10第十讲静电场直角坐标分离变量法
- 格式:ppt
- 大小:375.00 KB
- 文档页数:25
静电场的解法第三章静电场的解法第三章静电场的解法静电场问题的类型唯一性定理分离变量法镜像法有限差分法第三章静电场的解法静电场问题的类型分布型问题已知全空间的电荷分布利用电场强度或电位的计算公式直接计算场中各点的电场强度或电位这类问题称为分布型问题对此问题有如下几种解法。
、根据电荷分布利用场源积分式直接求解电场。
、根据电荷分布利用场源积分式直接求解电位再根据计算电场。
、若电荷分布具有某种对称性从而判断场的分布也具有某种对称性时可用高斯定理直接求解电场此法主要是要正确选取高斯面一般高斯面上的场强要保持常量并且方向与所在面的法向相同计算才可化简。
第三章静电场的解法边值型问题已知确定区域中的电荷分布和其边界上的电位或电位函数的法向导数分布求解该区域中电位的分布状况这类问题称为边值型问题或简称为边值问题边值问题根据边界条件给出的形式不同可分为以下三种类型。
第一类边值问题:给定整个边界上的电位函数求区域中电位分布这类问题又称为狄利克莱问题。
第二类边值问题:给定整个边界上电位函数的法向导数求区域中电位分布这类问题又称为诺伊曼问题。
第三类边值问题:一部分边界上的电位给定另一部分边界上的法向导数给定求区域中电位分布这类问题又称为混合型边值问题。
如果边界是导体则上述三类问题分别变为:已知导体表面的电位已知各导体的总电量已知一部分导体表面上的电位和另一部分导体表面上的电量。
第三章静电场的解法唯一性定理唯一性定理:满足边界条件的泊松方程或拉普拉斯方程的解必定唯一。
或:如果给定一个区域中的电荷分布和边界上的全部边界条件则这个区域中的解是唯一的。
格林定理格林定理是由散度定理直接导出的数学恒等式。
将散度定理用于闭合面S所包围的体积V内任一矢量场式中参量是在区域内两个任意的标量函数并要求在边界上一阶连续在区域内二阶连续。
第三章静电场的解法则有格林第一恒等式上述两式相减得格林第二恒等式第三章静电场的解法唯一性定理的证明设φφ是同一无源区域的边值问题的解。