九年级数学第一次月考试卷分析
- 格式:doc
- 大小:30.00 KB
- 文档页数:2
2023-2024学年辽宁省鞍山二中九年级(上)第一次月考数学试卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若(m―1)x m2+1―1=0是关于x的一元二次方程,则m的值是( )A. ―1B. 0C. 1D. ±12.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为( )A. 3B. ―3C. ―1D. 13.关于x的一元二次方程kx2―2x―1=0有两个实数根,则k的取值范围( )A. k≥―1B. k≥―1且k≠0C. k>―1且k≠0D. k≤―14.如图,在△ABC中,∠BAC=138°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′刚好落在BC边上,且AB′=CB′,则∠C的度数为( )A. 16°B. 15°C. 14°D. 13°5.已知关于x的方程x2―(2m―1)x+m2=0的两实数根为x1,x2,若(x1+1)(x2+1)=3,则m的值为( )A. ―3B. ―1C. ―3或1D. ―1或36.如图,等边△OAB的边OB在x轴上,点B坐标为(2,0),以点O为旋转中心,把△OAB逆时针旋转90°,则旋转后点A的对应点A′的坐标是( )A. (―1,3)B. (3,―1)C. (―3,1)D. (―2,1)7.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是( )A. B. C. D.8.如图,点D和点E分别是△ABC边BC和AC上一点,BD=2CD,AE=CE,连接AD,BE交于点F,若△ABC的面积为12,则△BDF与△AEF的面积之差为( )A. 1B. 1.5C. 1.75D. 2二、填空题:本题共8小题,每小题2分,共16分。
9.二次函数y=(m+1)x m2―2m―6的图象开口向下,则m值为______.10.如图,在Rt△ABC中,∠ABC=90°,BD是AC边上的高,AC=9,CD=6,则BC的长为______.11.电影《封神》一上映,第一天票房约4亿元,以后每天票房按相同的增长率增长,第二天和第三天共累计票房收入达20亿元,若增长率记作x,方程可以列为:______.12.如图,在△ABC中,点D、E分别在BC、AC边上,E是AC的中点,AD、BE相交于点F,若BD=2DC,FE=75,则FB的长为______.13.已知抛物线y=ax2(a>0)过A(―2,y1)、B(1,y2)、C(3,y3)三点,则y1、y2、y3的大小关系是______(用“<”连接).14.矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,点B的对应点B′落在直线CD上,连接DD′,则DD′的长度为______.15.如图所示,直线y =33x +33与y 轴相交于点D ,点A 1在直线y =33x +33上,点B 1在x 轴上,且△OA 1B 1是正三角形,记作第一个正三角形;然后过B 1作B 1A 2//OA 1与直线y =33x +33相交于点A 2,点B 2在x 轴上,再以B 1A 2为边作正三角形A 2B 2B 1,记作第二个正三角形;同样过B 2作B 2A 3//B 1A 2与直线y =33x +33相交于点A 3,点B 3在x 轴上,再以B 2A 3为边作正三角形A 3B 3B 2,记作第三个正三角形;…依此类推,则第n 个正三角形的顶点A n 的横坐标为______.16.如图,已知AC =BC ,点D 、E 为BC 延长线上的两点,CE =2BC ,∠EAB +∠BAD =180°,则AD AE的值______.三、解答题:本题共10小题,共88分。
九年级数学(下)第一次月考试卷九年级下学期数学第一次月考分析第二单元物质的变化3月20日我校举行了九年级第一次月考,从此次月考情况来看,数学成绩喜忧各半。
喜的是优秀率较自己前不久举行的单元考试稳中有升,达到预期的目标。
忧的是合格率却较之前次单元考试有较大的滑坡,与预期目标差距较大。
通过这次月考充分暴露出相当部分学生对数学这门课程的学习抓得不紧,甚至有放松要求的迹象,造成成绩大幅度的下降。
答:水分和氧气是使铁容易生锈的原因。
一、月考成绩相关数据25、意大利的科学家伽利略发明了望远镜,天文学家的“第三只眼”是天文望远镜,可以分为光学望远镜和射电望远镜两种。
全级参考总人数:59 人。
数学试卷总分:120 分。
其中 102 分及其以上视为优秀,72 分及其以上视为合格。
答:如水资源缺乏,全球气候变暖,生物品种咖快灭绝,地球臭氧层受到破坏,土地荒漠化等世界性的环境问题。
优秀人数:5 人,优秀率:8.47%。
此项数据与命题预期目标相吻合。
合格人数:28 人,合格率:47.46%。
此项数据较预期减少 23%,差距较大。
最高分数:104 分。
二、数学试卷难度分析12、淡水在自来水厂中除了沉淀和过滤之外,还要加入药物进行灭菌处理,这样才能符合我们使用的标准。
此次数学月考试卷总分共 120 分,其中填空和选择占到 54 分,计算(含简单的解答题)达到 39 分,综合题 27 分。
其中容易题比例达到 70%,稍难题比例在 15% 以上,较难题比例在 5% 左右,难题控制在 10% 以内。
整个试卷难度属于中性偏易。
7、将铁钉的一部分浸入硫酸铜溶液中,有什么现象?过一会儿,取出铁钉,我们又观察到了什么现象?(P36)三、学生作答情况分析通过仔细阅读学生作答,发现达到优秀率的学生对于填空、选择、计算等基础知识掌握很牢固,极少出现丢分的现象。
丢分多出现在最后两道综合题上,主要原因是因为平时对综合题的练习不够,思路无法展开,导致做不出或者是思路出现错误。
九年级第一次月考试卷分析【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 在九年级第一次月考试卷分析中,以下哪个因素不是影响学绩的主要因素?A. 学习态度B. 家庭背景C. 教学方法D. 学生智力2. 下列哪种方法不适合用于提高学生的学习效率?A. 制定合理的学习计划B. 经常熬夜学习C. 参加学习小组D. 定期复习3. 在试卷分析中,以下哪个指标最能反映学生的整体水平?A. 最高分B. 最低分C. 平均分D. 及格率4. 下列哪个不是试卷分析的目的?A. 了解学生的学习情况B. 发现教学中存在的问题C. 评价学生的学习能力D. 制定教学计划5. 在试卷分析中,以下哪个不是常用的分析方法?A. 数据统计法B. 内容分析法C. 比较分析法D. 实验法二、判断题(每题1分,共5分)1. 九年级第一次月考试卷分析只需要分析学生的成绩,不需要关注学生的学习过程。
(×)2. 试卷分析可以帮助教师了解学生的学习情况和教学中存在的问题,从而提高教学质量。
(√)3. 在试卷分析中,只需要关注学生的整体表现,不需要关注学生的个体差异。
(×)4. 试卷分析可以帮助学生了解自己的学习情况,从而制定适合自己的学习计划。
(√)5. 试卷分析只需要分析学生的成绩,不需要分析试卷本身的质量。
(×)三、填空题(每题1分,共5分)1. 在九年级第一次月考试卷分析中,我们通常关注学生的______、______和______等指标。
2. 试卷分析可以帮助教师发现教学中存在的问题,从而采取相应的______和______措施。
3. 在试卷分析中,我们通常采用______、______和______等方法进行分析。
4. 试卷分析不仅关注学生的整体表现,还需要关注学生的______差异。
5. 通过试卷分析,我们可以了解学生的学习情况,从而制定更加______的教学计划。
四、简答题(每题2分,共10分)1. 简述九年级第一次月考试卷分析的目的。
2024-2025学年九年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第三章(北师大版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单选题1.下列方程是关于x的一元二次方程的是().A.1+x=2B.x2―2y=0xC.x2+2x=x2―1D.x2=0【答案】D【分析】本题考查了一元二次方程的定义,掌握一元二次方程的定义是解题的关键.根据一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程,逐项分析判断即可求解.+x=2,是分式方程,不是一元二次方程;故该选项不符合题意;【详解】解:A.1xB.x2―2y=0,含有两个未知数,不是一元二次方程,故该选项不符合题意;C.x2+2x=x2―1,化简后为:2x+1=0,不是一元二次方程,故该选项不符合题意;D.x2=0,是一元二次方程,故该选项符合题意;故选D.2.下列事件中,属于必然事件的是()A.打开电视,正在播放跳水比赛B.一个不透明的袋子中装有3个红球和1个白球,除颜色外,这些球无其他差别,随机摸出两个球,至少有一个是红球C.抛掷两枚质地均匀的骰子,点数和为6D.一个多边形的内角和为600°【答案】B【分析】本题考查事件的分类,必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,由此对每一项进行分析即可.【详解】A,打开电视,可能播放跳水比赛,也可能不播放,因此该事件是随机事件;B,一个不透明的袋子中装有3个红球和1个白球,除颜色外,这些球无其他差别,随机摸出两个球,可能是2个红球,也可能是1个红球和1个白球,因此至少有一个是红球,该事件是必然事件;C,抛掷两枚质地均匀的骰子,点数和为可能是6,也可能不是6,因此该事件是随机事件;D,设一个n边形的内角和为600°,则(n―2)⋅180°=600°,解得n=16,不是整数,因此这种情3况不存在,该事件是不可能事件;故选B.3.下列命题是假命题的是()A.有一组邻边相等的矩形是正方形B.有一组邻边相等的四边形是平行四边形C.有三个角是直角的四边形是矩形D.对角线互相垂直且平分的四边形是菱形【答案】B【分析】根据正方形的判定、平行四边形的判定、矩形和菱形的判定判断即可.【详解】解:A、有一组邻边相等的矩形是正方形,是真命题;B、有一组邻边相等的四边形不一定是平行四边形,如筝形,原命题是假命题;C、有三个角是直角的四边形是矩形,是真命题;D、对角线互相垂直且平分的四边形是菱形,是真命题;故选:B.【点睛】本题考查的是命题的真假判断,主要包括平行四边形的判定和特殊平行四边形的判定.判断命题的真假关键是要熟悉课本中的性质定理.4.已知m是方程x2―x―4=0的一个根,则―2m2+2m的值为()A.4B.―4C.8D.―8【答案】D【分析】根据一元二次方程的根的定义,可知m2―m=4,然后整体代入求值即可.【详解】解:∵m是方程x2―x―4=0的一个根,∴m2―m―4=0,整理,可得m2―m=4,∴―2m2+2m=―2(m2―m)=―2×4=―8.故选:D.【点睛】本题主要考查了一元二次方程的根的定义以及代数式求值,理解一元二次方程的根的定义是解题关键.5.某农机厂4月份生产零件50万个,第二季度共生产零件182万个,设该厂5,6月份平均每月的增长率为x,那么x满足的方程是()A.50(1―x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=182【答案】B【分析】本题主要考查一元二次方程的增长率问题,根据题意分别表示出五月份,六月份生产零件的量,最后相加列出等式即可.【详解】解:根据题意,该厂五月份生产零件为:50(1+x),则该厂六月份生产零件为:50(1+x)(1+x)=50(1+x)2,故该厂第二季度共生产零件为:50+50(1+x)+50(1+x)2=182.故选:B6.如图,在3×3的正方形网格中,已有两个小正方形被凃黑,再将图中剩余的小正方形中任意一个涂黑,则三个被涂黑的小正方形能构成轴对称图形的概率是()A.17B.37C.47D.57【答案】B【分析】本题考查了概率公式,轴对称图形,熟记概率公式和能识别轴对称图形是解题的关键.分别将7个空白处涂黑,判断出所得图案是轴对称图形的个数,再根据概率公式进行计算.【详解】解:如图①②③任意一处涂黑时,图案为轴对称图形,∵共有7个空白处,将①②③处任意一处涂黑,图案为轴对称图形,共3处,∴构成轴对称图形的概率是3,7故选:B7.若1和―1有一个是关于x的方程x2+bx+a=0的根,则一元二次方程(a+1)x2+2bx+(a+1)=0根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.有两个实数根D.没有实数根【答案】B【分析】本题考查了一元二次方程的根,一元二次方程的根的判别式.熟练掌握:当Δ=0时,一由(a+1)x2+2bx+(a+1)=0,可知Δ=4b2―4(a+1)2,由题意,当1是方程的根时,b=―(1+a),则Δ=0,此时,方程有两个相等的实数根;当―1是方程的根时,b=1+a,则Δ=0,此时,方程有两个相等的实数根;然后作答即可.【详解】解:∵(a+1)x2+2bx+(a+1)=0,∴Δ=4b2―4(a+1)2,∵1和―1有一个是关于x的方程x2+bx+a=0的根,当1是方程的根时,则1+b+a=0,解得,b=―(1+a),∴Δ=4b2―4(a+1)2=4[―(1+a)]2―4(a+1)2=0,此时,方程有两个相等的实数根;当―1是方程的根时,则1―b+a=0,解得,b=1+a,∴Δ=4b2―4(a+1)2=4(1+a)2―4(a+1)2=0,此时,方程有两个相等的实数根;综上,方程有两个相等的实数根,故选:B.8.如图,菱形ABCD的顶点A,B的坐标分别为1,2,―2,―1,BC∥x轴,将菱形ABCD平移,使点B与原点O重合,则平移后点D的对应点的坐标为()A.3―1,2B.2,3)C.+1,2)D.+3,3)【答案】D【分析】本题考查了菱形的性质,坐标与图形,勾股定理以及平移等知识,先利用勾股定理求出AB,然后利用菱形的性质求出点D的坐标,最后利用平移的性质求解即可.【详解】解∶∵A,B的坐标分别为1,2,―2,―1,∴AB==∵菱形ABCD,∴AD=AB=AD∥BC,又BC∥x轴,∴AD∥x轴,∴D的坐标为(1+,∵菱形ABCD平移,使点B与原点O重合,∴菱形ABCD向右平移2个单位,向上平移1个单位,∴平移后点D的对应点的坐标为3,3),故选∶D.9.如图,在平行四边形ABCD中,∠C=135°,AB=2,AD=3,点H,G分别是CD,BC上的动点,连接AH,GH.E,F分别为AH,GH的中点,则EF的最小值是( )A.2B C D.【答案】C【分析】作AQ⊥BC,根据中位线定理可推出EF=12AG,进一步可得当AG⊥BC时,AG有最小值,此时EF的值也最小.据此即可求解.【详解】解:作AQ⊥BC,如图:∵E,F分别为AH,GH的中点∴EF=12AG故:当AG⊥BC时,AG有最小值,此时EF的值也最小∴EF的最小值是12AQ∵∠C=135°,AB=2∴∠B=180°―135°=45°∴AQ=AB×sin45°=∴EF故选:C【点睛】本题考查了中位线定理、平行四边形的性质、解直角三角形等.掌握相关结论即可.10.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a―b+c=0,则b2―4ac≥0;②若方程ax2+c=0有两个不相等的实数根,则方程ax2+bx+c=0必有两个不相等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2―4ac=(2ax0+b)2;⑤若方程ax2+bx+c=0(a≠0)两根为x1,x2且满足x1≠x2≠0,则方程cx2+bx+a=0(c≠0),必有实数根1x1,1x2.其中,正确的是( )A.②④⑤B.②③⑤C.①②③④⑤D.①②④⑤【答案】D【分析】一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则Δ=b2―4ac>0;有两个相等的实数根,则Δ=b2―4ac=0;没有实数根,则Δ=b2―4ac<0;若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=―ba ,x1·x2=ca.【详解】解:①若a―b+c=0,则x=―1是一元二次方程ax2+bx+c=0的解∴Δ=b2―4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实数根∴Δ=―4ac>0∴b2―4ac≥4ac>0∴方程ax2+bx+c=0必有两个不相等的实数根,故②正确;③∵c是方程ax2+bx+c=0的一个根∴ac2+bc+c=0当c=0时,无法得出ac+b+1=0,故③错误;④∵x0是一元二次方程ax2+bx+c=0的根∴x0=∴±=2ax0+b∴b2―4ac=(2ax0+b)2,故④正确;⑤∵方程ax2+bx+c=0(a≠0)两根为x1,x2∴x1+x2=―ba ,x1·x2=ca∴b=―a(x1+x2),c=ax1x2∴方程cx2+bx+a=0(c≠0)可化为:ax1x2x2―a(x1+x2)x+a=0(c≠0)即:x1x2x2―(x1+x2)x+1=0∴(x1x―1)(x2x―1)=0∴x=1x1或x=1x2,故⑤正确;综上分析可知,正确的是①②④⑤.故选:D【点睛】本题考查了一元二次方程根的判别式和根与系数的关系.熟记相关结论是解题关键.第II卷(非选择题)二、填空题11.已知关于x的一元二次方程(m―2)x2―2x+1=0有实数根,则实数m的取值范围是.【答案】m≤3且m≠2【分析】本题考查了一元二次方程的定义及根的判别式,根据一元二次方程的定义及根的判别式可得,解不等式即可求解,掌握一元二次方程的定义及根的判别式与根的关系是解题的关键.【详解】解:由题意得,Δ=(―2)2―4(m―2)×1=12―4m≥0,且m―2≠0,∴m≤3且m≠2.12.在一个不透明的盒子中装有6个红球、若干个黑球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是红球的概率为23,则盒子中黑球的个数为.【答案】3【分析】设黑球的个数为x个,根据概率的求法得:66+x =23,解方程即可求出黑球的个数.【详解】解:设黑球的个数为x个根据题意得:66+x =23解得:x=3经检验:x=3是原分式方程的解∴黑球的个数为3故答案为:3.【点睛】本题考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13.把关于x的一元二次方程x²―8x+c=0配方,得(x―m)²=11,则c+m=.【答案】9【分析】本题考查了配方法解一元二次方程;把常数项c移项后,在左右两边同时加上一次项系数8的一半的平方得(x―4)2=16―c,进而得出c=5,m=4,即可求解.【详解】解:x2―8x+c=0配方,得(x―4)2=16―c∴m=4,16―c=11∴c=5∴c+m=9,故答案为:9.14.如图,在Rt△ABC中,∠ACB=90°,且Rt△ABC的周长是12cm,斜边上的中线CD长为52cm,则S△ABC=.【答案】6cm2【分析】先根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=5cm,再利用勾股定理可得AC2 +BC2=25cm2,利用三角形的周长公式可得AC+BC=7cm,然后利用完全平方公式可得AC⋅BC的值,最后利用三角形的面积公式求解即可得.cm,【详解】解:∵在Rt△ABC中,斜边上的中线CD长为52∴AB=2CD=5cm,∴AC2+BC2=AB2=25(cm2),∵Rt△ABC的周长是12cm,∴AC+BC+AB=AC+BC+5=12,∴AC+BC=7(cm),×(72―25)=12(cm2),∴AC⋅BC=AC+BC)2―(AC2+BC2)=12AC⋅BC=6cm2,则S△ABC=12故答案为:6cm2.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半、勾股定理、完全平方公式等知识点,熟练掌握直角三角形斜边上的中线等于斜边的一半是解题关键.15.如图,在矩形ABCD中,AB=4,AD=3.P是射线AB上一动点,将矩形ABCD沿着PD对折,点A的对应点为A′.当P,A′,C三点在同一直线上时,则AP的长.【答案】4±【分析】分类讨论:当点P在AB上时,由折叠的性质得AD=A′D=3,AP=A′P,∠A=∠DA′P=90°,利用勾股定理求得A′C=AP=A′P=x,则PB=4―x,PC=x+定理列方程求解即可;当点P在AB的延长线上时,由折叠的性质得∠A=∠A′=90°,AP=A′P,AD=A′D=3,利用勾股定理求得A′C=AP=A′P=a,则CP=a―BP=a―4,利用勾股定理列方程求解即可.【详解】解:如图,当点P在AB上时,由折叠的性质得,AD=A′D=3,AP=A′P,∠A=∠DA′P=90°,∴∠DA′C=90°,在Rt△DA′C中,A′C==设AP=A′P=x,则PB=4―x,PC=x+在Rt△BCP中,BC2+BP2=PC2,即32+(4―x)2=(x+2,解得x=4―∴AP=4―如图,当点P在AB的延长线上时,由折叠的性质得,∠A=∠A′=90°,AP=A′P,AD=A′D=3,在Rt△A′DC中,A′C==设AP=A′P=a,则CP=a―BP=a―4,在Rt△BCP中,BC2+BP2=CP2,即32+(a―4)2=(a―2,解得a=4+综上所述,AP=±+4,故答案为:4±【点睛】本题考查矩形的性质、折叠的性质、勾股定理、解一元一次方程,运用分类讨论思想解决问题是解题的关键.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示放置,点A1,A2,A3,…,在直线y=x+2上,点C1,C2,C3,…在x轴上,则B2023的坐标是.【答案】(22024―2,22023)【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出B1,B2,B3,……,的坐标,根据点的坐标的变化找出变化规律,再代入n=2023即可得出结论.【详解】解:∵直线y=x+2,当x=0时,y=2,∴A1的坐标为(0,2).∵四边形A1B1C1O为正方形,∴B1的坐标为(2,2),C1的坐标为(2,0).当x=2时,y=4,∴A2的坐标为(2,4),∵四边形A2B2C2C1为正方形,∴B2的坐标为(6,4),C2的坐标为(6,0).同理,可知:B3的坐标为(14,8),……,∴B n的坐标为(2n+1―2,2n)(n为整数),∴点B2023的坐标是(22024―2,22023).故答案为:(22024―2,22023).【点睛】本题考查了一次函数图象上点的坐标特征,正方形的性质及规律型,解题的关键是根据点的坐标的变化找出变化规律.三、解答题17.解方程:(1)x2―4x―1=0.(2) x(x―1)+2=2x【答案】(1)x1=2+2=2―(2)x1=2,x2=1【分析】(1)利用配方法解方程即可;(2)利用因式分解法解方程即可.【详解】(1)x2―4x―1=0x2―4x=1x2―4x+4=1+4(x―2)2=5x―2=±x1=2x2=2―(2)x(x―1)+2=2xx(x―1)+2―2x=0x(x―1)―2(x―1)=0(x―2)(x―1)=0x1=2,x2=1【点睛】本题考查了解一元二次方程,选择合适的方法是解题的关键.18.小明的手机没电了,现有一个只含A,B,C,D四个同型号插座的插线板(如图,假设每个插座都适合所有的充电插头,且被选中的可能性相同),请计算:(1)若小明随机选择一个插座插入,则插入插座C的概率为______;(2)现小明同时对手机和学习机两种电器充电,请用列表或画树状图的方法计算两种电器插在不相邻的插座的概率.【答案】(1)14(2)12【分析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.(1)直接利用概率公式计算;(2)画树状图展示所有12种等可能的结果数,再找出两个插头插在不相邻插座的结果数,然后根据概率公式计算.【详解】(1)小明随机选择一个插座插入,则插入A 的概率=14;故答案为:14;(2)画树状图为:共有12种等可能的结果数,其中两个插头插在不相邻插座的结果数为6,所以两个插头插在不相邻插座的概率=612=12.19.如图,用长为34米的篱笆,一面利用墙(墙的最大可用长度为20米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC 上用其他材料做了宽为1米的两扇小门(如图),设花圃垂直于墙的边AB 长为x 米.(1)用含x 的代数式表示BC ;(2)当AB 为多少米时,所围成花圃面积为105平方米?【答案】(1)(36―3x )米(2)当AB 为7米时,所围成花圃面积为105平方米【分析】(1)用绳子的总长减去三个AB 的长,然后加上两个门的长即可表示出BC ;(2)由(1)得花圃长BC=36―3x,宽为x,然后再根据面积为105,列一元二次方程方程解答即可.【详解】(1)解:设花圃垂直于墙的边AB长为x米,则长BC=34―3x+2=36―3x(米)故答案为:(36―3x);(2)由题意可得:(36―3x)x=105解得:x1=5,x2=7∵当AB=5时,BC=36―3×5=21>20,不符合题意,故舍去;当AB=7时,BC=36―3×7=15<20,符合题意,∴AB=7(米).答:当AB为7米时,所围成花圃面积为105平方米.【点睛】本题主要考查一元二次方程的应用,弄清题意、用x表示出BC是解答本题的关键.20.已知关于x的一元二次方程x2+6x―m2=0.(1)求证:该方程有两个不相等的实数根;(2)若该方程的两个实数根x1,x2满足x1+2x2=―5,求m的值.【答案】(1)见解析(2)m=±【分析】(1)根据一元二次方程根的判别式,代入计算即可解答;(2)根据一元二次方程根与系数的关系,求得x1,x2,再将其代入求得m的值即可.【详解】(1)证明:∵在方程x2+6x―m2=0中,Δ=62―4×1×(―m2)=36+4m2>0,∴该方程有两个不相等的实数根.(2)解:∵该方程的两个实数根分别为x1,x2,∴x1+x2=―6①,x1⋅x2=―m2②.∵x1+2x2=―5③,∴联立①③,解得x1=―7,x2=1.∴x1⋅x2=―7=―m2,解得m=±【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,熟知相关公式是解题的关键.21.如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE 于点F,连接AE、CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.【答案】(1)见解析(2)AB=【分析】(1)由题意可得△AFD≌△CED(AAS),则AF=EC,根据“一组对边平行且相等的四边形是平行四边形”可得四边形AECF是平行四边形;又EF垂直平分AC,根据垂直平分线的性质可得AF=CF,根据“有一组邻边相等的平行四边形是菱形”可得结论;(2)过点A作AG⊥BC于点G,根据题意可得∠AEG=60°,AE=2,则BG=AG=AB=BG=【详解】(1)证明:在△ABC中,点D是AC的中点,∴AD=DC,∵AF∥BC,∴∠FAD=∠ECD,∠AFD=∠CED,∴△AFD≌△CED(AAS),∴AF=EC,∴四边形AECF是平行四边形,又EF⊥AC,点D是AC的中点,即EF垂直平分AC,∴平行四边形AECF是菱形.(2)解:如图,过点A作AG⊥BC于点G,由(1)知四边形AECF是菱形,又CF=2,∠FAC=30°,∴AF∥EC,AE=CF=2,∠FAE=2∠FAC=60°,∴∠AEB=∠FAE=60°,∵AG⊥BC,∴∠AGB=∠AGE=90°,∴∠GAE=30°,AE=1,AG==∴GE=12∵∠B=45°,∴∠GAB=∠B=45°,∴BG=AG=∴AB==.【点睛】本题主要考查菱形的性质与判定,含30°角的直角三角形的三边关系,等腰直角三角形的性质与判定等内容,根据45°,30°等特殊角作出正确的垂线是解题关键.22.如图,在Rt△ABC中,AC=24cm,BC=7cm,点P在BC上从B运动到C(不包括C),速度为2cm/s;点Q在AC上从C运动到A(不包括A),速度为5cm/s.若点P,Q分别从B,C同时出发,当P,Q两点中有一个点运动到终点时,两点均停止运动.设运动时间为t秒,请解答下列问题,并写出探索的主要过程.(1)当t为何值时,P,Q两点的距离为?(2)当t 为何值时,△PCQ 的面积为15cm 2【答案】(1)经过1秒,P ,Q 两点的距离为(2)经过1.5秒或2秒,△PCQ 的面积为15cm 2【分析】本题考查一元二次方程的应用,勾股定理.熟练掌握勾股定理,列出一元二次方程,是解题的关键.(1)设经过t 秒,P ,Q 两点的距离为,勾股定理列式求解即可;(2)利用S △PCQ =12PC ⋅CQ ,列式计算即可.【详解】(1)解:设经过t 秒,P ,Q 两点的距离为,由题意,得:BP =2t cm ,CQ =5t cm ,∵在Rt △ABC 中,AC =24cm ,BC =7cm ,∴CP =BC ―BP =(7―2t )cm ,由勾股定理,得:CP 2+CQ 2=PQ 2,即:(7―2t )2+(5t )2=2,解得:t 1=1,t 2=―129(舍去);∴经过1秒,P ,Q 两点的距离为;(2)解:设经过t 秒,△PCQ 的面积为15cm 2,此时:BP =2t cm ,CQ =5t cm ,则:CP =BC ―BP =(7―2t )cm ,∴S △PCQ =12PC ⋅CQ =12(7―2t )⋅5t =15,解得:t 1=2,t 2=1.5,∴经过1.5秒或2秒,△PCQ 的面积为15cm 2.23.暑假期间某景区商店推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额-进货成本)(1)若该纪念品的销售单价为45元时则当天销售量为 件.(2)当该纪念品的销售单价为多少元时,该产品的当天销售利润是2610元.(3)该纪念品的当天销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由.【答案】(1)230(2)59元或39元(3)不可能达到3700元,理由见解析【分析】本题考查一元二次方程的应用,找准等量关系是解题的关键,正确列出一元二次方程是解题的关键.(1)根据当天销售量=280―10×增加的销售单价,即可得到答案;(2)设该纪念品的销售单价为x元,则当天的销售利润为[280―(x―10)×10]件,列出一元二次方程即可得到答案;(3)设该纪念品的销售单价为y元,则当天的销售利润为[280―(y―10)×10]件,列出一元二次方程根据根的判别式判断即可.【详解】(1)解:280―(45―40)×10=230(件),故答案为:230;(2)解:设该纪念品的销售单价为x元,则当天的销售利润为[280―(x―10)×10]件,依题意得(x―30)[280―(x―40)×10]=2610,整理得x2―98x+2301=0,整理解得x1=39,x2=59,答:当该纪念品的销售单价定价为59元或39元时,该产品的当天销售利润是2610元.(3)解:不能,理由如下:设该纪念品的销售单价为y元,则当天的销售利润为[280―(y―10)×10]件,依题意得(y―30)[280―(y―40)×10]=2610,整理得y2―98y+2410=0,∵Δ=(―98)2―4×1×2410=―36<0,故该方程没有实数根,即该纪念品的当天利润不可能达到3700元.24.如图,正方形ABCD中,点P是线段BD上的动点.(1)当PE⊥AP交BC于E时,①如图1,求证:PA=PE.②如图2,连接AC 交BD 于点O ,交PE 于点F ,试探究线段PA 2、PO 2、PF 2之间用等号连接的数量关系,并说明理由;(2)如图3,已知M 为BC 的中点,PQ 为对角线BD 上一条定长线段,若正方形边长为4,随着P 的运动,CP +QM 的最小值为PQ 的长.【答案】(1)①见解析;②PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2【分析】(1)①连接PC ,根据SAS 证明△ABP≌△CBP (SAS),得到PA =PC ,∠BAP =∠BCP ,再求出∠BAP +∠BEP =180°,进一步证明∠BCP =∠PEC 得到PC =PE ,等量代换可得结果;②先根据PE ⊥AP 得到S △APF =12PO ⋅AF =12PA ⋅PF ,得到PO 2⋅AF 2=PA 2⋅PF 2,结合勾股定理得到PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2;(2)连接AC 交BD 于点O ,先根据正方形的性质得到AC ⊥BD ,BO =CO =P 与点O 重合时,CP 的最小值,QM 的最小值,以及此时QM ⊥BD ,QM∥AC ,最后根据M 为BC 中点得到Q 为BO 中点,即可求解.【详解】(1)解:①如图1,连接PC ,∵四边形ABCD 是正方形,∴AB =BC ,∠ABC =90°,∠ABD =∠CBD =45°,在△ABP 和△CBP 中,AB =BC ∠ABD =∠CBD BP =BP,∴△ABP≌△CBP (SAS),∴PA =PC ,∠BAP =∠BCP,∵PE ⊥AP ,∴∠APE =90°,又∠BAP +∠BEP +∠ABC +∠APE =360°,∴∠BAP +∠BEP =180°,∵∠PEC +∠BEP =180°,∴∠BAP =∠PEC ,∴∠BCP =∠PEC ,∴PC =PE ,∴PA =PE ;②如图,PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2,理由是:∵PE ⊥AP ,∴PA 2+PF 2=AF 2,∵四边形ABCD 是正方形,∴AC ⊥BD ,∵S △APF =12PO ⋅AF =12PA ⋅PF ,∴PO 2⋅AF 2=PA 2⋅PF 2,∴PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2;(2)如图,连接AC 交BD 于点O ,∵四边形ABCD 是正方形,边长为4,∴AC ⊥BD ,BO =CO ==∴当点P 与点O 重合时,CP 的最小值为CO =∵CP +QM 的最小值为∴QM ∴当点P 与点O 重合时,QM ⊥BD ,如图,∴QM∥AC ,∵M 为BC 中点,∴Q 为BO 中点,∴PQ =12BO =12×=。
九年级数学第一次月考试卷分析【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()(1分)A. -5B. 3C. 0D. 22. 下列哪个数是偶数?()(1分)A. 21B. 4C. 9D. 173. 下列哪个数是质数?()(1分)A. 12B. 29C. 27D. 204. 下列哪个数是合数?()(1分)A. 31B. 37C. 41D. 395. 下列哪个数是立方数?()(1分)A. 27B. 28C. 30D. 32二、判断题1. 任何两个奇数相加的和一定是偶数。
()(1分)2. 任何两个偶数相加的和一定是偶数。
()(1分)3. 任何两个质数相加的和一定是合数。
()(1分)4. 任何两个合数相加的和一定是合数。
()(1分)5. 任何两个立方数相加的和一定是立方数。
()(1分)三、填空题1. -3的相反数是______。
()(1分)2. 6的绝对值是______。
()(1分)3. 15的平方根是______。
()(1分)4. 64的立方根是______。
()(1分)5. 1/4的倒数是______。
()(1分)四、简答题1. 请简述质数的定义及其在数学中的应用。
(2分)2. 请简述偶数和奇数的定义及其在数学中的应用。
(2分)3. 请简述立方数的定义及其在数学中的应用。
(2分)4. 请简述绝对值的定义及其在数学中的应用。
(2分)5. 请简述相反数的定义及其在数学中的应用。
(2分)五、应用题1. 已知一个正方形的边长是4,求这个正方形的面积。
(2分)2. 已知一个长方形的长是6,宽是4,求这个长方形的面积。
(2分)3. 已知一个三角形的底是8,高是5,求这个三角形的面积。
(2分)4. 已知一个圆的半径是3,求这个圆的面积。
(2分)5. 已知一个球的半径是4,求这个球的体积。
(2分)六、分析题1. 分析并解答:已知两个质数p和q,证明p+q是偶数。
(5分)2. 分析并解答:已知两个合数a和b,证明ab是合数。
九年级数学第一次月考试卷质量分析此次考试数学试题与中考试题题量较大,但比较基础,共三十二个小题,包含了前段所学知识点,主要考查了二次根式的化简,一元二次方程根的情况及解法,试题难易适合,设计具有梯度。
能够体现新理念、新思想,试题立足于学生的发展,既考查学生的基础知识、基本技能和基本数学思想方法的获得情况,又考查了学生的基本运算能力、思维能力、空间观念和灵活运用数学知识分析和解决实际问题的能力,并对学生的自主探究,创新意识方面作了考查。
一、试题的特点分析1、这次的试卷,注重考查了数学的基础知识和基本能力。
这套试卷,从总体上来说能着眼于促进学生的发展来考查基础知识、基本技能和基本数学思想方法,很好地突出了考查的主干内容。
首先,试题的起点低,绝大部分考生都能获得基本的分数,因此及格率,优生率都较高。
如第一至第四题,其中先择题和填空题都基本只有一道较难的题;其次,试题既考查了学生对知识的记忆,又加强了对知识理解的考核,如第一题的5、6、7、10题等,第二题的3、5、6、8.2,试题没有局限于对知识本身的考查,而是注重创设一个合适的情境,让考生在新的情境中活用基础知识、基本技能和基本数学思想方法,如第五题,第六题2、3、4题等。
这些试题结合基础知识来考查具有数学学科特点的基本思想和方法,把重点放在最具价值的常规方法的应用上,这样做,一方面有助于引导教师在平时的课堂教学中,重视“三基”,鼓励学生通过自主探究主动获取知识;另一方面也有利于提高学生的数学素养,相应的阅读能力、分析能力和运算能力;第五题是由于没有认真阅读思考从而失分较多。
第六题的T4很多同学不会建立函数关系式,或因阅读理解能力差,或因为计算能力差导致失分较多。
这两道题在全年级失分率都较高。
从以上各题的解答情况来看,对学生基本技能的训练和数学思想方法的渗透还要加强,应使之贯穿于整个初中教学的全过程。
横向比一班和七班在基础知识的掌握方面比其他班略差,及时补救。
九年级数学第一次月考试卷分析【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()(1分)A. -5B. 3C. 0D. 22. 下列哪个数是偶数?()(1分)A. 21B. 4C. 9D. 173. 下列哪个数是无理数?()(1分)A. √9B. √16C. √3D. √254. 下列哪个数是整数?()(1分)A. 1.5B. -2.3C. 3/2D. -55. 下列哪个数是质数?()(1分)A. 27B. 29C. 35D. 49二、判断题1. 2是偶数。
()(1分)2. -3是正数。
()(1分)3. 0是有理数。
()(1分)4. √2是无理数。
()(1分)5. 1/2是整数。
()(1分)三、填空题1. -3的相反数是______。
()(1分)2. 8的平方根是______。
()(1分)3. 27的立方根是______。
()(1分)4. 5和7的最小公倍数是______。
()(1分)5. 15和20的最大公约数是______。
()(1分)四、简答题1. 请解释有理数的定义。
()(2分)2. 请解释无理数的定义。
()(2分)3. 请解释整数的定义。
()(2分)4. 请解释质数的定义。
()(2分)5. 请解释偶数的定义。
()(2分)五、应用题1. 计算下列各式的值:√9 + √16 √25。
()(2分)2. 计算下列各式的值:3^2 2^2。
()(2分)3. 计算下列各式的值:4!。
()(2分)4. 计算下列各式的值:5! 3!。
()(2分)5. 计算下列各式的值:6 + 1/2 + 2/3 + 3/4 + 4/5。
()(2分)六、分析题1. 请分析下列各式的类型:√9, √16, √3, √25。
()(5分)2. 请分析下列各式的类型:3.14, 2.5, 1.2, 0.3333。
()(5分)七、实践操作题1. 请用直尺和圆规作出一个边长为5cm的正方形。
()(5分)2. 请用直尺和圆规作出一个半径为3cm的圆。
九年级数学第一次月考试卷分析从九年级(3)班试卷卷面答题情况分析:本次质量检测及格率330%,优秀率9%,平均成绩73.47分,最高成绩143分,最低成绩19分,在一定程度上反映了学生对数学学科知识掌握情况。
一、试题结构及特点本次试題其特点就是考察了学生基础知识和基本技能的掌握情况。
全卷共五个大题,共150分,。
第一大题选择題40分,第二大题填空题24分,第三大题解答题24分。
第四大题解答题40分, 第五大题解答题22分.涉及知识点及题型有:一元二次方程的概念及它的解法、一元二次方程的应用等。
形式灵活多样,很多题目具有启发学生思考的价值。
有些题目出的巧妙。
比如:第一大题的1题、2题、3题、4题就是考查了基本的数学知识点,第二大题的16题属于开放性试题;第四大题的21题灵活地考查了学生观察和思考能力;二、主要失分及原因分析1.选择题前3道题目属于基础题,用于检验学生掌握基础知识的情况,得分率一般较高,但是第3题相对错误率高一点,原因是学生对于概念的模糊。
第6题是考察学生对的一元二次方程简单计算以及三角形三边关系,学生往往不容易想到突破口,故错误率较高。
第4、5、9、10题考查了学生对一元二次方程的根的理解以及对根的判别情況。
2.填空题填空题共计6道,所学章节内容全部包含在内。
第1小题考查了解一元二次方程的得分率十分高,第2、3題考查一元二次方程的一般形式及根的概念的了解,第5题是考查学生对一元二次方程根与系数的关系的掌握情况。
第6题具有开放性、探索性,有利于考查不同层次的学生的分析、探求、解决问题的能力。
3.解答题(1)解方程很好的考查了学生对解方程的掌握情况。
大多数学生使用自己熟悉的方法(配方法、公式法)来解,所以解方程的得分是很高的。
但是其中不乏粗心的学生。
(2)列方程解应用题只有一部分学生会分析问题,找等量关系列方程解决实际问题.本大题的得分率较低,还需加强这方面的解题训练.三、存在的问题:1、基础知识掌握的不扎实,有好多知识在课堂上讲过多遍,但仍然出错。
九年级数学XX年第一次月考试卷剖析一、试题剖析本套试题可以联合实质,以中考为导向,表达了新课程标准的思想和理念,不单考察了学生根基知识和根本技术的掌握状况,要点考察了学生运用数学思想和方法的能力,以及学生剖析问题、解决问题的能力,关注数学与现实的联系。
本套题共三道大题,25道小题,此中选择题10道,填空4道,解答题11道,共120分。
难易适量,题量适中,无偏题怪题。
多半题目源于课本与根基训练,局部考题选自历年中考试题。
考察对根基知识的灵巧应用,形式灵巧多样。
好多题目拥有启迪学生思虑的价值。
有些题目出的奇妙。
比方:第10题考察了一元二次方程在实质问题中的应用。
第13题考察了学生对一元二次方程各项、各项系数的掌握;第16、20、23题考察的学生学生对根的鉴别式的掌握;第19题考察了学生对二次函数递加、递减性质的掌握;第18题考察学生依据条件求分析式。
第21、24题考察了二次函数在实质问题中的应用。
第25题是一道二次函数与一次函数的综合应用题,因为学生对一次函数知识掌握不坚固,因此难度较大。
二、试卷剖析从答卷状况来看,第一大题选择题学生失分率高,只有极个别学生得总分值,说明学生对骨干知识传统题目达成得不好,学生的根基较差。
学习理解能力仍是短缺,不擅长推测命题企图。
第二大题填空题,得总分值的也很少,总分值12分,学生得分状况在6分,9分左右。
此中14题运用换元法思想解题,这道题全局部学生做错,因为他们不懂怎样换元,因此失分多。
第三大题解答题划分度、效度显然。
没有学生所有达成,只有少局部学生做19、21、22、23、24题,25题根本不做。
此中24题是带计算性质的题,一局部学生不理解意义,因此好多同学做错。
三、考生考试状况剖析本次参加考试人数应为66人,实考65人,均匀分54分,及格率24.6%,优异率为10.8%。
四、学生计在的问题、全局部学生能透辟理解知识,知识间的内在联系也较为清楚。
但也有局部学生连简单的根基知识都不可以掌握。
九年级数学第一次月考试卷质量分析新版此次考试数学试题与中考试题题量较大,但比较基础,共三十二个小题,包含了前段所学知识点,主要考查了二次根式的化简,一元二次方程根的情况及解法,试题难易适合,设计具有梯度,能够体现新理念、新思想,试题立足于学生的发展,既考查学生的基础知识、基本技能和基本数学思想方法的获得情况,又考查了学生的基本运算能力、思维能力、空间观念和灵活运用数学知识分析和解决实际问题的能力,并对学生的自主探究,创新意识方面作了考查,一、试题的特点分析1、这次的试卷,注重考查了数学的基础知识和基本能力,这套试卷,从总体上来说能着眼于促进学生的发展来考查基础知识、基本技能和基本数学思想方法,很好地突出了考查的主干内容,首先,试题的起点低,绝大部分考生都能获得基本的分数,因此及格率,优生率都较高,如第一至第四题,其中先择题和填空题都基本只有一道较难的题;其次,试题既考查了学生对知识的记忆,又加强了对知识理解的考核,如第一题的5、6、7、10题等,第二题的3、5、6、8、;2,试题没有局限于对知识本身的考查,而是注重创设一个合适的情境,让考生在新的情境中活用基础知识、基本技能和基本数学思想方法,如第五题,第六题2、3、4题等,这些试题结合基础知识来考查具有数学学科特点的基本思想和方法,把重点放在最具价值的常规方法的应用上,这样做,一方面有助于引导教师在平时的课堂教学中,重视“三基”,鼓励学生通过自主探究主动获取知识;另一方面也有利于提高学生的数学素养,相应的阅读能力、分析能力和运算能力;第五题是由于没有认真阅读思考从而失分较多,第六题的T4很多同学不会建立函数关系式,或因阅读理解能力差,或因为计算能力差导致失分较多,这两道题在全年级失分率都较高,从以上各题的解答情况来看,对学生基本技能的训练和数学思想方法的渗透还要加强,应使之贯穿于整个初中教学的全过程,横向比一班和七班在基础知识的掌握方面比其他班略差,及时补救,二、造成失分原因,(1)粗心造成的错误,如有的学生把加好写成了减号,忘记化简二次根式,忘记约分等,(2)对知识的理解造成错误从学生的答卷情况来看,部分学生的基础知识还有很多欠缺,学生在储存信息的过程中,由于生理、时间、复习量等方面的种种原因,造成在对知识的理解上,似懂非懂,模糊不清,学生对知识记忆不牢,理解不深,做题时往往出现猜测答案,造成错误,,如第一题的4、5、6与有根有关的问题,第二题的3、4、8、10等,第8题求概率、第10题,判断中心对称图形、第2题,二次根式化简等,都是比较容易得分的问题,可是没有得分,(3)有的学生审题不细,造成失分,很令人惋惜,如第一题的8第二题的10题,另外还因综合解题能力差而失分,如最后两道题,三、教学建议1、强化基础教学,重视能力培养,基础是能力提高的根基,在数学教学中必须树立起抓基础是根本,抓能力是核心的意识,加强基础知识的教学、基本技能的训练和各种能力的培养,从试卷上看,不少考生在基础题上失分,在基本运算上出错,尤其是一班二次根式计算全对的只有24人,这就要求我们在平时教学中,既要加强概念教学又要加强基本运算教学,并且引导学生在学好概念的基础上,掌握数学规律(包括法则、性质、公式、定理、公理、数学思想方法等),并着重培养学生的能力,在平时教学中,不能脱离课标、教材,应当在教学中稳扎稳打,夯实基础,不仅教给学生数学知识,还要揭示获取知识的思维过程、解题思想的探索过程、解题方法与规律的概括过程,使学生在这些过程中展开思维,发展能力,2、加强数学思想方法(函数与方程、数形结合、转化化归、分类讨论、探索开放)的教学,特别是加强学生分类讨论的数学思想方法的培养,数学基础知识和基本技能所反映出来的数学思想方法是数学知识的精髓,在课堂教学中,数学思想方法的教学应渗透在教学全过程中,使学生不仅学好概念、定理、法则等内容,而且能领悟其中的数学思想方法,并通过不断积累,逐渐内化为自己的经验,形成解决问题的自觉意识,3、教学中要注重学生创新意识的培养,把培养学生创新意识当作初中数学教学的一个重要目的和基本原则,在教学中要激发学生的好奇心和求知欲,通过学生独立思考,不断追求新知,发现、提出和创造性地解决问题,并引导学生将所学知识应用于实际,从数学角度对某些日常生活、生产和其他学科中出现的问题进行研究,或对某些数学问题进行深入探讨,在其中充分体现学生的自主性和合作精神,教师在工作中,要在使学生扎实掌基础知识,和培养能力上多下功夫,争取更好成绩,。
九年级数学月考试卷分析
一、试题简评
本套试题能够结合实际,以中考为导向,体现了新课程标准的思想和理念,不仅考查了学生基础知识和基本技能的掌握情况,重点考查了学生运用数学思想和方法的能力,以及学生分析问题、解决问题的能力,关注数学与现实的联系,体现了时代精神。
本套题共三道大题,28道小题,其中选择题15道,填空5道,解答题8道,共120分。
难易适度,题量大。
多数题目源于课本与基础训练,部分考题选自历年中考试题。
考查对基础知识的灵活应用,形式灵活多样。
很多题目具有启发学生思考的价值。
有些题目出的巧妙。
比如:10题、11题、15题就是考查了基本的数学知识点,20题属于开放性试题;21题灵活地考查了学生观察和思考能力;24题具有实际背景,体现了生活中的数学问题;对学生的创新思维能力培养有导向作用。
二、试卷分析
从答卷情况来看,第一大题选择题学生失分率高,几乎没有学生得满分,说明学生对主干知识传统题目完成得不好,学生的基础较差。
学习理解能力还是欠缺,不善于揣摩命题意图。
第二大题填空题,得满分的没有,学生得分情况在9分左右,不超过12分。
其中16题求二次函数图像与X轴的交点,这道题大部分学生做错,因为他们不懂得什么是二次函数图像与X轴的交点。
17、18、20题错误率高,这几道题是几何题,学生对几何的解答掌握得不好,所以失分多。
第三大题解答题区分度、效度明显。
没有学生全部完成,只有少部分学生做21、22、23、24题,25、26、27、28题基本不做。
其中24题是带计算性质的题,一部分学生不理解意义,所以所以很多同学做错。
四、学生存在的问题
通过这次检测,我感觉到:
1、大部分学生能透彻理解知识,知识间的内在联系也较为清楚。
但也有部分学生连简单的基础知识都不能掌握。
个别学生没有积极主动的学习热情和好的学习习惯。
造成逻辑思维能力、计算能力差。
学生基础知识还不够扎实,该记的记不住,基本的运算还掌握得不好,审题不严谨,观察图形不仔细,对考题不能进行认真的分析,解题格式不规范;理解、归纳、表达运用等基本能力欠缺;缺乏克服困难、认真探究的精神和良好的答题品质;学科综合带来问题更为普遍。
2、我们教师的教学能力,具有先进的教学理念,特别是对于新课程理念的理解比较透彻,但对教材的挖掘还不够理想。
这是我们也有待于改进的地方。
还有对学生的学习能力培养方面有一些问题需要探究。
五、建议
根据这次考试学生所出现的问题,在后期的复习阶段我决定从以下几个方面着手:
1、认真研读课程标准,深入钻研和挖掘教材,创造性地用教材,做到用教材教而不是简单的教教材。
2、上课时,精讲精练。
主要的数学思考方法要逐步渗透。
关键知识点要讲深讲透。
反复训练,同时有避免题海战术,始终保护学生的求知欲和学习热情。
加强变式训练,逐步使题目与中考题型衔接。
注重实际问题与数学知识的应用。
3、改变作业的批阅方式,尽量采用面批的方法。
及时纠正出现的问题。
分层布置作业。
经常核查部分学生作业的真实性,使之有效的学习。
4、培养和保护学生学习热情,活跃课堂气氛。
经常肯定和鼓励学生的进步。
营造轻松愉悦和谐平等的学习环境。
5、加强学困生的辅导。
除老师辅导外,还安排优秀生重点帮助学困生,决不放弃一个学生。
6、及时参加中考研讨,搜集有关信息。
理解上级精神,合理安排复习时间。
争取取得好的成绩。