通用版高考数学二轮复习课时跟踪检测七文3
- 格式:doc
- 大小:104.00 KB
- 文档页数:3
——教学资料参考参考范本——通用高考数学二轮复习课时跟踪检测二十二文______年______月______日____________________部门A组——12+4提速练一、选择题1.设函数f(x)=则不等式f(x)>f(1)的解集是( )A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞)C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3)解析:选A 由题意得,f(1)=3,所以f(x)>f(1),即f(x)>3.当x<0时,x+6>3,解得-3<x<0;当x≥0时,x2-4x+6>3,解得x>3或0≤x<1.综上,不等式的解集为(-3,1)∪(3,+∞).2.在R上定义运算:x⊗y=x(1-y).若不等式(x-a)⊗(x-b)>0的解集是(2,3),则a+b=( )A.1 B.2C.4 D.8解析:选C 由题知(x-a)⊗(x-b)=(x-a)[1-(x-b)]>0,即(x -a)[x-(b+1)]<0,由于该不等式的解集为(2,3),所以方程(x-a)[x-(b+1)]=0的两根之和等于5,即a+b+1=5,故a+b=4.3.已知正数a,b的等比中项是2,且m=b+,n=a+,则m+n 的最小值是( )A.3 B.4C.5 D.6解析:选C 由正数a,b的等比中项是2,可得ab=4,又m=b+,n=a+,所以m+n=a+b++=a+b+=(a+b)≥×2=5,当且仅当a=b=2时等号成立,故m+n的最小值为5.4.(20xx·合肥质检)设变量x,y满足约束条件则目标函数z=x+2y的最大值为( )A.5 B.6C. D.7解析:选C 作出不等式组表示的平面区域,如图中阴影部分所示,由图易知,当直线z=x+2y 经过直线x-y=-1与x+y=4的交点,即时,z 取得最大值,zmax=+2×=,故选C.5.(20xx·全国卷Ⅲ)设x,y满足约束条件则z=x-y的取值范围是( )A.[-3,0] B.[-3,2]C.[0,2] D.[0,3]解析:选B 作出不等式组表示的可行域如图中阴影部分所示,作出直线l0:y=x,平移直线l0,当直线z=x-y过点A(2,0)时,z取得最大值2,当直线z=x-y过点B(0,3)时,z取得最小值-3,所以z=x-y的取值范围是[-3,2].6.(20xx·全国卷Ⅱ)设x,y满足约束条件则z=2x+y的最小值是( )A.-15 B.-9C.1 D.9解析:选 A 作出不等式组表示的可行域如图中阴影部分所示.易求得可行域的顶点A(0,1),B(-6,-3),C(6,-3),当直线z =2x +y 过点B(-6,-3)时,z 取得最小值,zmin =2×(-6)-3=-15.7.已知a>0,b>0,c>0,且a2+b2+c2=4,则ab +bc +ac 的最大值为( )A .8B .4C .2D .1解析:选B ∵a2+b2+c2=4,∴2ab+2bc +2ac≤(a2+b2)+(b2+c2)+(a2+c2)=2(a2+b2+c2)=8,∴ab+bc +ac≤4(当且仅当a =b =c =时等号成立),∴ab+bc +ac 的最大值为4.8.(20xx·惠州调研)已知实数x ,y 满足:若z =x +2y 的最小值为-4,则实数a =( )A .1B .2C .4D .8解析:选 B 作出不等式组表示的平面区域,如图中阴影部分所示,当直线z =x +2y 经过点C 时,z 取得最小值-4,所以-a +2·=-4,解得a =2,故选B.9.当x ,y 满足不等式组时,-2≤kx-y≤2恒成立,则实数k 的取值范围是( )A .[-1,1]B .[-2,0]C.D.⎣⎢⎡⎦⎥⎤-15,0解析:选D 作出不等式组表示的平面区域,如图中阴影部分所示,设z =kx -y ,由⎩⎪⎨⎪⎧x +2y =2,y -4=x ,得即B(-2,2),由得⎩⎪⎨⎪⎧x =2,y =0,即C(2,0),由得即A(-5,-1),要使不等式-2≤kx-y≤2恒成立,则即所以-≤k≤0,故选D.10.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨)128A.12万元B .16万元C .17万元D .18万元解析:选D 设该企业每天生产甲产品x 吨,乙产品y 吨,每天获得的利润为z 万元,则有z =3x +4y ,由题意得x ,y 满足⎩⎪⎨⎪⎧3x +2y≤12,x +2y≤8,x≥0,y≥0,作出可行域如图中阴影部分所示,根据线性规划的有关知识,知当直线z =3x +4y 过点B(2,3)时,z 取最大值18,故该企业每天可获得的最大利润为18万元.11.若两个正实数x ,y 满足+=1,且不等式x +<m2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞)解析:选 B 由题可知,1=+≥2=,即≥4,于是有m2-3m>x +≥≥4,故m2-3m>4,化简得(m +1)(m -4)>0,解得m<-1或m>4,即实数m 的取值范围为(-∞,-1)∪(4,+∞).12.(20xx·天津高考)已知函数f(x)=设a∈R,若关于x 的不等式f(x)≥在R 上恒成立,则a 的取值范围是( )A.B.⎣⎢⎡⎦⎥⎤-4716,3916C .[-2,2]D.⎣⎢⎡⎦⎥⎤-23,3916 解析:选A 法一:根据题意,作出f(x)的大致图象,如图所示. 当x≤1时,若要f(x)≥恒成立,结合图象,只需x2-x +3≥-,即x2-+3+a≥0,故对于方程x2-+3+a =0,Δ=2-4(3+a)≤0,解得a≥-;当x>1时,若要f(x)≥恒成立,结合图象,只需x +≥+a ,即+≥a,又+≥2,当且仅当=,即x =2时等号成立,所以a≤2.综上,a 的取值范围是.法二:关于x 的不等式f(x)≥在R 上恒成立等价于-f(x)≤a+≤f(x),即-f(x)-≤a≤f(x)-在R上恒成立,令g(x)=-f(x)-.若x≤1,则g(x)=-(x2-x+3)-=-x2+-3=-2-,当x=时,g(x)max=-;若x>1,则g(x)=--=-≤-2,当且仅当=,且x>1,即x=时,等号成立,故g(x)max=-2.综上,g(x)max=-.令h(x)=f(x)-,若x≤1,则h(x)=x2-x+3-=x2-x+3=2+,当x=时,h(x)min=;若x>1,则h(x)=x+-=+≥2,当且仅当=,且x>1,即x=2时,等号成立,故h(x)min=2.综上,h(x)min=2.故a的取值范围为.二、填空题13.已知关于x的不等式2x+≥7在x∈(a,+∞)上恒成立,则实数a的最小值为________.解析:由x>a,知x-a>0,则2x+=2(x-a)++2a≥2 +2a=4+2a,由题意可知4+2a≥7,解得a≥,即实数a的最小值为.答案:3214.若2x+4y=4,则x+2y的最大值是________.解析:因为4=2x+4y=2x+22y≥2=2,所以2x+2y≤4=22,即x+2y≤2,所以当且仅当2x=22y=2,即x=2y=1时,x+2y取得最大值2.答案:215.如果实数x,y满足条件且z=的最小值为,则正数a的值为________.解析:根据约束条件画出可行域如图中阴影部分所示,经分析可知当x=1,y=1时,z取最小值,即=,所以a=1.答案:116.对于问题:“已知关于x的不等式ax2+bx+c>0的解集为(-1,2),解关于x的不等式ax2-bx+c>0”,给出如下一种解法:解:由ax2+bx+c>0的解集为(-1,2),得a(-x)2+b(-x)+c>0的解集为(-2,1),即关于x的不等式ax2-bx+c>0的解集为(-2,1).参考上述解法,若关于x的不等式+<0的解集为∪,则关于x的不等式+<0的解集为________.解析:不等式+<0,可化为+<0,故得-1<<-或<<1,解得-3<x<-1或1<x<2,故+<0的解集为(-3,-1)∪(1,2).答案:(-3,-1)∪(1,2)B组——能力小题保分练1.已知x,y满足则z=8-x·y的最小值为( )A .1 B. C.D.132解析:选D 不等式组表示的平面区域如图中阴影部分所示,而z =8-x·y=2-3x -y ,欲使z 最小,只需使-3x -y 最小即可.由图知当x =1,y =2时,-3x -y 的值最小,且-3×1-2=-5,此时2-3x -y 最小,最小值为.故选D.2.设x ,y 满足约束条件若目标函数z =ax +by(a>0,b>0)的最大值为6,则+的最小值为( )A .1B .3C .2D .4解析:选 B 依题意画出不等式组表示的平面区域,如图中阴影部分.∵a>0,b>0,∴当直线z =ax +by 经过点(2,4)时,z 取得最大值6,∴2a +4b =6,即a +2b =3.∵+=(a +2b)×=++≥3,当且仅当a =b =1时等号成立, ∴+的最小值为3.故选B.3.设不等式组所表示的平面区域为Dn ,记Dn 内的整点(横坐标和纵坐标均为整数的点)个数为an(n∈N*),若m>++…+对于任意的正整数恒成立,则实数m 的取值范围是( )A.B.⎝ ⎛⎭⎪⎫19,+∞C.D.⎝ ⎛⎭⎪⎫-∞,19解析:选 A 不等式组表示的平面区域为直线x =0,y =0,y =-nx +3n 围成的直角三角形(不含直角边),区域内横坐标为1的整点有2n 个,横坐标为2的整点有n 个,所以an =3n ,所以==,所以++…+==,数列为单调递增数列,故当n 趋近于无穷大时,趋近于,所以m≥.故选A.4.在平面直角坐标系中,点P 是由不等式组所确定的平面区域上的动点,Q 是直线2x +y =0上任意一点,O 为坐标原点,则|+|的最小值为( )A. B.55 C.D.33解析:选B 作出不等式组对应的可行域,如图中阴影部分所示.设P(x ,y),Q(a ,-2a),则+=(x +a ,y -2a),则|+|=,设z =|+|,则z 的几何意义为可行域内的动点P 到动点M(-a,2a)的距离,其中M 也在直线2x +y =0上,由图可知,当点P 为(0,1),M 为P 在直线2x +y =0上的垂足时,z 取得最小值d ===.5.设二次函数f(x)=ax2+bx +c 的导函数为f′(x).若∀x∈R,不等式f(x)≥f′(x)恒成立,则的最大值为( )A.+2 B .-2 C .2+2D .2-2解析:选B 由题意得f′(x)=2ax +b ,由f(x)≥f′(x)在R 上恒成立,得ax2+(b-2a)x+c-b≥0在R上恒成立,则a>0且Δ≤0,可得b2≤4ac-4a2,则≤=,又4ac-4a2≥0,∴4·-4≥0,∴-1≥0,令t=-1,则t≥0.当t>0时,≤=≤=-2(当且仅当t=时等号成立),当t=0时,=0<-2,故的最大值为-2,故选B.6.(20xx·广州模拟)满足不等式组的点(x,y)组成的图形的面积是5,则实数a的值为________.解析:不等式组等价于或画出不等式组所表示的平面区域如图中△ABC及其内部,易知A(1,2),因为S△ABC=×1×2=1<5,所以a>1.画出不等式组所表示的平面区域,如图中的△ABC和△ADE所示.不等式组所对应的平面区域是△ADE及其内部,易知D(a,a+1),E(a,3-a),所以S△ADE=×(a-1)×(a+1-3+a)=5-1,解得a=3(a=-1舍去).答案:311 / 11。
课时跟踪检测(十九)一、选择题1.若过点P (2,1)的直线l 与圆C :x 2+y 2+2x -4y -7=0相交于两点A ,B ,且∠ACB =60°(其中C 为圆心),则直线l 的方程是( )A .4x -3y -5=0B .x =2或4x -3y -5=0C .4x -3y +5=0D .x =2或4x -3y +5=0解析:选B 由题意可得,圆C 的圆心为C (-1,2),半径为23,因为∠ACB =60°,所以△ABC 为正三角形,边长为23,所以圆心C 到直线l 的距离为3.若直线l 的斜率不存在,则直线l 的方程为x =2,与圆相交,且圆心C 到直线l 的距离为3,满足条件;若直线l 的斜率存在,设l :y -1=k (x -2),则圆心C 到直线l 的距离d =|3k +1|k 2+1=3,解得k =43,所以此时直线l 的方程为4x -3y -5=0.2.圆心在直线x -y -4=0上,且经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点的圆的方程为( )A .x 2+y 2-x +7y -32=0 B .x 2+y 2-x +7y -16=0 C .x 2+y 2-4x +4y +9=0 D .x 2+y 2-4x +4y -8=0解析:选A 设经过两圆的交点的圆的方程为x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0,即x 2+y 2+61+λx +6λ1+λy -4+28λ1+λ=0,其圆心坐标为⎝ ⎛⎭⎪⎫-31+λ,-3λ1+λ,又圆心在直线x -y -4=0上,所以-31+λ+3λ1+λ-4=0,解得λ=-7,故所求圆的方程为x 2+y 2-x +7y -32=0.3.(2017·洛阳统考)已知双曲线E :x 24-y 22=1,直线l 交双曲线于A ,B 两点,若线段AB 的中点坐标为⎝ ⎛⎭⎪⎫12,-1,则l 的方程为( ) A .4x +y -1=0 B .2x +y =0 C .2x +8y +7=0D .x +4y +3=0解析:选C 依题意,设点A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧x 214-y 212=1,x 224-y222=1,两式相减得x 21-x 224=y 21-y 222,即y 1-y 2x 1-x 2=12×x 1+x 2y 1+y 2.又线段AB 的中点坐标是⎝ ⎛⎭⎪⎫12,-1,因此x 1+x 2=1,y 1+y 2=-2,x 1+x 2y 1+y 2=-12,则y 1-y 2x 1-x 2=-14,即直线AB 的斜率为-14,直线l 的方程为y +1=-14⎝⎛⎭⎪⎫x -12,即2x+8y +7=0,故选C.4.(2017·云南统考)抛物线M 的顶点是坐标原点O ,焦点F 在x 轴的正半轴上,准线与曲线E :x 2+y 2-6x +4y -3=0只有一个公共点,设A 是抛物线M 上一点,若OA ―→·AF ―→=-4,则点A的坐标是( )A .(-1,2)或(-1,-2)B .(1,2)或(1,-2)C .(1,2)D .(1,-2)解析:选B 设抛物线M 的方程为y 2=2px (p >0),则其准线方程为x =-p2.曲线E 的方程可化为(x -3)2+(y +2)2=16,由题意知圆心E 到准线的距离d =3+p2=4,解得p =2,所以抛物线M 的方程为y 2=4x ,F (1,0).设A ⎝ ⎛⎭⎪⎫y 204,y 0,则OA ―→=⎝ ⎛⎭⎪⎫y 204,y 0,AF ―→=⎝ ⎛⎭⎪⎫1-y 204,-y 0,所以OA ―→·AF―→=y 204⎝⎛⎭⎪⎫1-y 204-y 20=-4,解得y 0=±2,所以x 0=1,所以点A 的坐标为(1,2)或(1,-2),故选B.5.(2017·成都模拟)已知A ,B 是圆O :x 2+y 2=4上的两个动点,|AB ―→|=2,OC ―→=53OA ―→-23OB ―→.若M 是线段AB 的中点,则OC ―→·OM ―→的值为( ) A .3 B .2 3 C .2D .-3解析:选A 由条件易知△OAB 为正三角形,OA ―→·OB ―→=|OA ―→|·|OB ―→|·cos π3=2.又由M为AB 的中点,知OM ―→=12(OA ―→+OB ―→),所以OC ―→·OM ―→=⎝ ⎛⎭⎪⎫53 OA ―→-23OB ―→·12(OA ―→+OB ―→)=12⎝ ⎛⎭⎪⎫53|OA ―→|2+OA ―→·OB ―→-23|OB ―→|2=3. 6.(2017·武昌调研)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别为l 1,l 2,经过右焦点F 垂直于l 1的直线分别交l 1,l 2于A ,B 两点.若|OA |,|AB |,|OB |成等差数列,且AF ―→与FB ―→反向,则该双曲线的离心率为( )A.52B. 3C. 5D.52。
课时知能训练一、选择题1.如果f=aa>0且a≠1为减函数,那么g=og错误!-1的图象是图中的【解析】易知0<a<1,g在1,+∞上的增函数.【答案】 A2.2022·韶关质检函数=2-2的图象大致是【解析】当<0时,=2-2是增函数,从而排除C、D又f2=f4=0,B不符合,选A【答案】 A3.为了得到函数=g错误!的图象,只需把函数=g 的图象上所有的点A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度【解析】由=g错误!,得=g+3-1由=g 图象向左平移3个单位,得=g+3的图象,再向下平移一个单位得=g+3-1的图象.【答案】 C4.在同一平面直角坐标系中,函数=g的图象与=e的图象关于直线=对称,而函数=f的图象与=g的图象关于轴对称.若fm=-1,则m的值为A.-e B.-错误!C.e【解析】依题意得,点m,-1位于函数=f的图象上,点m,-1关于轴的对称点-m,-1必位于=g的图象上.∵=g与=e的图象关于直线=对称.∴g=n .因此-1=n-m,∴-m=e-1,则m=-错误!5.函数f=错误!的图象和函数g=og2的图象的交点个数是A.1B.2C.3D.4【解析】在同一坐标系中画出f与g的图象,如图可知f与g的图象有3个交点.【答案】 C二、填空题6.如图2-7-1所示,函数f的图象是曲线OAB,其中点O,A,B的坐标分别为0,0,1,2,3,1,则f错误!的值等于________.图2-7-1【解析】∵f3=1,∴错误!=1,∴f错误!=f1=2【答案】 27.2022·梅州调研若函数=f∈R满足f+2=f,且∈[-1,1时,f=||则函数=f的图象与函数=og4||的图象的交点的个数为________.【解析】当||>4时,=og4||>1,且f∈[0,1],在同一坐标系内作出两函数图象,可知两函数的图象有6个交点.【答案】 68.已知函数f=错误!的图象与函数=g的图象关于直线=对称,令h=g1-||,则关于h有下列命题:①h的图象关于原点对称;②h为偶函数;③h的最小值为0;④h在0,1上为减函数.其中正确命题的序号为________.将你认为正确的命题的序号都填上【解析】g=og错误!,∴h=og错误!1-||,∴h=错误!∴正确的命题序号为②③三、解答题9.已知函数f=错误!1画出f的图象的简图;2根据图象写出函数的单调递增区间.【解】1函数f的图象如图所示.2由图象可知,函数f的单调递增区间为[-1,0],[2,5].10.已知函数f=3+m2+n-2的图象过点-1,-6,且函数g=f′+6的图象关于轴对称.1求函数f的解析式;2若函数h=f′+c有最小值1,试求实数c的值.【解】1由函数f图象过点-1,-6,得m-n=-3 ①由f=3+m2+n-2,得f′=32+2m+n,则g=f′+6=32+2m+6+n,又g图象关于轴对称,所以-错误!=0,所以m=-3,代入①式得n=0因此f=3-32-22由1知f′=32-6,∴h=32-6+c=3-12+c-3当=1时,h有最小值c-3因此c-3=1,∴c=4∴实数c的值为411.2022·清远调研已知函数f=|2-4+3|1求函数f的单调区间,并指出其增减性;2若关于的方程f-a=至少有三个不相等的实数根,求实数a的取值范围.【解】f=错误!作出图象如图所示.1递增区间为[1,2,[3,+∞,递减区间为-∞,1,[2,3.2原方程变形为|2-4+3|=+a,设=+a,在同一坐标系下再作出=+a的图象如图则当直线=+a过点1,0时,a=-1;当直线=+a与抛物线=-2+4-3相切时,由错误!得2-3+a+3=0由Δ=9-43+a==-错误!由图象知当a∈[-1,-错误!]时,方程至少有三个不等实根.。
课时跟踪检测(二)A 组——12+4提速练一、选择题1.(2017·宝鸡质检)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z)B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z)D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z)得,k π2-π12<x <k π2+5π12(k ∈Z),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝⎛⎭⎪⎫k π2-π12,k π2+5π12 (k ∈Z),故选B.2.函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫x ∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4C .f (x )=sin ⎝⎛⎭⎪⎫4x +π4 D .f (x )=sin ⎝⎛⎭⎪⎫4x -π4 解析:选A 由题图可知, 函数f (x )的最小正周期为T =2πω=⎝ ⎛⎭⎪⎫3π8-π8×4=π,所以ω=2,即f (x )=sin(2x+φ).又函数f (x )的图象经过点⎝⎛⎭⎪⎫π8,1,所以sin ⎝ ⎛⎭⎪⎫π4+φ=1,则π4+φ=2k π+π2(k ∈Z),解得φ=2k π+π4(k ∈Z),又|φ|<π2,所以φ=π4,即函数f (x )=sin ⎝⎛⎭⎪⎫2x +π4,故选A.3.(2017·天津高考)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24解析:选A 法一:由f ⎝⎛⎭⎪⎫5π8=2,得5π8ω+φ=π2+2k π(k ∈Z), ①由f ⎝⎛⎭⎪⎫11π8=0,得11π8ω+φ=k ′π(k ′∈Z),②由①②得ω=-23+43(k ′-2k ).又最小正周期T =2πω>2π,所以0<ω<1,ω=23.又|φ|<π,将ω=23代入①得φ=π12.选项A 符合.法二:∵f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝⎛⎭⎪⎫11π8-5π8=3π,∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ.由2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z. 又|φ|<π,∴取k =0,得φ=π12.故选A.4.(2017·湖北荆州质检)函数f (x )=2x -tan x 在⎝ ⎛⎭⎪⎫-π2,π2上的图象大致为( )解析:选C 因为函数f (x )=2x -tan x 为奇函数,所以函数图象关于原点对称,排除选项A ,B ,又当x →π2时,y <0,排除选项D ,故选C.5.(2017·安徽芜湖模拟)若将函数y =sin 2⎝⎛⎭⎪⎫x +π6的图象向右平移m (m >0)个单位长度后所得的图象关于直线x =π4对称,则m 的最小值为( )A.π12B.π6C.π4D.π3解析:选B 平移后所得的函数图象对应的解析式是y =sin 2⎝ ⎛⎭⎪⎫x -m +π6,因为该函数的图象关于直线x =π4对称,所以2⎝⎛⎭⎪⎫π4-m +π6=k π+π2(k ∈Z),所以m =π6-k π2(k ∈Z),又m >0,故当k =0时,m 最小,此时m =π6.⎝⎛⎭⎪⎫ω>0,|φ|<π2的部6.(2017·云南检测)函数f (x )=sin(ωx +φ)分图象如图所示,则f (x )的单调递增区间为( )A .(-1+4k π,1+4k π),k ∈ZB .(-3+8k π,1+8k π),k ∈ZC .(-1+4k,1+4k ),k ∈ZD .(-3+8k,1+8k ),k ∈Z解析:选 D 由题图,知函数f (x )的最小正周期为T =4×(3-1)=8,所以ω=2πT=π4,所以f (x )=sin ⎝ ⎛⎭⎪⎫π4x +φ.把(1,1)代入,得sin ⎝ ⎛⎭⎪⎫π4+φ=1,即π4+φ=π2+2k π(k ∈Z),又|φ|<π2,所以φ=π4,所以f (x )=sin ⎝ ⎛⎭⎪⎫π4x +π4.由2k π-π2≤π4x +π4≤2k π+π2(k ∈Z),得8k -3≤x ≤8k +1(k ∈Z),所以函数f (x )的单调递增区间为(8k -3,8k +1)(k ∈Z),故选D.7.(2017·全国卷Ⅲ)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65 B .1 C.35D.15解析:选A 因为cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π3-π2=sin ⎝ ⎛⎭⎪⎫x +π3,所以f (x )=65sin ⎝ ⎛⎭⎪⎫x +π3,于是f (x )的最大值为65.8.(2017·武昌调研)若f (x )=cos 2x +a cos ⎝ ⎛⎭⎪⎫π2+x 在区间⎝ ⎛⎭⎪⎫π6,π2上是增函数,则实数a 的取值范围为( ) A .[-2,+∞) B .(-2,+∞) C .(-∞,-4)D .(-∞,-4]解析:选D f (x )=1-2sin 2x -a sin x ,令sin x =t ,t ∈⎝ ⎛⎭⎪⎫12,1,则g (t )=-2t 2-at +1,t ∈⎝ ⎛⎭⎪⎫12,1,因为f (x )在⎝ ⎛⎭⎪⎫π6,π2上单调递增,所以-a 4≥1,即a ≤-4,故选D.9.已知函数f (x )=sin(2x +φ)(0<φ<π),若将函数f (x )的图象向左平移π6个单位长度后所得图象对应的函数为偶函数,则φ=( )A.5π6B.2π3C.π3D.π6解析:选D 函数f (x )的图象向左平移π6个单位长度后所得图象对应的函数解析式为y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+φ=sin ⎝ ⎛⎭⎪⎫2x +π3+φ,由于该函数是偶函数,∴π3+φ=π2+k π(k ∈Z),即φ=π6+k π(k ∈Z),又0<φ<π,∴φ=π6,故选D.10.若函数f (x )=sin ωx +3cos ωx (ω>0)满足f (α)=-2,f (β)=0,且|α-β|的最小值为π2,则函数f (x )的解析式为( )A .f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3B .f (x )=2sin ⎝ ⎛⎭⎪⎫x -π3C .f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6D .f (x )=2sin ⎝⎛⎭⎪⎫x -π6 解析:选A f (x )=sin ωx +3cos ωx =2sin ⎝⎛⎭⎪⎫ωx +π3.因为f (α)=-2,f (β)=0,且|α-β|min =π2,所以T 4=π2,得T =2π(T 为函数f (x )的最小正周期),故ω=2πT =1,所以f (x )=2sin ⎝⎛⎭⎪⎫x +π3,故选A.11.(2018届高三·广西三市联考)已知x =π12是函数f (x )=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f (x )的图象向右平移3π4个单位长度后得到函数g (x )的图象,则函数g (x )在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为( )A .-2B .-1C .- 2D .- 3解析:选B f (x )=3sin(2x +φ)+cos(2x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ.∵x =π12是f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ图象的一条对称轴,∴2×π12+π6+φ=k π+π2(k ∈Z),即φ=π6+k π(k ∈Z),∵0<φ<π,∴φ=π6,则f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -3π4+π3=-2sin ⎝ ⎛⎭⎪⎫2x -π6,则g (x )在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为g ⎝ ⎛⎭⎪⎫π6=-1,故选B.12.(2017·广州模拟)已知函数f (x )=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递减B .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递增D .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增 解析:选D f (x )=sin(ωx +φ)+cos(ωx +φ)=2sin ⎝ ⎛⎭⎪⎫ωx +φ+π4,因为0<φ<π且f (x )为奇函数,所以φ=3π4,即f (x )=-2sin ωx ,又直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f (x )的最小正周期为π2,由2πω=π2,可得ω=4,故f (x )=-2sin 4x ,由2k π+π2≤4x ≤2k π+3π2,k ∈Z ,得k π2+π8≤x ≤k π2+3π8,k ∈Z ,令k =0,得π8≤x ≤3π8,此时f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增,故选D.二、填空题13.(2017·全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.解析:依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f (x )max =1. 答案:114.已知函数f (x )=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6=________. 解析:函数f (x )=2sin(ωx +φ)对任意的x 都有f ⎝⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则其图象的一条对称轴为x =π6,所以f ⎝ ⎛⎭⎪⎫π6=±2.答案:±215.(2017·深圳调研)已知函数f (x )=cos x sin x (x ∈R),则下列四个结论中正确的是________.(写出所有正确结论的序号)①若f (x 1)=-f (x 2),则x 1=-x 2;②f (x )的最小正周期是2π;③f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上是增函数; ④f (x )的图象关于直线x =3π4对称. 解析:因为f (x )=cos x sin x =12sin 2x ,所以f (x )是周期函数,且最小正周期为T =2π2=π,所以①②错误;由2k π-π2≤2x ≤2k π+π2(k ∈Z),解得k π-π4≤x ≤k π+π4(k ∈Z),当k =0时,-π4≤x ≤π4,此时f (x )是增函数,所以③正确;由2x =π2+k π(k ∈Z),得x =π4+k π2(k ∈Z),取k =1,则x =3π4,故④正确.答案:③④16.已知函数f (x )=A cos 2(ωx +φ)+1⎝ ⎛⎭⎪⎫A >0,ω>0,0<φ<π2的最大值为3,f (x )的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f (1)+f (2)+…+f (2 016)+f (2 017)=________.解析:∵函数f (x )=A cos 2(ωx +φ)+1=A ·1+ωx +2φ2+1=A 2cos(2ωx +2φ)+1+A2⎝⎛⎭⎪⎫A >0,ω>0,0<φ<π2的最大值为3,∴A 2+1+A 2=3,∴A =2.根据函数图象相邻两条对称轴间的距离为2,可得函数的最小正周期为4,即2π2ω=4,∴ω=π4.再根据f (x )的图象与y 轴的交点坐标为(0,2),可得cos 2φ+1+1=2,∴cos 2φ=0,又0<φ<π2,∴2φ=π2,φ=π4.故函数f (x )的解析式为f (x )=cos ⎝ ⎛⎭⎪⎫π2x +π2+2=-sin π2x+2,∴f (1)+f (2)+…+f (2 016)+f (2 017)=-⎝ ⎛⎭⎪⎫sin π2+sin 2π2+sin 3π2+…+sin 2 016π2+sin 2 017π2+2×2 017=504×0-sin π2+4 034=0-1+4 034=4 033.答案:4 033B 组——能力小题保分练1.曲线y =2cos ⎝⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4和直线y =12在y 轴右侧的交点的横坐标按从小到大的顺序依次记为P 1,P 2,P 3,…,则|P 3P 7|=( )A .πB .2πC .4πD .6π解析:选B y =2cos ⎝⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4=cos 2x -sin 2x =cos 2x ,故曲线对应的函数为周期函数,且最小正周期为π,直线y =12在y 轴右侧与函数y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4在每个周期内的图象都有两个交点,又P 3与P 7相隔2个周期,故|P 3P 7|=2π,故选B.2.已知函数f (x )=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,则φ的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤-π3,π6C.⎣⎢⎡⎭⎪⎫-π4,0 D.⎣⎢⎡⎦⎥⎤-π3,0 解析:选D 因为函数f (x )=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,又-π6+φ<2x +φ≤π3+φ,所以2×π6+φ≤π3,且2×⎝ ⎛⎭⎪⎫-π12+φ≥-π2,解得-π3≤φ≤0,故选D.3.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则( )A .f (x )的图象关于直线x =-2π3对称B .f (x )的图象关于点⎝ ⎛⎭⎪⎫-5π12,0对称 C .若方程f (x )=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m 的取值范围是(-2,- 3 ] D .将函数y =2sin ⎝⎛⎭⎪⎫2x -π6的图象向左平移π6个单位长度得到函数f (x )的图象 解析:选 C 根据题中所给的图象,可知函数f (x )的解析式为f (x )=2sin ⎝⎛⎭⎪⎫2x +π3,∴当x =-2π3时,2×⎝ ⎛⎭⎪⎫-2π3+π3=-π,f ⎝ ⎛⎭⎪⎫-2π3=2sin(-π)=0,从而f (x )的图象关于点⎝ ⎛⎭⎪⎫-2π3,0对称,而不是关于直线x=-2π3对称,故A 不正确;当x =-5π12时,2×⎝ ⎛⎭⎪⎫-5π12+π3=-π2,∴f (x )的图象关于直线x =-5π12对称,而不是关于点⎝ ⎛⎭⎪⎫-5π12,0对称,故B 不正确;当x ∈⎣⎢⎡⎦⎥⎤-π2,0时,2x +π3∈⎣⎢⎡⎦⎥⎤-2π3,π3,f (x )∈[-2, 3 ],结合正弦函数图象的性质,可知若方程f (x )=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m 的取值范围是(-2,-3 ],故C 正确;根据图象平移变换的法则,可知应将y =2sin ⎝ ⎛⎭⎪⎫2x -π6的图象向左平移π4个单位长度得到f (x )的图象,故D 不正确.故选C.4.如果两个函数的图象平移后能够重合,那么称这两个函数互为生成函数.给出下列四个函数: ①f (x )=sin x +cos x ;②f (x )=2(sin x +cos x ); ③f (x )=sin x ;④f (x )=2sin x + 2. 其中互为生成函数的是( )A .①②B .①④C .③④D .②④解析:选 B 首先化简题中①②两个函数解析式可得:①f (x )=2sin ⎝ ⎛⎭⎪⎫x +π4,②f (x )=2sin ⎝⎛⎭⎪⎫x +π4,可知③f (x )=sin x 的图象要与其他函数的图象重合,只经过平移不能完成,还必须经过伸缩变换才能实现,∴③f (x )=sin x 不与其他函数互为生成函数;同理①f (x )=2sin ⎝⎛⎭⎪⎫x +π4(④f (x )=2sin x +2)的图象与②f (x )=2sin ⎝⎛⎭⎪⎫x +π4的图象也必须经过伸缩变换才能重合,而④f (x )=2sin x +2的图象向左平移π4个单位长度,再向下平移2个单位长度即可得到①f (x )=2sin ⎝⎛⎭⎪⎫x +π4的图象,∴①④互为生成函数,故选B.5.已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正常数)的最小正周期为π,且当x =2π3时,函数f (x )取得最小值,则( )A .f (1)<f (-1)<f (0)B .f (0)<f (1)<f (-1)C .f (-1)<f (0)<f (1)D .f (1)<f (0)<f (-1)解析:选C 因为函数f (x )=A sin(ωx +φ)的最小正周期为π,所以ω=2ππ=2,故f (x )=A sin(2x +φ),因为当x =2π3时,函数f (x )取得最小值,所以2×2π3+φ=2k π-π2,k ∈Z ,解得φ=2k π-11π6,k ∈Z ,又φ>0,故可取k =1,则φ=π6,故f (x )=A sin ⎝ ⎛⎭⎪⎫2x +π6,所以f (-1)=A sin ⎝ ⎛⎭⎪⎫-2+π6<0,f (1)=A sin ⎝ ⎛⎭⎪⎫2+π6>0,f (0)=A sin π6=12A >0,故f (-1)最小.又sin ⎝ ⎛⎭⎪⎫2+π6=sin ⎝ ⎛⎭⎪⎫π-2-π6=sin ⎝ ⎛⎭⎪⎫5π6-2>sin π6,故f (1)>f (0).综上可得f (-1)<f (0)<f (1),故选C.6.若函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g (x )=cos(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,则φ=________.解析:因为函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g (x )=cos(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,故它们的最小正周期相同,即2πω=2π2,所以ω=2,故函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.令2x +π4=k π+π2,k ∈Z ,则x =k π2+π8,k ∈Z ,故函数f (x )的图象的对称轴为x =k π2+π8,k ∈Z.令2x +φ=m π,m ∈Z ,则x =m π2-φ2,m ∈Z ,故函数g (x )的图象的对称轴为x =m π2-φ2,m ∈Z ,故k π2+π8-m π2+φ2=n π2,m ,n ,k ∈Z ,即φ=(m +n -k )π-π4,m ,n ,k ∈Z ,又|φ|<π2,所以φ=-π4.答案:-π4。
新高考高三数学(文)二轮复习课时跟踪训练(三十九)[基础巩固]一、选择题1.设a 、b ∈R ,若a -|b |>0,则下列不等式中正确的是( ) A .b -a >0 B .a 3+b 3<0 C .a 2-b 2<0D .b +a >0[解析] ∵a -|b |>0,∴|b |<a . ∴a >0.∴-a <b <a .∴b +a >0. [答案] D2.“a =14”是“对任意正数x ,均有x +ax ≥1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件.既不充分也不必要条件 [解析] 当a =14时,x +14x ≥2x ·14x =1,当且仅当x =14x ,即x =12时取等号;反之,显然不成立.[答案] A3.已知m >1,a =m +1-m ,b =m -m -1,则以下结论正确的是( )A .a >bB .a <bC .a =bD .a ,b 大小不定[解析]∵a=m+1-m=1m+1+m,b=m-m-1=1m+m-1.而m+1+m>m+m-1>0(m>1),∴1m+1+m<1m+m-1,即a<b.[答案] B4.设a,b是两个实数,给出下列条件:①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1. 其中能推出:“a,b中至少有一个大于1”的条件是() A.②③B.①②③C.③D.③④⑤[解析]若a=12,b=23,则a+b>1,但a<1,b<1,故①推不出;若a=b=1,则a+b=2,故②推不出;若a=-2,b=-3,则a2+b2>2,故④推不出;若a=-2,b=-3,则ab>1,故⑤推不出;对于③,即a+b>2,则a,b中至少有一个大于1,反证法:假设a≤1且b≤1,则a+b≤2与a+b>2矛盾,因此假设不成立,a,b中至少有一个大于1.[答案] C5.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a +b+c=0,求证b2-ac<3a”索的因应是()A.a-b>0 B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0[解析]由题意知b2-ac<3a⇐b2-ac<3a2⇐(a+c)2-ac<3a2⇐a2+2ac+c2-ac-3a2<0⇐-2a2+ac+c2<0⇐2a2-ac-c2>0⇐(a-c)(2a+c)>0⇐(a-c)(a-b)>0.[答案] C6.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值()A.恒为负B.恒等于零C.恒为正D.无法确定正负[解析]由f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,可知f(x)是R上的减函数.由x1+x2>0,可知x1>-x2,则f(x1)<f(-x2)=-f(x2),则f(x1)+f(x2)<0,故选A.[答案] A二、填空题7.(2018·安徽合肥模拟)设a>b>0,m=a-b,n=a-b,则m,n的大小关系是________.[解析]解法一(取特殊值法):取a=2,b=1,则m<n.解法二(分析法):a-b<a-b⇐b+a-b>a⇐a<b+2b·a-b+a-b⇐2b·a-b>0,显然成立.[答案]m<n8.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为________.[解析] 由题意2B =A +C ,又A +B +C =π,∴B =π3,又b 2=ac ,由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac , ∴a 2+c 2-2ac =0,即(a -c )2=0,∴a =c , ∴A =C ,∴A =B =C =π3, ∴△ABC 为等边三角形. [答案] 等边三角形9.(2018·广东佛山质检)已知a >0,b >0,如果不等式2a +1b ≥m2a +b 恒成立,则m 的最大值为________.[解析] 因为a >0,b >0,所以2a +b >0.所以不等式可化为m ≤⎝ ⎛⎭⎪⎫2a +1b (2a +b )=5+2⎝ ⎛⎭⎪⎫b a +a b .因为5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9,即其最小值为9,所以m ≤9,即m 的最大值等于9.[答案] 9 三、解答题10.设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ac ≤13; (2)a 2b +b 2c +c 2a ≥1.[证明] (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca , 得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13. (2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c , 故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a ≥1.[能力提升]11.已知函数f (x )=⎝ ⎛⎭⎪⎫12x,a ,b 是正实数,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为( )A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A[解析] ∵a +b 2≥ab ≥2ab a +b,又f (x )=⎝ ⎛⎭⎪⎫12x 在R 上是减函数,∴f ⎝⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b . [答案] A12.设x ,y ,z ∈(0,+∞),a =x +1y ,b =y +1z ,c =z +1x ,则a ,b ,c 三数( )A .至少有一个不大于2B .都大于2C .至少有一个不小于2D .都小于2[解析] a +b +c =x +1x +y +1y +z +1z ≥2+2+2=6,所以至少有一个不小于2.故选C.[答案] C13.已知非零向量a ,b ,且a ⊥b ,求证:|a |+|b ||a +b |≤ 2.[证明] ∵a ⊥b ,∴a ·b =0, 要证|a |+|b ||a +b |≤ 2,只需证|a |+|b |≤ 2|a +b |,只需证|a |2+2|a ||b |+|b |2≤2(a 2+2a ·b +b 2), 只需证|a |2+2|a ||b |+|b |2≤2a 2+2b 2, 只需证|a |2+|b |2-2|a ||b |≥0, 即(|a |-|b |)2≥0,上式显然成立,故原不等式得证.14.已知函数u (x )=ln x 的反函数为v (x ),f (x )=x ·v (x )-ax 2+bx ,且函数f (x )在点(0,f (0))处的切线的倾斜角为45°.(1)求实数b 的值;(2)若a <e ,用反证法证明:函数f (x )=x ·v (x )-ax 2+bx (x >0)无零点.[解] (1)因为函数u (x )=ln x 的反函数为v (x ),所以v (x )=e x , 所以f (x )=x e x -ax 2+bx ,所以f ′(x )=e x +x e x -2ax +b . 因为函数f (x )在点(0,f (0))处的切线的倾斜角为45°,所以f ′(0)=tan45°=1,即e 0+0·e 0-2a ×0+b =1,解得b =0. (2)证明:由(1)知,f (x )=x e x -ax 2. 假设函数f (x )=x e x -ax 2(x >0)有零点,则f (x )=0在(0,+∞)上有解,即a =e xx 在(0,+∞)上有解.设g (x )=e xx (x >0),则g ′(x )=e x (x -1)x 2(x >0). 当0<x <1时,g ′(x )<0; 当x >1时,g ′(x )>0.所以g (x )≥g (x )min =g (1)=e ,所以a ≥e ,但这与条件a <e 矛盾, 故假设不成立,即原命题得证. 15.若a >0,证明: a 2+1a 2-2≥a +1a -2.[证明] 要证 a 2+1a 2-2≥a +1a -2,只需证a 2+1a 2+2≥a +1a + 2.∵a >0,∴两边均大于零,∴只需证⎝⎛⎭⎪⎫a 2+1a 2+22≥⎝ ⎛⎭⎪⎫a +1a +22, 即证a 2+1a 2+4+4 a 2+1a 2≥a 2+1a 2+2+2+22⎝⎛⎭⎪⎫a +1a ,只需证a 2+1a 2≥22⎝ ⎛⎭⎪⎫a +1a , 只需证a 2+1a 2≥12⎝ ⎛⎭⎪⎫a 2+1a 2+2, 即证a 2+1a 2≥2,它显然成立.∴原不等式成立.。
课时跟踪检测(十六)A 组——12+4提速练一、选择题1.(2017·惠州调研)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =132,则它的渐近线方程为( )A .y =±32xB .y =±23xC .y =±94xD .y =±49x解析:选A 由双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =132,可得c 2a 2=134,∴b 2a 2+1=134,可得b a =32,故双曲线的渐近线方程为y =±32x .2.(2017·全国卷Ⅰ)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A.13B.12C.23D.32解析:选D 由题可知,双曲线的右焦点为F (2,0),当x =2时,代入双曲线C 的方程,得4-y 23=1,解得y =±3,不妨取点P (2,3),因为点A (1,3),所以AP ∥x 轴,又PF ⊥x 轴,所以AP ⊥PF ,所以S △APF =12|PF |·|AP |=12×3×1=32.3.已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3)B .(-1,3)C .(0,3)D .(0,3)解析:选A 由题意得(m 2+n )(3m 2-n )>0,解得-m 2<n <3m 2,所以m 2+n >0,3m 2-n >0,又由该双曲线两焦点间的距离为4,得m 2+n +3m 2-n =4,即m 2=1,所以-1<n <3.4.(2017·全国卷Ⅲ)已知椭圆C :x 2a2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63B.33C.23D.13解析:选A 以线段A 1A 2为直径的圆的方程为x 2+y 2=a 2,由原点到直线bx -ay +2ab =0的距离d =2abb 2+a 2=a ,得a 2=3b 2,所以C 的离心率e =1-b 2a 2=63. 5.(2017·全国卷Ⅱ)过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴的上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为( )A. 5 B .2 2 C .2 3D .3 3解析:选C 由题意,得F (1,0), 则直线FM 的方程是y =3(x -1). 由⎩⎨⎧y =3x -,y 2=4x ,得x =13或x =3.由M 在x 轴的上方,得M (3,23), 由MN ⊥l ,得|MN |=|MF |=3+1=4.又∠NMF 等于直线FM 的倾斜角,即∠NMF =60°, 因此△MNF 是边长为4的等边三角形, 所以点M 到直线NF 的距离为4×32=2 3. 6.(2017·广州模拟)已知F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,若椭圆C上存在点P 使∠F 1PF 2为钝角,则椭圆C 的离心率的取值范围是( )A.⎝⎛⎭⎪⎫22,1 B.⎝ ⎛⎭⎪⎫12,1 C.⎝⎛⎭⎪⎫0,22 D.⎝ ⎛⎭⎪⎫0,12 解析:选A 法一:设P (x 0,y 0),由题意知|x 0|<a ,因为∠F 1PF 2为钝角,所以PF 1―→·PF 2―→<0有解,即(-c -x 0,-y 0)·(c -x 0,-y 0)<0,化简得c 2>x 20+y 20,即c 2>(x 20+y 20)min,又y 20=b 2-b 2a2x 20,0≤x 20<a 2,故x 20+y 20=b 2+c 2a2x 20∈[b 2,a 2),所以(x 20+y 20)min =b 2,故c 2>b 2,又b 2=a 2-c 2,所以e 2=c 2a 2>12,解得e >22,又0<e <1,故椭圆C 的离心率的取值范围是⎝ ⎛⎭⎪⎫22,1. 法二:椭圆上存在点P 使∠F1PF 2为钝角⇔以原点O 为圆心,以c 为半径的圆与椭圆有四个不同的交点⇔b <c .如图,由b <c ,得a 2-c 2<c 2,即a 2<2c 2,解得e =c a >22,又0<e <1,故椭圆C 的离心率的取值范围是⎝ ⎛⎭⎪⎫22,1. 7.在平面直角坐标系xOy 中,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,其中F 2也是抛物线C 2:y 2=4x 的焦点,点M 为C 1与C 2在第一象限内的交点,且|MF 2|=53,则椭圆的长轴长为( )A .2B .4C .6D .8解析:选B 依题意知F 2(1,0),设M (x 1,y 1).由抛物线的定义得|MF 2|=1+x 1=53,即x 1=23.将x 1=23代入抛物线方程得y 1=263,故M ⎝ ⎛⎭⎪⎫23,263,又M 在椭圆C 1上,故⎝ ⎛⎭⎪⎫232a 2+⎝ ⎛⎭⎪⎫2632b 2=1,结合a 2-b 2=1,得a 2=4,则a =2,故椭圆的长轴长为4.8.(2017·福州模拟)已知抛物线C :y 2=4x 的焦点为F ,准线为l .若射线y =2(x -1)(x ≤1)与C ,l 分别交于P ,Q 两点,则|PQ ||PF |=( )A. 2 B .2 C. 5D .5解析:选C 由题意,知抛物线C :y 2=4x 的焦点F (1,0),设准线l :x =-1与x 轴的交点为F 1.过点P 作直线l 的垂线,垂足为P 1(图略),由⎩⎪⎨⎪⎧x =-1,y =x -,x ≤1,得点Q 的坐标为(-1,-4),所以|FQ |=2 5.又|PF |=|PP 1|,所以|PQ ||PF |=|PQ ||PP 1|=|QF ||FF 1|=252=5,故选C.9.(2017·沈阳模拟)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M与双曲线C 的焦点不重合,点M 关于F 1,F 2的对称点分别为A ,B ,线段MN 的中点在双曲线的右支上,若|AN |-|BN |=12,则a =( )A .3B .4C .5D .6解析:选A 如图,设MN 的中点为P .∵F 1为MA 的中点,F 2为MB 的中点,∴|AN |=2|PF 1|,|BN |=2|PF 2|,又|AN |-|BN |=12,∴|PF 1|-|PF 2|=6=2a ,∴a =3.故选A.10.设AB 是椭圆的长轴,点C 在椭圆上,且∠CBA =π4,若AB =4,BC =2,则椭圆的两个焦点之间的距离为( )A.463 B.263 C.433D.233解析:选A 不妨设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),如图,由题意知,2a =4,a =2,∵∠CBA =π4,BC =2,∴点C 的坐标为(-1,1),∵点C 在椭圆上,∴122+1b 2=1,∴b 2=43,∴c 2=a 2-b 2=4-43=83,c =263,则椭圆的两个焦点之间的距离为2c =463.11.(2017·云南调研)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )A. 3B. 2 C .2 D .3解析:选A 设双曲线C 的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由于直线l 过双曲线的焦点且与对称轴垂直,因此AB 是双曲线的通径,则|AB |=2b2a,依题意2b 2a =4a ,∴b 2a 2=2,∴c 2-a 2a2=e2-1=2,∴e = 3.12.(2017·陕西质检)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点分别为F 1,F 2,若P 为双曲线上一点,且|PF 1|=2|PF 2|,则双曲线离心率e 的取值范围是( )A .(1,3)B .(1,3]C .(3,+∞)D .(0,3]解析:选 B 由已知得⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|=2|PF 2|,即|PF 1|=4a ,|PF 2|=2a ,因为|PF 1|+|PF 2|≥2c ,即4a +2a ≥2c ,所以e ≤3,又双曲线的离心率e >1,所以双曲线的离心率e 的取值范围是(1,3].二、填空题13.(2017·郑州模拟)过抛物线y =14x 2的焦点F 作一条倾斜角为30°的直线交抛物线于A ,B 两点,则|AB |=________.解析:依题意,设点A (x 1,y 1),B (x 2,y 2),题中的抛物线x 2=4y 的焦点坐标是F (0,1),直线AB 的方程为y =33x +1,即x =3(y -1).由⎩⎨⎧x 2=4y ,x =3y -,消去x 得3(y -1)2=4y ,即3y 2-10y +3=0,y 1+y 2=103,则|AB |=|AF |+|BF |=(y 1+1)+(y 2+1)=y 1+y 2+2=163. 答案:16314.A ,F 分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点和右焦点.A ,F 在双曲线的一条渐近线上的射影分别为B ,Q ,O 为坐标原点,△ABO 与△FQO 的面积之比为12,则该双曲线的离心率为________.解析:易知△ABO 与△FQO 相似,相似比为a c ,故a 2c 2=12,所以离心率e =ca= 2.答案: 215.(2018届高三·广东五校联考)已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P (x 0,y 0)满足0<x 202+y 20<1,则|PF 1|+|PF 2|的取值范围是________.解析:由点P (x 0,y 0)满足0<x 202+y 20<1,可知P (x 0,y 0)一定在椭圆内(不包括原点),因为a =2,b =1,所以由椭圆的定义可知|PF 1|+|PF 2|<2a =22,又|PF 1|+|PF 2|≥|F 1F 2|=2,故|PF 1|+|PF 2|的取值范围是[2,22).答案:[2,22)16.(2018届高三·湘中名校联考)已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA ―→+FB ―→+FC ―→=0,则1k AB +1k AC +1k BC=________.解析:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),F ⎝ ⎛⎭⎪⎫p 2,0,由FA ―→+FB ―→=-FC ―→,得⎝ ⎛⎭⎪⎫x 1-p 2,y 1+⎝ ⎛⎭⎪⎫x 2-p 2,y 2=-⎝ ⎛⎭⎪⎫x 3-p 2,y 3,y 1+y 2+y 3=0.因为k AB =y 2-y 1x 2-x 1=2p y 1+y 2,k AC =y 3-y 1x 3-x 1=2p y 1+y 3,k BC=y 3-y 2x 3-x 2=2p y 2+y 3,所以1k AB +1k AC +1k BC =y 1+y 22p +y 3+y 12p +y 2+y 32p =y 1+y 2+y 3p=0. 答案:0B 组——能力小题保分练1.(2018届高三·湖北七市(州)联考)双曲线x 2a 2-y 2b2=1(a ,b >0)的离心率为3,左、右焦点分别为F 1,F 2,P 为双曲线右支上一点,∠F 1PF 2的角平分线为l ,点F 1关于l 的对称点为Q ,|F 2Q |=2,则双曲线的方程为( )A .x 22-y 2=1B .x 2-y 22=1C .x 2-y 23=1D .x 23-y 2=1解析:选B ∵∠F 1PF 2的角平分线为l ,点F 1关于l 的对称点为Q ,∴|PF 1|=|PQ |,P ,F 2,Q 三点共线,而|PF 1|-|PF 2|=2a ,∴|PQ |-|PF 2|=2a ,即|F 2Q |=2=2a ,解得a =1.又e =ca=3,∴c =3∴b 2=c 2-a 2=2,∴双曲线的方程为x 2-y 22=1.故选B.2.已知椭圆x 29+y 25=1,F 为其右焦点,A 为其左顶点,P 为该椭圆上的动点,则能够使PA ―→·PF―→=0的点P 的个数为( )A .4B .3C .2D .1解析:选B 由题意知,a =3,b =5,c =2,则F (2,0),A (-3,0).当点P 与点A 重合时,显然PA ―→·PF ―→=0,此时P (-3,0).当点P 与点A 不重合时,设P (x ,y ),PA ―→·PF ―→=0⇔PA ⊥PF ,即点P 在以AF 为直径的圆上,则圆的方程为⎝ ⎛⎭⎪⎫x +122+y 2=254.① 又点P 在椭圆上,所以x 29+y 25=1,②由①②得4x 2+9x -9=0,解得x =-3(舍去)或34,则y =±534,此时P ⎝ ⎛⎭⎪⎫34,±534.故能够使PA ―→·PF ―→=0的点P 的个数为3.3.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C于另一点B ,且点B 在x 轴上的射影恰好为右焦点F .若13<k <12,则椭圆C 的离心率的取值范围是( )A.⎝ ⎛⎭⎪⎫14,34B.⎝ ⎛⎭⎪⎫23,1C.⎝ ⎛⎭⎪⎫12,23 D.⎝ ⎛⎭⎪⎫0,12 解析:选C 由题图可知,|AF |=a +c ,|BF |=a 2-c 2a ,于是k =|BF ||AF |=a 2-c 2a a +c .又13<k <12,所以13<a 2-c 2a a +c <12,化简可得13<1-e <12,从而可得12<e <23,故选C.4.(2017·贵阳检测)双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(2,1)在“右”区域内,则双曲线离心率e 的取值范围是( )A.⎝ ⎛⎭⎪⎫1,52 B.⎝⎛⎭⎪⎫52,+∞ C.⎝ ⎛⎭⎪⎫1,54D.⎝ ⎛⎭⎪⎫54,+∞ 解析:选B 依题意,双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±bax ,且“右”区域是由不等式组⎩⎪⎨⎪⎧y <b ax ,y >-ba x所确定的,又点(2,1)在“右”区域内,于是有1<2b a ,即b a >12,因此该双曲线的离心率e =1+⎝ ⎛⎭⎪⎫b a2∈⎝ ⎛⎭⎪⎫52,+∞,故选B.5.(2017·全国卷Ⅰ)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10解析:选A 抛物线C :y 2=4x 的焦点为F (1,0), 由题意可知l 1,l 2的斜率存在且不为0.不妨设直线l 1的斜率为k ,则l 1:y =k (x -1),l 2:y =-1k(x -1),由⎩⎪⎨⎪⎧y 2=4x ,y =k x -消去y ,得k 2x 2-(2k 2+4)x +k 2=0,设A (x 1,y 1),B (x 2,y 2), ∴x 1+x 2=2k 2+4k 2=2+4k2,由抛物线的定义可知,|AB |=x 1+x 2+2=2+4k 2+2=4+4k2.同理得|DE |=4+4k 2,∴|AB |+|DE |=4+4k2+4+4k 2=8+4⎝ ⎛⎭⎪⎫1k 2+k 2≥8+8=16,当且仅当1k2=k 2,即k =±1时取等号,故|AB |+|DE |的最小值为16.6.(2018届高三·西安八校联考)已知抛物线C :y 2=4x 的焦点为F ,直线y =3(x -1)与C 交于A ,B (A 在x 轴上方)两点.若AF ―→=m FB ―→,则m 的值为________.解析:由题意知F (1,0),由⎩⎨⎧y =3x -,y 2=4x ,解得⎩⎪⎨⎪⎧x 1=13,y 1=-233,⎩⎨⎧x 2=3,y 2=2 3.由A 在x 轴上方,知A (3,23),B ⎝ ⎛⎭⎪⎫13,-233,则AF ―→=(-2,-23),FB ―→=⎝ ⎛⎭⎪⎫-23,-233,因为AF ―→=m FB ―→,所以m =3.答案:3。
课时跟踪检测(六)A 组——12+4提速练一、选择题1.(2017·成都模拟)在等比数列{a n }中,已知a 3=6,a 3+a 5+a 7=78,则a 5=( ) A .12 B .18 C .24D .30解析:选B ∵a 3+a 5+a 7=a 3(1+q 2+q 4)=6(1+q 2+q 4)=78,解得q 2=3,∴a 5=a 3q 2=6×3=18.故选B.2.(2017·兰州模拟)已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( ) A .36 B .72 C .144D .288解析:选B ∵a 8+a 10=2a 9=28,∴a 9=14,∴S 9=a 1+a 92=72.3.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.4.设等比数列{}a n 的前n 项和为S n ,若S 1=13a 2-13,S 2=13a 3-13,则公比q =( )A .1B .4C .4或0D .8解析:选B ∵S 1=13a 2-13,S 2=13a 3-13,∴⎩⎪⎨⎪⎧a 1=13a 1q -13,a 1+a 1q =13a 1q 2-13,解得⎩⎪⎨⎪⎧a 1=1,q =4或⎩⎪⎨⎪⎧a 1=-13,q =0(舍去),故所求的公比q =4.5.已知S n 是公差不为0的等差数列{}a n 的前n 项和,且S 1,S 2,S 4成等比数列,则a 2+a 3a 1的值为( )A .4B .6C .8D .10解析:选C 设数列{}a n 的公差为d ,则S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d ,故(2a 1+d )2=a 1(4a 1+6d ),整理得d =2a 1,所以a 2+a 3a 1=2a 1+3d a 1=8a 1a 1=8. 6.(2018届高三·湖南十校联考)已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( )A .72B .88C .92D .98解析:选C 由S n +1=S n +a n +3,得a n +1-a n =3,所以数列{a n }是公差为3的等差数列,S 8=a 1+a 82=a 4+a 52=92.7.已知数列{}a n 满足a n +1=⎩⎪⎨⎪⎧2a n,0≤a n<12,2a n-1,12≤a n<1.若a 1=35,则a 2 018=( )A.15B.25C.35D.45解析:选A 因为a 1=35,根据题意得a 2=15,a 3=25,a 4=45,a 5=35,所以数列{}a n 以4为周期,又2 018=504×4+2,所以a 2 018=a 2=15,故选A.8.若等比数列的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为( )A.32B.94C .1D .2解析:选D 设等比数列的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9,a 1·a 1q ·a 1q 2·a 1q 3=814,化简得a 21q 3=92,则1a 1+1a 1q +1a 1q 2+1a 1q3=a 1+a 1q +a 1q 2+a 1q 3a 21q3=2. 9.(2017·广州模拟)已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( )A.5-12 B.5+12C.3-52D.3+52解析:选A 设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),所以a 3+a 5a 4+a 6=a 3+a 3q 2a 4+a 4q 2=a 3+q2a 4+q2=1q=25+1=5-12,故选A. 10.(2017·张掖模拟)等差数列{a n }中,a na 2n是一个与n 无关的常数,则该常数的可能值的集合为( )A .{1}B.⎩⎨⎧⎭⎬⎫1,12C.⎩⎨⎧⎭⎬⎫12 D.⎩⎨⎧⎭⎬⎫0,12,1解析:选Ba n a 2n =a 1+n -d a 1+n -d =a 1-d +nd a 1-d +2nd ,若a 1=d ≠0,则a n a 2n =12;若a 1≠0,d =0,则a n a 2n =1.∵a 1-d +nd ≠0,∴a na 2n ≠0,∴该常数的可能值的集合为⎩⎨⎧⎭⎬⎫1,12.11.(2018届高三·湖南十校联考)等差数列{a n }的前n 项和为S n ,且a 1<0,若存在自然数m ≥3,使得a m =S m ,则当n >m 时,S n 与a n 的大小关系是( )A .S n <a nB .S n ≤a nC .S n >a nD .大小不能确定解析:选C 若a 1<0,存在自然数m ≥3,使得a m =S m ,则d >0,否则若d ≤0,数列是递减数列或常数列,则恒有S m <a m ,不存在a m =S m .由于a 1<0,d >0,当m ≥3时,有a m =S m ,因此a m >0,S m >0,又S n =S m +a m +1+…+a n ,显然S n >a n .故选C.12.(2017·洛阳模拟)等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,则当n ∈N *时,S n -1S n的最大值与最小值之和为( )A .-23B .-712C.14D.56解析:选C 依题意得,S n =32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=1-⎝ ⎛⎭⎪⎫-12n.当n 为奇数时,S n =1+12n 随着n 的增大而减小,1<S n =1+12n ≤S 1=32,S n -1S n 随着S n 的增大而增大,0<S n -1S n ≤56;当n 为偶数时,S n =1-12n 随着n 的增大而增大,34=S 2≤S n =1-12n <1,S n -1S n 随着S n 的增大而增大,-712≤S n -1S n <0.因此S n -1S n 的最大值与最小值分别为56,-712,其最大值与最小值之和为56+⎝ ⎛⎭⎪⎫-712=14.二、填空题13.(2017·合肥质检)已知数列{a n }中,a 1=2,且a 2n +1a n=4(a n +1-a n )(n ∈N *),则其前9项和S 9=________.解析:由已知,得a 2n +1=4a n a n +1-4a 2n ,即a 2n +1-4a n a n +1+4a 2n =(a n +1-2a n )2=0,所以a n +1=2a n ,又因为a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故S 9=-291-2=210-2=1022.答案:1 02214.(2017·兰州模拟)已知数列{a n }中,a 1=1,S n 为数列{a n }的前n 项和,且当n ≥2时,有2a na n S n -S 2n=1成立,则S 2 017=________.解析:当n ≥2时,由2a n a n S n -S 2n =1,得2(S n -S n -1)=(S n -S n -1)S n -S 2n =-S n S n -1,∴2S n -2S n -1=1,又2S 1=2,∴⎩⎨⎧⎭⎬⎫2S n 是以2为首项,1为公差的等差数列,∴2S n =n +1,故S n =2n +1,则S 2 017=11 009. 答案:11 00915.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n·⎝ ⎛⎭⎪⎫12-12n n ()=223+22n n n -=227+22n n -.记t =-n 22+7n2=-12(n 2-7n )=-12⎝ ⎛⎭⎪⎫n -722+498,结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. 答案:6416.(2017·广州模拟)设S n 为数列{a n }的前n 项和,已知a 1=2,对任意p ,q ∈N *,都有a p +q=a p +a q ,则f (n )=S n +60n +1(n ∈N *)的最小值为________. 解析:a 1=2,对任意p ,q ∈N *,都有a p +q =a p +a q ,令p =1,q =n ,则有a n +1=a n +a 1=a n + 2.故{a n }是等差数列,所以a n =2n ,S n =2×+n n 2=n 2+n ,f (n )=S n +60n +1=n 2+n +60n +1=n +2-n ++60n +1=n +1+60n +1-1.当n +1=8,即n =7时,f (7)=8+608-1=292;当n+1=7,即n =6时,f (6)=7+607-1=1027,因为292<1027,则f (n )=S n +60n +1(n ∈N *)的最小值为292.答案:292B 组——能力小题保分练1.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值为( )A .6B .7C .8D .9解析:选D 不妨设a >b ,由题意得⎩⎪⎨⎪⎧a +b =p >0,ab =q >0,∴a >0,b >0,则a ,-2,b 成等比数列,a ,b ,-2成等差数列,∴⎩⎪⎨⎪⎧ab =-2,a -2=2b ,∴⎩⎪⎨⎪⎧a =4,b =1,∴p =5,q =4,∴p +q =9.2.(2017·郑州质检)已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为( )A.⎝ ⎛⎭⎪⎫13,+∞B.⎣⎢⎡⎭⎪⎫13,+∞C.⎝ ⎛⎭⎪⎫23,+∞ D.⎣⎢⎡⎭⎪⎫23,+∞ 解析:选D 依题意得,当n ≥2时,a n =a 1a 2a 3…a na 1a 2a 3…a n -1=2n2n -2=2n 2-(n -1)2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n =122n -1=12×⎝ ⎛⎭⎪⎫14n -1,即数列⎩⎨⎧⎭⎬⎫1a n 是以12为首项,14为公比的等比数列,等比数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和等于12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n <23,因此实数t 的取值范围是⎣⎢⎡⎭⎪⎫23,+∞. 3.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k=________.解析:设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧a 1+2d =3,4a 1+6d =10,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n n +2,1S n =2nn +=2⎝ ⎛⎭⎪⎫1n -1n +1, 因此∑k =1n1S k =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2n n +1.答案:2nn +14.(2017·兰州模拟)已知数列{a n },{b n },若b 1=0,a n =1nn +,当n ≥2时,有b n =b n-1+a n -1,则b 2 018=________.解析:由b n =b n -1+a n -1,得b n -b n -1=a n -1,∴b 2-b 1=a 1,b 3-b 2=a 2,…,b n -b n -1=a n -1,∴b 2-b 1+b 3-b 2+…+b n -b n -1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -1n,即b n -b 1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -n =11-12+12-13+…+1n -1-1n =1-1n =n -1n,∵b 1=0,∴b n =n -1n ,∴b 2 018=2 0172 018.答案:2 0172 0185.(2017·石家庄质检)已知数列{a n }的前n 项和为S n ,数列{a n }为12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n,…,若S k =14,则a k =________. 解析:因为1n +2n +…+n -1n =1+2+…+n -1n =n 2-12,1n +1+2n +1+…+n n +1=1+2+…+nn +1=n 2,所以数列12,13+23,14+24+34,…,1n +1+2n +1+…+n n +1是首项为12,公差为12的等差数列,所以该数列的前n 项和T n =12+1+32+…+n 2=n 2+n 4.令T n =n 2+n 4=14,解得n =7(n =-8舍去),所以a k =78.答案:786.在数列{a n }和{b n }中,a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n ,a 1=1,b 1=1.设c n=1a n +1b n,则数列{c n }的前2 018项和为________.解析:由已知a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 得a n +1+b n +1=2(a n +b n ),又a 1+b 1=2,所以数列{a n +b n }是首项为2,公比为2的等比数列,即a n +b n =2n,将a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 相乘并化简,得a n +1b n +1=2a n b n ,即a n +1b n +1a n b n =2.所以数列{a n b n }是首项为1,公比为2的等比数列,所以a n b n =2n -1,因为c n =1a n +1b n ,所以c n =a n +b n a n b n =2n2n -1=2,数列{c n }的前2 018项和为2×2 018=4 036.答案:4 036。
课时跟踪检测(二十)A 组——12+4提速练一、选择题 1.函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞)解析:选C 由题意可知x 满足log 2x -1>0,即log 2x >log 22,根据对数函数的性质得x >2,即函数f (x )的定义域是(2,+∞).2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,π+x ,x ≤0,则下列结论正确的是( )A .函数f (x )是偶函数B .函数f (x )是减函数C .函数f (x )是周期函数D .函数f (x )的值域为[-1,+∞)解析:选D 由函数f (x )的解析式,知f (1)=2,f (-1)=cos(-1)=cos 1,f (1)≠f (-1),则f (x )不是偶函数.当x >0时,f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1;当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x ) ∈[-1,1].所以函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞).故选D.3.(2017·合肥模拟)函数y =4cos x -e |x |(e 为自然对数的底数)的图象可能是( )解析:选A 令f (x )=4cos x -e |x |,因为f (-x )=4cos(-x )-e|-x |=f (x ),所以函数f (x )是偶函数,其图象关于y 轴对称,排除选项B ,D.又f (0)=4cos 0-e 0=3>0,所以选项A 满足条件.故选A.4.已知函数f (x -1)是定义在R 上的奇函数,且在[0,+∞)上是增函数,则函数f (x )的图象可能是( )解析:选B 函数f (x -1)的图象向左平移1个单位,即可得到函数f (x )的图象.因为函数f (x -1)是定义在R 上的奇函数,所以函数f (x -1)的图象关于原点对称,所以函数f (x )的图象关于点(-1,0)对称,排除A ,C ,D ,故选B.5.(2017·长春质检)下列函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选D 选项A ,B 是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.故选D.6.(2017·陕西质检)奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (8)=( ) A .-1 B .0 C .1 D .-2解析:选B 由奇函数f (x )的定义域为R ,可得f (0)=0,由f (x +2)为偶函数,可得f (-x +2)=f (x +2),故f (x +4)=f [(x +2)+2]=f [-(x +2)+2]=f (-x )=-f (x ),则f (x +8)=f [(x +4)+4]=-f (x +4)=-[-f (x )]=f (x ),即函数f (x )的周期为8,所以f (8)=f (0)=0,故选B.7.(2018届高三·湖南五市十校联考)函数y =-xx x -2的图象大致为( )选A 当x >2时,2-x <0,e x >0,(x -1)2>0,∴y <0,此时函数的图象在x 轴的下方,排除B ;当x <2且x ≠1时,2-x >0,e x>0,(x -1)2>0,∴y >0,此时函数的图象在x 轴的上方,故选A.8.(2017·天津高考)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:选C 由f (x )为奇函数,知g (x )=xf (x )为偶函数.因为f (x )在R 上单调递增,f (0)=0,所以当x >0时,f (x )>0,所以g (x )在(0,+∞)上单调递增,且g (x )>0.又a =g (-log 25.1)=g (log 25.1),b =g (20.8),c =g (3),20.8<2=log 24<log 25.1<log 28=3,所以b <a <c .9.已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎪⎫x +12=f ⎝⎛⎭⎪⎫x -12,则f (6)=( )A .-2B .-1C .0D .2解析:选D 由题意知当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则f (x +1)=f (x ).又当-1≤x ≤1时,f (-x )=-f (x ),∴f (6)=f (1)=-f (-1).又当x <0时,f (x )=x 3-1,∴f (-1)=-2,∴f (6)=2.故选D.10.已知函数f (x )的定义域为R ,且f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,f x -,x >0,若方程f (x )=x +a 有两个不同实根,则a 的取值范围为( )A .(-∞,1)B .(-∞,1]C .(0,1)D .(-∞,+∞)解析:选A x ≤0时,f (x )=2-x-1,0<x ≤1时,-1<x -1≤0,f (x )=f (x -1)=2-(x -1)-1.故当x >0时,f (x )是周期函数,f (x )的图象如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点,故a <1,即a 的取值范围是(-∞,1).11.(2018届高三·广西三市联考)已知函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧e x ,x ≤4,4e 5-x,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),则m 的取值范围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2C .(ln 2,2]D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:选D 作出函数y 1=e|x -2|和y =g (x )的图象,如图所示,由图可知当x =1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e5-x,得e2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.12.(2017·洛阳统考)已知函数f (x )=⎩⎪⎨⎪⎧a -x +4-2a ,x <1,1+log 2x ,x ≥1.若f (x )的值域为R ,则实数a 的取值范围是( )A .(1,2]B .(-∞,2]C .(0,2]D .[2,+∞)解析:选A 依题意,当x ≥1时,f (x )=1+log 2x 单调递增,f (x )=1+log 2x 在区间[1,+∞)上的值域是[1,+∞).因此,要使函数f (x )的值域是R ,则需函数f (x )在(-∞,1)上的值域M ⊇(-∞,1).①当a -1<0,即a <1时,函数f (x )在(-∞,1)上单调递减,函数f (x )在(-∞,1)上的值域M =(-a +3,+∞),显然此时不能满足M ⊇(-∞,1),因此a <1不满足题意;②当a -1=0,即a =1时,函数f (x )在(-∞,1)上的值域M ={2},此时不能满足M ⊇(-∞,1),因此a =1不满足题意;③当a -1>0,即a >1时,函数f (x )在(-∞,1)上单调递增,函数f (x )在(-∞,1)上的值域M =(-∞,-a +3),由M ⊇(-∞,1)得⎩⎪⎨⎪⎧a >1,-a +3≥1,解得1<a ≤2.综上所述,满足题意的实数a 的取值范围是(1,2],故选A.二、填空题13.(2017·山东高考)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x,则f (919)=________.解析:∵f (x +4)=f (x -2),∴f (x +6)=f (x ), ∴f (x )的周期为6,∵919=153×6+1,∴f (919)=f (1).又f (x )为偶函数,∴f (919)=f (1)=f (-1)=6. 答案:614.(2017·陕西质检)已知函数f (x )=1|x |-1,下列关于函数f (x )的结论:①y =f (x )的值域为R ;②y =f (x )在(0,+∞)上单调递减; ③y =f (x )的图象关于y 轴对称;④y =f (x )的图象与直线y =ax (a ≠0)至少有一个交点. 其中正确结论的序号是________. 解析:函数f (x )=1|x |-1=⎩⎪⎨⎪⎧1x -1,x ≥0,1-x -1,x <0,其图象如图所示,由图象可知f (x )的值域为(-∞,-1)∪(0,+∞),故①错;f (x )在(0,1)和(1,+∞)上单调递减,而在(0,+∞)上不是单调的,故②错;f (x )的图象关于y 轴对称,故③正确;由于f (x )在每个象限都有图象,所以与过原点的直线y =ax (a ≠0)至少有一个交点,故④正确.答案:③④15.(2017·惠州调研)已知定义在R 上的函数y =f (x )满足条件f ⎝ ⎛⎭⎪⎫x +32=-f (x ),且函数y =f ⎝ ⎛⎭⎪⎫x -34为奇函数,给出以下四个结论: ①函数f (x )是周期函数;②函数f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称; ③函数f (x )为R 上的偶函数; ④函数f (x )为R 上的单调函数. 其中正确结论的序号为________.解析:f (x +3)=f ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +32+32=-fx +32=f (x ),所以f (x )是周期为3的周期函数,①正确;函数f ⎝ ⎛⎭⎪⎫x -34是奇函数,其图象关于点(0,0)对称,则f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称,②正确;因为f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称,-34=-x +⎝ ⎛⎭⎪⎫-32+x 2,所以f (-x )=-f ⎝ ⎛⎭⎪⎫-32+x ,又f ⎝ ⎛⎭⎪⎫-32+x =-f ⎝ ⎛⎭⎪⎫-32+x +32=-f (x ),所以f (-x )=f (x ),③正确;f (x )是周期函数,在R 上不可能是单调函数,④错误.故正确结论的序号为①②③.答案:①②③16.(2017·云南统考)已知函数f (x )=⎩⎨⎧3x 2+1+x 2+x ,x ≥0,3x 2+1+x 2-x ,x <0,若f (x -1)<f (2x +1),则x 的取值范围为________.解析:当x >0时,-x <0,f (-x )=3(-x )2+ln(1+-x2+x )=3x 2+ln(1+x 2+x )=f (x ),同理可得,当x <0时,f (-x )=f (x ),所以f (x )是偶函数.因为当x >0时,函数f (x )单调递增,所以不等式f (x -1)<f (2x +1)等价于|x -1|<|2x +1|,整理得x (x +2)>0,解得x >0或x <-2.答案:(-∞,-2)∪(0,+∞)B 组——能力小题保分练1.(2017·郑州质检)函数f (x )=1-2x1+2x cos x 的图象大致为( )解析:选C 依题意,f (-x )=1-2-x1+2-x cos(-x )=2x-2-x 2x+2-xcos x =2x-12x +1cos x =-f (x ),因此函数f (x )是奇函数,其图象关于原点对称,结合各选项知,选项A ,B 均不正确;当0<x <1时,1-2x1+2x <0,cos x >0,f (x )<0,结合选项知,C 正确,故选C.2.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:选D 因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数, 所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).3.(2017·成都模拟)已知函数f (x )=a x(a >0,a ≠1)的反函数的图象经过点⎝⎛⎭⎪⎫22,12.若函数g (x )的定义域为R ,当x ∈[-2,2]时,有g (x )=f (x ),且函数g (x +2)为偶函数,则下列结论正确的是( )A .g (π)<g (3)<g (2)B .g (π)<g (2)<g (3)C .g (2)<g (3)<g (π)D .g (2)<g (π)<g (3)解析:选C 因为函数f (x )的反函数的图象经过点⎝⎛⎭⎪⎫22,12,所以函数f (x )的图象经过点⎝ ⎛⎭⎪⎫12,22,所以a 12=22,即a =12,函数f (x )在R 上单调递减.函数g (x +2)为偶函数,所以函数g (x )的图象关于直线x =2对称,又x ∈[-2,2]时,g (x )=f (x )且g (x )单调递减,所以x ∈[2,6]时,g (x )单调递增,根据对称性,可知在[-2,6]上距离对称轴x =2越远的自变量,对应的函数值越大,所以g (2)<g (3)<g (π).故选C.4.(2017·广州模拟)已知函数f (x )=x 2x -1+cos ⎝ ⎛⎭⎪⎫x -π+12,则∑k =12 016f ⎝ ⎛⎭⎪⎫k 2 017的值为( )A .2 016B .1 008C .504D .0解析:选B 因为f (x )=x -12+122⎝ ⎛⎭⎪⎫x -12+cos ⎝ ⎛⎭⎪⎫x -π+12=12+14⎝ ⎛⎭⎪⎫x -12+sin ⎝ ⎛⎭⎪⎫x -12,所以f (x )的图象是由y =14x +sin x +12的图象向右平移12个单位长度得到的,因为曲线y =sin ⎝ ⎛⎭⎪⎫x -12是由曲线y =sin x 向右平移12个单位长度得到的,所以曲线y =sin ⎝ ⎛⎭⎪⎫x -12关于点⎝ ⎛⎭⎪⎫12,0对称,又曲线y =14⎝ ⎛⎭⎪⎫x -12关于点⎝ ⎛⎭⎪⎫12,0对称,所以f (x )的图象关于⎝ ⎛⎭⎪⎫12,12对称,所以f (x )+f (1-x )= 1.所以∑k =12 016f ⎝ ⎛⎭⎪⎫k 2 017= f ⎝ ⎛⎭⎪⎫12 017+ f ⎝ ⎛⎭⎪⎫22 017+…+ f ⎝ ⎛⎭⎪⎫2 0162 017= 1 008×⎣⎢⎡⎦⎥⎤f ⎝⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫2 0162 017=1 008,故选B. 5.设曲线y =f (x )与曲线y =x 2+a (x >0)关于直线y =-x 对称,且f (-2)=2f (-1),则a =________.解析:依题意得,曲线y =f (x )即为-x =(-y )2+a (y <0),化简后得y =--x -a ,即f (x )=--x -a ,于是有-2-a =-21-a ,解得a =23.答案:236.已知函数f (x )满足对任意的x ,y ∈R ,都有f (xy )=f (x )+f (y )成立,函数g (x )满足对任意的x ,y ∈R ,都有g (xy )=g (x )-g (y )成立,且f (3)=2,g (-2)=3,则f (-3)+g (2)=________.解析:根据题意,函数f(x)满足对任意的x,y∈R,都有f(xy)=f(x)+f(y)成立,令x =y=1,则f(1)=f(1)+f(1),即f(1)=0;令x=y=-1,则f(1)=f(-1)+f(-1),则f(-1)=0;令y=-1,则f(-x)=f(-1)+f(x),∴f(-x)=f(x),即函数f(x)为偶函数,f(-3)=f(3)=2.函数g(x)满足对任意的x,y∈R,都有g(xy)=g(x)-g(y)成立,令x=y =-1,则g(1)=g(-1)-g(-1)=0;令x=1,y=-1,则g(-1)=g(1)-g(-1),即g(-1)=0;令y=-1,则g(-x)=g(x)-g(-1),∴g(-x)=g(x),即函数g(x)为偶函数,∴g(2)=g(-2)=3.∴f(-3)+g(2)=2+3=5.答案:5。
学 习 资 料 汇编课时跟踪检测(二十三)A 组——12+4提速练一、选择题1.设f (x )=x ln x ,f ′(x 0)=2,则x 0=( ) A .e 2B .e C.ln 22D .ln 2解析:选B ∵f ′(x )=1+ln x ,∴f ′(x 0)=1+ln x 0=2,∴x 0=e ,故选B. 2.函数f (x )=e xcos x 的图象在点(0,f (0))处的切线方程是( ) A .x +y +1=0 B .x +y -1=0 C .x -y +1=0D .x -y -1=0解析:选C 依题意,f (0)=e 0cos 0=1,因为f ′(x )=e xcos x -e xsin x ,所以f ′(0)=1,所以切线方程为y -1=x -0,即x -y +1=0,故选C.3.已知直线y =kx +1与曲线y =x 3+mx +n 相切于点A (1,3),则n =( ) A .-1 B .1 C .3 D .4解析:选C 对于y =x 3+mx +n ,y ′=3x 2+m ,而直线y =kx +1与曲线y =x 3+mx +n 相切于点A (1,3),则有⎩⎪⎨⎪⎧3+m =k ,k +1=3,1+m +n =3,可解得n =3.4.若下列图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图象,则f (1)=( )A.13 B .-13 C.73 D .-53解析:选A 由题意知,f ′(x )=x 2+2ax +a 2-1,∵a ≠0,∴其图象为最右侧的一个.由f ′(0)=a 2-1=0,得a =±1.由导函数f ′(x )的图象可知,a <0,故a =-1,∴f (x )=13x 3-x 2+1,f (1)=13-1+1=13.5.已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( )A.⎝ ⎛⎭⎪⎫0,12和(1,+∞) B .(0,1)和(2,+∞)C.⎝ ⎛⎭⎪⎫0,12和(2,+∞) D .(1,2)解析:选C 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x=2x 2-5x +2x=x -x -x>0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,12和(2,+∞).6.已知函数f (x )=x 3+bx 2+cx +d 的图象如图所示,则函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为( )A.⎣⎢⎡⎭⎪⎫12,+∞ B .[3,+∞) C .[-2,3]D .(-∞,-2)解析:选D 因为f (x )=x 3+bx 2+cx +d ,所以f ′(x )=3x 2+2bx +c ,由图可知f ′(-2)=f ′(3)=0,所以⎩⎪⎨⎪⎧12-4b +c =0,27+6b +c =0,解得⎩⎪⎨⎪⎧b =-32,c =-18.令g (x )=x 2+23bx +c 3,则g (x )=x 2-x -6,g ′(x )=2x -1,由g (x )=x 2-x -6>0,解得x <-2或x >3.当x <12时,g ′(x )<0,所以g (x )=x 2-x -6在(-∞,-2)上为减函数,所以函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为(-∞,-2).7.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于点(1,0),则f (x )的极大值、极小值分别为( )A .-427,0B .0,-427C.427,0 D .0,427解析:选C 由题意知,f ′(x )=3x 2-2px -q ,由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x ,由f ′(x )=3x 2-4x +1=0,得x=13或x =1,易得当x =13时,f (x )取极大值427,当x =1时,f (x )取极小值0.8.已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)·f (x 2-1)的解集是( )A .(0,1)B .(1,+∞)C .(1,2)D .(2,+∞)解析:选D 因为f (x )+xf ′(x )<0,所以[xf (x )]′<0,故xf (x )在(0,+∞)上为单调递减函数,又(x +1)f (x +1)>(x 2-1)·f (x 2-1),所以0<x +1<x 2-1,解得x >2.9.已知函数f (x )的定义域为R ,f ′(x )为其导函数,函数y =f ′(x )的图象如图所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为( )A .(-3,-2)∪(2,3)B .(-2,2)C .(2,3)D .(-∞,-2)∪(2,+∞)解析:选A 由y =f ′(x )的图象知,f (x )在(-∞,0]上单调递增,在(0,+∞)上单调递减,又f (-2)=1,f (3)=1,∴f (x 2-6)>1可化为-2<x 2-6<3,解得2<x <3或-3<x <-2.10.设函数f (x )=13x -ln x (x >0),则f (x )( )A .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)上均有零点B .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)上均无零点 C .在区间⎝ ⎛⎭⎪⎫1e ,1上有零点,在区间(1,e)上无零点 D .在区间⎝ ⎛⎭⎪⎫1e ,1上无零点,在区间(1,e)上有零点 解析:选D 因为f ′(x )=13-1x ,所以当x ∈(0,3)时,f ′(x )<0,f (x )单调递减,而0<1e <1<e<3,又f ⎝ ⎛⎭⎪⎫1e =13e +1>0,f (1)=13>0,f (e)=e 3-1<0,所以f (x )在区间⎝ ⎛⎭⎪⎫1e ,1上无零点,在区间(1,e)上有零点.11.(2017·成都模拟)已知曲线C 1:y 2=tx (y >0,t >0)在点M ⎝ ⎛⎭⎪⎫4t,2处的切线与曲线C 2:y=ex +1-1也相切,则t ln 4e2t的值为( )A .4e 2B .8eC .2D .8解析:选D 由y =tx ,得y ′=12t ·x -12,则曲线C 1在x =4t 时的切线斜率为k =t4,所以切线方程为y -2=t 4⎝ ⎛⎭⎪⎫x -4t ,即y =t 4x +1.设切线与曲线y =e x +1-1的切点为(x 0,y 0).由y =e x +1-1,得y ′=e x +1,则由e x 0+1=t 4,得切点⎝ ⎛⎭⎪⎫ln t4-1,t 4-1,故切线方程又可表示为y-t 4+1=t 4x -ln t 4+1,即y =t 4x +t 4ln 4t +t 2-1,所以由题意,得t 4ln 4t +t 2-1=1,即t ln 4t+2=8,整理得t ln 4e2t=8,故选D.12.(2018届高三·湘中名校联考)已知函数g (x )=a -x 21e≤x ≤e,e 为自然对数的底数与h (x )=2ln x 的图象上存在关于x 轴对称的点,则实数a 的取值范围是( )A .[1,e 2-2]B.⎣⎢⎡⎦⎥⎤1,1e 2+2C.⎣⎢⎡⎦⎥⎤1e 2+2,e 2-2D.[)e 2-2,+∞解析:选A 由题意,知方程x 2-a =2ln x ,即-a =2ln x -x 2在⎣⎢⎡⎦⎥⎤1e ,e 上有解.设f (x )=2ln x -x 2,则f ′(x )=2x-2x =-x +x -x.易知x ∈⎣⎢⎡⎭⎪⎫1e ,1时f ′(x )>0,x ∈[1,e]时f ′(x )<0,所以函数f (x )在⎣⎢⎡⎭⎪⎫1e ,1上单调递增,在[1,e]上单调递减,所以f (x )极大值=f (1)=-1,又f (e)=2-e 2,f ⎝ ⎛⎭⎪⎫1e =-2-1e2,f (e)<f ⎝ ⎛⎭⎪⎫1e ,所以方程-a =2ln x -x 2在⎣⎢⎡⎦⎥⎤1e,e 上有解等价于2-e 2≤-a ≤-1,所以a 的取值范围为[1,e 2-2],故选A.二、填空题13.(2017·张掖模拟)若函数f (x )=x 33-a 2x 2+x +1在区间⎝ ⎛⎭⎪⎫12,3上单调递减,则实数a的取值范围是________.解析:f ′(x )=x 2-ax +1,∵函数f (x )在区间⎝ ⎛⎭⎪⎫12,3上单调递减,∴f ′(x )≤0在区间⎝ ⎛⎭⎪⎫12,3上恒成立,∴⎩⎪⎨⎪⎧f ′⎝ ⎛⎭⎪⎫12≤0,f ,即⎩⎪⎨⎪⎧14-12a +1≤0,9-3a +1≤0,解得a ≥103,∴实数a 的取值范围为⎣⎢⎡⎭⎪⎫103,+∞.答案:⎣⎢⎡⎭⎪⎫103,+∞14.(2017·山东高考)若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中所有具有M 性质的函数的序号为________.①f (x )=2-x;②f (x )=3-x; ③f (x )=x 3;④f (x )=x 2+2.解析:设g (x )=e x f (x ),对于①,g (x )=e x ·2-x, 则g ′(x )=(e x ·2-x )′=e x ·2-x(1-ln 2)>0,所以函数g (x )在(-∞,+∞)上为增函数,故①符合要求; 对于②,g (x )=e x ·3-x,则g ′(x )=(e x ·3-x )′=e x ·3-x(1-ln 3)<0,所以函数g (x )在(-∞,+∞)上为减函数,故②不符合要求; 对于③,g (x )=e x ·x 3,则g ′(x )=(e x ·x 3)′=e x ·(x 3+3x 2),显然函数g (x )在(-∞,+∞)上不单调,故③不符合要求; 对于④,g (x )=e x ·(x 2+2),则g ′(x )=[e x·(x 2+2)]′=e x ·(x 2+2x +2)=e x ·[(x +1)2+1]>0, 所以函数g (x )在(-∞,+∞)上为增函数,故④符合要求. 综上,具有M 性质的函数的序号为①④. 答案:①④15.已知函数f (x )=e x-mx +1的图象为曲线C ,若曲线C 存在与直线y =e x 垂直的切线,则实数m 的取值范围是________.解析:函数f (x )的导数f ′(x )=e x-m ,即切线斜率k =e x-m ,若曲线C 存在与直线y =e x 垂直的切线,则满足(e x -m )e =-1,即e x -m =-1e 有解,即m =e x +1e 有解,∵e x+1e >1e ,∴m >1e.答案:⎝ ⎛⎭⎪⎫1e ,+∞ 16.(2017·兰州模拟)已知函数f (x )=e x+m ln x (m ∈R ,e 为自然对数的底数),若对任意正数x 1,x 2,当x 1>x 2时都有f (x 1)-f (x 2)>x 1-x 2成立,则实数m 的取值范围是________.解析:函数f (x )的定义域为(0,+∞).依题意得,对于任意的正数x 1,x 2,当x 1>x 2时,都有f (x 1)-x 1>f (x 2)-x 2,因此函数g (x )=f (x )-x 在区间(0,+∞)上是增函数,于是当x >0时,g ′(x )=f ′(x )-1=e x+mx-1≥0,即x (e x -1)≥-m 恒成立.记h (x )=x (e x-1),x >0,则有h ′(x )=(x +1)e x-1>(0+1)e 0-1=0(x >0),h (x )在区间(0,+∞)上是增函数,h (x )的值域是(0,+∞),因此-m ≤0,m ≥0.故所求实数m 的取值范围是[0,+∞).答案:[0,+∞)B 组——能力小题保分练1.(2017·陕西质检)设函数f (x )=x sin x 在x =x 0处取得极值,则(1+x 20)(1+cos 2x 0)的值为( )A .1B .-1C .-2D .2解析:选D f ′(x )=sin x +x cos x ,令f ′(x )=0得tan x =-x ,所以tan 2x 0=x 20,故(1+x 20)(1+cos 2x 0)=(1+tan 2x 0)·2cos 2x 0=2cos 2x 0+2sin 2x 0=2,故选D.2.(2017·开封模拟)过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有( ) A .3条 B .2条 C .1条D .0条解析:选A 由题意得,f ′(x )=3x 2-3,设切点为(x 0,x 30-3x 0),那么切线的斜率为k =3x 20-3,则切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0),将点A (2,1)代入可得关于x 0的一元三次方程2x 30-6x 20+7=0.令y =2x 30-6x 20+7,则y ′=6x 20-12x 0.由y ′=0得x 0=0或x 0=2.当x 0=0时,y =7>0;x 0=2时,y =-1<0.所以方程2x 30-6x 20+7=0有3个解.故过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有3条,故选A.3.(2017·惠州调研)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝ ⎛⎭⎪⎫ln 1x <2f (1)的解集为( )A .(e ,+∞)B .(0,e)C.⎝ ⎛⎭⎪⎫0,1e ∪(1,e)D.⎝ ⎛⎭⎪⎫1e ,e 解析:选D f (x )=x sin x +cos x +x 2,因为f (-x )=f (x ),所以f (x )是偶函数,所以f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=f (ln x ),所以f (ln x )+f ⎝ ⎛⎭⎪⎫ln 1x <2f (1)可变形为f (ln x )<f (1).f ′(x )=x cos x +2x =x (2+cos x ),因为2+cos x >0,所以f (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以f (ln x )<f (1)等价于|ln x |<1,即-1<ln x <1,所以1e<x <e.故选D.4.设函数f (x )=3sin πx m.若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)解析:选C 由正弦型函数的图象可知:f (x )的极值点x 0满足f (x 0)=±3,则πx 0m =π2+k π(k ∈Z),从而得x 0=⎝⎛⎭⎪⎫k +12m (k ∈Z).所以不等式x 20+[f (x 0)]2<m 2即为⎝⎛⎭⎪⎫k +122m 2+3<m 2,变形得m 2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3,其中k ∈Z.由题意,存在整数k 使得不等式m 2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3成立.当k ≠-1且k ≠0时,必有⎝⎛⎭⎪⎫k +122>1,此时不等式显然不能成立,故k =-1或k =0,此时,不等式即为34m 2>3,解得m <-2或m >2.5.若对任意的a ∈⎣⎢⎡⎭⎪⎫12,+∞,函数f (x )=12x 2-ax -2b 与g (x )=2a ln(x -2)的图象均有交点,则实数b 的取值范围是( )A.⎣⎢⎡⎭⎪⎫1516+12ln 2,+∞B.⎣⎢⎡⎭⎪⎫158+ln 2,+∞C.⎝ ⎛⎭⎪⎫12,1516+12ln 2D.⎝ ⎛⎭⎪⎫1516+12ln 2,+∞ 解析:选A 依题意,原问题等价于对任意的a ∈⎣⎢⎡⎭⎪⎫12,+∞,关于x 的方程12x 2-ax -2a ln(x -2)=2b 有解.设h (x )=12x 2-ax -2a ln(x -2),则h ′(x )=x -a -2a x -2=xx -a -x -2,所以h (x )在(2,a +2)上单调递减,在(a +2,+∞)上单调递增,当x →2时h (x )→+∞,当x →+∞时,h (x )→+∞,h (a +2)=-12a 2-2a ln a +2,记p (a )=-12a 2-2a ln a +2,则h (x )的值域为[p (a ),+∞),故2b ∈[p (a ),+∞)对任意的a ∈⎣⎢⎡⎭⎪⎫12,+∞恒成立,即2b ≥p (a )max ,而p ′(a )=-a -2ln a -2≤-12+2ln 2-2<0,故p (a )单调递减,所以p (a )≤p ⎝ ⎛⎭⎪⎫12=158+ln2,所以b ≥1516+12ln 2,故选A.6.(2017·张掖模拟)定义在R 上的可导函数f (x )满足f (1)=1,且2f ′(x )>1,当x ∈⎣⎢⎡⎦⎥⎤-π2,3π2时,不等式f (2cos x )>32-2sin 2x 2的解集为( )A.⎝ ⎛⎭⎪⎫π3,4π3B.⎝ ⎛⎭⎪⎫-π3,4π3C.⎝⎛⎭⎪⎫0,π3 D.⎝ ⎛⎭⎪⎫-π3,π3解析:选D 令g (x )=f (x )-x 2-12,则g ′(x )=f ′(x )-12>0,∴g (x )在R 上单调递增,且g (1)=f (1)-12-12=0,∵f (2cos x )-32+2sin 2x 2=f (2cos x )-2cos x 2-12=g (2cos x ),∴f (2cos x )>32-2sin 2x 2,即g (2cos x )>0,∴2cos x >1,又x ∈⎣⎢⎡⎦⎥⎤-π2,3π2,∴x ∈⎝ ⎛⎭⎪⎫-π3,π3.敬请批评指正。
课时跟踪检测(七)1.(2018届高三·广西三市联考)已知数列{a n }的前n 项和为S n ,且S n =2n-1(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n . 解:(1)当n ≥2时,a n =S n -S n -1=2n -1, 当n =1时,a 1=2-1=1,满足a n =2n -1,∴数列{a n }的通项公式为a n =2n -1(n ∈N *). (2)由(1)得,b n =log 4a n +1=n +12,则b n +1-b n =n +22-n +12=12, 又b 1=log 4a 1+1=1,∴数列{b n }是首项为1,公差d =12的等差数列,∴T n =nb 1+n n -2d =n 2+3n4.2.(2017·福州质检)已知等差数列{a n }的各项均为正数,其公差为2,a 2a 4=4a 3+1. (1)求{a n }的通项公式; (2)求a 1+a 3+a 9+…+a 3n.解:(1)依题意知,a n =a 1+2(n -1),a n >0.因为a 2a 4=4a 3+1,所以(a 1+2)(a 1+6)=4(a 1+4)+1,所以a 21+4a 1-5=0,解得a 1=1或a 1=-5(舍去),所以a n =2n -1.(2)a 1+a 3+a 9+…+a 3n =(2×1-1)+(2×3-1)+(2×32-1)+…+(2×3n-1)=2×(1+3+32+ (3))-(n +1)=2×1-3n +11-3-(n +1)=3n +1-n -2.3.(2017·济南模拟)已知数列{a n }满足a 1=511,4a n =a n -1-3(n ≥2). (1)求证:数列{a n +1}为等比数列,并求数列{a n }的通项公式; (2)令b n =|log 2(a n +1)|,求数列{b n }的前n 项和S n .解:(1)证明:当n ≥2时,由4a n =a n -1-3得a n +1=14(a n -1+1),所以数列{a n +1}是以512为首项,14为公比的等比数列.所以a n +1=512×⎝ ⎛⎭⎪⎫14n -1=211-2n ,a n=211-2n -1.(2)b n =|11-2n |,设数列{11-2n }的前n 项和为T n ,则T n =10n -n 2.当n ≤5时,S n =T n =10n -n 2;当n ≥6时,S n =2S 5-T n =n 2-10n +50.所以S n =⎩⎪⎨⎪⎧10n -n 2,n ≤5,n 2-10n +50,n ≥6.4.(2018届高三·广东五校联考)数列{a n }的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式; (2)设b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . 解:(1)∵S n =2a n -a 1, ① ∴当n ≥2时,S n -1=2a n -1-a 1;②①-②得,a n =2a n -2a n -1,即a n =2a n -1.由a 1,a 2+1,a 3成等差数列,得2(a 2+1)=a 1+a 3,∴2(2a 1+1)=a 1+4a 1,解得a 1=2.∴数列{a n }是首项为2,公比为2的等比数列.∴a n =2n.(2)∵a n =2n,∴S n =2a n -a 1=2n +1-2,S n +1=2n +2-2.∴b n =a n +1S n S n +1=2n +1n +1-n +2-=12⎝ ⎛⎭⎪⎫12n -1-12n +1-1. ∴数列{b n }的前n 项和T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12-1-122-1+⎝ ⎛⎭⎪⎫122-1-123-1+…+⎝ ⎛⎭⎪⎫12n -1-12n +1-1=12⎝ ⎛⎭⎪⎫1-12n +1-1=2n-12n +1-1. 5.已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n =n . (1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式及前n 项和T n . 解:(1)证明:∵a n +S n =n , ① ∴a n +1+S n +1=n +1.②②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1,∴a n +1-1a n -1=12,当n =1时,a 1+S 1=1,∴a 1=12,a 1-1=-12,又c n =a n -1,∴{c n }是首项为-12,公比为12的等比数列.(2)由(1)可知c n =⎝ ⎛⎭⎪⎫-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n ,∴a n =c n +1=1-⎝ ⎛⎭⎪⎫12n.∴当n ≥2时,b n =a n -a n -1=1-⎝ ⎛⎭⎪⎫12n -⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n =⎝ ⎛⎭⎪⎫12n .又b 1=a 1=12也符合上式,∴b n =⎝ ⎛⎭⎪⎫12n,T n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-⎝ ⎛⎭⎪⎫12n.。
学 习 资 料 汇编
课时跟踪检测(七)
1.(2018届高三·广西三市联考)已知数列{a n }的前n 项和为S n ,且S n =2n
-1(n ∈N *
). (1)求数列{a n }的通项公式;
(2)设b n =log 4a n +1,求{b n }的前n 项和T n . 解:(1)当n ≥2时,a n =S n -S n -1=2
n -1
, 当n =1时,a 1=2-1=1,满足a n =2n -1
,
∴数列{a n }的通项公式为a n =2n -1
(n ∈N *
). (2)由(1)得,b n =log 4a n +1=n +1
2
,
则b n +1-b n =
n +22-
n +12
=1
2
, 又b 1=log 4a 1+1=1,
∴数列{b n }是首项为1,公差d =1
2的等差数列,
∴T n =nb 1+
n n -
2
d =
n 2+3n
4
.
2.(2017·福州质检)已知等差数列{a n }的各项均为正数,其公差为2,a 2a 4=4a 3+1. (1)求{a n }的通项公式; (2)求a 1+a 3+a 9+…+a 3n
.
解:(1)依题意知,a n =a 1+2(n -1),a n >0.因为a 2a 4=4a 3+1,所以(a 1+2)(a 1+6)=4(a 1+4)+1,所以a 2
1+4a 1-5=0,解得a 1=1或a 1=-5(舍去),所以a n =2n -1.
(2)a 1+a 3+a 9+…+a 3n =(2×1-1)+(2×3-1)+(2×32
-1)+…+(2×3n
-1)=2×(1+3+32
+ (3)
)-(n +1)=2×1-3n +1
1-3
-(n +1)=3n +1
-n -2.
3.(2017·济南模拟)已知数列{a n }满足a 1=511,4a n =a n -1-3(n ≥2). (1)求证:数列{a n +1}为等比数列,并求数列{a n }的通项公式; (2)令b n =|log 2(a n +1)|,求数列{b n }的前n 项和S n .
解:(1)证明:当n ≥2时,由4a n =a n -1-3得a n +1=1
4(a n -1+1),所以数列{a n +1}是以512
为首项,14为公比的等比数列.所以a n +1=512×⎝ ⎛⎭
⎪⎫14n -1=211-2n ,a n
=211-2n -1.
(2)b n =|11-2n |,设数列{11-2n }的前n 项和为T n ,则T n =10n -n 2
.
当n ≤5时,S n =T n =10n -n 2;当n ≥6时,S n =2S 5-T n =n 2
-10n +50.所以S n =
⎩⎪⎨⎪⎧
10n -n 2
,n ≤5,n 2-10n +50,n ≥6.
4.(2018届高三·广东五校联考)数列{a n }的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3
成等差数列.
(1)求数列{a n }的通项公式; (2)设b n =
a n +1
S n S n +1
,求数列{b n }的前n 项和T n . 解:(1)∵S n =2a n -a 1, ① ∴当n ≥2时,S n -1=2a n -1-a 1;
②
①-②得,a n =2a n -2a n -1,即a n =2a n -1.
由a 1,a 2+1,a 3成等差数列,得2(a 2+1)=a 1+a 3,∴2(2a 1+1)=a 1+4a 1,解得a 1=2.∴数列{a n }是首项为2,公比为2的等比数列.∴a n =2n
.
(2)∵a n =2n
,∴S n =2a n -a 1=2
n +1
-2,S n +1=2
n +2
-2.
∴b n =a n +1
S n S n +1
=
2
n +1
n +1
-n +2
-
=12⎝ ⎛⎭
⎪⎫1
2n -1-12n +1-1. ∴数列{b n }的前n 项和T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12-1-122-1+⎝ ⎛⎭⎪⎫122-1-123-1+…+⎝ ⎛⎭⎪⎫12n -1-12n +1-1=12
⎝ ⎛⎭
⎪⎫1-12n +1-1=2n
-12n +1-1
.
5.已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n =n . (1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式及前n 项和T n . 解:(1)证明:∵a n +S n =n , ① ∴a n +1+S n +1=n +1.
②
②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1,∴
a n +1-1a n -1=1
2
,当n =1时,a 1+S 1=1,∴a 1=12,a 1-1=-12,又c n =a n -1,∴{c n }是首项为-12,公比为1
2
的等比数列.
(2)由(1)可知c n =⎝ ⎛⎭⎪⎫-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n ,∴a n =c n +1=1-⎝ ⎛⎭
⎪⎫12n
.∴当n ≥2时,b n =a n -a n -1
=1-⎝ ⎛⎭⎪⎫12n -⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n =⎝ ⎛⎭⎪⎫12n .又b 1=a 1=12也符合上式,∴b n =⎝ ⎛⎭
⎪⎫12n ,T n =
12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-
12
=1-⎝ ⎛⎭
⎪⎫12n
.
敬请批评指正。