的截距为b ③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。
⑤一般式:(A,B不全为0)注意:○1各式的适用范围○2特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(4)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅰ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。
(5)两直线平行与垂直当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(6)两条直线的交点相交交点坐标即方程组的一组解。
方程组无解;方程组有无数解与重合(7)两点间距离公式:设是平面直角坐标系中的两个点,则(8)点到直线距离公式:一点到直线的距离(9)两平行直线距离公式:在任一直线上任取一点,再转化为点到直线的距离进行求解。
第一章 空间几何体 1.1 空间几何体的结构 结构特征 棱柱 棱锥 棱台 定义底面 两底面是全等的多边形 多边形 两底面是相似的多边形 侧面 平行四边形 三角形 梯形侧棱平行且相等 相交于顶点 延长线交于一点 平行于底面的截面 与两底面是全等的多边形 与底面是相似的多边形 与两底面是相似的多边形 过不相邻两侧棱的截面平行四边形三角形梯形1.2 空间几何体的三视图和直观图我们把一束平行光线照射下形成的投影,叫做平行投影.平行投影的投影线是平行的.在平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影.(a )中心投影 (b )斜投影 (c )正投影 正视图、侧视图、俯视图统称为三视图1.一个几何体的正视图和侧视图的高度一样;2.正视图与俯视图的长度一样;3.侧视图与俯视图宽度一样;定义:上述画水平放置的平面图形的直观图的方法叫做斜二测画法,有如下步骤和规则(1)在原图形中建立平面直角坐标系xoy ,同时建立直观图坐标系y o x ''',确定水平面,045='''∠y o x ; (2)与坐标轴平行的线段保持平行;(3)水平线段等长,竖直线段减半. 1.3 空间几何体的表面积与体积表中S 表示面积,C ’、C 分别表示上、下底面周长,h 表示高,h ’表示斜高,l 表示侧棱长。
表示l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R 表示半径。
第二章 点、直线、平面之间的位置关. 2.1 空间点、直线、平面之间的位.平面特征:平面没有大小、厚薄和宽窄,几何里的平面是无限延展的.平面内有无数个点,平面可以看成点的集合. 点A 在平面α内,记作A ∈α;点B 在平面α外,记作B ∉α.直线 l 在平面α内表示为α⊂l ;直线l 不在平面α内表示为α⊄m . 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理2 推论1:经过一条直线和这条直线外一点,有且只有一个平面。
高一数学必修2知识点梳理一、立体几何初步(一)空间几何体1. 棱柱- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的多面体。
- 分类:按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。
- 性质:侧棱都平行且相等;侧面都是平行四边形。
2. 棱锥- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形的多面体。
- 分类:按底面多边形的边数分为三棱锥(四面体)、四棱锥等。
- 性质:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比。
3. 棱台- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
- 分类:三棱台、四棱台等。
- 性质:棱台的各侧棱延长后交于一点。
4. 圆柱- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
- 性质:圆柱的轴截面是矩形;圆柱的侧面展开图是矩形。
5. 圆锥- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体。
- 性质:圆锥的轴截面是等腰三角形;圆锥的侧面展开图是扇形。
6. 圆台- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。
- 性质:圆台的轴截面是等腰梯形;圆台的侧面展开图是扇环。
7. 球- 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体。
- 性质:球的截面是圆;球心和截面圆心的连线垂直于截面。
(二)点、线、面之间的位置关系1. 平面的基本性质- 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
- 公理2:过不在一条直线上的三点,有且只有一个平面。
- 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
- 推论1:经过一条直线和这条直线外一点,有且只有一个平面。
- 推论2:经过两条相交直线,有且只有一个平面。
- 推论3:经过两条平行直线,有且只有一个平面。
高一数学必修二知识点总结
函数的图象:函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识。
求作图象的函数表达式与f(x)的关系,例如y=f(x)±b(b>0)沿y轴向平移b个单位,y=f(x±a)(a>0)沿x轴向平移a个单位等。
不等式的性质:不等式的两边都加上或减去同一个整式,不等号方向不变;不等式的两边都乘以或者除以一个正数,不等号方向不变。
解一元一次不等式(组):包括根据具体问题中的数量关系列不等式(组)并解决简单实际问题,以及用数轴表示一元一次不等式(组)的解集。
几何体:包括棱台、圆柱、圆锥、圆台等几何体的定义和几何特征。
例如,棱台是由一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分;圆柱是由以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体;圆锥是以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体;圆台则是由一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分。
二面角:二面角是由从一条直线出发的两个半平面所组成的图形,其取值范围为[0°,180°]。
二面角的棱是这一条直线,而两个半平面则称为二面角的面。
以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角称为二面角的平面角。
直二面角是指平面角是直角的二面角。
以上知识点是高一数学必修二的主要学习内容,掌握这些知识点对于后续的数学学习和理解非常重要。
【导语】如果把⾼中三年去挑战⾼考看作⼀次越野长跑的话,那么⾼中⼆年级是这个长跑的中段。
与起点相⽐,它少了许多的⿎励、期待,与终点相⽐,它少了许多的掌声、加油声。
它是孤⾝奋⽃的阶段,是⼀个耐⼒、意志、⾃控⼒⽐拚的阶段。
但它同时是⼀个厚实庄重的阶段,这个时期形成的优势有实⼒。
⾼⼆频道为你整理了《⾼⼀数学必修⼆各章知识点总结》,学习路上,为你加油! 【第⼀章空间⼏何体】 1.1空间⼏何体的结构 1.2空间⼏何体的三视图和直观图 阅读与思考画法⼏何与蒙⽇ 1.3空间⼏何体的表⾯积与体积 探究与发现祖暅原理与柱体、椎体、球体的体积 实习作业 ⼩结 复习参考题 【第⼆章点、直线、平⾯之间的位置关系】 2.1空间点、直线、平⾯之间的位置关系 2.2直线、平⾯平⾏的判定及其性质 2.3直线、平⾯垂直的判定及其性质 阅读与思考欧⼏⾥得《原本》与公理化⽅法 ⼩结 复习参考题 【第三章直线与⽅程】 3.1直线的倾斜⾓与斜率 探究与发现魔术师的地毯 3.2直线的⽅程 3.3直线的交点坐标与距离公式 阅读与思考笛卡⼉与解析⼏何 ⼩结 复习参考题 【第四章圆与⽅程】 4.1圆的⽅程 阅读与思考坐标法与机器证明 4.2直线、圆的位置关系 4.3空间直⾓坐标系 信息技术应⽤⽤《⼏何画板》探究点的轨迹:圆 ⼩结 复习参考题 【函数知识点】 ⼀、定义与定义式: ⾃变量x和因变量y有如下关系: y=kx+b 则此时称y是x的⼀次函数。
特别地,当b=0时,y是x的正⽐例函数。
即:y=kx(k为常数,k≠0) ⼆、⼀次函数的性质: 1.y的变化值与对应的x的变化值成正⽐例,⽐值为k 即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。
三、⼀次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出⼀次函数的图像——⼀条直线。
因此,作⼀次函数的图像只需知道2点,并连成直线即可。
高一数学必修2知识总结高一数学必修2知识总结1空间直线与直线之间的位置关系①异面直线定义:不同在任何一个平面内的两条直线②异面直线性质:既不平行,又不相交.③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线④异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.(8)空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示:aαa∩α=Aa‖α(9)平面与平面之间的位置关系:平行——没有公共点;α‖β相交——有一条公共直线.α∩β=b5、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)7、空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.9、空间角问题(1)直线与直线所成的角①两平行直线所成的角:规定为.②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.(2)直线和平面所成的角①平面的平行线与平面所成的角:规定为.②平面的垂线与平面所成的角:规定为.③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线.(3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.③直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角高一数学必修2知识总结2解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.(2)应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.高一数学必修2知识总结3数列(1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图象、通项公式).②了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④了解等差数列与一次函数、等比数列与指数函数的关系.高中数学必修二知识点总结:不等式高一数学必修2知识总结4不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.(2)一元二次不等式①会从实际情境中抽象出一元二次不等式模型.②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.(3)二元一次不等式组与简单线性规划问题①会从实际情境中抽象出二元一次不等式组.②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)基本不等式:①了解基本不等式的证明过程.②会用基本不等式解决简单的最大(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点高一数学必修2知识总结2020。
高一数学必修2第二单元知识点:减数分裂和受精作用(一)基本概念减数分裂、减数分裂第一次分裂、减数分裂第二次分裂;有性生殖器官、卵巢、睾丸、精巢;原始的生殖细胞、精原细胞、卵原细胞、初级精(卵)母细胞、次级精(卵)母细胞、精(卵)细胞、精子、极体;联会、四分体;染色体、同源染色体、姐妹染色单体;受精作用(二)知识网络(三)疑难解析减数分裂只有实行有性生殖的生物体内才有实行减数分裂的原始生殖细胞。
具有原始生殖细胞(性原细胞)的器官称为生殖腺,雌性动物是卵巢,雄性动物是睾丸。
减数分裂是一种染色体只复制一次,而细胞却连续分裂2次的分裂方式,分裂的结果是子细胞中的染色体数目比性原细胞(或体细胞)减少了一半。
对于减数分裂过程的理解要注意以下几点:一是染色体的复制时间在性原细胞发育成性母细胞的过程中,即在同源染色体联会之前早就已经复制完成了;二是联会发生在染色体缩短变粗的早期,发生联会的过程在光学显微镜下是看不到的,所以教材中的减数分裂图解表示联会的图中一个染色体中未画出2条染色单体;三是减数分裂第一次分裂的目的是同源染色体彼此分开实现染色体数目减半,在同源染色体彼此分开时非同源染色体之间要自由组合,同源染色体的染色单体之间还要发生交叉互换,这是三大遗传规律的细胞学基础;四是减数分裂第二次分裂的主要特征是着丝点分裂,实现染色单体彼此分开,所以分裂的结果是染色体数目未变,但DNA分子数减少一半;五是第二次分裂程的次级性母细胞的分裂类似有丝分裂过程,但与有丝分裂过程不同的是一般已不存有同源染色体。
关于减数分裂和有丝分裂的比较,重点是减数分裂第二次分裂过程与有丝分裂过程的比较。
①有丝分裂中期和减数分裂第二次分裂中期的比较:在有丝分裂过程中自始至终存有着同源染色体,而在减数分裂第二次分裂过程中不存有同源染色体。
区分同源染色体的依据在高中生物阶段有两点:一是染色体的大小,同源染色体一般形成和大小相似或相同;二是着丝点位置,着丝点的位置有端着丝点,也有中间着丝点的,同源染色体的着丝点位置应是相同的。
【最新】高一数学必修二各章知识点总结高一数学必修二各章知识点总结如下:第一章:函数与二次函数1. 函数的概念及性质:定义域、值域、奇偶性、单调性等。
2. 二次函数的基本性质:顶点、对称轴、单调性、零点、图像的开口方向。
3. 一次函数与二次函数的比较与关系:求解一次函数与二次函数的交点等。
4. 二次函数的图像与方程:画出给定二次函数的图像,根据图像确定二次函数的方程等。
5. 二次函数与根式、指数、对数的应用。
第二章:三角函数1. 角度制与弧度制的转换。
2. 弧度制下的任意角的三角函数值的计算。
3. 三角函数的简单性质及其关系:同角三角函数的相互关系、倒数三角函数的相互关系等。
4. 三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像与性质等。
5. 三角函数的应用:三角函数在几何、物理、工程等领域的应用。
第三章:指数与对数函数1. 指数的定义、性质及运算规律:指数与乘法、除法、乘方运算规律等。
2. 对数的定义、性质及运算规律:对数与指数的关系、对数运算法则等。
3. 指数函数与对数函数的简单性质与图像:指数函数与对数函数的基本性质、图像和性质等。
4. 指数函数与对数函数的应用:指数与对数在增长与衰减、微积分、金融等领域的应用。
第四章:数列1. 数列的概念与性质:等差数列、等比数列、通项公式、前n 项和等。
2. 数列的运算:数列的加减乘除等。
3. 等差数列与等差中项:等差数列的通项公式、等差数列的求和公式、等差数列的奇数项和、以及奇数和与偶数和等。
4. 等比数列与等比中项:等比数列的通项公式、等比数列的求和公式、等比数列的前n项和、无穷等比级数等。
5. 等差数列与等差中项的应用:等差数列在等价代换、简化形式、利润计算等方面的应用。
第五章:排列与组合1. 排列与组合的基本概念:排列、组合的定义与计算方法等。
2. 排列与组合的计算:排列与组合的计算公式、乘法原理、加法原理等。
3. 排列与组合的应用:排列与组合在概率、几何、数学问题解法等领域的应用。
高一必修二数学知识点总结5篇高一必修二数学知识点总结1一般地,设一个总体含有N个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
简单随机抽样的特点:(1)用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;(3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.(4)简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样简单抽样常用方法:(1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n 次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.(2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码概率:相关高中数学知识点:系统抽样系统抽样的概念:当整体中存在大量个体时,将整体分成若干部分,然后按照一定的规则从每个部分中抽取一个个体,得到所需样本的方法称为系统抽样。
系统抽样的步骤:(1)采用随机方式将总体中的个体编号;(2)将整个编号进行均匀分段在确定相邻间隔k后,若不能均匀分段,即=k不是整数时,可采用随机方法从总体中剔除一些个体,使总体中剩余的个体数N′满足是整数;(3)在第一段中采用简单随机抽样方法确定第一个被抽得的个体编号l;(4)依次将l加上ik,i=1,2,…,(n-1),得到其余被抽取的个体的编号,从而得到整个样本。
相关高中数学知识点:分层抽样分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,其所分成的各个部分叫做层。
高一数学必修二知识点总结(优质12篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、述职报告、心得体会、工作计划、演讲稿、教案大全、作文大全、合同范文、活动方案、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as work summaries, job reports, insights, work plans, speeches, lesson plans, essays, contract samples, activity plans, and other materials. If you want to learn about different data formats and writing methods, please pay attention!高一数学必修二知识点总结(优质12篇)通过知识点总结,我们可以更好地整理、理解和记忆所学的知识。
高一必修二数学第一篇:函数、方程与不等式高一数学必修二中的第一章主要讲解了函数、方程与不等式三个方面的内容。
具体而言,我们需要掌握以下几个知识点:一、函数函数是一种特殊的关系,它是指两个变量之间的对应关系。
其中,一个变量称为自变量,另一个变量称为因变量。
函数一般表示为 y=f(x),其中 x 为自变量,y 为因变量,f 表示函数关系。
我们需要学会用函数的概念来描述一些实际问题,比如函数的图像、函数的性质、函数的最值等等。
在学习过程中,我们需要注意函数的定义域、值域等概念,同时要熟练运用函数的性质来解决一些实际问题。
二、方程方程是一种含有未知数的等式,通常用来描述某些变量之间的关系。
我们需要学会如何解一元一次方程、二元一次方程、一元二次方程等各种类型的方程,并学会运用代数方法、图像法等方法来解决一些实际问题。
三、不等式不等式也是一种含有未知数的式子,但与方程不同的是,不等式中的等号可以被替换成小于号、大于号等。
我们需要学会如何解一元一次不等式、二元一次不等式、一元二次不等式等各种类型的不等式,并学会运用代数方法、图像法等方法来解决一些实际问题。
以上就是高一数学必修二第一章的主要内容,我们需要认真学习并掌握这些知识点,为后面的学习打好基础。
第二篇:平面向量高一数学必修二中的第二章主要讲解了平面向量的概念、运算和应用。
具体而言,我们需要掌握以下几个知识点:一、向量及其表示向量是一种有大小、有方向的量,可以由有向线段表示。
我们需要学会如何用向量表示平移、位移和力的大小和方向等问题。
二、向量的加减法向量的加减法是指将两个向量相加、相减后所得的结果向量。
我们需要学会如何用向量的加减法解决几何问题,比如向量的夹角、向量的平行与垂直关系等问题。
三、数量积和向量积数量积和向量积是两种不同类型的向量积,数量积是两个向量的数量相乘,向量积是两个向量所构成的平行四边形的面积大小。
我们需要学会如何计算和应用数量积和向量积。
高一数学知识点笔记整理必修二一、函数与方程1. 函数的概念和性质函数是一种特殊的关系,它将一个集合的元素映射到另一个集合。
函数可以用图像、公式或者表格来表示。
函数的性质包括定义域、值域、单调性、奇偶性等。
在求函数的性质时,要注意排除分母为零和奇次根号下的负数的情况。
2. 一次函数一次函数的一般形式为 y = kx + b。
其中,k 表示斜率,b 表示截距。
一次函数的性质包括斜率和截距的意义、图像的特点、解一次方程等。
3. 二次函数二次函数的一般形式为 y = ax² + bx + c。
其中,a 表示二次项系数,b 表示一次项系数,c 表示常数项。
二次函数的性质包括抛物线的开口方向、顶点坐标、轴对称性、解二次方程等。
4. 三角函数三角函数包括正弦函数、余弦函数和正切函数等。
它们的定义域都是实数集合 R。
三角函数的性质包括图像的特点、周期性、奇偶性、单调性等。
注意特殊角度的三角函数值,如0°、30°、45°、60°、90°等。
5. 指数和对数函数指数函数的一般形式为y = a^x。
其中,a 为底数,x 为指数。
对数函数是指数函数的反函数,一般形式为y = logₐx。
其中,a 为底数,x 为真数。
指数和对数函数的性质包括定义域、值域、单调性、图像的特点等。
二、平面几何1. 平面向量平面向量的概念及表示方法,向量的加法、数乘、模长、单位向量等运算。
向量的共线、共面、垂直等关系。
向量的平行四边形法则和三角形法则。
2. 坐标系与直线笛卡尔坐标系的建立及表示方法。
直线的斜率、截距、两点式、一般式等表示方法。
直线的性质包括平行、垂直、相交等关系。
两条直线的夹角公式,点到直线的距离公式。
3. 圆与圆的位置关系圆的性质包括圆心、半径、直径、弦、弧等概念。
圆的方程及其性质,与坐标轴交点坐标的求解。
圆与直线的位置关系,包括相交、相切、内切、外切等情况。
4. 三角形三角形的分类及性质,包括等边三角形、等腰三角形、直角三角形等。
第二章等式与不等式本章小结学习目标能够从函数的观点认识方程和不等式,感悟函数和方程、不等式之间的联系,认识函数的重要性.掌握等式与不等式的性质.重点提升数学抽象、逻辑推理和数学运算素养.自主预习{等式式与不等关系实数大小的比较依据——次不等式及其解法{{课堂探究任务一:不等式的基本性质的应用例1下列结论中正确的是()①a>b>0,d>c>0⇒ac>bd;②a>b,c>d⇒a-c>b-d;③ac2>bc2⇒a>b;④a>b⇒a n>b n(n∈N,n>1).A.①②③B.①③C.②③④D.①③④任务二:一元二次不等式的解法及其应用例2解下列不等式:(1)x-1x≥2;(2)2x3+x2-5x+2>0.例3解关于x的不等式(x-2)(ax-2)>0.解一元二次不等式的步骤:任务三:二次函数、一元二次方程、一元二次不等式之间的关系例4当实数m取何范围的值时,方程x2+(m-3)x+m=0的两根满足:(1)都是正根;(2)都在(0,2)内?思考:根的分布问题应该从哪几个方面考虑?例5已知一元二次不等式ax2+bx+1>0的解集为{x|-2<x<1},则a= ,b= .任务四:基本不等式的应用例6已知3a2+2b2=5,试求y=(2a2+1)(b2+2)的最大值.例7如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求点B在AM上,点D在AN上,且对角线MN过点C,已知AB=3米,AD=2米.(1)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?(2)当DN 的长为多少时,矩形花坛AMPN 的面积最小?并求出最小值.课堂练习1.若a ∈R 且a ≠0,比较a 与1a 的大小.2.求函数y=x 4+3x 2+3x 2+1的最小值.核心素养专练对任意x ∈[1,2],不等式1-mx ≤√1+x≤1-nx 恒成立,试求n 的最大值与m 的最小值.参考答案自主预习略 课堂探究例1 思路分析:判断不等关系的真假,要紧扣不等式的性质,应注意条件与结论之间的联系. 【解析】∵d>c>0⇒1c >1d>0,又a>b>0,∴a c >bd,∴①对;∵a>b ,-c<-d 不同向,不等式不可加,∴②错; ∵ac 2>bc 2,c 2>0,∴a>b ,∴③对;只有当a>b>0时,才有a n >b n ,∴④错,故选B .答案:B例2 【思路分析】对于(1),要先移项、通分化为f(x)g(x)≥0(或f(x)g(x)≤0)的形式,再化为整式不等式,转化必须保持等价;对于(2),要因式分解后借助穿根法处理.【解】(1)原不等式可化为x -1x -2≥0,∴-x -1x>0,∴{x(x +1)≤0,x ≠0,∴-1≤x<0.∴原不等式的解集为{x|-1≤x<0}.(2)原不等式可化为(x-1)(x+2)(2x-1)>0. 利用数轴标根法或穿根法(如图所示),∴-2<x<12或x>1.∴不等式的解集为{x |-2<x <12或x >1}.例3 【思路分析】不等式中含有参数a ,因此需要先判断参数a 对方程(x-2)(ax-2)=0的解的影响,然后求解.【解】(1)当a=0时,原不等式化为x-2<0,∴x<2,∴原不等式的解集为{x|x<2}.(2)当a<0时,原不等式化为(x-2)(x -2a )<0.方程(x-2)(x -2a )=0的两根为2,2a ,又2>2a,∴原不等式的解集为{x |2a<x <2}.(3)当a>0时,原不等式化为(x-2)(x -2a )>0.方程(x-2)(x -2a )=0的两根为2,2a .当0<a<1时,2a >2,原不等式的解集为{x |x >2a 或x <2}. 当a=1时,原不等式化为(x-2)2>0,解集为{x ∈R |x ≠2}. 当a>1时,2>2a >0,原不等式的解集为{x |x >2或x <2a }. 综上所述,不等式解集为当a=0时,{x ∈R |x<2};当a=1时,{x ∈R |x ≠2};当a<0时,{x |2a<x <2};当0<a<1时,{x |x >2a 或x <2};当a>1时,{x |x >2或x <2a }.解一元二次不等式的步骤: 1.若能因式分解,则用数轴穿根法; 2.若不能因式分解,则用配方法. 配方法的步骤:(1)把一元二次不等式的二次项系数化为1;(2)一元二次不等式通过配方变为(x-h )2>k 或(x-h )2<k 的形式; (3)根据k 值情况确定不等式的解集.例4 【思路分析】对于(1),可利用判别式及根与系数的关系求解;对于(2),可构造二次函数,结合二次函数的图像求解.【解】(1)设方程的两根为x 1,x 2.则由题意可得{Δ=m 2-10m +9≥0,x 1+x 2=3-m >0,x 1x 2=m >0.解得m 的取值范围是(0,1]. (2)(由对应的函数几何意义求解) 设f (x )=x 2+(m-3)x+m ,由题意得{Δ=m 2-10m +9≥0,f(0)=m >0,0<3-m2<2,f(2)=3m -2>0.解得23<m ≤1. 思考:根的分布问题应该从哪几个方面考虑? 1.开口方向; 2.判别式Δ; 3.对称轴;4.区间端点函数值的正负.例5 【思路分析】由于一元二次不等式解集的分界点是相应一元二次方程的两根,所以解答就从这个关系入手.【解析】由于ax 2+bx+1>0的解集为{x|-2<x<1},所以-2和1是方程ax 2+bx+1=0(a ≠0)的两根. 由根与系数的关系,得 {-2+1=-ba ,-2×1=1a ,解得a=b=-12. 答案:-12-12例6 【思路分析】要求积的最大值,关键是结合条件配凑出和为定值,然后利用基本不等式求解. 【解】∵2a 2+1>0,b 2+2>0,y=(2a 2+1)(b 2+2),∴√12y =√3(2a 2+1)·4(b 2+2)≤6a 2+3+4b 2+82.∵3a 2+2b 2=5,∴6a 2+4b 2=10. ∴√12y ≤212,可得√y ≤7√34.∴y 的最大值为14716.例7 【思路分析】对于(1),首先建立矩形AMPN 的面积y 与DN 的长x 的函数关系式,然后利用不等式求解;对于(2),根据(1)中建立的函数关系式结合基本不等式求解.【解】(1)设DN 的长为x (x>0)米,则AN 的长为(x+2)米,如图所示.∵DN AN =DC AM ,∴AM=3(x+2)x.∴矩形花坛AMPN 的面积y=AN ·AM=3(x+2)2x.由y>32,得3(x+2)2x>32.∵x>0,∴3x 2-20x+12>0.解得0<x<23或x>6,即DN 长的取值范围是(0,23)∪(6,+∞). (2)由(1)知矩形花坛AMPN 的面积为y=3(x+2)2x=3x 2+12x+12x=3x+12x +12≥2√3x ·12x +12=24.当且仅当3x=12x,即x=2时,矩形花坛AMPN 的面积取得最小值24平方米.故DN 的长为2米时,矩形AMPN 的面积最小,最小值为24平方米. 课堂练习1.【思路分析】可以利用作差比较法比较两个代数式的大小. 【解】a-1a =(a -1)(a+1)a.当a=±1时,(a -1)(a+1)a=0,则a=1a ;当-1<a<0或a>1时,(a -1)(a+1)a>0,则a>1a . 当a<-1或0<a<1时,(a -1)(a+1)a<0,则a<1a .2.【思路分析】从函数解析式结构上看,它与基本不等式结构相差太大,而且利用前面求最值的方法不易求解,怎么办呢?事实上,我们可以把分母视为一个整体,用它来表示分子,原式即可展开.【解】令t=x 2+1,则t ≥1,且x 2=t-1.∴y=x 4+3x 2+3x 2+1=(t -1)2+3(t -1)+3t =t 2+t+1t=t+1t +1.∵t ≥1,∴t+1t ≥2√t ·1t =2,当且仅当t=1t ,即t=1时,等号成立.∴当x=0时,函数取得最小值3.核心素养专练【思路分析】对任意x ∈[1,2],不等式恒成立,且m 与n 都是一次的,因此可考虑分离参数m 和n. 【解】∵1-mx ≤√1+x≤1-nx 恒成立,∴-mx ≤√1+x -1≤-nx ,∴-mx ≤√1+x√1+x ≤-nx ,∴-mx ≤√1+x(1+√1+x)≤-nx.又∵x ∈[1,2],∴n ≤(√1+x)2+√1+x≤m 恒成立. 设y=(√1+x)2+√1+x,x ∈[1,2],令√1+x =t ,则t ∈[√2,√3],y=1t 2+t . 可求得y min =3-√36,y max =2-√22,∴m=2-√22,n=3-√36.故所求n 的最大值为3-√36,m 的最小值为2-√22.学习目标1.梳理等式的性质,理解不等式的概念,掌握不等式的性质,通过类比理解等式与不等式的共性与差异;2.会解常见的方程和不等式及不等式组,如一元二次方程、一元二次不等式、绝对值不等式、二元及三元方程组等;3.掌握基本不等式,结合具体实例,能用基本不等式解决简单的最大值和最小值问题. 本章重点:绝对值不等式的解法、一元二次不等式的解法、均值不等式的应用.本章难点:均值不等式的灵活应用及不等式的证明.重点提升数学抽象、逻辑推理和数学运算素养.培养学生类比思想、分类讨论思想和数形结合的数学思想等.知识点梳理课堂探究●不等式性质的应用例1(1)(多选)下列命题正确的有()A.若a>1,则1a<1B.若a+c>b,则1a <1 bC.对任意实数a,都有a2≥aD.若ac2>bc2,则a>b(2)已知2<a<3,-2<b<-1,求ab,b2a的取值范围.◎跟踪训练1(多选)已知a,b,c∈R,那么下列命题中错误的是() A.若a>b,则ac2>bc2B.若ac >bc,则a>bC.若a3>b3且ab<0,则1a >1 bD .若a 2>b 2且ab>0,则1a <1b●不等式组的解法 例21.解不等式组:{5x-1<3(x +1),2x-13-1≤5x +12.2.已知关于x 的不等式组{x +a ≤0,3+2x >5的整数解只有3个,求a 的取值范围.3.解下列关于x 的不等式. (1)-1<x 2+2x-1≤2; (2)m 2x 2+2mx-3<0.◎跟踪训练2 解下列不等式. (1)x -1x+2≤0; (2)-3x 2-2x+8≥0; (3)ax 2-(a+1)x+1<0.●绝对值不等式的解法 例3 解下列不等式. (1)|2x-5|>3; (2)|2x-1|+|2x+1|≤6.◎跟踪训练3解下列不等式.(1)|2x+1|-2|x-1|>0;(2)|x+3|-|2x-1|<x2+1.●均值不等式例4若x>0,y>0,且x+2y=5,求9x +2y的最小值,并求出取得最小值时x,y的值.◎跟踪训练41.函数y=x(3-2x)(0≤x≤1)的最大值是.2.当x>1时,不等式x+1x-1≥a恒成立,当x= 时等号成立,实数a的取值范围是.●等式与不等式的应用例5某单位用2 160万元购得一块空地,计划在该空上建造一栋至少10层,每层2 000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积.课堂练习1.已知集合M={x|-4≤x ≤7},N={x|x 2-x-12>0},则M ∩N=( ) A.{x|-4≤x<-3或4<x ≤7} B.{x|-4<x ≤-3或4≤x<7} C.{x|x ≤-3或x>4} D.{x|x<-3或x ≥4}2.(多选)已知a>b>0,下列不等式不成立的是( ) A.a+1b >b+1aB.a+1a ≥b+1bC.b a >b+1a+1D.b-1b>a-1a3.不等式|x+1|-|x-2|≥1的解集是 .4.已知x>0,y>0,且满足8x +1y=1,xy= 时,x+2y 的最小值为 .核心素养专练[A 基础达标]1.(多选)如果a ,b ,c 满足c<b<a ,且ac<0,那么下列不等式中一定成立的是( ) A .ab>ac B .c (b-a )>0 C .cb 2<ab 2 D .ac (a-c )<02.若a>0,b>0,且a 2+3b 2=6,则ab 的最大值为( ) A .1B .√2C .√3D .23.设m>1,P=m+4m -1,Q=5,则P ,Q 的大小关系为( ) A .P<QB .P=QC .P ≥QD .P ≤Q4.不等式1+x>11-x 的解集为( ) A .{x|x>0} B .{x|x ≥1} C .{x|x>1} D .{x|x>1或x=0} 5.设a ,b 是不相等的正数,x=√a+√b2,y=√a+b 2,则x ,y 的大小关系是 (用“>”“<”或“=”连接).6.设m+n>0,则关于x 的不等式(m-x )(n+x )>0的解集是 .7.已知0<x<12,则y=12x (1-2x )的最大值为 ,此时x= . 8.解下列不等式: (1)0<|x-2|≤|4x+2|; (2)2x+1x -5≥-1.9.已知x ,y 都是正数.(1)若3x+2y=12,求xy 的最大值;(2)若x+2y=3,求1x +1y 的最小值.[B 能力提升]10.不等式4x -2≤x-2的解集是( )A .(-∞,0]∪(2,4]B .[0,2)∪[4,+∞)C .[2,4)D .(-∞,2]∪(4,+∞)11.已知实数x ,y ,若x ≥0,y ≥0且x+y=3,则x+1x+2+y y+1的最大值为 ,此时xy= . 12.解不等式3x -7x 2+2x -3≥2.13.解关于x 的不等式ax 2+(1-a )x-1>0(a<0).14.志愿者团队要设计一个如图所示的矩形队徽ABCD ,已知点E 在边CD 上,AE=CE ,AB>AD ,矩形的周长为8 cm .(1)设AB=x cm,试用x 表示出图中DE 的长度,并求出x 的取值范围;(2)计划在△ADE 区域涂上蓝色代表星空,如果要使△ADE 的面积最大,那么应怎样设计队徽的长和宽?参考答案课堂探究例1 (1)AD (2)-6<ab<-213<b 2a <2跟踪训练1 ABD例2 1.解集为[-1,2) 2.(-5,-4]3.解:(1){x 2+2x -1≤2,x 2+2x -1>-1⇒{x 2+2x -3≤0,x 2+2x >0⇒{-3≤x ≤1,x >0或x <-2,不等式的解集为{x|-3≤x<-2或0<x ≤1}.(2)当m=0时,-3<0恒成立,解集为R .当m ≠0时,二次项系数m 2>0,Δ=16m 2>0.不等式化为(mx+3)(mx-1)<0.当m>0时,解集为{x |-3m <x <1m }; 当m<0时,解集为{x |1m <x <-3m }.跟踪训练2 (1)(-2,1](2)[-2,43] (3)解:当a=0时,x>1,解集为(1,+∞);当a ≠0时,方程化简为(ax-1)(x-1)<0.当a<0时,方程整理为(x -1a )(x-1)>0,(1a <0), ∴x>1或x<1a ,解集为(-∞,1a )∪(1,+∞);当a>0时,方程整理为(x -1a )(x-1)<0,(1a>0), 当0<a<1时,1a >1,∴1<x<1a ,解集为(1,1a); 当a=1时,1a =1,∴方程无解,解集为空集;当a>1时,1a <1,∴1a <x<1,解集为(1a ,1). 例3 (1)(-∞,-1)∪(4,+∞)(2)[-32,32]跟踪训练3(1)不等式的解集为{x |x >14}.(2)不等式的解集为{x |x <-25或x >2}.例4 解:因为x>0,y>0,且x+2y=5, 所以9x +2y =15(x+2y )(9x +2y ) =15(13+18y x +2x y ) ≥15(13+2√18y x ·2x y )=5,当且仅当{x +2y =5,18y x =2x y,即{x =3,y =1时等号成立. 所以9x +2y 的最小值为5,此时x=3,y=1. 跟踪训练41.982.2 a ≤3例5 解:设将楼房建为x 层,平均综合费用设为y 元. 则每平方米的平均购地费用为2 160×1042 000x =10 800x .∴每平方米的平均综合费用y=560+48x+10 800x =560+48(x +225x ). 当x+225x取最小值时,y 有最小值. ∵x>0,∴x+225x ≥2√x ·225x =30. 当且仅当x=225x ,即x=15时,上式等号成立.∴当x=15时,y 有最小值2 000元.因此该楼房建为15层时,每平方米的平均综合费用最少. 课堂练习1.A2.BCD3.[1,+∞)4.36 18 核心素养专练A 基础达标1.ABD2.C3.C4.C5.x<y6.(-n ,m )7.116 148.(1){x |x ≤-43或x ≥0且x ≠2} (2){x |x >5或x ≤43}9.(1)6 (2)1+23√2B 能力提升10.B11.43 212.(-3,1)13.当-1<a<0时,解集为{x |1<x <-1a } 当a=-1时,解集为⌀ 当a<-1时,解集为{x |-1a <x <1} 14.解: (1)设DE=y cm,则AE=CE=(x-y )cm, 由矩形周长为8 cm,可得AD=(4-x )cm . 在三角形ADE 中,由勾股定理可得(4-x )2+y 2=(x-y )2, 整理得y=4-8x ,由AB>AD 可得x>2,由周长为8可得x<4, 综上DE 长度为(4-8x )cm,2<x<4. (2)S=12(4-x )×y ,由y=4-8x 可得S=12(4-x )·(4-8x )=2(4-x )(1-2x )=2(6-x -8x), 由2<x<4可得x+8x ≥2√8=4√2,当且仅当x=2√2时取到等号, 因此S max =2(6-4√2)=12-8√2,此时队徽的长为2√2 cm,宽为(4-2√2)cm .。
高一数学知识点归纳笔记必修二1.高一数学知识点归纳笔记必修二篇一数列(1)数列的'概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图象、通项公式).②了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④了解等差数列与一次函数、等比数列与指数函数的关系.2.高一数学知识点归纳笔记必修二篇二集合的分类:(1)按元素属性分类,如点集,数集。
(2)按元素的个数多少,分为有/无限集关于集合的概念:(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。
(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。
(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。
集合可以根据它含有的元素的个数分为两类:含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
非负整数全体构成的集合,叫做自然数集,记作N;在自然数集内排除0的'集合叫做正整数集,记作N+或N*;整数全体构成的集合,叫做整数集,记作Z;有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
)实数全体构成的集合,叫做实数集,记作R。
(包括有理数和无理数。
其中无理数就是无限不循环小数,有理数就包括整数和分数。
数学上,实数直观地定义为和数轴上的点一一对应的数。
)3.高一数学知识点归纳笔记必修二篇三二面角(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
数学必修2第二章"点、直线、平面之间的位置关系”知识点1、平面的特征:平的,无厚度,可以无限延展.2、平面的基本性质:公理1、若一条直线上的两点在一个平面内,那么这条直线在此平面内.,,,l l l αααA∈B∈A∈B∈⇒⊂《公理2、过不在一条直线上的三点,有且只有一个平面.,,,,,C C ααααA B ⇒A∈B∈∈三点不共线有且只有一个平面使公理3、若两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.l l αβαβP∈⇒=P∈且推论1、经过一条直线和直线外的一点,有且只有一个平面.推论2、经过两条相交直线,有且只有一个平面.推论3、经过两条平行直线,有且只有一个平面.公理4、平行于同一条直线的两条直线互相平行.—//,////a b b c a c ⇒3、等角定理:空间中若两个角的两边分别对应平行,那么这两个角相等或互补.推论:若两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.4、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.数学符号表示:,,////a b a b a ααα⊄⊂⇒&直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行. 数学符号表示://,,//a a b a b αβαβ⊂=⇒5、平面与平面平行的判定定理:(1)一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.数学符号表示:,,,//,////a b a b a b ββαααβ⊂⊂=P ⇒(2)垂直于同一条直线的两个平面平行.符号表示:,//a a αβαβ⊥⊥⇒(3):(4)平行于同一个平面的两个平面平行.符号表示://,////αγβγαβ⇒ 面面平行的性质定理:(1)若两个平面平行,那么其中一个平面内的任意直线均平行于另一个平面. //,//a a αβαβ⊂⇒(2)若两个平行平面同时和第三个平面相交,那么它们的交线平行.//,,//a b a b αβαγβγ==⇒【 6、直线与平面垂直的判定定理:(1)一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. 数学符号表示:,,,,m n m n l m l n l ααα⊂⊂=A ⊥⊥⇒⊥(2)若两条平行直线中一条垂直于一个平面,那么另一条也垂直于这个平面.//,a b a b αα⊥⇒⊥(3)若一条直线垂直于两个平行平面中一个,那么该直线也垂直于另一个平面.//,a a αβαβ⊥⇒⊥直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行.} ,//a b a b αα⊥⊥⇒7、两个平面垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.,a a βααβ⊥⊂⇒⊥8、平面与平面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.数学符号表示:,,,b a a b a αβαβαβ⊥=⊂⊥⇒⊥,。
【导语】⾼⼀新⽣要根据⾃⼰的条件,以及⾼中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点⼴的特点,找寻⼀套⾏之有效的学习⽅法。
今天©⽆忧考⽹为各位同学整理了《⾼⼀数学必修⼆知识点归纳总结》,希望对您的学习有所帮助!⾼⼀数学必修⼆知识点归纳总结(⼀) 1.并集 (1)并集的定义 由所有属于集合A或属于集合B的元素所组成的集合称为集合A与B的并集,记作A∪B(读作"A并B"); (2)并集的符号表⽰ A∪B={x|x∈A或x∈B}. 并集定义的数学表达式中"或"字的意义应引起注意,⽤它连接的并列成分之间不⼀定是互相排斥的. x∈A,或x∈B包括如下三种情况: ①x∈A,但xB;②x∈B,但xA;③x∈A,且x∈B. 由集合A中元素的互异性知,A与B的公共元素在A∪B中只出现⼀次,因此,A∪B是由所有⾄少属于A、B两者之⼀的元素组成的集合. 例如,设A={3,5,6,8},B={4,5,7,8},则A∪B={3,4,5,6,7,8},⽽不是{3,5,6,8,4,5,7,8}. 2.交集 利⽤下图类⽐并集的概念引出交集的概念. (1)交集的定义 由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B(读作"A交B"). (2)交集的符号表⽰ A∩B={x|x∈A且x∈B}.⾼⼀数学必修⼆知识点归纳总结(⼆) 1.函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x); (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可⽤于求参数); (3)判断函数奇偶性可⽤定义的等价形式:f(x)±f(-x)=0或(f(x)≠0); (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 2.复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题⼀定要注意定义域优先的原则。