华中师大版八年级上学期期中数学试卷F卷
- 格式:doc
- 大小:965.00 KB
- 文档页数:24
华师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.计算:56a a =( )A .30aB .11aC .31aD .12a 2.下列语句正确的是( )A2 B .-3是27的负的立方根C .4是16的算术平方根,即4=D .()21-的立方根是-13.下列算式中错误的有( )(1)2233()()a b a ab b a b +++=+ (2)2233()()a b a ab b a b -++=-(3)222(23)2123a b a ab b -=-+ (4)2211(41)8822a a a -=-+ A .1个 B .2个 C .3个 D .4个 4.下列命题是真命题的是( )A .一个三角形中至少有两个锐角B .若∠A 与∠B 是内错角,则A B ∠∠=C .如果两个角有公共边,那么这两个角一定是邻补角D .如果3.14a πb =,那么a b =5.若a ,b 均为正整数,且a >b <a b +的最小值是( )A .3B .4C .5D .66.在△ABC 和△A B C '''中,AB=A B '',∠B=∠B ',补充条件后仍不一定能保证△ABC ≌△A B C ''',则补充的这个条件是( )A .BC =BC '' B .A ∠=∠A ' C .AC =A C ''D .C ∠ =∠C ' 7.下列计算正确的是( ).A .(x+y)2=x 2+y 2B .(-12xy 2)3=-16 x 3y 6C .x 6÷x 3=x 2D 8.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A .()()22a b a b a b -=+-B .()2222a b a ab b +=++C .()22a b a b -=-D .()2222a b a ab b -=-+ 9.如图所示,AB 、CD 相交于点O ,△AOC ≌△BOD ,点E 、F 分别在OA 、OB 上,要使△EOC ≌△FOD ,添加的一个条件不可能是( )A .∠OCE =∠ODFB .∠CEA =∠DFBC .CE =DFD .OE =OF 10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题 11.多项式-24ax a 与多项式244x x -+的公因式是______________.12.满足x <x 是_________________________。
华师大版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.数3.14π,0.1010010001,17 ) A .2个 B .3个 C .4个 D .5个 2.下列运算中,正确的是( )A .4520a a a ⋅=B .1234a a a ÷=C .235a a a +=D .54a a a -= 3)A .9B .9和﹣9C .3D .3和﹣3 4.等腰三角形一腰上的高与另一腰的夹角为60︒,则顶角的度数为( )A .30B .60︒C .60︒或120︒D .30或150︒5.已知实数x ,y 满足|3|0x -=,则代数式()2012x y +的值为( )A .1-B .1C .2012D .2008- 6.若22(3)16x m x +-+是完全平方式,则m 的值等于( ).A .3B .-5C .7D .7或-1 7.如图,在长方形ABCD 中,横向阴影部分是长方形,纵向阴影部分是平行四边形,依照图中标注的数据,计算空白部分的面积,其面积是( )A .2bc ab ac c -++B .2ab bc ac c --+C .2a ab bc ac ++-D .22b bc a ab ++- 8.计算()199********⎛⎫-⋅-= ⎪⎝⎭( )A .13B .3C .13-D .3-9.已知:如图,在△ABC 中,AB=AC ,BF=CD ,BD=CE ,∠FDE=α,则下列结论正确的是( )A .2α+∠A=180°B .α+∠A=90°C .2α+∠A=90°D .α+∠A=180° 10.下列各命题中假命题的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角相等,那么这两个角是对顶角二、填空题112|=_______.12.如果32x -和56x +是一个非负数的平方根,那么这个数是______.13.计算3233()a ab ⎡⎤-⋅-=⎣⎦______14.已知x 、y 为实数,且4y =.15.如图,C 是△ABE 的BE 边上一点,F 在AE 上,D 是BC 的中点,且AB =AC =CE ,对于下列结论:①AD ⊥BC ;②CF ⊥AE ;③∠1=∠2;④AB +BD =DE.其中正确的结论有____________(填序号).16.如图,AD 、A′D′分别是锐角△ABC 和△A′B′C′中BC 与B′C′边上的高,且AB=A′B′,AD=A′D′,若使△ABC ≌△A′B′C′,请你补充条件________.(只需填写一个你认为适当的条件)三、解答题17.先化简,再求值:2(x 2)(2x 1)(2x 1)4x(x 1)+++--+,其中x =18.已知A =a a +b +36的算术平方根,B =a -2b 是9的算术平方根,求A +B 的平方根.19.分解因式:(1)22()4()a x y b y x -+-(2)2221a ab b -+-20.(1)已知2530x y +-=,求432x y ⋅的值(2)已知2m a =,3n a =,求32m n a +的值.21.已知4x y +=,3xy =,求下列各式的值.(1)2()x y -(2)22x y xy +22.如图,已知△ABC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,AD 与BE 相交于点F .(1)求证:△ABE ≌△CAD ;(2)求∠BFD 的度数.23.已知a 、b 、c 是ABC ∆的三边,a 、b 使等式2248200a b a b +--+=成立,且c 是偶数,求ABC ∆的周长.24.已知点B ,E ,C 在一条直线上,AB ⊥BC ,DC ⊥BC ,AB =EC ,且AE =DE.求证:AB +DC =BC .25.如图所示,已知ABC ∆中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点,如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上.由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD ∆与CQP ∆是否全等?请说明理由.②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD ∆与CQP ∆全等.参考答案1.C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【详解】解:3.14,172=,这些是有理数;π,0.1010010001⋯4个,故选:C .【点睛】此题考查了无理数.解题的关键是掌握无理数的定义,其中初中范围内学习的无理数有:π;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数.2.D【详解】A. 底数不变,指数相加,故A 错误;B. 底数不变,指数相减,故B 错误;C. 不是同底数幂的乘法,指数不能相加,故C 错误;D. 系数相减,字母部分不变,故D 正确.故选D.3.D【分析】先化简,再根据平方根的地红衣求解.【详解】解:,3±,故选D .【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作x=±.4.D【分析】本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【详解】解:①当为锐角三角形时,如图1,∵∠ABD=60°,BD⊥AC,∴∠A=90°-60°=30°,∴三角形的顶角为30°;②当为钝角三角形时,如图2,∵∠ABD=60°,BD⊥AC,∴∠BAD=90°-60°=30°,∵∠BAD+∠BAC=180°,∴∠BAC=150°∴三角形的顶角为150°,故选:D.【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键,难度适中.5.B直接利用非负数的性质得出x ,y 的值,再利用有理数的乘方运算法则得出答案.【详解】解:|3|0x -,30x ∴-=,40y +=,解得:3x =,4y =-,故20122012()(1)x y +=-1=.故选:B .【点睛】此题主要考查了非负数的性质以及乘方运算,得到x 和y 值是解题关键.6.D【分析】根据完全平方公式: ()2222x y x xy y ±=±+,即可列出关于m 的方程,从而求出m 的值.【详解】解:∵22(3)16x m x +-+是完全平方式∴()222222(3)162(3)44816x m x x m x x x x +-+=+-+=±=±+∴2(3)8m -=±解得:m=7或-1故选:D .【点睛】此题考查的是根据完全平方公式求多项式的系数,掌握完全平方公式的特征是解决此题的关键.7.B【分析】矩形面积减去阴影部分面积,求出空白部分面积即可.【详解】空白部分的面积为2()()a c b c ab ac bc c --=--+.故选B .此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.8.D【分析】利用积的乘方运算法则计算得出答案.【详解】 解:原式199919991()(3)(3)3=-⨯-⨯-19991[(3)](3)3=-⨯-⨯-1(3)=⨯-3=-.故选:D .【点睛】此题主要考查了积的乘方运算,正确将原式变形是解题关键.9.A【分析】【详解】∵AB=AC ,∴∠B=∠C ,∵BF=CD ,BD=CE ,∴△BDF ≌△CED (SAS ),∴∠BFD=∠EDC ,∵α+∠BDF+∠EDC=180°,∴α+∠BDF+∠BFD=180°,∵∠B+∠BDF+∠BFD=180°,∴∠B=α,∴∠C=∠B=α,∵∠A+∠B+∠C=180°,∴2α+∠A=180°,故选A.【点睛】本题考查了等腰三角形的性质、全等三角形的判定与性质,解题的关键是注意数形结合思想的应用.10.D【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A 、全等三角形的对应角相等,是真命题,不符合题意;B 、如果两个数相等,那么它们的绝对值相等,是真命题,不符合题意;C 、两直线平行,同位角相等,是真命题,不符合题意;D 、如果两个角相等,那么这两个角不一定是对顶角,是假命题,符合题意;故选:D .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11【分析】直接利用立方根以及算术平方根、绝对值的性质分别化简得出答案.【详解】 解:原式532=-=【点睛】此题主要考查了实数的混合运算,正确化简各数是解题关键.12.494【分析】根据平方根的性质列出方程计算即可.【详解】 解:一个非负数的平方根是32x -和56x +,32(56)x x ∴-=-+, 解得:12x =-,17323()222x -=⨯--=-, 2749()24-=. 故答案为:494. 【点睛】 本题主要考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根,比较简单.13.15927a b【分析】直接利用积的乘方和幂的乘方的计算法则,化简求出即可.【详解】解:2332333159[3()](3)27a ab a a b a b --==.故答案为:15927a b .【点睛】此题主要考查了幂的乘方与积的乘方,正确应用积的乘方的计算法则是解题关键. 14.5【分析】根据二次根式的性质可求出x 的值,进而可得y 的值,代入即可得答案.【详解】∴x-9≥0且9-x≥0,∴x=9,∵y 4=,∴y=4,故答案为5本题考查二次根式有意义的条件,要使二次根式有意义,被开方数要为非负数,即大于等于0,根据二次根式的性质求出x的值是解题关键.15.①④【解析】①∵D是BC的中点,AB=AC,∴AD⊥BC,故①正确;②∵F在AE上,不一定是AE的中点,AC=CE,∴无法证明CF⊥AE,故②错误;③无法证明∠1=∠2,故③错误;④∵D是BC的中点,∴BD=DC,∵AB=CE,∴AB+BD=CE+DC=DE,故④正确.故其中正确的结论有①④.故答案为①④.点睛:此题考查了等腰三角形三线合一的性质,以及三角形的中线的概念.等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.16.∠BAC=∠B'A'C'或∠C=∠C'或BC=B'C'【分析】已知AB=A′B′,A′D′=AD;根据斜边直角边定理即可证得Rt△ABD≌Rt△A'B'D',由此可得出∠B=∠B',因此△ABC和△A'B'C'中,已知AB=A'B',∠B=∠B',只需再添加一组对应角相等或BC=B'C'即可证得两三角形全等.【详解】∵AB=A′B′,A′D′=AD,∴Rt△ABD≌Rt△A'B'D'(HL);∴∠B=∠B',又∵AB=A'B',∴当∠BAC=∠B'A'C'或∠C=∠C'或BC=B'C'时,△ABC≌△A'B'C'.故答案为∠BAC=∠B'A'C'或∠C=∠C'或BC=B'C'本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加;通过Rt △ABD ≌Rt △A'B'D'得出∠B=∠B'是解题关键.17.5【分析】先算乘法,再合并同类项,最后代入求出即可.【详解】原式()()()2222222x 4x 44x 14x 4x x 4x 44x 14x 4x x 3=+++--+=+++---=+.当x ==(235+=.【点睛】 本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解题的关键. 18.3±【分析】根据根指数是2可得a-b=2,再根据算术平方根的定义可得a-2b=3,然后求出a 、b ,再求出A 、B ,然后根据平方根的定义解答即可.【详解】解:由题意可得解得∴A =6,B =3. ∴A +B =9,A +B 的平方根为±3.【点睛】本题考查了平方根与算术平方根,解题的关键是熟练的掌握平方根与算术平方根的定义. 19.(1)()(2)(2)x y a b a b -+-;(2)(1)(1)a b a b -+--【分析】(1)先变形多项式,提取公因式()x y -后,再利用平方差公式分解;(2)前三项利用完全平方公式写成平方式,再利用平方差公式分解.【详解】解:(1)原式22()4()a x y b x y =---22()(4)x y a b =--()(2)(2)x y a b a b =-+-;(2)原式2()1a b =--(1)(1)a b a b =-+--【点睛】本题考查了因式分解,掌握提公因式法、分组分解法和公式法是解决本题的关键. 20.(1)8;(2)72【分析】(1)先将原式化简为252x y +,再根据2x+5y-3=0得到2x+5y=3,代入计算;(2)先将32m n a +化简为()()32m n a a ⨯,再代入计算.【详解】解:(1)2543222x y x y =252x y +=,2530x y +-=,253x y ∴+=,∴原式328==;(2)32m n a +32()()m n a a =⨯2m a =,3n a =,∴原式3223=⨯89=⨯72=.【点睛】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确将原式变形是解题关键.21.(1)4;(2)12【分析】(1)原式利用完全平方公式变形,将已知等式代入计算即可求出值;(2)原式提取公因式后,将已知等式代入计算即可求出值.【详解】解:(1)4x y +=,3xy =,2222()2()416124x y x xy y x y xy ∴-=-+=+-=-=;(2)4x y +=,3xy =,22()12x y xy xy x y ∴+=+=.【点睛】此题考查了完全平方公式,以及提公因式法分解因式,熟练掌握公式及法则是解本题的关键.22.(1)证明见解析;(2)60BFD ∠=︒.【详解】试题分析:(1)根据等边三角形的性质根据SAS 即可证明△ABE ≌△CAD ;(2)由三角形全等可以得出∠ABE=∠CAD ,由外角与内角的关系就可以得出结论. 试题解析:(1)∵△ABC 为等边三角形,∴AB=BC=AC ,∠ABC=∠ACB=∠BAC=60°.在△ABE 和△CAD 中,AB=CA , ∠BAC=∠C ,AE =CD ,∴△ABE ≌△CAD (SAS ),(2)∵△ABE ≌△CAD ,∴∠ABE=∠CAD ,∵∠BAD+∠CAD=60°,∴∠BAD+∠EBA=60°,∵∠BFD=∠ABE+∠BAD ,∴∠BFD=60°.23.10【分析】首先利用完全平方公式分解因式,进而利用偶次方的性质得出a ,b 的值,再利用三角形三边关系得出答案.【详解】解:∵a 2+b 2-4a-8b+20=0,∴(a 2-4a+4)+(b 2-8b+16)=0,∴(a-2)2+(b-4)2=0,解得:a=2,b=4,∵a 、b 、c 是△ABC 的三边,且c 是偶数,∴c=4.故△ABC 的周长为:2+4+4=10.【点睛】此题主要考查了因式分解的应用以及三角形三边关系,正确得出a ,b 的值是解题关键. 24.详见解析【分析】根据HL 判断直角三角形全等即可.【详解】∵AB ⊥BC ,DC ⊥BC ,∴∠B =∠C =90°,在Rt △AEB 和Rt △EDC 中,AE DE AB EC=⎧⎨=⎩, ∴Rt △AEB ≌Rt △EDC(H .L .),∴DC =BE ,∵BC =BE +CE ,∴AB +DC =BC【点睛】此题主要考查全等三角形的判定,解题的关键是熟知HL 判定直角三角形的方法. 25.①全等,理由见解析;②15/4cm s 【分析】①根据中点的定义求出BD ,根据等边对等角得出∠ABC=∠ACB ,再得出经过1秒后,PB ,PC 和CQ 的长,根据SAS 可证得BPD CQP ∆≅∆;②可设点Q 的运动速度为(3)/x x cm s ≠,经过ts BPD ∆,与CQP ∆全等,则可知3PB tcm =,()83PC t cm =-,CQ xtcm =,据(1)同理可得当BD PC =,BP CQ =或BD CQ =,BP PC =时两三角形全等,求x 的解即可.【详解】解:①∵点D 是AB 中点,10AB AC ==cm ,∴BD=10÷2=5cm ,∠ABC=∠ACB ,经过1秒后,3PB cm =,835PC cm =-=,3CQ cm =,ABC ∆中,AB AC =,∴在BPD ∆和CQP ∆中,BD PC ABC ACB BP CQ =⎧⎪∠=∠⎨⎪=⎩,()BPD CQP SAS ∴∆≅∆.②设点Q 的运动速度为(3)/x x cm s ≠,经过ts BPD ∆,与CQP ∆全等;则可知3PB tcm =,83PC tcm =-,CQ xtcm =,AB AC =,B C ∴∠=∠,根据全等三角形的判定定理SAS 可知,有两种情况:①当BD PC =,BP CQ =时,②当BD CQ =,BP PC =时,两三角形全等;当BD PC =且BP CQ =时,835t -=且3t xt =,解得3x =,3x ≠,∴舍去此情况;当BD CQ =,BP PC =时,5xt =且383t t =-,解得:154x =; 故若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为15/4cm s 时,能够使BPD ∆与CQP ∆全等.【点睛】本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。
华师大版八年级上册数学期中复习备考测试卷时间: 60分钟 总分: 120分 考试用时:_________一、选择题(每小题3分,共24分)★1.27-的立方根与81的平方根的和等于 【 】 (A )0 (B )6- (C )0或6- (D )6或6-★2.下列运算中正确的是 【 】 (A )123=-x x (B )()743a a =-(C )()632a a a =⋅- (D )()632a a -=-★3.若()()12-+x a x 的计算结果中不含x 的一次项,则a 等于 【 】 (A )2 (B )2- (C )1 (D )1-★4.若()y x y x x x -+=---则,112的值为 【 】 (A )1- (B )1 (C )2 (D )3★5.把多项式()2221b ab a +--分解因式,结果是 【 】 (A )()()b a b a +--+11 (B )()()b a b a -+--11 (C )()()b a b a +---11 (D )()()b a b a ++-+11★6.下列式子从左到右的变形中,属于因式分解的是 【 】 (A )()()1112-=-+x x x (B )()12122+-=+-x x x x (C )()()b a b a b a -+=-22(D )()()y x n y x m ny nx my mx +++=+++★7.若关于x 的二次三项式942+-kx x 是一个完全平方式,则k 的值是 【 】 (A )6 (B )6± (C )12- (D )12±第8题图BCDA 第15题图EDAB C★8.如图所示,下列条件中,不能证明△ABD ≌△ACD 的是 【 】(A )BD =DC ,AB =AC (B )∠ADB =∠ADC ,BD =DC (C )∠B =∠C , ∠BAD =∠CAD (D )∠B =∠C ,BD =DC二、填空题(每小题3分,共21分)★9.若32-b 的平方根为=±b 则,2________. ★10.设15的小数部分是=m m 则,________. ★11.若=-=-=+b a b a b a 则,12,322________. ★12.分解因式:=-ab b a 43__________________. ★13.计算:()()()=+-+22y x y x y x __________________.★14.已知b a 、都是有理数,且满足关系b a b a 24522-=++,则()=+2018b a ________.★15.如图所示,在△ABC 和△ADE 中, 有以下四个结论:①AB =AD ;②AC =AE ; ③∠C =∠E ;④BC =DE .请以其中三个论 断为条件,余下一个论断为结论,写出一 个真命题(用①②③⇒④的形式写出):_______________.三、解答题(共75分)★16.计算(每题4分,共16分) (1)计算:()49164133--+-- (2)计算:()()()213-+-+a a a a(3)计算:[]()x xy y x y x 24)()(22-÷+--+(4)分解因式:()222164a a -+★17.化简求值:(5分)()()21,132335-=+-÷+x x x x x 其中.★18.(5分)已知5,3-=+=-c a b a ,求代数式ab a bc ac -+-2的值.★ 19.(8分)已知3,52121=-=+x x x x ,求下列各式的值:(1)221221x x x x +; (2)()()3321++x x .★20.(8分)如图所示,已知线段AC 、BD 相交于点E ,AE =DE ,BE =CE . 求证:△ABE ≌△DCE .第20题图EDAB★21.(8分)如图所示,已知∠1=∠2,AO =BO . 求证:△AOP ≌△BOP .第21题图★22.(8分)如图所示,已知AC =BD ,BC =AD . 求证:△ABC ≌△BAD .第22题图DC AB★23.(8分)如图所示,已知AB =AC ,BD =CD ,那么∠B 与∠C 是否相等?为什么?★24.(9分)观察下列式子:()()()()()();27933;8422;111323232+=+-+-=++-+=+-+a a a a a a a a a a a a (1)通过观察归纳,填写下面的括号:()()=++-933.2a x x a ( );()12.+x b ( )=( ); .c ( )().3322y x y xy x -=++(2)计算:()()()222222b ab a b ab a b a +-++-.华师版八年级上册数学期中复习备考测试卷参考答案一、选择题(每小题3分,共24分)部分题目提示:★5.解:()2221b ab a +--()()[]()[]()()b a b a b a b a b a +--+=---+=--=111112★7.解:分为两种情况:(1)()223294+=+-x kx x ; (2)()223294-=+-x kx x . ∴()223294±=+-x kx x91249422+±=+-x x kx x∴12,12±=±=-k k .二、填空题(每小题3分,共21分)★9.27★10. 315- ★11. 4 ★12. ()()22-+a a ab★13. 44y x - ★14. 1 ★15. ①②④⇒③ 部分题目提示:★14.解:∵b a b a 24522-=++ ∴052422=+++-b b a a()()()()012012442222=++-=++++-b a b b a a∵()22-a ≥0,()21+b ≥0 ∴01,02=+=-b a ∴1,2-==b a ∴()()11220182018=-=+b a三、解答题(共75分)★16.计算(每题4分,共16分)(1)计算:()49164133--+-- 解:原式23141--⎪⎭⎫⎝⎛--=4923141-=--=(2)计算:()()()213-+-+a a a a 解:原式a a a a a 23322-+-+-= 322-=a(3)[]()x xy y x y x 24)()(22-÷+--+ 解:原式()[]()x xy y xy x y xy x 24222222-÷++--++=()()x y xy x y xy x 2262222-÷-+-++=()yx xy 428-=-÷=(4)分解因式:()222164a a -+解:原式()()22244a a -+=()()()()2222224444-+=+-++=a a a a a a★17.化简求值:(5分)()()21,132335-=+-÷+x x x x x 其中解:()()233513+-÷+x x x x()221231232222+-=---+=++-+=x x x x x x x 当21-=x 时 原式2212+⎪⎭⎫ ⎝⎛-⨯-= 321=+=★18.(5分)已知5,3-=+=-c a b a ,求代数式ab a bc ac -+-2的值. 解:∵5,3-=+=-c a b a ∴ab a bc ac -+-2()()()()()()()()()15532-=-⨯=+-=+-=-+-=-+-=c a b a a c b a b a a b a c ab a bc ac ★ 19.(8分)已知3,52121=-=+x x x x 求下列各式的值:(1)221221x x x x +;(2)()()3321++x x .解:(1)∵3,52121=-=+x x x x∴221221x x x x +()()15532121-=-⨯=+=x x x x(2)()()3321++x x()()3151295339393321212121-=-=+-⨯+=+++=+++=x x x x x x x x ★20.(8分)如图所示,已知线段AC 、BD 相交于点E ,AE =DE ,BE =CE . 求证:△ABE ≌△DCE .21证明:在△ABE 和△DCE 中∵⎪⎩⎪⎨⎧=∠=∠=CE BE DE AE 21 ∴△ABE ≌△DCE (SAS ). ★21.(8分)如图所示,已知 ∠1=∠2,AO =BO . 求证:△AOP ≌△BOP .第21题图证明:在△AOP 和△BOP 中∵⎪⎩⎪⎨⎧=∠=∠=OP OP BO AO 21 ∴△AOP ≌△BOP (SAS ).★22.(8分)如图所示,已知AC =BD ,BC =AD . 求证:△ABC ≌△BAD .第22题图DCA证明:在△ABC 和△BAD 中∵⎪⎩⎪⎨⎧===BA AB AD BC BD AC ∴△ABC ≌△BAD (SSS ) ★23.(8分)如图所示,已知AB =AC ,BD =CD ,那么∠B 与∠C 是否相等?为什么?解:C B ∠=∠ 理由如下:连结AD.(注意画成虚线) 在△ABD 和△ACD 中∵⎪⎩⎪⎨⎧===CD BD AD AD AC AB ∴△ABD ≌△ACD (SSS ) ∴C B ∠=∠ ★24.(9分) 解:(1)273-x ; (2)18,12432++-x x x ; (3)y x -;(4)提示:使用平方差公式和上面的规律.66b a -。
华师大版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.4的平方根是( )A .±2B .-2C .2 D2的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间 3.下列各式计算正确的是( )A .2538a a a +=B .()222a b a b -=-C .3710a a a ⋅=D .()236a a -=- 4.把多项式a²-4a 分解因式,结果正确的是( )A .a (a-4)B .(a+2)(a-2)C .a(a+2)( a-2)D .(a -2 ) ²-4 5.如图的面积关系,可以得到的恒等式是( )A .m (a +b +c )=ma +mb +mcB .(a +b )(a ﹣b )=a 2﹣b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .(a +b )2=a 2+2ab +b 26.若x 2+kx+20能在整数范围内因式分解,则k 可取的整数值有( )A .2个B .3个C .4个D .6个 7.如果代数式(x ﹣2)(x 2+mx+1)的展开式不含x 2项,那么m 的值为( ) A .2 B .12 C .-2 D .12- 8.如图,AD 平分∠BAC ,AB =AC ,则图中全等三角形的对数是( )A .2对B .3对C .4对D .5对 9.如图,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )A .△ACE ≌△BCDB .△BGC ≌△AFC C .△DCG ≌△ECFD .△ADB ≌△CEA 10.如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不正确的结论是( )A .AC BC CE =+B .A 2∠∠=C .ABC ≌CED D .A ∠与D ∠互余二、填空题11____.12.若(a+5)20=,则a 2018•b 2019=_____.13.如果x 2﹣Mx +9是一个完全平方式,则M 的值是_____.14.已知27b =9×3a+3,16=4×22b ﹣2,则a+b 的值为_____.15.如图,在等边△ABC 中,点D 为BC 边上的点,DE ⊥BC 交AB 于E ,DF ⊥AC 于F ,则∠EDF 的度数为_________.16.如图,AB =CD ,AC =DB ,∠ABD =25°,∠AOB =82°,则∠DCB =__________.三、解答题17.计算(1)2(6-.(2)(-x+2y) (-2y-x)18.分解因式.(1)4x3y - 4x2y2+xy3(2)m3(x﹣2)+m(2﹣x)19.如图,△ABC中,∠ABC=45°,BE⊥AC于点E,AD⊥BC于点D,BE与AD相交于F.求证:BF=AC.20.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.=.连接CD 21.如图,在Rt△ABC中,90∠=,点D,F分别在AB,AC上,CF CBACB将线段CD绕点C按顺时针方向旋转90后得CE,连接EF.求证:△BCD≌△FCE;22.如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.23.如图,在四边形ABCD中,AB∥CD,∠1=∠2,DB=DC.(1)求证:△ABD≌△EDC;(2)若∠A=135°,∠BDC=30°,求∠BEC 的度数.24.已知:如图,已知线段AB、CD相交于点O,AD、CB的延长线交于点E,OA=OC,EA=EC,求证:∠A=∠C.25.如图,AB=AE,AC=AD,BD=CE,△ABC≌△AED吗?试证明.参考答案1.A【详解】4的平方根是±2.选A.点睛:辨析平方根与算术平方根,开平方与平方2.B【详解】解:∵34<<,∴415<<.故选B .的取值范围是解题关键.3.C【分析】根据整式的相关运算法则进行计算判断即可.【详解】A 选项中,因为538a a a +=,所以A 中计算错误;B 选项中,因为222()2a b a ab b -=-+,所以B 中计算错误;C 选项中,因为3710a a a ⋅=,所以C 中计算正确;D 选项中,因为326()a a -=,所以D 中计算错误.故选C.【点睛】熟记各个选项中所涉及的多项式运算的运算法则和完全平方公式是解答本题的关键. 4.A【详解】直接提取公因式a 即可:a 2-4a=a (a -4).故选A5.B【解析】【分析】分别求出两个图形的面积, 再根据两图形的面积相等即可得到恒等式.【详解】解:如图:图甲面积=(a+b)(a-b)图乙面积=a (a-b+b)-b×b=a2-b2,∵两图形的面积相等,∴关于a、b的恒等式为: (a+b) (a-b)=a2-b2.故选B.【点睛】点评: 本题考查了平方差公式的几何解释, 根据面积相等分别求出图形的面积是解题的关键.6.D【分析】把20分解成两个因数的积,k等于这两个因数的和.【详解】解:∵20=1×20=2×10=4×5=(-1)×(-20)=(-2)×(-10)=(-4)×(-5),∴k=21,12,9,-21,-12,-9,一共六个,故选D.【点睛】本题利用十字相乘法分解因式,对常数的正确分解是解题关键.7.A【分析】根据“代数式(x﹣2)(x2+mx+1)的展开式不含x2项”可知x2系数等于0,所以将代数式整理计算后合并同类项,即可得出x2的系数,令其等于0解答即可.【详解】原式=322++---222x mx x x mx()()32=+-+--2122x m x m x∵代数式不含x2项∴m-2=0,解得m=2故答案选A.【点睛】本题考查的是多项式的乘法和不含某项的问题,知道不含某项,代表某项的系数为0是解题的关键.8.B【分析】根据角平分线的性质及全等三角形的判定可求得图中的全等三角形有3对,分别是:△ABD≌△ACD,△BED≌△CED,△ABE≌△ACE.【详解】∵AD平分∠BAC,∴∠BAD=∠CAD,∵AB=AC,AD=AD,AE=AE,∴△ABD≌△ACD,△ACE≌△ABE(SAS),∴BD=CD,∠BDE=∠CDE,∵DE=DE,∴△CED≌△BED(SAS),所以共有3对全等三角形,故选B.【点睛】本题考查了全等三角形的判定定理和性质定理,能综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.9.D【详解】试题分析:△ABC和△CDE是等边三角形BC=AC,CE=CD,60∠+∠=∠+∠=BCA ACD ECD ACD︒∠=∠=即BCA ECD︒60在△BCD和△ACE中CD CEACE BCD BC AC=⎧⎪∠=∠⎨⎪=⎩△BCD≌△ACE 故A项成立;在△BGC和△AFC中60 ACB ACDAC BCCAE CBD︒⎧∠=∠=⎪=⎨⎪∠=∠⎩△BGC≌△AFCB项成立;△BCD≌△ACE,在△DCG和△ECF中60 ACD DCECE CDCDB CEA︒⎧∠=∠=⎪=⎨⎪∠=∠⎩△DCG≌△ECFC项成立D项不成立.考点:全等三角形的判定定理.10.A【解析】【分析】利用同角的余角相等求出∠A=∠2,再利用“角角边”证明△ABC和△CDE全等,根据全等三角形对应边相等,对应角相等,即可解答.【详解】解:∵∠B=∠E=90°,∴∠A+∠1=90°,∠D+∠2=90°,∵AC⊥CD,∴∠1+∠2=90°,∴∠A=∠2,故B正确;∴∠A+∠D=90°,故D正确;在△ABC 和△CED 中,2A B EAC CD ==,=∠∠⎧⎪∠∠⎨⎪⎩∴△ABC ≌△CED (AAS ),故C 正确;∴AB=CE ,DE=BC ,∴BE=AB+DE ,故A 错误.故选:A .【点睛】本题考查全等三角形的判定与性质,等角的余角相等的性质,熟练掌握三角形全等的判定方法并确定出全等的条件∠A=∠2是解题关键.11.±3【详解】,∴9的平方根是3±.故答案为±3.12.15. 【分析】根据“(a+5)20=”可知a+5=0,5b-1=0,可得a 、b 的值,进而可以得出答案.【详解】∵(a+5)20=,∴a+5=0,5b-1=0解得a=-5,b=15∵()20182019020182018218=a b a b b ab b ⋅⋅⋅=⋅ ∴201811115=1=5555⎛⎫⨯⨯⨯ ⎪⎝⎭ 故答案为15. 【点睛】本题考查的是二次乘方与二次根式的非负性和积的乘方的逆用算,能够根据二次乘方与二次根式的非负性得出a 、b 的值是解题的关键.13.±6.【解析】试题解析:∵x 2-Mx+9是一个完全平方式,∴-M=±6,解得:M=±6 考点:完全平方式 .14.3【分析】根据“27b =9×3a+3”可得3b=a+5,根据“16=4×22b-2”可得2b=4,分别解出a ,b 的值即可得出答案.【详解】∵32793b a +⨯=,即32353333b a a ++=⨯=∴3b=a+5①∵221642b ⨯﹣=,即422222=222b b -⨯=∴2b=4②由②得b=2,代入①中解得a=1∴a+b=1+2=3故答案为3.【点睛】本题考查的是幂的乘方和同底数幂的乘法的逆运算,熟练掌握同底数幂相乘和幂的乘方的运算法则是解题的关键.15.60°【解析】∵△ABC 是等边三角形,∴∠A=∠B=60°.∵DE ⊥BC 交AB 于E ,DF ⊥AC 于F ,∴∠BDE=∠AFD=90°.∵∠AED 是△BDE 的外角,∴∠AED=∠B+∠BDE=60°+90°=150°,∴∠EDF=180°−∠A−∠AED−∠AFD=360°−60°−150°−90°=60°故答案为60°. 16.66°【解析】试题解析:在△ABC 和△DCB 中,AB CD AC DB BC CB =⎧⎪=⎨⎪=⎩, ∴△ABC ≌△DCB (SSS), ∴∠ACB =∠DBC ,∠ABC =∠DCB ,82AOB AOB ACB DBC ,,∠=∠=∠+∠ 41DBC ∴∠=,254166.DCB ABC ABD DBC ∴∠=∠=∠+∠=+=故答案为66.17.(1)1 ; (2) x 2﹣4y 2【分析】(1)根据根式和实数的运算法则,先算乘方与三次方,去掉根号后在从左至右依次计算即可;(2)利用平方差公式进行计算即可.【详解】解:(1)原式=3-12+12+4-6=1. (2)原式=(-x )2 ﹣(2y )2 =x 2﹣4y 2【点睛】本题考查的是根式和实数的运算,掌握乘法公式解题的关键.18.(1)xy (2x ﹣y )2;(2)m (x ﹣2)(m+1)(m ﹣1)【分析】(1)先用提公因式法将xy 提出,在根据完全平方公式进行因式分解;(2)将(2-x )提一个负号出去变形为(x-2),在作为公因式提出,之后再利用平方差公式进行因式分解.【详解】解:(1)原式=xy (4x 2﹣4xy+y 2)=xy (2x ﹣y )2(2)原式=m 3(x ﹣2)﹣m (x ﹣2)=m (x ﹣2)(m 2﹣1)=m (x ﹣2)(m+1)(m ﹣1)【点睛】本题考查的是因式分解的方法,熟练掌握提公因式法和公式法是解题的关键.19.见解析.【分析】根据等腰三角形腰长相等性质可得AD=BD ,利用“AAS”可证得△BDF ≌△ACD ,即可证明BF=AC .【详解】AD ⊥BD ,∠BAD =45°,∴AD =BD ,∵∠BFD =∠AFE ,∠AFE +∠CAD =90°,∠CAD +∠ACD =90°,∴∠BFD =∠ACD ,在△BDF 和△ACD 中,BFD ACD BDF ADC BD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDF ≌△ACD (AAS ),∴BF =AC .【点睛】本题考查了全等三角形的判定和性质,求证△BDF ≌△ACD 是解题的关键.20.5【解析】试题分析:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.原式的第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,第三项先计算乘方运算,再计算除法运算,合并得到最简结果,最后把ab 的值代入化简后的式子计算即可试题解析:解:原式=4﹣a 2+a 2﹣5ab+3ab=4﹣2ab ,当ab=﹣12时,原式=4+1=5.考点:整式的混合运算—化简求值..21.见解析【分析】由题意可知∠ECD=∠ACB=90°,由此易得∠ECF=∠DCB ,由旋转的性质可得CE=CD ,结合已知条件CF=CB 即可由“SAS”证得△BCD ≌△FCE.【详解】∵CD 绕点 C 顺时针方向旋转 90 得 CE ,∴CD CE =,90DCE ∠=.∵90ACB ∠=,∴BCD ACD FCE ACD ∠+∠=∠+∠,∴BCD FCE ∠=∠, ∵在BCD 和FCE 中,,,,CB CF BCD FCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴△BCD ≌△FCE .【点睛】熟悉“旋转的性质和全等三角形的判定方法”是解答本题的关键.22.CD ∥AB ,CD =AB ,证明见解析.【分析】试题分析:根据CE =BF ,可求证CF=BE ,再根据∠CFD =∠BEA ,DF =AE ,可证△DFC ≌△AEB ,利用全等三角形的性质可得: CD =AB ,∠C =∠B ,根据平行线的判定可证CD ∥AB .CD ∥AB ,CD =AB ,证明如下:∵CE =BF ,∴CE -EF =BF -EF ,∴CF =BE.在△DFC 和△AEB 中,∴△DFC ≌△AEB(SAS),∴CD =AB ,∠C =∠B ,∴CD ∥AB.请在此输入详解!23.(1)见解析;(2)∠BEC =45°.【分析】(1)通过AB ∥CD ,可得出ABD EDC =∠∠,再利用全等三角形的判定定理即可证明结论; (2)根据已知条件以及三角形内角和定理可求出∠=∠=︒1215,然后由∠=∠+∠2BEC BDC 即可得出答案.【详解】解:(1)证明:∵AB ∥CD ,∴∠ABD =∠EDC ,在△ABD 和△EDC 中,12DB DCABD EDC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABD ≌△EDC (ASA );(2)∵∠ABD =∠EDC =30°,∠A =135°,∴∠1=∠2=15°,∴∠BEC =∠BDC+∠2=30°+15°=45°.【点睛】本题考查的知识点是全等三角形的判定定理以及平行线的性质,掌握以上知识点是解此题的关键.24.证明见解析【分析】根据“SSS”证得△EAC ≌△EBC 即可得到结果.【详解】如图,连结OE在△OEA 和△OEC 中OA OCEA ECOE OE=⎧⎪=⎨⎪=⎩∴△OEA ≌△OEC (SSS )∴∠A =∠C (全等三角形的对应角相等)25.△ABC ≌△AED,证明见解析.【解析】【分析】由BD=CE ,得到BC=ED ,根据“边、边、边”判定定理可得△ABC ≌△AED .【详解】解:△ABC ≌△AED.证明:∵BD =CE ,∴BC +CD =CD +DE ,即BC =ED.在△ABC 与△AED 中, AB AEAC ADBC ED=⎧⎪=⎨⎪=⎩∴△ABC ≌△AED(SSS)【点睛】本题考查了全等三角形的判定与性质,证得BC=ED 是解题的关键.。
华师大版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列说法3±;7的平方根;④圆周率π是有理数.正确个数为( )A .0B .1C .2D .32.下列运算正确的是( )A .232x x x ÷=B .33(2)6x x -=-C .22x x x -=D .339()x x = 3.若(x+m )(x ﹣8)中不含x 的一次项,则m 的值为( )A .8B .﹣8C .0D .8或﹣8 4.已知多项式2ax bx c ++因式分解的结果为(1)(4)x x -+,则abc 为( ) A .12 B .9 C .9- D .12- 5.如图,点A 、D 在线段BC 的同侧,连接AB 、AC 、DB 、DC ,已知ABC DCB ∠=∠,老师要求同学们补充一个条件使ABC DCB ∆≅∆.以下是四个同学补充的条件,其中错误的是( )A .AC DB = B .AB DC = C .AD ∠=∠ D .ABD DCA ∠=∠ 6.下列从左边到右边的变形,属于因式分解分解正确的是( )A .2(1)(1)1x x x +-=-B .221(2)1x x x x -+=-+C .224(4)(4)x y x y x y -=+-D .22(2)(2)(2)(22)x y y x x y y x ---=-+- 7.已知下列命题,其中真命题的个数( )(1)27的立方根是3-;(2)有理数与数轴上的点一一对应;(3)平方根是它本身的数有±1和0;(4)同位角相等;(5)等腰三角形两腰上的高相等;(6)若22a b =,则a b =.A .5个B .4个C .3个D .2个8.如图,在等边三角形ABC 的AC 边上取中点D ,E 为BC 的延长线上取一点,且BD DE =,则CDE ∠的度数是( )A .20︒B .25︒C .30D .35︒9.如图,ABC ∆中,AD BC ⊥于D ,BE AC ⊥于E ,AD 与BE 相交于F ,若BF AC =,26EBC ∠=︒,则ABE ∠的大小是( )A .15︒B .19︒C .25︒D .3010.如图,已知在Rt △ABC 中,∠ABC=90°,点D 是BC 边的中点,分别以B 、C 为圆心,大于线段BC 长度一半的长为半径圆弧,两弧在直线BC 上方的交点为P ,直线PD 交AC 于点E ,连接BE ,则下列结论:①ED ⊥BC ;②∠A=∠EBA ;③EB 平分∠AED ;④ED=12AB 中,一定正确的是( )A .①②③B .①②④C .①③④D .②③④二、填空题 11.计算:3242x y xy ÷=__.12.已知一个正数m 的平方根是51a +和13a -,则m =___.13.利用乘法公式计算:2123124122-⨯=___.14.若B 是一个单项式,且223(4)82B a b a b ab -=-+,则B =__.15.如图,在ABC ∆中,AB AC =,50BAC ∠=︒,O 是BAC ∠的平分线上的一点,且OA OB =,点C 沿EF 折叠后与点O 重合,则OEF ∠的度数是__.16.如图,△ABC 中,AB =AC ,DE 是AB 的中垂线,△BCD 的周长 是14,BC = 5,那么AB =_________.三、解答题17.先化简,再求值:453433331(963)()3a x a x a x a x --÷-,其中1x =-,1a =-.18.先因式分解,然后计算求值:(1)229124x xy y ++,其中43x =,12y ; (2)22()()22a b a b +--,其中18a =-,2b =.19.将下面证明中每一步的理由写在括号内.已知:如图,AB CD =,AD CB =求证:A C ∠=∠证明:连接BD .在BAD ∆和DCB ∆中, AB CD =( )AD CB =( )BD DB =( )BAD DCB ∴∆≅∆( )A C ∴∠=∠( )20.阅读下面的文字,解答问题部写出来,1事实上,这种表示方法是有道理的,的整数部分是1,差就是小数部分.请解答:(1的整数部分为 ,小数部分可以表示为 ;(2)已知10x y ++,其中x 是整数,且01y <<,求2(2)x y -+的值.21.按要求完成下列问题:(1)用尺规作图作角平分线:如图所示,已知点M 是AOB ∠的OA 边上的一点,在OB 上取一点N ,使ON OM =,再分别过点M ,N 作OA ,OB 的垂线,两垂线交于点P ;(保留作图痕迹)(2)思考射线OP 为什么就是AOB ∠的平分?写出证明过程;(3)直接写出PM 与PN 的数量关系,尝试用文字语言准确表述这条性质.22.已知:如图,AB AC =,点D 是BC 的中点,AB 平分DAE ∠,AE BE ⊥.(1)求证:AD AE =;(2)若//BE AC ,试判断ABC ∆的形状,并说明理由.23.如图,P 、Q 是△ABC 边上的两点,且BP=PQ=QC=AP=AQ ,求∠BAC 的度数.24.已知△ABC 中AB=AC=10 DE 垂直平AB ,交AC 于E.已知△BEC 的周长是16,求△ABC 的周长.25.(1)如图1在边长为a 的正方形中,挖掉一个边长为b 的小正方形()a b >:把余下的部分拼成一个长方形,(如图2),通过计算两个图形(阴影部分)的面积,可以验证一个等式,请写出这个等式.(2)通过以上方法构图验证22()()4a b a b ab +--=(画出图形,并加以简要说明).参考答案1.C【解析】根据平方根、立方根及算术平方根的定义,即可求解.【详解】解:3=;故不符合题意;7的平方根,故符合题意;④圆周率π是无理数,故不符合题意;故选:C .【点睛】此题主要考查了立方根、算术平方根、平方根的定义,解题时要注意平方根和算术平方根的区别:一个非负数的平方根有两个,算术平方根有一个,是非负数.2.D【分析】根据合并同类项法则、积的乘方、同底数幂的乘法和除法,对各项计算后即可判断.【详解】解:A 、231x x x -÷=,错误;B 、33(2)8x x -=-,错误;C 、22x 与x 不是同类项,不能合并,错误;D 、339()x x =,正确;故选:D .【点睛】本题考查包括合并同类项、积的乘方、同底数幂的乘法和除法,需熟练掌握且区分清楚,才不容易出错.3.A【详解】试题分析:根据整式的乘法可得(x+m )(x-8)=x 2+(m-8)x-8m ,由于不含x 项,则可知m-8=0,解得m=8.故选A4.D【分析】把多项式乘法展开再根据对应项系数相等即可求解.【详解】解:(1)(4)x x -+,234x x =+-,2ax bx c =++,1a ,3b =,4c =-.则12abc =-.故选:D .【点睛】注意正确计算多项式的乘法运算,然后根据对应项系数相等求解是解题的关键. 5.A【分析】因为∠ABC=∠DCB ,BC 共边,对选项一一分析,选择正确答案.【详解】A 、补充AC DB =,SSA 不能判定ABC DCB ∆≅∆,故A 错误;B 、补充AB DC =,可根据SAS 判定ABC DCB ∆≅∆,故B 正确;C 、补充AD ∠=∠,可根据AAS 判定ABC DCB ∆≅∆,故C 正确;D 、补充ABD DCA ∠=∠,可根据ASA 判定ABC DCB ∆≅∆,故D 正确.故选A .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.D【分析】直接利用因式分解的意义分析得出答案.【详解】解:A 、2(1)(1)1x x x +-=-,从左到右是整式的乘法运算,不合题意;B 、2221(1)x x x -+=-,原式不合题意; C 、224(2)(2)x y x y x y -=+-,原式不合题意;D 、22(2)(2)(2)(22)x y y x x y y x ---=-+-,从左到右是因式分解,正确.故选:D .【点睛】此题主要考查了因式分解的意义,正确把握相关定义是解题关键.7.D【分析】根据各个小题中的说法可以判断是否为真命题,本题得以解决.【详解】解:27的立方根是3,故(1)中的命题是假命题;有理数与数轴上的点一一对应,故(2)中的命题是真命题;平方根是它本身的数只有0,故(3)中的命题是假命题;如果两直线不平行时,同位角就不相等,故(4)中的命题是假命题;等腰三角形两腰上的高相等,故(5)中的命题是真命题;若22a b =,则a b =±,故(6)中的命题是假命题;故选:D .【点睛】本题考查命题与定理,解答本题的关键是明确题意,可以判断出各个小题中的命题的真假.8.C【分析】根据等边三角形的性质可得60ACB ∠=︒,30DBC ∠=︒,再根据等边对等角的性质求出30E DBC ∠=∠=︒,然后根据三角形的一个外角等于与它不相邻的两个内角的和,列式求解得到30∠=︒CDE .【详解】证明:ABC ∆是等边三角形,60ABC ACB ∴∠=∠=︒,AD DC =,1302DBC ABC ∴∠=∠=︒, DB DE =,30E DBC ∴∠=∠=︒,ACB CDE E ∠=∠+∠,30CDE ∴∠=︒.故选:C .【点睛】本题考查等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.B【分析】先利用AAS 判定BDF ADC ∆≅∆,从而得出BD DA =,即ABD ∆为等腰直角三角形.所以得出45ABC ∠=︒,进而解答即可.【详解】解:AD BC ⊥于D ,BE AC ⊥于E ,90BEA ADC ∴∠=∠=︒.90FBD BFD ∠+∠=︒,90AFE FAE ∠+∠=︒,BFD AFE ∠=∠,FBD FAE ∴∠=∠,在BDF ∆和ADC ∆中,FDB ADC FBD CAD BF AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BDF ADC AAS ∴∆≅∆,BD AD ∴=,45ABC BAD ∴∠=∠=︒,26EBC ∠=︒,452619ABE ∴∠=︒-︒=︒,故选:B .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、AAS 、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.B【详解】解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:根据作图过程可知:PB=CP,∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确.∵∠ABC=90°,∴PD∥AB.∴E为AC的中点,∴EC=EA,∵EB=EC.AB正确.∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=12∴正确的有①②④.故选B.考点:线段垂直平分线的性质.11.22x y.【分析】根据整式的除法法则:系数相除、相同字母相除即可得结论.【详解】解:322422÷=x y xy x y2x y.故答案为:2【点睛】本题考查了整式的除法,熟练掌握除法法则是解题的关键.12.121.【分析】根据一个正数的两个平方根,它们互为相反数得出51130++-=,求出a即可.a a【详解】a-是一个正数m的两个平方根,解:51a+和13∴++-=,51130a aa=,2∴5111a +=,211121m ==.故答案为:121.【点睛】本题考查了平方根和解一元一次方程的应用,关键是求出a 的值,注意:一个正数有两个平方根,它们互为相反数.13.1.【分析】原式变形后,利用平方差公式计算即可得到结果.【详解】解:原式22222123(1231)(1231)123(1231)12312311=-+⨯-=--=-+=,故答案为:1【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.14.22ab -.【分析】直接利用整式的除法运算法则计算得出答案.【详解】解:223(4)82B a b a b ab -=-+,223(82)(4)B a b ab a b ∴=-+÷-22(4)(4)ab a b a b =--÷-22ab =-.故答案为:22ab -.【点睛】此题主要考查了多项式除以单项式,正确将原式变形是解题关键.15.50︒.【分析】利用全等三角形的判定以及等腰三角形的性质得出40OBC ∠=︒,再根据ABO ACO ∆≅∆得到40OBC OCB ∠=∠=︒,再利用翻折变换的性质得出EO EC =,CEF FEO ∠=∠,进而求出OEF ∠.【详解】解:50BAC ∠=︒,OA 平分BAC ∠,25OAB ABO ∴∠=∠=︒,OA OB =,25OAB OBA ∴∠=∠=︒AB AC =,50BAC ∠=︒,65ABC ACB ∴∠=∠=︒,652540OBC ∴∠=︒-︒=︒,AB AC BAO CAO AO AO =⎧⎪∠=∠⎨⎪=⎩,()ABO ACO SAS ∴∆≅∆,BO CO ∴=,40OBC OCB ∴∠=∠=︒,点C 沿EF 折叠后与点O 重合,EO EC ∴=,CEF FEO ∠=∠,180240502CEF FEO ︒-⨯︒∴∠=∠==︒, 故答案为:50︒.【点睛】此题主要考查了翻折变换的性质以及全等三角形的性质和三角形内角和定理等知识,利用翻折变换的性质得出对应相等关系是解题关键.16.9【分析】由DE 是AB 的中垂线,根据线段垂直平分线的性质,可得AD=BD ,又由△BCD 的周长为14,即可得BC+BD+CD=BC+AD+CD=BC+AC=14,继而求得答案.【详解】∵DE 是AB 的中垂线,∴AD=BD ,∵△BCD 的周长为14,∴BC+BD+CD=BC+AD+CD=BC+AC=14,∵BC=5,∴AB=AC=9.故答案为9.【点睛】本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形的周长等知识,熟练掌握相关知识是解题的关键.注意掌握数形结合思想的应用.17.227189ax x -++,18.【分析】先根据多项式除以单项式法则算除法,再代入求出即可.【详解】 解:453433331(963)()3a x a x a x a x --÷-227189ax x =-++, 当1x =-,1a =-时,原式2718918=-+=.【点睛】本题考查了整式的混合运算和代数求值,能正确根据整式的运算法则进行化简是解此题的关键.18.(1)2(32)x y +,9;(2)ab ,14-. 【分析】(1)先根据完全平方公式分解因式,再代数求值即可;(2)先根据平方差公式分解因式,再代数求值即可.【详解】解:(1)当43x =,12y 时,2222419124(32)[32()]932x xy y x y ++=+=⨯+⨯-=; (2)当18a =-,2b =时, 原式()()2222a b a b a b a b +-+-=+-ab=1=-⨯281=-.4【点睛】本题考查了分解因式,能根据公式正确分解因式是解此题的关键.19.已知;已知;公共边;SSS;全等三角形的对应角相等.【分析】根据SSS证明三角形全等,进而利用全等三角形的性质解答.【详解】解:连接BD.∆中,在BAD∆和DCBAB CD=(已知)=(已知)AD CB=(公共边)BD DBSSS∴∆≅∆()BAD DCB∴∠=∠(全等三角形的对应角相等);A C故答案为:已知;已知;公共边;SSS;全等三角形的对应角相等.【点睛】本题考查了全等三角形性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.20.(1)22;(2)5.【分析】(1(2)直接利用二次根式的性质得出x,y的值进而得出答案.【详解】解:(1)273<<,的整数部分为:2,2;故答案为:22;(2)107x y +=+,其中x 是整数,且01y <<,121013<,12x ∴=,(10122y =-=,22(2)12x y ∴-+=-5=.【点睛】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键.21.(1)详见解析;(2)详见解析;(3)PM =PN ,角平分线上的点到角的两边距离相等.【分析】(1)根据要求作出点O 即可.(2)结论:OP 平分AOB ∠.利用全等三角形的性质证明即可.(3)利用全等三角形的性质证明即可.【详解】解:(1)如图,点P 即为所求.(2)结论:OP 平分AOB ∠.理由:由作图可知:90OMP ONP ∠=∠=︒,OM ON =,OP OP =,Rt OPM Rt OPN(HL)∴∆≅∆,POM PON ∴∠=∠,OP ∴平分AOB ∠.(3)POM PON ∆≅∆, PM PN ∴=,结论是,角平分线上的点到角的两边距离相等.【点睛】本题考查尺规作图,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(1)见解析;(2)△ABC为等边三角形【分析】(1)根据三线合一定理,得AD⊥BD,由角平分线的性质定理,得BE=BD,即可得到Rt ABE Rt ABD≌,即可得到结论;∆∆(2)由BE∥AC,则∠EAC=∠E=90°,由角平分线的性质,得到∠EAB=∠BAD=∠CAD=30°,则∠BAC=60°,即可得到答案.【详解】(1)证明:如图,∵AB=AC ,点D是BC中点∴AD⊥BD∵AB平分∠DAE,AE⊥BE∴BE=BD∴Rt ABE Rt ABD≌∆∆∴AD=AE;(2)解:△ABC为等边三角形∵BE∥AC∴∠EAC=∠E=90°∵AB=AC ,AD是中线∴AD平分∠BAC∵AB平分∠DAE∴∠EAB=∠BAD=∠CAD=30°∴∠BAC=∠BAD+∠CAD=60°∵AB=AC∴△ABC是等边三角形.【点睛】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,角平分线的性质定理,解题的关键是熟练掌握所学的知识进行解题.23.∠BAC=105°.【分析】由BP=PQ=QC=AP=AQ,可得∠PAQ=∠APQ=∠AQP=60°,∠B=∠BQP,∠C=∠CAQ,继而根据三角形外角的性质可得∠BQP=30°,继而可得∠AQB=90°,从而求得∠CAQ=45°,再由∠BAC=∠BAQ+∠CAQ即可求得答案.【详解】∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BQP,∠C=∠CAQ,又∵∠BQP+∠ABQ=∠APQ,∠C+∠CAQ=∠AQB,∴∠BQP=30°,∴∠AQB=∠BQP+∠AQP=90°,∴∠CAQ=45°,∴∠BAC=∠BAQ+∠CAQ=105°.【点睛】本题考查了等边三角形的判定与性质,等腰三角形的性质,三角形外角的性质等,正确求出∠BAQ与∠CAQ的度数是解本题的关键.24.26.【分析】要求△ABC的周长,现已知AB=AC=10,只要得到BC即可,根据线段垂直平分线的性质可求得AE=BE,根据BE+EC=AC及△BEC的周长是16,可求得△ABC的周长.【详解】∵DE垂直平分AB,∴AE=BE ,∴CE+BE=CE+AE=AC ,又△BEC 的周长是16,∴AC+BC=16,∴BC=16-10=6,△ABC 的周长为BC+AC+AB=10+10+6=26.【点睛】本题考查主要是线段垂直平分线的性质及等腰三角形的性质;在此类题中学会转换线段之间的关系即可,也是解题的关键.25.(1)22()()a b a b a b -=+-;(2)详见解析.【解析】【分析】(1)由面积的和差关系可求解;(2)利用空白面积为大正方形面积减去周围4个长方形面积进而得出答案.【详解】解:(1)根据图形可知:第一个图形阴影部分的面积为22a b -,第二个图形阴影部分的面积为()()a b a b +-,即22()()a b a b a b -=+-,(2)如图3所示:空白面积为:22()()4a b a b ab -=+-..【点睛】此题主要考查了平方差公式的几何背景,利用图形面积得出是解题关键.。
华师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.16的平方根是( )A .4±B .4C .2±D .22.下列运算正确的是( ).A .6212x x x ⋅=B .623x x x +=C .()268x x =D .()624x x x -÷= 3.下列多项式中,不能用完全平方公式分解因式的是( )A .214m m ++ B .222x xy y -+-C .221449x xy y -++D .22193x x -+ 4.下列命题是假命题的有( ) ①若a 2=b 2,则a =b ;②一个角的余角大于这个角;③若a ,b 是有理数,则|a +b|=|a|+|b|;④如果∠A =∠B ,那∠A 与∠B 是对顶角.A .1个B .2个C .3个D .4个 5.如图所示的44⨯正方形网格中,1234567∠+∠+∠+∠+∠+∠+∠=( )A .330°B .315°C .310°D .320° 6.若53x =,52y =,则235-=x y ( )A .34B .1C .23D .987.如果()15x m x ⎛⎫++ ⎪⎝⎭的结果不含x 项,则m 的值是( ) A .15 B .5 C .15- D .5-8.等式()()21 1a a --⋅=-中,括号内应填入( )A .1a +B .1a -C .1a --D .1a - 9.如图,已知ABC BAD ∠=∠,以下条件不能证明ABC BAD ∆∆≌的是( )A .AC BD =B .CD ∠=∠ C .CAB DBA ∠=∠ D .BC AD = 10.已知一个等腰三角形ABC 的两边长为5,7,另一个等腰三角形ABC 的两边为23x -,35x -,若两个三角形全等,则x 的值为( )A .5B .4C .4或5D .103二、填空题11.请写出一个大于1且小于2的无理数:___.12.计算:()()299990.045⎡⎤⨯-⎣⎦的结果是______. 13.如图,有一个池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接达到点A 和B ,连接AC 并延长到点D ,使CD=CA ,连接BC 并延长到点E ,使CE=CB ,连接DE ,那么量出DE 的长度就是A ,B 的距离,这是根据全等三角形判定______证明______全等______,从而得出DE 的长就是A ,B 的距离.14.若2249x mxy y -+是一个完全平方式,则m =______15.已知:如图,在长方形ABCD 中,AB =4,AD =6.延长BC 到点E ,使CE =2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为__秒时,△ABP 和△DCE 全等.16.如图,点D 在AB 上,点E 在AC 上,CD 与BE 相交于点O ,且AD =AE ,AB =AC ,若,则C ∠=_______三、解答题17.计算(1)(2)2201820192017-⨯18.计算:()()22221232x xy y x y xy x ⎛⎫⋅---⋅- ⎪⎝⎭19.先化简,再求值.()()()()25322253a a a a b a b a b +-+-+÷-,其中12ab =- 20.若x ,y 满足228x y +=,2xy =,求下列各式的值.(1)()2x y +(2)x y -(3)33x y xy +21.对于任意实数a 、b 、c 、d ,我们规定符号的意义是a bad bc c d =-按照这个规律计算:(1)5678=______(2)当2310x x -+=时,求1321x x x x +--的值.22.如图,已知点B 、E 、C 、F 在一直线上,AB DF =,AC DE =,A D ∠=∠ (1)求证://AC DE ;(2)若10BF =,2EC =,求BC 的长.23.老师在讲完乘法公式()2222a b a ab b ±=±+的多种运用后,要求同学们运用所学知识解答:求代数式245x x ++的最小值?同学们经过交流、讨论,最后总结出如下解答方法: 解:()2224544121x x x x x ++=+++=++∵()220x +≥即当2x =-时,()22x +的值最小,最小值是0,∴()2211x ++≥当()220x +=时,()221x ++的值最小,最小值是1,∴245x x ++的最小值是1.请你根据上述方法,解答下列各题(1)当x =______时,代数式2612x x -+的最小值是______; (2)若223y x x =-+-,当x =______时,y 有最______值(填“大”或“小”),这个值是______;(3)若235y x x -=-,求y x +的最小值.24.已知:如图,AB AD =,AC AE =,BAD CAE ∠=∠.求证:BC DE =.25.在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.参考答案1.A【分析】如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作x=±.【详解】解:16的平方根是4±.故选A.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.2.D【分析】分别根据同底数幂的乘法法则,合并同类项法则,幂的乘方运算法则以及同底数幂的除法法则逐一判断即可.【详解】A 、 628x x x ⋅=,故本选项不符合题意;B 、6x 和2x 不是同类项,所以不能合并,故本选项不合题意;C 、()1262x x =,故本选项不符合题意; D 、()624x x x -÷=,故本选项符合题意;故选:D .【点睛】本题主要考查了合并同类项,同底数幂的乘除法以及幂的乘方,熟记幂的运算法则是解答本题的关键.3.C【分析】直接利用完全平方公式分解因式得出答案.【详解】A 、222111(44)(2)444m m m m m ++=++=+能用完全平方公式分解因式,不符合题意;B 、222222(2)()x xy y x xy y x y -+-=--+=--能用完全平方公式分解因式,不符合题意;C 、221449x xy y -++不能用完全平方公式分解因式,符合题意;D 、2222111(69)(3)9399x x x x x -+=-+=-能用完全平方公式分解因式,不符合题意; 故选:C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握完全平方公式是解本题的关键. 4.D【分析】根据平方根、余角、绝对值、对顶角的性质,逐个判断,即可得到答案.【详解】若a 2=b 2,则a =b 或a =-b ,故①错误;当一个角的度数小于45,这个角的余角大于这个角,故②错误;当a ,b 是有理数,且a ,b 符号相同时可以得到|a +b|=|a|+|b|,故③错误;∠A =∠B ,和∠A 与∠B 是否是对顶角,没有因果关系,故④错误;故选:D .【点睛】本题考查了平方根、余角、绝对值、对顶角、命题的知识;解题的关键是熟练掌握平方根、余角、绝对值、对顶角的性质,即可得到答案.5.B【分析】根据正方形的轴对称性得∠1+∠7=90°,∠2+∠6=90°,∠3+∠5=90°,∠4=45°.【详解】解:由图可知,∠1所在的三角形与∠7所在的三角形全等,可得1790︒∠+∠=,2690︒∠+∠=, 3590︒∠+∠=,544︒∠=,则1234567315︒∠+∠+∠+∠+∠+∠+∠=故选B .6.D【分析】根据幂的乘方的逆运算,同底数幂的除法的逆运算进行计算.【详解】解:()()23232323955555328x y x y x y -=÷=÷=÷=.故选:D .【点睛】本题考查幂的运算,解题的关键是掌握幂的乘方的逆运算,同底数幂的除法的逆运算.7.C【分析】先化简()15x m x ⎛⎫++ ⎪⎝⎭,然后再由结果不含x 项可进行求解.【详解】解:()2111555x m x x m x m ⎛⎫⎛⎫++=+++ ⎪ ⎪⎝⎭⎝⎭,∵结果不含x 项,∴15m+=,∴15m=-;故选C.【点睛】本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的方法是解题的关键.8.B【分析】根据平方差公式的结构特征进行解答即可.【详解】解:结合题意,可知相同项是-a,相反项是1和-1,∴空格中应填:1-a.故选:B.【点睛】本题考查了平方差公式,熟记平方差公式的结构特征,是解决此类问题的关键.9.A【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.【详解】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,ABC BADAB BACAB DBA∠=∠⎧⎪=⎨⎪∠=∠⎩,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,C DABC BADAB BA∠=∠⎧⎪∠=∠⎨⎪=⎩,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,BC ADABC BADAB BA=⎧⎪∠=∠⎨⎪=⎩,△ABC≌△BAD(SAS),故D正确;故选:A.本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.B【分析】根据等腰ABC 的两边长为5,7,得到ABC 的三边长为5,7,7;或5,5,7;之后根据全等分2x-3=5,2x-3=7,3x-5=5,3x-5=7四种情况分类讨论,舍去不合题意的即可求解.【详解】解:∵等腰ABC 的两边长为5,7,∴ABC 的三边长为5,7,7;或5,5,7;由题意得另一个等腰三角形的两边为23x -,35x -,且与等腰ABC 全等(1)当2x-3=5时,解得x=4,则3x-5=7,符合题意;(2)当2x-3=7时,解得x=5,则3x-5=10,不合题意;(3)当3x-5=5时,解得103x =,则2x-3=113,不合题意; (4)当3x-5=7时,解得x=4,则2x-3=5,符合题意;综上所述:x 的值为4.故答案为:B【点睛】本题考查了等腰三角形的定义,全等三角形的性质,根据题意分类讨论是解题关键.11.【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.【详解】大于1且小于2?2π-等,.考点:1.开放型;2.估算无理数的大小.12.1根据积的乘方的逆运算和幂的乘方计算即可【详解】解:原式()()()()99992999999990.0450.04250.110425⎡⎤⨯-⨯⨯⎣===⎦==故答案为:1【点睛】本题考查了积的乘方的逆运算和幂的乘方,熟练掌握法则是解题的关键 13.SAS △ABC △DEC【分析】利用 “SAS”证明△ABC 和△DEC 全等,再根据全等三角形对应边相等解答.【详解】在△ABC 和△DEC 中,BC CEACB DCE CA CD=⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEC (SAS ),∴AB=DE .∴DE 的长就是A ,B 的距离.故答案为:SAS ,△ABC ,△DEC .【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键. 14.12±【分析】利用完全平方公式的结构特征判断即可确定出m 的值.【详解】∵2249x mxy y -+是一个完全平方式,∴22312m =±⨯⨯=±.故答案为:12±.【点睛】本题考查了完全平方公式的简单应用,明确完全平方公式的基本形式是解题的关键. 15.1或7【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=16-2t=2即可求得结果.【详解】因为AB =CD ,若∠ABP =∠DCE =90°,BP =CE =2,根据SAS 证得△ABP ≌△DCE ,由题意得:BP =2t =2,所以t =1,因为AB =CD ,若∠BAP =∠DCE =90°,AP =CE =2,根据SAS 证得△BAP ≌△DCE ,由题意得:AP =16﹣2t =2,解得t =7.所以,当t 的值为1或7秒时.△ABP 和△DCE 全等.故答案为:1或7.【点睛】本题考查了全等三角形的判定,要注意分类讨论.16.20°【解析】试题解析:,,.AD AE BAE CAD AB AC ∠=∠==.ABE CAD ≌∴.B C ∴∠=∠20.B ∠=20.C ∴∠=故答案为20.17.(1)14;(2)1【分析】(1)先利用立方根和算术平方根的定义化简,再进行合并运算;(2)利用平方差公式进行化简,即可求解.【详解】(1)解:原式1554=-+14=;(2)解:原式()()220182018120181=-+-22201820181=-+1=.【点睛】此题考查了立方根、算术平方根和平方差公式的运算,熟练掌握这些运算法则是解题的关键.18.32245-x y x y【分析】先单项式乘多项式法则计算,再利用单项式与单项式法则计算,最后合并同类项即可,【详解】解:原式332222233x y x y x y x y =-+-,32245x y x y =-.【点睛】本题考查整式的乘法混合运算,掌握整式乘法的运算法则,同类项以及合并同类项法则世界关键.19.42ab -,5【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项先计算乘方运算,再计算除法运算,合并得到最简结果,把12ab =-代入计算即可求出值. 【详解】()()()()25322253a a a a b a b a b +-+-+÷-, =253242453a ab a b a b a +-+÷-,=453ab ab -+,=42ab -, 当12ab =-时, 原式=4+1=5,【点睛】本题考查了整式的混合运算-化简求值,熟练掌握整式的混合运算法则是解题的关键, 20.(1)12;(2)2x y -=±;(3)16【分析】(1)原式利用完全平方公式展开,将各自的值代入计算即可求出值;(2)所求式子利用完全平方公式变形,将各自的值代入计算,开方即可求出;(3)先提公因式xy ,整体代入计算即可.【详解】解:(1)∵228x y +=,2xy =,∴()2x y +222x y xy =++822=+⨯12=;(2)∵228x y +=,2xy =,∴()22228224x y x y xy -=+-=-⨯=,∴2x y -=±;(3)()33222816x y xy xy x y +=+=⨯=.【点睛】此题考查了完全平方公式及其变形式,熟练掌握公式是解本题的关键.21.(1)-2;(2)1【分析】(1)直接按规定的法则计算即可;(2)先解2310x x -+=变形为231x x -=-,再按法则把12x x +- 31x x -转化为(x +1)(x -1)-3x (x -2)按多项式乘多项式法则,单项式乘多项式运算法则计算,合并同类项,然后把231x x -=-代入计算即可.【详解】(1)5678=5×8-7×6=40-42=-2, 故答案为:-2;(2)∵2310x x -+=,∴231x x -=-, ∴12x x +- 31x x -=(x +1)(x -1)-3x (x -2),= x 2-1-3x 2+6x ,=-2x 2+6x -1,=-2(x 2-3x )-1,=-2×(-1)-1,=1.【点睛】本题考查了新定义问题,整式的混合运算法则,新符号,新运算、要求读懂题意并结合已有知识、能力进行理解,根据新概念进行运算是解题关键.22.(1)见解析;(2)BC 长为6【分析】(1)证明ABC DFE △≌△,得到ACB DEF ∠=∠,即可证明//AC DE ;(2)根据ABC DFE △≌△,进而证明EB CF =,求出EB ,进而求出BC .【详解】解:(1)在ABC 和DFE △中,AB DF A D AC DE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DFE SAS ≌△△, ∴ACB DEF ∠=∠,∴//AC DE ;(2)∵ABC DFE △≌△,∴BC FE =,∴BC EC FE EC -=-,即EB CF =, ∴10242EB CF -===, ∴426BC BE CE =+=+=.【点睛】本题考查了全等三角形的判定与性质,本题证明ABC DFE △≌△是解题关键.23.(1)3,3; (2)1,大,2-; (3)当1x =时,y x +的最小值为6-.【分析】(1)利用配方法把原式变形,可确定最小值;(2)将函数解析式配方后即可确定当x 取何值时能取到最小值;(3)首先得到有关x +y 的函数关系式,然后配方确定最小值即可.【详解】(1)∵()2261233x x x -+=-+,∴当3x =时,有最小值3;故答案为3,3.(2)∵()222312y x x x =-+-=---,∴当1x =时最大值2-;故答案为1,大,2-.(3)∵235y x x -=-∴()222516x y x x x +=--=--,∵()210x -≥,∴()2166x --≥-,∴当1x =时,y x +的最小值为6-.【点睛】本题考查了配方法的应用及非负数的性质,解题的关键是能够对二次三项式进行配方. 24.见解析【分析】先通过∠BAD=∠CAE 得出∠BAC=∠DAE ,从而证明△ABC ≌△ADE ,得到BC=DE .【详解】证明:∵∠BAD=∠CAE ,∴∠BAD+∠DAC=∠CAE+∠DAC .即∠BAC=∠DAE ,在△ABC 和△ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△ADE (SAS ).∴BC=DE .【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS 、SSS 、SAS 、SSA 、HL .25.(1)①证明见解析;②证明见解析;(2)证明见解析;(3)DE =BE ﹣AD .【分析】(1)根据同角的余角相等得到∠ACD =∠CBE ,即可证明△ADC ≌△CEB ;(2)根据全等三角形的性质得到AD =CE ,DC =EB ,即可证明DE =AD ﹣BE ;(3)与(1)的证明方法类似,证的△ADC ≌△CEB ,得出AD =CE ,DC =EB ,即可得出DE 、AD 、BE 的等量关键.【详解】(1)∵∠ACB =90°∴∠ACD +∠BCE =90°又∵AD ⊥MN ,BE ⊥MN∴∠ADC =∠CEB =90°∴∠BCE +∠CBE =90°∴∠ACD =∠CBE在△ADC 和△CEB 中,ADC CEB ACD CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB∴AD =CE ,DC =BE∴DE =DC +CE =BE +AD ;(2)在△ADC 和△CEB 中,90ADC CEB ACD CBEAC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB∴AD=CE,DC=EB∴DE=CE﹣DC=AD﹣EB;(3)DE=BE﹣AD.在△ADC和△CEB中,90 ADC CEBACD CBEAC CB∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ADC≌△CEB∴AD=CE,DC=BE∴DE=DC﹣CE=BE﹣AD.【点睛】本题主要考查全等三角形的判定及性质、直角三角形,关键是仔细观察图形得出线段的等量关系.。
八年级(上)期中数学试卷一、用心选一选(每小题3分,共48分,每个小题给出的四个选项中,只有一个选项符合题意)1.是一个数的算术平方根,则这个数为()A.4B.1C.D.±2.若分式的值为0,则()A.x=±1B.x=1C.x=﹣1D.x=03.下列实数中,属于无理数的是()A.﹣3B.3.14C.D.4.下列命题中,为真命题的是()A.对顶角相等B.同位角相等C.若a2=b2,则a=b D.若a>b,则﹣2a>﹣2b5.近似数39.37亿是精确到()A.百分位B.千万位C.百万位D.亿位6.下列变形中,正确的是()A.=B.=C.=a﹣b D.无7.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE 的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE8.如图是数学老师给玲玲留的习题,玲玲经过计算得出的正确的结果为()A.1B.2C.3D.49.如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE的长是()A.7B.5C.3D.210.有一个数值转换器,程序如图所示,当输入的数x为81时,输出的数y的值是()A.9B.3C.D.±11.如图,实数﹣6在数轴上表示的大致位置是()A.点A B.点B C.点C D.点D12.一艘轮船在静水中的最大航速为40km/h,它以最大航速沿河顺流航行100km所用时间,和它以最大航速沿河逆流航行80km所用时间相等,设河水的流速vkm/h,则可列方程为()A.=B.C.D.13.关于x的分式方程有增根,则a的值为()A.2B.3C.4D.514.已知,则的值是()A.B.﹣C.2D.﹣215.若关于x的方程=1的解是正数,则a的取值范围是()A.a>﹣1B.a>﹣1且a≠0C.a<﹣1D.a<﹣1且a≠﹣316.在△ABC中,AB=AC,AB>BC,点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC,若△ABC的面积为18,则△ACF与△BDE的面积之和是()A.6B.8C.9D.12二、仔细填一填(每小题3分,共12分)17.比较实数的大小:3(填“>”、“<”或“=”).18.2÷m×=.19.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.20.如图,已知△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC=16厘米,点D为AB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为厘米/秒时,能够在某一时刻使△BPD与△CQP全等.三、用心答一答,相信你一定能行!(共包括6道大题,60分)21.(8分)解方程:﹣=1.四、(8分)22.(8分)已知实数a、b满足|a﹣5|+=0(1)求a,b的值;(2)求a+b﹣1的立方根.五、(10分)23.(10分)已知在△ABC与△ABD中,AC=BD,∠C=∠D=90°,AD与BC交于点E.(1)求证:AE=BE;(2)若AC=3,BC=4,求△ACE的周长.六、(10分)24.(10分)老师在黑板上书写了一个代数式的正确计算结果,随后用字母A代替了原代数式的一部分,如下:(A﹣)÷=(1)求代数式A,并将其化简;(2)原代数式的值能等于﹣1吗?请说明理由.七、(12分)25.(12分)甲、乙两家园林公司承接了某项园林绿化工程,已知乙公司单独完成此项工程所需要的天数是甲公司单独完成所需要天数的1.5倍,如果甲公司先单独工作10天,再由乙公司单独工作15天,这样恰好完成整个工程的.(1)求甲、乙两公司单独完成这项工程各需多少天?(2)园林部门要求完成该绿化工程的时间不得超过30天,甲、乙公司合作若干天后,甲公司另有项目离开,剩下的过程由乙公司单独完成,求甲、乙两公司至少合作多少天.26.(12分)问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC.CD上的点且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG.再证明≌,可得出结论,他的结论应是.请你按照小王同学的思路写出完整的证明过程.实际应用(2)如图2,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的一处,舰艇乙在指挥中心南偏东70°的B处,且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里,小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F 处.且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离是海里(直接写出答案).参考答案与试题解析一、用心选一选(每小题3分,共48分,每个小题给出的四个选项中,只有一个选项符合题意)1.是一个数的算术平方根,则这个数为()A.4B.1C.D.±【分析】根据算术平方根的定义即可求出这个数.【解答】解:∵()2=∴该数为故选:C.【点评】本题考查算术平方根的定义,解题的关键是正确理解算术平方根的定义,本题属于基础题型.2.若分式的值为0,则()A.x=±1B.x=1C.x=﹣1D.x=0【分析】直接利用分式的值为零则分子为零,分母不等于零,即可得出答案.【解答】解:∵分式的值为0,∴|x|﹣1=0且x+1≠0,解得:x=1.故选:B.【点评】此题主要考查了分式的值为零的条件,正确把握相关定义是解题关键.3.下列实数中,属于无理数的是()A.﹣3B.3.14C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣3是整数,是有理数,故A选项错误;B、3.14是小数,是有理数,故B选项错误;C、是有限小数,是有理数,故C选项错误.D、是无理数,故D选项正确故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.下列命题中,为真命题的是()A.对顶角相等B.同位角相等C.若a2=b2,则a=b D.若a>b,则﹣2a>﹣2b【分析】分别判断四个选项的正确与否即可确定真命题.【解答】解:A、对顶角相等为真命题;B、两直线平行,同位角相等,故为假命题;C、a2=b2,则a=±b,故为假命题;D、若a>b,则﹣2a<﹣2b,故为假命题;故选:A.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.近似数39.37亿是精确到()A.百分位B.千万位C.百万位D.亿位【分析】根据近似数的精确度求解.【解答】解:近似数39.37亿是精确到百万位.故选:C.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.6.下列变形中,正确的是()A.=B.=C.=a﹣b D.无【分析】按照分式的基本性质逐个分析验证即可.【解答】解:选项A:等式的坐标已经是最简分式,没法变为右边,故A不正确;选项B:左边已经是最简分式,分子除以了m,分母除以了n,不符合分式的基本性质,故不正确;选项C:分子是分母的平方,故可以约掉分母,变为(a﹣b),故C成立;综上,只有C正确.故选:C.【点评】本题考查了分式的基本性质在分式化简中的应用,熟练掌握分式的基本性质并正确运用,是解题的关键.7.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE 的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE【分析】根据全等三角形的判定方法对各选项进行判断.【解答】解:∵∠A=∠D,∠B=∠DFE,∴当BE=CF时,即BC=EF,△ABC≌△DFE(AAS);当AB=DF时,即BC=EF,△ABC≌△DFE(ASA);当AC=DE时,即BC=EF,△ABC≌△DFE(AAS).故选:C.【点评】本题考查了全等三角形的判定:灵活运用全等三角形的5种判定方法.若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.8.如图是数学老师给玲玲留的习题,玲玲经过计算得出的正确的结果为()A.1B.2C.3D.4【分析】先根据分式混合运算的法则把原式进行化简,再把a+b=ab=3代入进行计算即可.【解答】解:原式=+2=+2,当a+b=ab=3时,原式=+2=3.故选:C.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.9.如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE的长是()A.7B.5C.3D.2【分析】根据垂直的定义得到∠AEC=∠D=90°,根据全等三角形的性质即可得到结论.【解答】解:∵AE⊥CE于点E,BD⊥CD于点D,∴∠AEC=∠D=90°,在Rt△AEC与Rt△CDB中,∴Rt△AEC≌Rt△CDB(HL),∴CE=BD=2,CD=AE=7,∴DE=CD﹣CE=7﹣2=5,故选:B.【点评】本题考查了全等三角形的判定与性质,解答本题的关键是根据已知条件判定三角形的全等.10.有一个数值转换器,程序如图所示,当输入的数x为81时,输出的数y的值是()A.9B.3C.D.±【分析】根据开方运算,可得算术平方根.【解答】解:=9,=3,y=.故选:C.【点评】本题考查了算术平方根,求算术平方根,依据程序进行计算是解题的关键.11.如图,实数﹣6在数轴上表示的大致位置是()A.点A B.点B C.点C D.点D【分析】先估算出的取值范围,再由不等式的基本性质即可得出结论.【解答】解:∵16<21<25,∴4<<5,∴﹣2<﹣6<﹣1,∴实数﹣6在数轴上表示的大致位置是B点.故选:B.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.12.一艘轮船在静水中的最大航速为40km/h,它以最大航速沿河顺流航行100km所用时间,和它以最大航速沿河逆流航行80km所用时间相等,设河水的流速vkm/h,则可列方程为()A.=B.C.D.【分析】根据“以最大航速沿河顺流航行100km所用时间,和它以最大航速沿河逆流航行80km所用时间相等”建立方程即可得出结论.【解答】解:设河水的流速vkm/h,则以最大航速沿江顺流航行的速度为(40+v)km/h,以最大航速逆流航行的速度为(40﹣v)km/h,根据题意得,=,故选:C.【点评】此题是由实际问题抽象出分式方程,主要考查了水流问题,找到相等关系是解本题的关键.13.关于x的分式方程有增根,则a的值为()A.2B.3C.4D.5【分析】先去分母,化成整式方程,再根据增根为使得分母为0的值,将其代入变形后的整式方程即可解出a.【解答】解:在方程两边同时乘以(x﹣4)得x+1=a,∵方程有增根,即x=4满足方程x+1=a,将x=4代入得4+1=a,∴a=5故选:D.【点评】本题考查了分式方程的增根,正确理解增根的含义是解题的关键.14.已知,则的值是()A.B.﹣C.2D.﹣2【分析】观察已知和所求的关系,容易发现把已知通分后,再求倒数即可.【解答】解:∵,∴﹣=,∴,∴=﹣2.故选:D.【点评】解答此题的关键是通分,认真观察式子的特点尤为重要.15.若关于x的方程=1的解是正数,则a的取值范围是()A.a>﹣1B.a>﹣1且a≠0C.a<﹣1D.a<﹣1且a≠﹣3【分析】先求出方程的解,根据解是正数列出不等式,即可解答.【解答】解:在方程两边同乘x﹣1得:3x+a=x﹣1,解得:x=,∵方程的解是正数,∴解得a<﹣1且a≠﹣3.故选:D.【点评】本题考查了分式方程的解、一元一次不等式,解决本题的关键是根据方程的解是正数得出不等式.16.在△ABC中,AB=AC,AB>BC,点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC,若△ABC的面积为18,则△ACF与△BDE的面积之和是()A.6B.8C.9D.12【分析】根据ASA证明△ABE≌△CAF,得出△ACF与△BDE的面积之和等于△ABD的面积,由CD=2BD,△ABC的面积为18,可求出△ABD的面积为6,即可得出答案.【解答】解:∵∠1=∠2=∠BAC,∠1=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∠2=∠FCA+∠CAF,∴∠ABE=∠CAF,∠BAE=∠FCA,在△ABE和△CAF中,,∴△ABE≌△CAF(ASA),∴△ACF的面积=△ABE的面积,∴△ACF与△BDE的面积之和=△ABE与△BDE的面积之和,∵△ABC的面积为18,CD=2BD,∴△ABD的面积=×18=6,∴△ACF与△BDE的面积之和=△ABD的面积=6;故选:A.【点评】本题主要考查了全等三角形的判定与性质,三角形的面积计算,三角形的外角性质等知识点;熟练掌握三角形面积关系,证明三角形全等是解题的关键.二、仔细填一填(每小题3分,共12分)17.比较实数的大小:3>(填“>”、“<”或“=”).【分析】根据3=>计算.【解答】解:∵3=,>,∴3>.故答案是:>.【点评】本题考查了实数的大小比较的应用,主要考查了学生的比较能力.18.2÷m×=.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=2××=,故答案为:【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【分析】求出∠BAD=∠EAC,证△BAD≌△CAE,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△CAE.20.如图,已知△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC=16厘米,点D为AB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为4或6厘米/秒时,能够在某一时刻使△BPD与△CQP全等.【分析】求出BD的长,要使△BPD与△CQP全等,必须BD=CP或BP=CP,得出方程12=16﹣4x或4x=16﹣4x,求出方程的解即可.【解答】解:设经过x秒后,使△BPD与△CQP全等,∵AB=AC=24厘米,点D为AB的中点,∴BD=12厘米,∵∠ABC=∠ACB,∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,即12=16﹣4x或4x=16﹣4x,解得:x=1或x=2,x=1时,BP=CQ=4,4÷1=4;x=2时,BD=CQ=12,12÷2=6;即点Q的运动速度是4或6,故答案为:4或6【点评】本题考查了全等三角形的判定的应用,关键是能根据题意得出方程,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.三、用心答一答,相信你一定能行!(共包括6道大题,60分)21.(8分)解方程:﹣=1.【分析】观察可得最简公分母是(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x+1)(x﹣1),得:x(x+1)﹣3=(x+1)(x﹣1),解得:x=2.检验:把x=2代入(x+1)(x﹣1)=3≠0,即x=2是原分式方程的解;则原方程的解为:x=2.【点评】此题考查了分式方程的求解方法.注意转化思想的应用,注意解分式方程一定要验根.四、(8分)22.(8分)已知实数a、b满足|a﹣5|+=0(1)求a,b的值;(2)求a+b﹣1的立方根.【分析】(1)根据非负数的性质列出方程求出a、b的值;(2)把ab的值代入所求代数式计算,再求得立方根即可.【解答】解:(1)∵|a﹣5|+=0,a﹣5=0,b2﹣16=0,解得a=5,b=±4;(2)当a=5,b=4时,a+b﹣1=5+4﹣1=8,∴=2;当a=5,b=﹣4时,a+b﹣1=5﹣4﹣1=0,∴=0.【点评】本题考查了非负数的性质以及立方根:几个非负数的和为0时,这几个非负数都为0.五、(10分)23.(10分)已知在△ABC与△ABD中,AC=BD,∠C=∠D=90°,AD与BC交于点E.(1)求证:AE=BE;(2)若AC=3,BC=4,求△ACE的周长.【分析】(1)由AAS证得△ACE≌△BDE(AAS),即可得出结论;(2)由(1)得:AE=BE,则△ACE的周长=AC+AE+CE=AC+BE+CE=AC+BC=3+4=7.【解答】(1)证明:在△ACE和△BDE中,,∴△ACE≌△BDE(AAS),∴AE=BE;(2)解:∵AC=3,BC=4,由(1)得:AE=BE,∴△ACE的周长=AC+AE+CE=AC+BE+CE=AC+BC=3+4=7.【点评】本题考查了全等三角形的判定与性质、三角形周长的计算等知识,熟练掌握全等三角形的判定与性质是解题的关键.六、(10分)24.(10分)老师在黑板上书写了一个代数式的正确计算结果,随后用字母A代替了原代数式的一部分,如下:(A﹣)÷=(1)求代数式A,并将其化简;(2)原代数式的值能等于﹣1吗?请说明理由.【分析】(1)根据题目中的等式可以求得代数式A,并将其化简;(2)先判断,然后根据判断说明理由即可.【解答】解:(1)∵(A﹣)÷=∴[A﹣]=∴(A﹣)=∴A﹣=∴A=∴A=∴A=;(2)原代数式的值不能等于﹣1,理由:若原代数式的值等于﹣1,则=﹣1,得x=0,当x=0时,原代数式中的除式等于0,原代数式无意义,故原代数式的值不能等于﹣1.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.七、(12分)25.(12分)甲、乙两家园林公司承接了某项园林绿化工程,已知乙公司单独完成此项工程所需要的天数是甲公司单独完成所需要天数的1.5倍,如果甲公司先单独工作10天,再由乙公司单独工作15天,这样恰好完成整个工程的.(1)求甲、乙两公司单独完成这项工程各需多少天?(2)园林部门要求完成该绿化工程的时间不得超过30天,甲、乙公司合作若干天后,甲公司另有项目离开,剩下的过程由乙公司单独完成,求甲、乙两公司至少合作多少天.【分析】(1)题中有两个等量关系,“乙公司单独完成所需要的天数是甲公司单独完成所需天数的1.5倍”,这是说明甲乙两队工作天数的关系,因此若设甲公司单独x天完成,则乙公司单独完成此工程的天数为1.5x;另一个等量关系:甲公司单独工作10天,再由乙公司单独工作15天,这样就可完成整个工程的三分之二.可得:甲公司单独工作10天完成的工作量+乙公司单独工作15天完成的工作量=.(2)设甲、乙两公司合作a天可完成整个工程,等量关系为:甲公司工作a天完成的工作量+乙公司工作30天完成的工作量≥1,依此列出不等式求解即可.【解答】解:(1)设甲公司单独x天完成,则乙公司单独完成此工程的天数为1.5x,由题意得+=,解得:x=30.经检验,x=30是原方程的解.则1.5x=45.答:甲、乙两公司单独完成这项工程各需30天、45天;(2)设甲、乙两公司合作a天可完成整个工程,由题意得a+≥1,解得a≥10.答:甲、乙两公司合作至少10天.【点评】本题考查分式方程的应用,一元一次不等式的应用,分析题意,找到合适的等量关系与不等关系是解决问题的关键.26.(12分)问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC.CD上的点且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG.再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF.请你按照小王同学的思路写出完整的证明过程.实际应用(2)如图2,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的一处,舰艇乙在指挥中心南偏东70°的B处,且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里,小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F 处.且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离是168海里(直接写出答案).【分析】(1)如图1,延长FD到点G.使DG=BE.连结AG,证明△ABE≌△ADG,根据全等三角形的性质得到AE=AG,证明△AEF≌△AGF,得得EF=FG,证明结论;(2)如图2,连接EF,延长AE、BF相交于点C,根据题意得到∠EOF=∠AOB,OA=OB,∠OAC+∠OBC=180°,根据图1的结论计算.【解答】解:(1)△AEF≌△AGF,EF=BE+DF.理由如下:在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为△AEF;△AGF;EF=BE+DF;(2)如图2,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合(1)中的条件,∴结论EF=AE+BF成立,即EF=1.2×(60+80)=168(海里).故答案为:168.【点评】考查了四边形综合题,掌握全等三角形的判定与性质,等腰直角三角形的性质,题目的综合性较强,难度较大,解题的关键是正确的作出辅助线构造全等三角形,解答时,注意类比思想的应用.。
华师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.若24,a =1=-,则+a b 的值是( )A .1B .-3C .1或-3D .-1或32.在 -1,0,1 )A .B .-1C .0D .13.在112,0.16166166616666,3.1415926,1000π四个数中无理数有几个( ) A .1个B .2个C .3个D .4个 4.下列各式从左到右的变形是分解因式的是A .2222()()a b a b a b a -=+-+B .2()22a b c ab ac +=+C .3222(1)x x x x x -+=-D .221(1)x x x x+=+ 5.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把正确结果的最后一项染黑了,正确的结果为2912a ab -+( ),则被染黑的这一项应是( )A .22bB .23bC .24bD .24b - 6.下列运算正确的是( )A .3a+2a =5a 2B .(﹣a )3•(﹣a 2)=﹣a 5C .3a 2﹣2a =aD .(2a 3b 2﹣4ab 4)÷(﹣2ab 2)=2b 2﹣a 27.若3x 2﹣5x +1=0,则5x (3x ﹣2)﹣(3x +1)(3x ﹣1)=( )A .﹣1B .0C .1D .﹣2 8.给出下列4个命题:①同旁内角互补;②相等的角是对顶角;③等角的补角相等;④两直线平行,同位角相等.其中,假命题的个数为( )A .1B .2C .3D .49.如图,已知:AC =DF ,AC ∥FD ,AE =DB ,判断△ABC ≌△DEF 的依据是( )A .SSSB .SASC .ASAD .AAS 10.如图,CD ⊥AB 于点D ,点E 在CD 上,下列四个条件:①AD =ED ;②∠A =∠BED ;③∠C =∠B ;④AC =EB ,将其中两个作为条件,不能判定△ADC ≌△EDB 的是A .①②B .①④C .②③D .②④二、填空题11.已知有理数 x , y , z 满足0= ,那么 ()2x yz - 的平方根为________. 12.100100(4)(0.25)-⨯-=__________ ;2205204206-⨯=_______13.已知a =2019x+2016,b =2019x+2017,c =2019x+2018,则多项式a 2+b 2+c 2﹣ab ﹣bc ﹣ac 的值为_____.14.如图,点D 、E 分别在线段AB ,AC 上,AE=AD ,不添加新的线段和字母,要使△ABE ≌△ACD ,需添加的一个条件是_____(只写一个条件即可).15.设a ,b a b <<,是,则a b =____. 16.如果29x mx -+是一个完全平方式,则m 的值是____.三、解答题17.计算下列各题:①|1②(-1)20193. 18.分解因式: (1)2(2)36a b a b --+(2)24()x y x y --19.规定两正数a ,b 之同的一种运算,记作:E(a ,b),如果a c =b ,那么E(a ,b)=c .例如23=8,所以E(2,8)=3(1)填空:E(3,27)= ,E 11,216⎛⎫ ⎪⎝⎭= (2)小明在研究这和运算时发现一个现象:E(3n ,4n )=E(3,4)小明给出了如下的证明:设E(3n ,4n )=x ,即(3n )x =4n ,即(3n ,4n )=4n ,所以3x =4,E(3,4)=x ,所以E(3n ,4n )=E(3,4),请你尝试运用这种方法说明下面这个等式成立:E(3,4)+E(3,5)=E(3,20)20.先化简,再求值;当240x -,求()()()()32322524x y x y x y x y x ⎡⎤+--+-÷⎣⎦的值21.如图,点M 、N 在线段AC 上,AM =CN ,AB//CD ,AB =CD .(1)请说明△ABN ≌△CDM 的理由;(2)线段BM 与DN 平行吗?说明理由.22.如图所示,A ,E ,F ,C 在一条直线上,AE CF =,过E ,F 分别作DE AC ⊥,BF AC ⊥,垂足分别为E ,F ,且AB CD =.(1)ABF ∆与CDE ∆全等吗?为什么?(2)求证:EG FG =.23.如图,已知在△ABC 中,AB =AC ,BC =12厘米,点D 为AB 上一点且BD =8厘米,点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,设运动时间为t ,同时,点Q 在线段CA 上由C 点向A 点运动.(1)用含t 的式子表示PC 的长为 ;(2)若点Q的运动速度与点P的运动速度相等,当t=2时,三角形BPD与三角形CQP是否全等,请说明理由;24.如图,点B,E,C,F在一条直线上,AB=DE,AC =DF,BE=CF.求证:△ABC ≌△DEF;25.如图所示,在四边形ABCD中,CD∥AB,∠ABC的平分线与∠BC D的平分线相交于点F,BF与CD的延长线交于点E,连接CE.求证:(1)△BCE是等腰三角形.(2)BC=AB+CD参考答案1.C【分析】根据题意,利用平方根,立方根的定义求出a ,b 的值,再代入求解即可.【详解】解:24,a =1,=-2,a ∴=±1b =-,∴当2,a =-1b =-时,213a b +=--=-;∴当2,a =1b =-时,211a b +=-=.故选:C .【点睛】本题考查的知识点是平方根以及立方根的定义,根据定义求出a ,b 的值是解此题的关键. 2.A【分析】实数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】根据实数比较大小的方法,可得<-1<0,∴在-1,0,这四个数中,最小的数是故选A .【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小. 3.A【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【详解】解:112,0.16166166616666,3.1415926属于有理数;1000π属于无理数.则有1个无理数.故应选A【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,据此逐项判断即可.【详解】∵(a+b)(a−b)+a2不是几个整式的积的形式,∴从左到右的变形不是分解因式,∴选项A不符合题意;∵2ab+2ac不是几个整式的积的形式,∴从左到右的变形不是分解因式,∴选项B不符合题意;∵x3−2x2+x=x(x−1)2,∴∴从左到右的变形是分解因式,∴选项C符合题意;∵(11x)不是整式,∴从左到右的变形不是分解因式,∴选项D不符合题意.故选:C.【点睛】此题主要考查了因式分解的意义和应用,要熟练掌握,解答此题的关键是要明确:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.5.C【分析】利用完全平方公式的结构特征判断即可.解:∵9a2+12ab+4b2=(3a+2b)²,∴被染黑的这一项应是4b2,故选:C.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.6.D【分析】直接利用合并同类项法则以及整式的乘除运算法则分别化简得出答案.【详解】解:A、3a+2a=5a,故此选项错误;B、(-a)3•(-a2)=a5,故此选项错误;C、3a2-2a,无法计算,故此选项错误;D、(2a3b2-4ab4)÷(-2ab2)=2b2-a2,正确.故选:D.【点睛】此题主要考查了合并同类项以及整式的乘除运算,正确掌握相关运算法则是解题关键.7.A【分析】先利用单项式乘多项式的法则以及平方差公式进行计算,再合并同类项,化为2(3x2﹣5x)+1,然后将3x2﹣5x=﹣1整体代入计算即可.【详解】∵3x2﹣5x+1=0,∴3x2﹣5x=﹣1,∴5x(3x﹣2)﹣(3x+1)(3x﹣1)=15x2﹣10x﹣9x2+1=6x2﹣10x+1=2(3x2﹣5x)+1=2×(﹣1)+1=﹣1.【点睛】本题主要考查整式的混合运算,掌握单项式乘多项式的法则,平方差公式以及合并同类项法则,是解题的关键.8.B【分析】根据平行线的判定方法对①进行判断;据对顶角的定义对②进行判断;根据平行线的性质对④进行判断;根据补角的定义对③进行判断.【详解】两直线平行,同旁内角互补,所以①错误;相等的角不一定是对顶角,所以②错误;等角的补角相等,所以③正确;两条平行直线被第三条直线所截,同位角相等,所以④正确;;故选B.【点睛】本题主要考查了平行线的性质及判定,对顶角的性质等,熟练掌握各性质定理是解答此题的关键.9.B【分析】根据两直线平行内错角相等,再根据SAS 即可证明ABC DEF ∆≅∆.【详解】解://AC FD ,∴CAD ADF ∠=∠,AE DB =,ED AB ∴=,AC DF =,在△ABC 和△DEF 中AC DF CAD ADF AB DE =⎧⎪∠=∠⎨⎪=⎩()ABC DEF SAS ∴∆≅∆,故选B .【点睛】本题主要考查了全等三角形的判定,关键是根据两直线平行内错角相等解答.10.C【分析】根据全等三角形的判定定理以及直角三角形全等判定定理依次进行判断即可.【详解】A :∵CD ⊥AB∴∠CDA=∠BDE又∵AD =ED ;②∠A =∠BED∴△ADC ≌△EDB (ASA )所以A 能判断二者全等;B :∵CD ⊥AB∴△ADC 与△EDB 为直角三角形∵AD=ED,AC=EB∴△ADC ≌△EDB (HL )所以B 能判断二者全等;C :根据三个对应角相等无法判断两个三角形全等,所以C 不能判断二者全等;D :∵CD ⊥AB∴∠CDA=∠BDE又∵∠A =∠BED ,AC =EB∴△ADC ≌△EDB (AAS )所以D 能判断二者全等;所以答案为C 选项.【点睛】本题主要考查了三角形全等判定定理的运用,熟练掌握相关概念是解题关键.11.±2【分析】结合题意,根据绝对值的非负性得到x=0, y-1=0, z-2=0,即可得到x ,y ,z ,再代入()2x yz -计算即可得到答案.【详解】解:由题意得:x=0, y-1=0, z-2=0, 则y=1, z=2.∴(x-yz)2=(0-1×2)2=4.则(x-yz)2的平方根为±2.【点睛】本题考查平方根和绝对值的非负性,解题的关键是掌握绝对值的非负性.12.1 1.【分析】根据同底数幂的法则和平方差公式进行计算即可.【详解】()100100100(4)(0.25)40.251-⨯-=⨯=()()22222052042062052051205120520511-⨯=--+=-+=故答案为1;1【点睛】本题考查同底数幂相乘及运用平方差公式进行简便运算,熟记运算法则是关键.13.3【分析】根据a=2019x+2016,b=2019x+2017,c=2019x+2018,可以得到a-b 、a-c 、b-c 的值,然后利用完全平方公式将题目中的式子变形,即可求得所求式子的值.【详解】解:∵a=2019x+2016,b=2019x+2017,c=2019x+2018,∴a-b=-1,a-c=-2,b-c=-1,∴a 2+b 2+c 2-ab-bc-ac =2222222222a b c ab bc ac ++--- =222()()()2a b a c b c -+-+-=222(1)(2)(1)2-+-+- =3,故答案为:3.【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法解答. 14.∠B=∠C (答案不唯一).【详解】由题意得,AE=AD ,∠A=∠A (公共角),可选择利用AAS 、SAS 、ASA 进行全等的判定,答案不唯一:添加,可由AAS 判定△ABE ≌△ACD ;添加AB=AC 或DB=EC 可由SAS 判定△ABE ≌△ACD ;添加∠ADC=∠AEB 或∠BDC=∠CEB ,可由ASA 判定△ABE ≌△ACD .15.9【分析】a 、b 的值,代入求出即可.【详解】∵23,∴a =2,b =3,∴b a =32=9.故答案为:9.【点睛】本题考查了估算无理数的大小的应用,关键是求出a 、b 的值.16.±6【分析】利用完全平方公式的结构特征判断即可得到m 的值.【详解】∵29x mx -+是一个完全平方式,∴6m -=±,解得:6m =±,故答案为:±6.【点睛】本题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.17.(1)43-;(2)-1.【分析】(1)去掉绝对值,然后利用二次根式乘法运算法则计算,最后做加减即可;(2)算乘方、化简立方根,然后利用二次根式乘法运算法则计算,最后相加即可.【详解】解:(1)原式-1-23×12 =43-;(2)原式=-1+2-3+1=-1.【点睛】本题考查了实数的混合运算,解题的关键是牢记有关法则的情况下认真的计算. 18.(1)()(2)23a b a b ---;(2)2(2)x y -【分析】(1)把后面两项当作整体,然后各项提取公因式(a-2b )即可;(2)先去括号,然后根据完全平方公式分解 .【详解】解:(1)原式=()()()()2232223a b a b a b a b ---=---;(2)原式=()222442x yx y x y -+=-.【点睛】本题考查因式分解,根据具体整式的特点选用合适的方法分解因式是解题关键. 19.(1)3;4;(2)证明见解析.【分析】(1)根据规定的两数之间的运算法则:知4311327,,216⎛⎫== ⎪⎝⎭ 从而可得答案;(2)设E (3,4)=x ,E (3,5)=y ,根据定义得:34,35,x y ==利用同底数幂的乘法可得答案.【详解】解:(1)∵3327,=∴E (3,27)=3; ∵411,216⎛⎫= ⎪⎝⎭ ∴11,4,216E ⎛⎫= ⎪⎝⎭ 故答案为:3;4;(2)设E (3,4)=x ,E (3,5)=y ,则34,35,x y ==∴3334520,x y x y +=•=⨯=∴E (3,20)=x+y ,∴E (3,4)+E (3,5)=E (3,20).【点睛】本题是利用新定义考查幂的运算的逆运算,掌握幂的运算,同底数幂的乘法运算是解题的关键.20.2x y -,-4【分析】原式中括号中利用平方差公式,以及多项式乘以多项式法则计算,再利用多项式除以单项式法则计算得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】原式=()222294510244x y x xy xy y x ⎡⎤--+--÷⎣⎦=()222294510244x y x xy xy y x ---++÷=()2484x xy x -÷=2x y -,由|240x -,得到240x -=,10x y -+=,解得:x =2,y =3,则原式=26-=4-.【点睛】本题考查非负数的性质和整式的混合运算,掌握绝对值,算术平方根的非负性,以及整式的混合运算法则为解题关键.21.(1)见解析;(2)BM//DN ,理由见解析【分析】(1)由SAS 证明△ABN ≌△CDM 即可;(2)首先证明△ABM ≌△CDN 得到∠AMB=∠DNC ,求出∠BMN=∠DNM ,即可得出结论.【详解】(1)证明:∵AB//CD ,∴∠A =∠C ,∵AM =AN ,∴AN =CM ,在△ABN 和△CDM 中,AB CD A C AN CM =⎧⎪∠=∠⎨⎪=⎩,∴△ABN ≌△CDM (SAS );(2)BM//DN ,理由如下:在△ABM 和△CDN 中,AB CD A C AM CN =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△CDN (SAS ),∴∠AMB =∠DNC ,∵∠AMB+∠BMN =180°,∠DNC+∠MND =180°,∴∠BMN =∠DNM ,∴BM//DN .【点睛】本题考查了全等三角形的判定和性质、平行线的判定与性质;解题的关键是证明三角形全等,属于中考常考题型.22.(1)ABF ∆与CDE ∆全等,理由见解析;(2)见解析【分析】(1)由垂直的定义得出∠AFB=∠CED=90°,证出AF=CE ,由HL 证明Rt △ABF ≌Rt △CDE 即可;(2)由全等三角形的性质得出BF=DE ,证明△DEG ≌△BFG (AAS ),即可得出EG=FG .【详解】(1)ABF ∆与CDE ∆全等,理由如下:DE AC ⊥,BF AC ⊥,90AFB CED ∴∠=∠=︒,AE CF =,AE EF CF EF ∴++=,即AF CE =,在Rt ABF ∆和Rt CDE ∆中,AB CDAF CE =⎧⎨=⎩,Rt Rt ()ABF CDE HL ∴∆∆≌;(2)证明:Rt Rt ()ABF CDE HL ∆∆≌,BF DE ∴=,在DEG ∆和BFG ∆中,GED GFBDGE BGF DE BF∠=∠⎧⎪∠=∠⎨⎪=⎩,()DEG BFG AAS ∴∆∆≌,∴EG =FG..【点睛】本题考查了全等三角形的判定与性质、垂直的定义;证明三角形全等是解题的关键. 23.(1)(12﹣2t )cm ;(2)全等,理由见解析【分析】(1)先表示出BP ,根据PC=BC-BP ,可得出答案;(2)根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等.【详解】解:(1)根据题意,则BP=2t,则PC=BC﹣BP=12﹣2t;故答案为:(12﹣2t)cm.(2)当t=2时,BP=CQ=2×2=4厘米,∵BD=8厘米.又∵PC=BC﹣BP,BC=12厘米,∴PC=12﹣4=8厘米,∴PC=BD,又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,BD PCB C BP CQ=⎧⎪∠=∠⎨⎪=⎩,∴△BPD≌△CQP(SAS);【点睛】此题考查了全等三角形的判定,主要运用了路程=速度×时间的公式,要求熟练运用全等三角形的判定和性质.24.见解析【分析】根据SSS证明三角形全等即可;【详解】证明:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC和△DEF中,∵AB DE AC DF BC EF=⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF(SSS).【点睛】本题主要考查了全等三角形的判定,准确分析证明是解题的关键.25.(1)见解析;(2)见解析【分析】(1)根据角平分线的性质得到12ABF CBF ABC ∠=∠=∠,在根据平行线的性质得到ABF E ∠=∠,进而得到E CBF ∠=∠,即可得到结果(2)根据角平分线的性质和平行线的性质得到90BFC ∠=︒,证明△ABF ≌△DEF ,即可得到结果;【详解】(1)∵BF 平分∠ABC , ∴12ABF CBF ABC ∠=∠=∠, ∵CD ∥AB ,∴ABF E ∠=∠,∴E CBF ∠=∠,∴BC=CE ,∴△BCE 是等腰三角形.(2)∵CF 平分∠BCE , ∴12BCF BCE ∠=, ∵CD ∥AB ,∴180ABC BCE ∠+∠=︒,∴90CBF BCF ∠+∠=︒,∴90BFC ∠=︒,即 CF ⊥BE ,又BC=CE ,∴BF=EF ,在△ABF 和△DEF 中,∵ABF E AFB DFE BF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DEF ;∴AB=DE ,∴BC=CE=DE+CD=AB+CD,因此BC=AB+CD.【点睛】本题主要考查了角平分线的性质,平行线的性质,全等三角形的证明,准确分析判断是解题的关键.。
华师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.2(2)-的平方根是( )A .2B .2-C .2±D .2.下列运算中,正确的是( )A .326326x x x ⋅=B .()224x y x y -=C .()32626x x =D .54122x x x ÷=3 )A .aB .bC .cD .d4.若2m -4与3m -1是同一个数的平方根,则m 的值是( )A .-3B .-1C .1D .-3或1 5.已知a 2﹣2a ﹣1=0,则a 4﹣2a 3﹣2a+1等于( )A .0B .1C .2D .36.在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b).把余下的部分剪成两个直角梯形后,再拼成一等腰梯形(如图),通过计算阴影部分的面积,验证了一个等式,这个等式是( )A .()()22a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .()2a ab a a b -=- 7.对于任意正整数4,22n n n +-均能被( )A .12整除B .16整除C .30整除D .60整除 8.如图,四边形ABCD 中,AD CD =,AB CB =,有如下结论:①AC BD ⊥;②12AO CO AC ==;③ABD CBD ∆∆≌,其中正确的结论有( )A .0个B .1个C .2个D .3个9.如图,在ABC ∆中,AD BC ⊥,CE AB ⊥,垂足分别为D 、E 、AD 、CE 交于点H ,已知4EH EB ==,6AE =,则CH 的长为( )A .1B .2C .3D .410.如图,ABC ∆是边长为1的等边三角形,BDC ∆为顶角120BDC ∠=︒的等腰三角形,点M 、N 分别在AB 、AC 上,且60MDN ∠=︒,则AMN ∆的周长为( )A .2B .3C .1.5D .2.5二、填空题11.12.计算:2246.5293.0453.4853.48+⨯+=__________.13.如图,已知AB=AD ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是_____(只需填一个)14.如图,AD 是△ABC 的中线,∠ADC=60°,BC=6,把△ABC 沿直线AD 折叠,点C 落在C′处,连接BC′,那么BC′的长为 .15.如图,ABC ∆中,90ACB ∠=︒,7AC cm =,11BC cm =,点M 从A 点出发沿A C B →→路径向终点B 以1/cm s 的速度运动,同时点N 从B 点出发沿B C A →→路径向终点A 以3/cm s 的速度运动,两点都要到达相应的终点时............才能停止运动.分别过M 和N 作ME l ⊥于E ,NF l ⊥于F ,则当运动时间t =____________s 时,MEC ∆与去NFC ∆全等.16.如图,AB DB =,BC BE =,欲证ABE DBC ∆≅∆,则需增加的条件是__.三、解答题17.计算:18.分解因式:①22(2)(2)a b b a +-+②()()443827x y x x y xy --++19.已知长方形周长为300cm ,两邻边分别为xcm ,ycm ,且3223440x x y xy y +--=,求长方形的面积.20.如图,已知AB =CD ,∠B =∠C ,AC 和BD 交于点O ,E 是AD 的中点,连接OE .(1)求证:△AOD ≌△DOC ;(2)求∠AEO 的度数.21.如图,在△ABC 中,AB=AC ,作AD ⊥AB 交BC 的延长线于点D ,作AE ∥BD ,CE ⊥AC ,且AE ,CE 相交于点E ,求证:AD=CE .22.如图,为杨辉三角的一部分,它的作用是指导读者按规律写出形如(a +b )n (n 为正整数)展开式的系数,请你仔细观察下列等式中的规律,利用杨辉三角解决下列问题.(a +b )=a +b(a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3(1)填出(a +b )4展开式中第二项是 ;(2)求(2a ﹣1)5的展开式.23.如图,AB =AE ,∠1=∠2,AC =AD .求证:△ABC ≌△AED .24.已知在ABC ∆和ABD ∆中,90DAB ABC ∠=∠=︒,AD AB CB ==,6BD cm =,AC 交BD 于点O ,F 为线段BD 上一动点,以每秒1cm 的速度从B 匀速运动到D ,过F 作直线FQ AF ⊥,且FQ AF =,点Q 在直线AF 的右侧,设点F 运动时间为()t s .(1)当ABF ∆为等腰三角形时,t = ;(2)当F 点在线段BO 上时,过Q 点作QH BD ⊥于点H ,求证Q AOF FH ∆∆≌; (3)当F 点在线段OD 上运动的过程中,ABQ ∆的面积是否变化?若不变,求出它的值.25.如图,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一动点,连接AD .以AD 为直角边且在AD 的上方作等腰直角三角形ADF .(1)若AB AC =,90BAC ∠=︒①当点D 在线段BC 上时(与点B 不重合),试探讨CF 与BD 的数量关系和位置关系;②当点D 在线段C 的延长线上时,①中的结论是否仍然成立,请在图2中面出相应的图形并说明理由;(2)如图3,若AB AC ≠,90BAC ∠≠︒,45BCA ∠=︒,点D 在线段BC 上运动,试探究CF 与BD 的位置关系.参考答案1.C【分析】先计算2(42)=-,再由平方根的定义求出4的平方根.【详解】∵2(42)=-,4的平方根是2±,∴2(2)-的平方根是2±,故选C.【点睛】本题考查求平方根,需要注意先求出2(2)-的值是关键.2.D【分析】根据单项式的乘除法,同底数幂的乘法以及积的乘方进行判断.【详解】A. 323253232=6+⋅=⨯⋅x x x x ,故A 选项错误;B. ()()2222242=-=-x y x y x y ,故B 选项错误;C. ()()33232622=8=x x x ,故C 选项错误;D. 5541222÷=⋅=x x x x x,故D 选项正确; 故选D.【点睛】本题考查整式的乘除法运算,熟练掌握单项式的乘除法,同底数幂的乘法以及积的乘方运算是解题的关键.3.D【分析】由9<13<16.【详解】∵9<13<1634<∵3<d <4,故选D.【点睛】本题考查无理数的估值,找到被开方数左右相邻的两个平方数是关键.4.D【分析】根据平方根的性质列方程求解即可;【详解】当24=31m m --时,3m =-; 当24310m m +=--时,1m =; 故选:D.【点睛】本题主要考查平方根的性质,易错点是容易忽略相等的情况,做好分类讨论是解决本题的关键.5.C【解析】∵2210a a --= ,∴221a a =+ ,原式=222()221a a a a -⋅-+ =2(21)2(21)21a a a a +-+-+=224414221a a a a a ++---+=2.故选C .6.A【分析】根据图中边的关系,可求出两图的面积,而两图面积相等,从而推导出了平方差的公式.【详解】左阴影的面积22s a b =-,右平行四边形的面积()()()()22s a b a b a b a b =+-÷=+-,两面积相等所以等式成立()()22a b a b a b -=+-.这是平方差公式.故选:A .【点睛】本题考查了平方差公式的几何背景,解决本题的关键是求出两图的面积,而两图面积相等,从而推导出了平方差的公式.7.C【分析】提取公因式2n ,将式子变形后可得答案.【详解】()44122=221152=302+--⋅-=⨯⨯n n n n n∵n 为正整数,则n-1≥0∴422n n +-能被30整除故选C.【点睛】本题考查因式分解的应用,提取公因式对式子进行变形是关键.8.D【解析】【分析】用SSS 易证△ABD ≌△CBD ,可得∠ABO=∠CBO ,再根据等腰三角形三线合一性质得到OB 垂直平分AC ,即可判断.【详解】在△ABD 和△CBD 中,AD=CDAB=CBBD=BD⎧⎪⎨⎪⎩∴△ABD ≌△CBD (SSS ),(故③正确)∴∠ABO=∠CBO在等腰△ABC 中,AB=CB ,OB 平分∠ABC ,∴OB 垂直平分AC即AC ⊥BD ,AO=CO=12AC故①②正确,综上可得:①②③正确,故选D.【点睛】本题考查全等三角形的判定和性质,掌握等腰三角形三线合一性质是关键.9.B【分析】先利用等角的余角相等得到∠BAD=∠BCE ,则可根据“AAS”证明△BCE ≌△HAE ,则CE=AE=6,然后根据CH=CE−HE 即可的答案.【详解】∵AD ⊥BC ,CE ⊥AB ,∴∠BEC=∠ADB=90°,∵∠BAD+∠B=90°,∠BCE+∠B=90°,∴∠BAD=∠BCE ,在△BCE 和△HAE 中,BEC=AEHBCE=EAHBE=EH∠∠⎧⎪∠∠⎨⎪⎩∴△BCE ≌△HAE (AAS ),∴CE=AE=6,∴CH=CE-HE=6-4=2.故选:B .【点睛】本题考查全等三角形的判定和性质,找出图中的全等三角形并证明是关键.10.A【解析】【分析】延长AC 到E ,使CE=BM ,连接DE ,求证△BMD ≌△CED ,可得∠BDM=∠CDE ,进而求证△MDN ≌△EDN 可得MN=NE=NC+CE=NC+BM ,即可计算△AMN 周长.【详解】如图所示,延长AC 到E,使CE=BM,连接DE,∵BD=DC,∠BDC=120°,∴∠CBD=∠BCD=30°,∵∠ABC=∠ACB=60°,∴∠ABD=∠ACD=∠DCE=90°,在△BMD 和△CED 中,BD=CD DBM=DCE=90BM=CE ⎧⎪∠∠⎨⎪⎩∴△BMD ≌△CED (SAS ),∴∠BDM=∠CDE ,DM=DE ,又∵∠MDN=60°,∴∠BDM+∠NDC=60°,∴∠EDC+∠NDC=∠NDE=60°=∠NDM ,在△MDN 和△EDN 中,DM=DE MDN=NDE DN=DN ⎧⎪∠∠⎨⎪⎩∴△MDN ≌△EDN(SAS),∴MN=NE=NC+CE=NC+BM ,所以△AMN 周长=AM+AN+MN=AM+AN+NC+BM=AB+AC=2.故选A.【点睛】本题考查全等三角形的判定和性质,做辅助线构造全等三角形,利用等边三角形的性质得到全等条件是解决本题的关键.11.﹣2.【详解】立方根.【分析】根据立方根的定义,求数a 的立方根,也就是求一个数x ,使得x 3=a ,则x 就是a 的一个立方根:∵(-2)3=-8,2-.12.10000【分析】将93.04改写为2×46.52,即可用完全平方公式计算. 【详解】解:原式=()222246.52246.5253.4853.48=46.5253.48=100=10000+⨯⨯++故答案为:10000.【点睛】本题考查利用完全平方公式进行简便计算,熟练掌握完全平方公式将原式变形是关键. 13.∠B=∠D 或∠C=∠E 或AC=AE【解析】要使要使△ABC ≌△ADE ,已知AB=AD ,∠1=∠2得出∠BAC=∠DAE ,若添加∠B=∠D 或∠C=∠E 可以利用ASA 判定其全等,添加AC=AE 可以利用SAS 判定其全等.解:∵AB=AD,∠1=∠2∴∠BAC=∠DAE∴若添加∠B=∠D或∠C=∠E可以利用ASA判定△ABC≌△ADE若添加AC=AE可以利用SAS判定△ABC≌△ADE故填空答案:∠B=∠D或∠C=∠E或AC=AE.三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.3【解析】根据中点的性质得BD=DC=3,再根据对称的性质得∠ADC′=60°,判定三角形为等边三角形即可求.解:根据题意:BC=6,D为BC的中点;故BD=DC=3.有轴对称的性质可得:∠ADC=∠ADC′=60°,DC=DC′=3,∠BDC′=60°,故△BDC′为等边三角形,故BC′=3.故答案为3.15.2或4.5或14.【解析】【分析】易证∠MEC=∠CFN,∠MCE=∠CNF.只需MC=NC,就可得到△MEC与△CFN全等,然后只需根据点M和点N不同位置进行分类讨论即可解决问题.【详解】①当0≤t<113时,点M在AC上,点N在BC上,如下图所示,此时有AM=t ,BN=3t ,AC=7,BC=11.当MC=NC 时,即7-t=11-3t 时,解得t=2,∵ME ⊥l,NF ⊥l,∠ACB=90°,∴∠MEC=∠CFN=∠ACB=90°.∴∠MCE=90°-∠FCN=∠CNF.在△MEC 和△CFN 中,∠MCE=∠CNF ,∠MEC=∠CFN ,MC=NC.∴△MEC ≌△CFN(AAS);②当113≤t<7时,点M 在AC 上,点N 也在AC 上, 当M 、N 重合时,两三角形全等,此时MC=NC ,即7-t=3t-11,解得t=4.5;③当7<t<18时,点N 停在点A 处,点N 在BC 上,如下图所示,当MC=NC 即t-7=7,也即t=14时,同理可得:△MEC ≌△CFN.综上所述:当t 等于2或4.5或14秒时,MEC ∆与去NFC ∆全等.故答案为:2或4.5或14.【点睛】本题考查全等三角形的动点问题,进行分段讨论,根据全等三角形对应边相等建立方程是关键.16.AE DC =【分析】根据已知条件有两条边对应相等,于是可添加条件第三边对应相等或添加它们的夹角相等,均可得欲证的结论.【详解】条件是AE DC =,理由是:在ABE ∆和DBC ∆中,AB BD AE DC BE BC =⎧⎪=⎨⎪=⎩,()ABE DBC SSS ∴∆≅∆,故答案为:AE DC =.【点睛】本题考查了判定三角形全等所需的条件,熟练掌握三角形全等判定的方法是解决本题的关键.17. 5.5-【分析】将带分数化成假分数,然后根据算术平方根和立方根的定义进行计算即可.【详解】解:原式=63-+=36342-++- = 5.5-【点睛】本题考查算术平方根与立方根的计算,熟练掌握算术平方根和立方根的定义是关键.18.①()3()+-a b a b ;②()()()22422x y x y x y ++-【分析】①用平方差公式进行分解;②先展开合并,然后采用平方差公式进行分解.【详解】解:①原式=()(22)22++++--a b b a a b b a=()(33)+-a b a b=()3()+-a b a b②原式=4448167---+x y x xy xy=4416x y -=()()222244+-x y x y =()()()22422x y x y x y ++-【点睛】本题考查因式分解,熟练掌握提公因式与公式法是解题的关键,注意因式分解要彻底. 19.5000【分析】由题意可得150+=x y ,然后将322344+--x x y xy y 进行因式分解变形,可推出=2x y ,代入150+=x y ,即可解出x ,y 的值,再求面积即可.【详解】∵长方形周长为300cm ,∴()2300+=x y ,化简得150+=x y322344+--x x y xy y=()()224+-+x x y y x y=()()224+-x y x y =()()()2=02++-x y x y x y∵0x >,0y >∴()()20++≠x y x y则=02-x y ,即=2x y ,∵150+=x y∴3150=y ,解得50y =∴=2=100x y∴长方形的面积==10050=5000⨯xy .20.(1)证明见解析(2)∠AEO=90°【解析】解:(1)证明:在△AOB 和△COD 中,∵∠B =∠C ,∠AOB=∠DOC ,AB=DC , ∴△AOB ≌△COD (AAS ).(2)∵△AOB ≌△COD ,∴AO=DO .∵E 是AD 的中点,∴OE ⊥AD .∴∠AEO=90°.(1)由已知可以利用AAS 来判定其全等;(2)根据全等三角形对应边相等的性质得AO=DO ,再根据等腰三角形三线合一的性质即可求得∠AEO=90°.21.详见解析.【解析】试题分析:先根据平行线的性质、等腰三角形的性质证明∠EAC=∠B ,在证明△ABD ≌△CAE (ASA )即可.试题解析:∵AE ∥BD ∴∠EAC=∠ACB∵AB=AC ∴∠B=∠ACB ∴∠EAC=∠B又∵∠BAD=∠ACE=90°∴△ABD ≌△CAE∴AD=CE .考点:平行线的性质、等腰三角形的性质、三角形全等的判定.22.(1)34a b ;(2)543232808040101a a a a a -+-+-.【解析】试题分析:根据题意的规律可知()4a b +展开式第二项中a 的次数是3,b 的次数是1,系数为3+1,据此求解(1);根据题意可知()5a b +系数依次为1、5、10、10、5、1,再结合5(21)a - 即可求解; 试题解析:(1)由题意给出规律可知:34a b ,(2)由题意给出规律可知:5(21),a -5432(2)5(2)10(2)10(2)5(2)1,a a a a a =-+-+-54323280804010 1.a a a a a =-+-+-23.见解析.【分析】首先根据∠1=∠2可得∠BAC =∠EAD ,再加上条件AC =AD ,AB =AE 可证明△ABC ≌△AED . 【详解】∵∠1=∠2,∴∠BAC =∠EAD .在△ABC 和△AED 中,∵AC AD BAC EAD AB AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△AED (SAS ).【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.24.(1)3或6或(2)见解析;(3)不变,S △ABQ =9.【分析】(1)分三种情况讨论,由等腰三角形的性质可求BF 的长,即可求t 的值;(2)由等腰三角形的性质可得∠AOB=90°,由“AAS”可证△AOF ≌△FHQ ;(3)由“AAS”可证△AOF ≌△FHQ ,可得OF=QH=t-3,由面积的和差关系可求解.【详解】(1)∵∠BAD=90°,AB=AD ,∴∠ABD=∠ADB=45°,若AB=AF 时,即点F 与点D 重合,∴BF=BD=6cm ,∴t=61=6,若BF=AF 时,∴∠ABF=∠BAF=45°,∴∠AFB=90°,∴AF⊥BD,且AB=AD ∴BF=DF=3cm,∴t=31=3,若AB=BF=32cm,∴t=321=32故答案为:3或6或32.(2)如图1,∵∠DAB=∠ABC=90°,AD=AB=CB,∴∠ABD=∠ADB=45°,∠BAC=∠ACB=45°,∴∠AOB=90°,∵AF⊥FQ,QH⊥BD,∴∠AFQ=∠FHQ=90°,∴∠QFH+∠FQH=90°,∠AFO+∠QFH=90°,∴∠AFO=∠FQH,AF=FQ,∠AOF=∠FHQ=90°∴△AOF≌△FHQ(AAS)(3)不变,理由如下:如图2,过点Q作QH⊥BD,∵∠DAB=∠ABC=90°,AD=AB=CB,∴∠ABD=∠ADB=45°,∠BAC=∠ACB=45°,∴∠AOB=90°,∵AF⊥FQ,QH⊥BD,∴∠AFQ=∠FHQ=90°,∴∠QFH+∠FQH=90°,∠AFO+∠QFH=90°,∴∠AFO=∠FQH,AF=FQ,∠AOF=∠FHQ=90°∴△AOF≌△FHQ(AAS)∴OF=QH=t-3,∵S△ABQ=S△ABF+S△AFQ-S△BFQ=12BF×AO+12×AF2-12×BF×QH∴S△ABQ=12×t×3+12[32+(t-3)2]-12×t×(t-3)=9故△ABQ的面积不发生变化.【点睛】本题考查三角形中的动点问题,掌握等腰三角形的性质进行分类讨论是解决(1)题的关键,(2)题由等腰三角形的性质得到全等条件是关键,(3)题利用全等将三角形进行转换是关键.25.(1)①CF⊥BD,证明见解析;②成立,理由见解析;(2)CF⊥BD,证明见解析.【分析】(1)①根据同角的余角相等求出∠CAF=∠BAD,然后利用“边角边”证明△ACF和△ABD 全等,②先求出∠CAF=∠BAD,然后与①的思路相同求解即可;(2)过点A作AE⊥AC交BC于E,可得△ACE是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD,然后利用“边角边”证明△ACF和△AED全等,根据全等三角形对应角相等可得∠ACF=∠AED,然后求出∠BCF=90°,从而得到CF⊥BD.【详解】解:(1)①∵∠BAC=90°,△ADF是等腰直角三角形,∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,∴∠CAF=∠BAD,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠ABD=45°,∵∠ACB=45°,∴∠FCB=90°,∴CF⊥BD;②成立,理由如下:如图2:∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;(2)如图3,过点A作AE⊥AC交BC于E,∵∠BCA=45°,∴△ACE是等腰直角三角形,∴AC=AE,∠AED=45°,∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,∴∠CAF=∠EAD,在△ACF和△AED中,∵AC=AE,∠CAF=∠EAD,AD=AF,∴△ACF≌△AED(SAS),∴∠ACF=∠AED=45°,∴∠BCF=∠ACF+∠BCA=45°+45°=90°,∴CF⊥BD.【点睛】本题考查全等三角形的动点问题,综合性较强,有一定难度,需要熟练掌握全等三角形的判定和性质进行综合运用.21。
期中测试一、选择题(本大题共10小题,共30分) 1.下列不能用平方差公式计算的是( )A .(21)(21)a a +- B . (21)(21)a a --- C .()()a b a b +-- D .()()a b b a +-2.下列计算正确的是( )A .66a a a ÷=B .67·a a a =C .222(3)6ab a b -=D .4222()()bc bc b c -÷-=-3.如图,在ABC △中,D 、E 分别是AC 、AB 上的点,在ADE BDE BDC △≌△≌△,则A ∠的度数是( )A .15︒B .20︒C .25︒D .30︒4的叙述,错误的是( )A 是有理数B .面积为12C =D 的点5.课堂练习中,王莉同学做了如下4道因式分解题,你认为王莉做得不够完整的一道是( )A .()321x x x x -=-B .2222()x xy y x y ++=+C .22()x y xy xy x y -=-D .22 69(3)ab ab a a b -+=-6.设432522024x x x x -++-能被x a -整除,则a 的值为( ) A .2±B .3±C .2±,3D .3±,27.下列命题正确的有( )①2±是83a =的立方根为24= A .1个B .2个C .3个D .4个8.如图,120AOB ∠=︒,OP 平分AOB ∠,且2OP =.若点M ,N 分别在OA ,OB 上,且PMN △为等边三角形,则满足上述条件的PMN △有( )A .1个B .2个C .3个D .无数个9.下列各多项式中,有公因式的是( ) A .2()xy a b +与2()ab x y + B .22()x y m n -与()xy m n -C .()()a b a b +-与22a b +D .()()a b c m n -++与()()b c a m n +--10.如图,在已知的ABC △中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD AC =,25B ∠=︒,则ACB ∠的度数为( )A .90︒B .95︒C .100︒D .105︒二、填空题(本大题共6小题,共18分)11.已知等腰三角形一个内角的度数为70︒,则它的其余两个内角的度数分别是________.12.已知实数x ,y 20132014的值为____________. 13.如图,在ABC △中,AB AC =,40B ∠=︒,点D 在线段BC 上运动(点D 不与点B ,C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于点.E 当ADB ∠等于________度时,ADE △是等腰三角形.14.估算比较大小:(填“>”、“<”或“=”)14.已知222246140x y z x y z ++-+-+=,则23x y z +-=________. 15.分解因式222ax ay 2axy ab +--得________. 三、解答题(本大题共9小题,共72分) 16.乘法公式的探究和应用.(1)如图中的左图,可以求出阴影部分的面积是________(写成两数平方差的形式);(2)如图中的右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是________,长是________,面积是________(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式________(用式子表达); (4)运用你所得到的公式,计算下列各题:10.39.7⨯①.()()22m n p m n p +--+②.17.在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形的解决思路,如:在图1中,若C 是MON ∠的平分线OP 上一点,点A 在OM 上,此时,在ON 上截取OB OA =,连接BC ,根据三角形全等判定()SAS ,容易构造出全等三角形OBC △和OAC △,参考上面的方法,解答下列(2)中的问题:如图2,在非等边ABC △中,60B ∠=︒,AD ,CE 分别是BAC ∠,BCA ∠的平分线,且AD ,CE 交于点F .图1图2(1)填空:AFC ∠=________,CFD ∠=________,AFE ∠=________; (2)说明AC AE CD =+的理由.18.如图,在ABC △中,D 是AB 上一点,DF 交AC 于点E ,DE FE =,AE CE =,AB 与CF 有什么位置关系?说明你判断的理由.19.某种产品的商标如图所示,O 是线段AC ,BD 的交点,并且AC BD =,.AB CD =小明认为图中的两个三角形全等,他的思考过程是:在ABO △和DCO △中,.AC BD AOB DOC ABO DCO AB CD =⎧⎪∠=∠→≅⎨⎪=⎩你认为小明的思考过程正确吗?如果正确,他用的是判定三角形全等的哪个条件?如果不正确,请你增加一个条件,并说明你的理由.20.如图,已知90AOB ∠=︒,OM 是AOB ∠的平分线,将三角尺的直角顶点P 在射线OM 上滑动,两直角边分别与OA ,OB 交于点C ,D ,求证:PC PD =.21.乘法公式的探究和应用图1图2(1)如图1,可以求出阴影部分的面积是________.(写成两数平方差的形式)(2)如图,若将阴影部分剪下来,重新拼成一个长方形,它的面积是________.(写成多项式乘积的形式) (3)比较左、右两图阴影部分的面积,可以得到乘法公式________.(用式子来表示)(4)运用你所得到的公式,计算()()2323x y x y -+-+.(5)下列纸片中有两张是边长为a 的正方形,三张是长为a ,宽为b 的长方形纸片,一张是边长为b 的正方形纸片,你能否将这些纸片拼成一个长方形,请你画出草图,并写出相应的等式.22.如图,点P 为AOB ∠的边OB 上一点,利用直尺和圆规作直线PE ,使PE OA ∥(保留作图痕迹,不写作法).23.已知ABN △和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)求证:BD CE =; (2)求证:M N ∠=∠.24.如图,点O 是等边ABC △内一点,D 是ABC △外的一点,110AOB ∠=︒,BOC α∠=,BOC ADC △≌△,60OCD ∠=︒,连接OD .(1)求证:OCD △是等边三角形;(2)当150α=︒时,试判断AOD △的形状,并说明理由; (3)AOD △能否为等边三角形?为什么?(4)探究:当α为多少度时,AOD △是等腰三角形.期中测试 答案解析一、 1.【答案】C【解析】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.原式利用平方差公式的结构特征判断即可.解:下列不能用平方差公式计算的是()()222()2a b a b a b a ab b +--=-+=---,故选C 。
华中师大版八年级上学期期中数学试卷F卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共6题;共12分)
1. (2分)若三角形的两边长为2和5,则第三边长m的取值范围是()
A . 2<m<5
B . 3<m<7
C . 3<m<10
D . 2<m<7
2. (2分)下列图形中,是中心对称图形但不是轴对称图形的是()
A .
B .
C .
D .
3. (2分)请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,
请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()
A . SAS
B . ASA
C . SSS
D . AAS
4. (2分)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则∠A 与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()
A . ∠A=∠1-∠2
B . 2∠A=∠1-∠2
C . 3∠A=2∠1-∠2
D . 3∠A=2(∠1-∠2)
5. (2分)山西中学阶段考试要求提出继续加大考查“活动建议”力度,目的是考查学生运用所学知识解决问题的能力,体现实践创新.某实践活动小组成员要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的
长就是AB的长,判定△EDC≌△ABC的理由是()
A . SAS
B . ASA
C . SSS
D . AAS
6. (2分)如图,在△ABC和△DEF中,AB=DE,AB∥DE,添加下列条件仍无法证明△ABC≌△DEF的是()
A . AC∥DF
B . ∠A=∠D
C . AC=DF
D . BE=CF
二、填空题 (共8题;共8分)
7. (1分)点A(﹣2,a)和点B(b,﹣5)关于x轴对称,则a+b=________.
8. (1分)如图,在等腰△ABC的两腰AB、BC上分别取点D和E,使DB=DE,此时恰有
∠ADE= ∠ACB,则∠B的度数是________.
9. (1分)如图,正方形ABCD中,截去∠A,∠C后,∠1,∠2,∠3,∠4的和为________.
10. (1分)要使六边形木架不变形,至少要钉上________ 根木条.
11. (1分)如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,若AE=12cm,则DE的长为________cm.
12. (1分)如图,⊙O是R t△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O 的切线,交AB的延长线于点D,则∠D的度数是________.
13. (1分)如图,已知AB∥CD,O为∠CAB,∠ACD的角平分线的交点,OE⊥AC于E,且OE=2,则两平行线间AB,CD的距离等于________.
14. (1分)如图所示,是将长方形纸牌ABCD沿着BD折叠得到的,图中包括实线、虚线在内共有全等三角形________ 对
三、解答题 (共12题;共127分)
15. (5分)在△A BC中,已知AB=AC=10,BC=16,点D在BC上,且BD= ,连接AD,求证:AD⊥AC.
16. (5分)如图,把一张长方形纸片ABCD沿EF折叠,C点落在C′处,D点落在D′处,ED′交BC于点G.已知∠EFG=50°,试求∠DEG与∠BGD′的度数.
17. (5分)如图,A、B两点分别位于一个假山两边,请你利用全等三角形的知识设计一种测量A、B间距离的方案,并说明其中的道理.
(1)测量方案:
(2)理由:
18. (1分)一次数学课上,老师在黑板上画了如图图形,并写下了四个等式:
①BD=CA,②AB=DC,③∠B=∠C,④∠BAE=∠CDE.
要求同学从这四个等式中选出两个作为条件,推出AE=DE.请你试着完成老师提出的要求,并说明理由.(写出一种即可)
已知:________(请填写序号),求证:AE=DE.
证明:
19. (5分)课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图,求证:△ADC≌△CEB.
20. (10分)如图所示的方格纸中,每个小方格的边长都是1,点,
,.
(1)作关于轴对称的;
(2)在轴上找出点,使最小,并直接写出点的坐标.
21. (20分)如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.
(1)已知BD= ,求正方形ABCD的边长;
(2)已知BD= ,求正方形ABCD的边长;
(3)猜想线段EM与CN的数量关系并加以证明.
(4)猜想线段EM与CN的数量关系并加以证明.
22. (6分)读句画图并填空:
如图,点P是∠AOB外一点,根据下列语句画图,
(1)①过点P,作线段PC⊥OB,垂足为C;
②过点P,作直线PD∥OB,交OA于D;
(2)结合所作图形,若∠O=50°,则∠ADP=________°.
23. (15分)如图,把△ABC沿DE折叠,使点A落在四边形BCDE内部的点A'处.
(1)写出图中一对全等的三角形,并写出它们的所有对应角.
(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少(用含有x 或y的式子表示)?
(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.
24. (10分)如图,已知锐角△ABC内接于⊙O,连接AO并延长交BC于点D.
(1)求证:∠ACB+∠BAD=90°;
(2)过点D作DE⊥AB于E,若∠ADC=2∠ACB.求证:AC=2DE.
25. (30分)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).
(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;
(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;
(3)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;
(4)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.
(5)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;
(6)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.
26. (15分)探究题
(1)理解证明:
如图1,∠MAN=90°,射线AE在这个角的内部,点B,C在∠MAN的边AM,AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明△ABD≌△CAF;
(2)类比探究:
如图2,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;
(3)如图3,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为多少?
参考答案一、选择题 (共6题;共12分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
二、填空题 (共8题;共8分)
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
三、解答题 (共12题;共127分)
15-1、
16-1、
17-1、
18-1、19-1、
20-1、20-2、
21-1、21-2、
21-3、
21-4、
22-1、22-2、
23-1、23-2、
23-3、24-1、
24-2、
25-1、
25-2、
25-3、
25-4、
25-5、
25-6、
26-1、26-2、26-3、。