METHOD 2 Determination of Stack Gas Velocity and Volumetric Flow Rate
- 格式:pdf
- 大小:169.84 KB
- 文档页数:26
芳纶纸涂层氦渗透性(机械工程系,Monika Bubacz,新奥尔良大学,新奥尔良,洛杉矶70148,USA)摘要:低温储罐材料的技术和设计仍处于发展阶段。
新的设计理念要求的复合结构不仅承载机械负荷,还要具有密封作用。
本文的目的是定义一个低温储罐的设计概念和发展阻隔层与浸渍芳纶纸,以防止气体通过渗透的复合夹芯墙板渗出。
涂以不同的树脂体系的一些芳族聚酰胺纤维纸测试氦渗透性。
渗透动力学研究表明:同时运行至少两个质量传输机制时,扩散和水动力流过微多孔介质以非定常渗透性的长周期确定[1]。
尽管在实验室制造的样品的一些技术还不完善,但达到了透气性低的水平,这满足了标准规定。
可用于控制质量的渗透性和不稳定周期动力学这两个的稳定的水平。
关键词:芳纶纤维,蜂窝,树脂,渗透性1引言与纤维增强塑料提供的特定的强度和刚度的优点相比,金属已经被确定为重复使用的空间运输系统候选者。
能够满足在恶劣的环境中飞行要求的低温储罐材料和技术设计,仍处于开发阶段。
基于机械性能,安全壳性能(长期和短期),和制造方面的考虑,一些碳纤维和芳纶纤维增强塑料是很好的选择[1]。
用于低温燃料箱终身耐久性要求意味着材料必须安全地可承受外部压力,外部结构载荷,抗渗漏,以及能够工作在极宽的温度围。
气体泄漏的速率由材料的制造方法,机械负载到水箱的功能,必须运行的材料部损伤状态的决定。
低温储罐的常规概念的温度包括金属衬垫,主要起密封功能,衬垫里是封闭在一个承载主要复合结构的机械载荷[2]。
然而,实验表明,金属衬垫里的焊接接头于恶劣的环境和复合结构也必须可靠的,有效的满足气密性的功能。
通常情况下,复合材料具有套的微裂纹而不是可渗透液体但可渗透气体的小分子,如氢或氦。
本研究的目的是相对于所述气体从根本上降低复合材料的磁导率。
到目前为止,IM7/977-2(石墨- 环氧)的表面层和芳纶(芳香族聚酰胺)的蜂窝体被选为最有前途的可靠的材料,以及聚合物薄膜层之间引入在复合以形成一交错的或混杂复合材料,和降低渗透性,膜层的厚度,数量和位置上的层压板的机械性能的影响进行了研究[3]。
矿山开采可行性:feasibility地下水:groundwater边坡:slope防护:Protection污泥:sludge矿山:mine矿井:Mine水分:Moisture流变学:rheology铝土矿:bauxite石灰石:limestone采空区:goaf可视化:visual尾矿:Tailings连续:continuous煅烧:calcination吸附作用:adsorption 农作物:Crops长度:LengthCd:Cadmium黄铜矿:chalcopyrite 辉钼矿:molybdenite声纳:SONAR脱氧:deoxidation生产能力:productivity 采矿:mining确定:Determination顶板:roof离析:segregation布置:layout开采:mining充填:filling浸取:leaching论证:demonstration完井:completion红柱石:Andalusite等效:equivalent空洞:Cavity底盘:chassis泵送:pumping复垦:reclamation工艺学:technology区划:zoning激发:excitation绞车:winch配套:matching固氮酶:nitrogenase采场:stope残渣:Residue工作面:face资源化:utilization阜新:Fuxin采石场:quarry堤坝:dam料浆:slurry放射性:radiation配比:ratio淮南:Huainan离散元:DEM电积:electrowinning取样器:sampler损失:losses回填:backfill基准线:baseline驱替:displacement露头:outcrop矿山开采:mining大型化:large-scale先进:Advanced深部:deep矿柱:Pillar钙芒硝:glauberite产状:occurrence生物氧化:Bio-oxidation改良剂:amendment图解:diagram废弃地:wasteland覆盖层:Overburden赋存:occurrence有效度:validity内聚力:cohesion湿法冶金:hydro-metallurgy掘进:tunneling单通道:Single-channel 矸石:gangue半连续:semi-continuous 避免:avoid非稳态:unsteady-state 垮塌:collapse优化选择:optimization 贫化:dilution斜坡道:ramp酒糟:lees拉斗铲:dragline结冰:freeze杂卤石:polyhalite尾砂:Tailing转角:slope权重值:weight压裂改造:fracturing抵抗线:Burden磷石膏:ardealite电铲:excavator技术工艺:technology落石:rockfall防滑:anti-skidGa:Gallium地表沉陷:subsidence锡矿山:Xikuangshan疏通:dredge淋滤液:leachate最小抵抗线:Burden水力:hydraulic金堆城:Jinduicheng代替:replace保真:fidelity间隔时间:interval栽培方式:Cultivation 充填体:backfill滚筒采煤机:shearer分层开采:slicing实测:survey可控:Controlled不规则:irregularity数据统计:statistics阻水:water-blocking胶凝剂:gellant气举:air-lift营养成份:Nutrition刨煤机:plow可能-满意度:possibility-satisfiability 硫酸钠:NaSO土壤有机质:SOM散体:granular燃烧反应:combustion 抽采:drainage除氧:deoxidization塌陷:sink超高分子聚乙烯:UHMWPE崩落:Caving用地:land杵体:slug植物稳定:phytostabilization比较借鉴:comparison隔水层:aquiclude凝石:sialite可崩性:cavability偏高岭石:metakaolin运输机:transport煤矿区煤层气:CMM多水平:multi-level拉底:undercutting演化特征:evolution块度:Fragmentation联合作业:teamwork动压:dynamic向斜构造:syncline核定:determination大角度:large-angle条带:Ribbons马丽散:malisan回采:extraction布置方式:Configuration疏排水:drainage硐室:room滤水:filtering疏干:unwatering台阶:Bench进路:path富家坞:Fujiawu岩崩:rockfall台阶法:step-method极近距离:ultra-close下滑:fall煤层开采:mining酒钢:JISCO露天采场:open-pit水泥胶砂:mortar扇形:fan-shaped高吸水性:super-absorbent 顺槽:entry搬家:moving煤矿废弃地:wasteland防倒防滑:anti-skid地质录井:geo-logging增透:anti-reflection润滑防卡:lubrication变质程度:metamorphism点柱:pillar平巷:roadway似膏体:paste-like石门:Shimeng轮斗挖掘机:BWE反算:inversion透水:permeable削壁充填:resuing区间层次分析法:IAHP二灰:lime-ash安全出口:exit留设:setting转载:reprint乌达:Wuda废渣地:wasteland邻水:Linshui吊斗铲:Dragline下盘:footwall挑顶:ripping矿井开采:mining分类预测:Classification 破坏程度:destructiveness快速回撤:speedy-relocation条带充填:strip-filling变形移动:displacement开采工作面:faces伪仰斜:false-inclined两硬条件:two-hard开拓延深:developing三下采矿:three undermining 采掘机械化:Mechanion机采:apheresis大型排土场:large-stackpile磴口县:Dengkou造浆:mud-made江苏徐州:Xuzhou采准切割:mining-cutting出入沟:Haulageway水溶:Water-soluble蒙库铁矿:Mengku粒度仪:sizer高陡:High-steep切割头:cutter-head运输道:haulageway扇状:fantail四等分:quartering助流:flow-aiding打钻:drillhole特厚:extra-thick后采矿:Post-mining开采充填:Excavating-filling防倒:anti-down千万吨:Ten-million-ton留设宽度:reserve-width解吸扩散:desorption-diffusion 可刨性:plowability变向:Change-Direction复绿:virescence电磁测距技术:RMRS旺格维利:wangeviry炮采放顶煤:caving-working-face 阿尔哈达:Aerhada无井式:non-well矿山开采1 控制系统:control system2 数值计算:numerical calculation3 虚拟样机:Virtual prototype4 煤矿:coal mine5 数据结构:data structure6 山西省:Shanxi Province7 声发射:acoustic emission8 空间结构:spatial structure9 模糊评价:fuzzy evaluation10 工程地质:engineering geology11 工程设计:engineering design12 采矿工程:mining engineering13 生态恢复:ecological restoration14 溶剂萃取:solvent extraction15 风险评价:risk evaluation16 植被恢复:vegetation restoration17 状态方程:equation of state18 土壤质量:soil quality19 集对分析:set pair analysis20 动力学分析:dynamic analysis21 腐植酸:humic acid22 地质环境:geological environment23 赤泥:red mud24 水力压裂:hydraulic fracturing25 受力分析:force analysis26 地质构造:geological structure27 烧结温度:Sintering Temperature28 厌氧发酵:anaerobic fermentation29 土地复垦:Land reclamation30 回收率:recovery rate31 爆破振动:blasting vibration32 文本聚类:text clustering33 开采沉陷:Mining subsidence34 采矿方法:Mining method35 测量误差:measurement error36 有效应力:effective stress37 环境科学:environmental science38 系统可靠性:system reliability39 发电:power generation40 天然气水合物:natural gas hydrate41 经济损失:economic loss42 环境问题:environmental problems43 安全分析:safety analysis44 防治措施:control measures45 温室效应:greenhouse effect46 安全系数:safety coefficient47 地下水污染:groundwater pollution48 极限平衡法:Limit equilibrium method49 位移场:displacement field50 露天矿:Open-pit mine51 综合回收:Comprehensive recovery52 液压控制:Hydraulic control53 深部开采:deep mining54 微波辐照:microwave irradiation55 地下开采:underground mining56 理化性质:physicochemical property57 极限平衡:limit equilibrium58 管道输送:pipeline transportation59 安全措施:safety measure60 强度折减:strength reduction61 CO_2:carbon dioxide62 群落演替:community succession63 技术要求:technical requirement64 注水:water flooding65 智能优化:intelligent optimization66 植被演替:vegetation succession67 管理方法:management method68 土壤理化性质:soil physical and chemical properties69 高应力:high stress70 刮板输送机:scraper conveyor71 体积分数:volume fraction72 竞争吸附:competitive adsorption73 勘探开发:exploration and development74 矿山安全:mine safety75 支承压力:abutment pressure76 煤矿开采:coal mining77 沁水盆地:Qinshui Basin78 资源优化:resource optimization79 土地整理:Land arrangement80 硫化钠:sodium sulfide81 非线性有限元法:nonlinear finite element method82 启动压力梯度:threshold pressure gradient83 集成技术:integrated technology84 模糊评估:fuzzy evaluation85 形状因子:shape factor86 菌根真菌:Mycorrhizal fungi87 应力集中系数:Stress concentration factor88 深孔:Deep hole89 煤炭开采:coal mining90 研究与应用:research and application91 地下矿山:Underground mine92 帷幕注浆:Curtain grouting93 煤柱:coal pillar94 太原组:Taiyuan Formation95 生态重建:ecological reconstruction96 瓦斯治理:gas control97 巷道支护:roadway support98 铀矿石:Uranium ore99 地质条件:geological conditions100 绿色开采:green mining101 区域分布:regional distribution102 坚硬顶板:hard roof103 深孔爆破:deep-hole blasting104 洁净煤:clean coal105 爆破工程:blasting engineering106 纵向数据:longitudinal data107 聚合度:degree of polymerization108 安全距离:safe distance109 爆破设计:blasting design110 破坏概率:failure probability111 矿区:mine area112 影响评价:impact assessment113 硅肥:silicon fertilizer114 薄煤层:thin coal seam115 煤炭地下气化:underground coal gasification 116 围岩变形:surrounding rock deformation117 长距离:long distance118 有限元强度折减法:strength reduction FEM 119 风化煤:weathered coal120 模糊一致矩阵:fuzzy consistent matrix121 顶板控制:Roof control122 锚杆支护:Bolting support123 浅埋煤层:shallow seam124 强度设计:Strength Design125 深海采矿:Deep-sea mining126 改革与创新:reform and innovation127 临界高度:Critical height128 岩层移动:strata movement129 岩浆岩:magmatic rock130 有限单元:finite element131 高韧性:high toughness132 过程方法:process method133 生产规模:production scale134 火山灰活性:pozzolanic activity135 化学组分:chemical composition136 采煤工作面:coal face137 应力敏感性:stress sensitivity138 赋存状态:occurrence state139 地质工作:geological work140 力学强度:mechanical strength141 矿物成分:mineral composition142 能源植物:energy plant143 装药结构:charge structure144 研究应用:research and application145 采煤:coal mining146 生产组织:Production organization147 分类模型:Classification model148 随机介质理论:stochastic medium theory149 平顶山市:Pingdingshan city150 边坡加固:slope reinforcement151 储气库:gas storage152 毕节地区:Bijie prefecture153 地下采矿:underground mining154 磷渣:Phosphorous slag155 植物选择:plant selection156 低渗透气藏:low permeability gas reservoir 157 钻井技术:drilling technology158 厚煤层:thick seam159 方案比较:scheme comparison160 微波消化:microwave digestion161 滑坡稳定性:landslide stability162 陷落柱:subsided column163 井眼稳定:Bore hole stabilization164 地质资料:geological data165 物质代谢:material metabolism166 高瓦斯:high gas167 胶凝材料:cementing material168 直井:vertical well169 损失率:Loss rate170 水压致裂:hydraulic fracturing171 气体扩散:gas diffusion172 生态环境质量:eco-environmental quality173 急倾斜煤层:steep seam174 大采高:large mining height175 固体废弃物:solid wastes176 围岩控制:surrounding rock control177 塑性指数:plasticity index178 区域构造:regional structure179 建筑安全:construction safety180 胶结充填:cemented filling181 粗骨料:coarse aggregate182 钻井设计:drilling design183 综采:fully mechanized mining184 高产高效:high production and high efficiency 185 压缩因子:compressibility factor186 职业能力:professional competence187 回采工艺:mining technology188 概率积分法:Probability integral method189 地表变形:surface deformation190 上隅角:upper corner191 松动爆破:loose blasting192 边坡变形:slope deformation193 滑坡治理:landslide treatment194 融资机制:financing mechanism195 煤矸石:coal refuse196 井底压力:bottom hole pressure197 孔容:pore volume198 吸附量:adsorption capacity199 工艺模拟:process simulation200 钻井工艺:drilling technology201 地压:ground pressure202 低渗透率:low permeability203 破胶剂:gel breaker204 煤层厚度:coal seam thickness205 地质因素:geological factors206 济宁市:Jining City207 关键层:key strata208 压裂:hydraulic fracturing209 地浸采铀:in-situ leaching of uranium210 成因模式:genetic model211 高陡边坡:high and steep slope212 滑动面:Slip surface213 理化性能:physicochemical properties214 滑脱效应:slippage effect215 综采工作面:fully mechanized mining face216 颗粒级配:particle size distribution217 神东矿区:Shendong mining area218 新乡市:Xinxiang city219 分布式光纤:distributed optical fiber220 颗粒分布:particle distribution221 灾害防治:disaster prevention222 氧化矿:oxide ore223 运移通道:migration pathway224 多场耦合:Multi-field coupling225 渗流理论:percolation theory226 石膏矿:gypsum mine227 上限法:upper-bound method228 联合开采:combined mining229 贫化率:Dilution rate230 放矿:ore drawing231 升沉补偿:Heave compensation232 产品成本:product cost233 模糊多属性决策:fuzzy multiple attribute decision making 234 变形计算:Deformation calculation235 设备改造:equipment transformation236 离子吸附:ion adsorption237 资源回收:resource recovery238 适宜性评价:suitability assessment239 赤平投影:Stereographic projection240 变形局部化:deformation localization241 Sarma法:Sarma method242边坡监测:Slope monitoring 243 矿产资源开发:Mineral resources exploitation 244 采场稳定性:stope stability245 苏里格气田:Sulige Gasfield246 熵技术:entropy technology247 露天开采:Open-pit mining248 失稳机理:instability mechanism249 RTK技术:RTK technique250 矿井建设:Mine construction251 剩余推力法:residual thrust method252 多年生黑麦草:Lolium perenne L253 关键环节:key link254 排土场:waste dump255 拟静力法:Pseudo-static method256 产气量:biogas production257 绿色环保:environmental protection258 流-固耦合:Fluid-solid coupling259 地压控制:ground pressure control260 格局分析:pattern analysis261 水力坡度:hydraulic gradient262 古滑坡:ancient landslide263 优化系统:Optimization system264 信息显示:Information display265 开拓系统:development system266 煤泥:coal slime267 评价因子:evaluation factors268 生态破坏:ecological destruction269 煤炭生产:coal production270 相似材料模拟:similar material simulation 271 低阶煤:low rank coal272 技术控制:technical control273 剥采比:stripping ratio274 构造控制:structural control275 体积应变:volumetric strain276 地质信息:geological information277 开挖爆破:excavation blasting278 采煤方法:mining method279 发酵液:fermentation liquor280 大块率:boulder yield281 上行开采:ascending mining282 中深孔:medium-length hole283 综放工作面:fully mechanized caving face284 矿山环境:mining environment285 资源评价:resources assessment286 过渡期:Transition period287 废弃采石场:abandoned quarry288 滑坡预报:landslide prediction289 连续开采:Continuous mining290 破碎顶板:broken roof291 泵压:pump pressure292 技术经济比较:technical and economic comparison 293 开采方法:Mining method294 井筒储存:wellbore storage295 局部阻力:local resistance296 水溶开采:solution mining297 临时支护:temporary support298 线性回归方程:linear regression equation299 弹塑性理论:elastic-plastic theory300 应力梯度:stress gradient301 稳产:stable production302 薄基岩:thin bedrock303 工程控制:engineering control304 放顶煤:top-coal caving305 活性氧化铝:active alumina306 顶煤:top coal307 焦家金矿:Jiaojia gold mine308 煤级:coal rank309 清洁压裂液:clean fracturing fluid310 CASA模型:CASA model311 岩体力学:rock mass mechanics312 实时曲线:real-time curve313 设备性能:equipment performance314 加强管理:strengthen management315 安全开采:safety mining316 环境效益:environmental effect317 综放开采:full-mechanized caving mining318 聚合氯化铝铁:polyaluminum ferric chloride319 充填材料:Filling material320 地下气化:underground coal gasification321 原地爆破浸出:stope leaching322 高能气体压裂:high energy gas fracturing323 热能:thermal energy324 烧结砖:fired brick325 动态曲线:dynamic curve326 防排水:waterproofing and drainage 327 开采深度:mining depth328 丛式井:cluster well329 采矿技术:Mining technology330 植物入侵:plant invasion331 上覆岩层:overlying strata332 沉降速度:deposition velocity333 适用技术:appropriate technology334 复合介质:composite media335 配矿:Ore matching336 应用展望:application prospect337 燃烧产物:combustion product338 块段模型:Block model339 井身结构:well structure340 陈化时间:aging time341 混合物理论:mixture theory342 前景分析:prospect analysis343 岩体稳定性:rock mass stability344 pH值控制:PH value control345 超临界吸附:supercritical adsorption 346 岩金矿山:rock gold mine347 安全施工:safe construction348 失稳判据:instability criterion349 水化过程:hydration process350 边坡失稳:Slope instability351 固化土:solidified soil352 Bishop法:Bishop Method353 废石:waste rock354 压裂技术:fracturing technology355 直接顶:immediate roof356 矿山压力:underground pressure357 移动变形:movement and deformation 358 相似模拟:similarity simulation359 复杂条件:complicated condition360 技术现状:technology status361 预测分析:prediction and analysis 362 爆破质量:Blasting quality363 环境参数:environmental parameter 364 CT成像:CT imaging365 采区:mining area366 开采工艺:mining technology367 SHPB试验:SHPB test368 稳定性判据:stability criteria369 边坡角:Slope angle370 监测监控:monitoring and control371 应力状态:state of stress372 浸出率:leaching efficiency373 沿空留巷:retaining roadways along goaf 374 露天煤矿:open-pit coal mine375 综合效益:comprehensive efficiency376 大倾角:large dip angle377 解磷细菌:phosphate-solubilizing bacteria 378 防止措施:preventing measures379 4A分子筛:zeolite 4A380 防突:outburst prevention381 矿业废弃地:mining wasteland382 煤柱宽度:coal pillar width383 煤矿瓦斯:coal mine gas384 应用实践:application practice385 煤成气:coalbed methane386 矿石质量:ore quality387 综合成本:comprehensive cost388 大冶铁矿:Daye iron mine389 开采方案:mining scheme390 离散元方法:discrete element method391 风积砂:Aeolian Sand392 投资回收期:Investment recovery period 393 软煤:soft coal394 边坡位移:slope displacement395 稳定性预测:Stability prediction396 结构份额:structure share397 煤层气井:CBM well398 液化流程:liquefaction process399 三软煤层:three soft coal seam400 层间距:spacing of layers401 炮采:blasting mining402 SLS系统:SLS system403 评价参数:evaluation parameter404 压力分析:pressure analysis405 爆炸极限:explosion limits406 回采率:recovery ratio407 水力输送:hydraulic transport408 垮落带:caving zone409 金山金矿:Jinshan gold deposit410 采场结构:stope structure411 急倾斜:steeply inclined412 沉陷区:Subsidence area413 无废开采:Wasteless mining414 探矿工程:exploration engineering415 冒落带:caving zone416 水平距离:horizontal distance417 FLAC模拟:FLAC simulation418 属性综合评价:attribute synthetic assessment 419 影响范围:impact area420 效率份额:efficiency share421 金属矿山:metallic mine422 资源化利用:Resourceful utilization423 连续采矿:continuous mining424 建筑群:building group425 回采顺序:stoping sequence426 地压监测:ground pressure monitoring427 VCR法:VCR method428 采动影响:mining influence429 Surpac软件:Surpac software430 维里方程:Virial equation431 水力提升:Hydraulic lifting432 改良土壤:soil improvement433 剩余可采储量:remaining recoverable reserves 434 统筹规划:overall planning435 三带:three zones436 操作控制:operation control437 地下金属矿山:underground metal mine438 灾害监测:disaster monitoring439 Mohr圆:Mohr circle440 基层材料:base course material441 水库工程:reservoir project442 极限平衡方法:limit equilibrium method443 滑坡防治:landslide control444 粒径分析:particle size analysis445 保护煤柱:protective coal pillar446 自然崩落法:block caving method447 监测与评价:Monitoring and assessment448 煤矿区:Coal-mining area449 周期来压:periodic weighting450 巷道布置:roadway arrangement451 矿山废弃地:mining wasteland452 开发方案:development scheme453 经济效益分析:economic analysis454 垂直井:vertical well455 循环时间:Cycle Time456 绿色矿山:Green mine457 合理选择:reasonable choice458 底板突水:floor water invasion459 地球物理场:geophysical fields460 钨矿山:tungsten mine461 吸附常数:adsorption constant462 不稳定煤层:unstable coal seam463 孔容积:pore volume464 深部采矿:deep mining465 变温吸附:temperature swing adsorption466 管控:management and control467 灰色关联分析法:grey relational analysis468 概率积分:probability integral469 采掘计划:mining plan470 冬瓜山铜矿:Dongguashan Copper Mine471 岩性分析:lithology analysis472 爆破方法:blasting method473 采场支护:stope support474 露天矿边坡:open-pit slope475 除酚:Phenol removal476 堵管:pipe blockage477 溶浸采矿:Solution mining478 支撑能力:supporting capacity479 岳城水库:Yuecheng Reservoir480 景观恢复:landscape restoration481 数字化矿山:digital mine482 扩建工程:expansion project483 沉陷预计:Subsidence prediction484 条带煤柱:strip coal pillar485 矿山边坡:mine slope486 无底柱分段崩落法:Sublevel caving without sill pillar 487 雾化喷嘴:atomizing nozzle488 生态技术:Ecology technology489 浸取率:Leaching rate490 支护系统:supporting system491 注水效果:water injection efficiency492 发育规律:development law493 凡口铅锌矿:Fankou lead-zinc mine494 煤火:coal fire495 水平分段放顶煤:horizontal section top coal caving 496 粒度组成:size distribution497 综采设备:fully mechanized mining equipment498 环评:environmental impact assessment499 新技术应用:new technology application500 矿山复垦:Mine reclamation501 政策法规:policy and law502 爆破效率:Blasting efficiency503 技术经济指标:techno-economic index504 高压管道:high-pressure pipeline505 酸法:acid method506 控制层:Control layer507 经济增长点:economic increasing point508 灾害控制:disaster control509 阜新矿区:Fuxin mining area510 高压注水:high-pressure water injection511 煤基质:coal matrix512 崩落采矿法:Caving mining513 高水压:high hydraulic pressure514 水文地质结构:hydrogeological structure515 开采程序:mining procedure516 破坏特征:failure characteristic517 内外环境:internal and external environment518 土壤重构:Soil Reconstruction519 作业效率:work efficiency520 重度增加法:gravity increase method521 地层结构:stratum structure522 复垦土壤:reclamation soil523 露天矿山:open pit524 岩体移动变形:rock mass displacement and deformation 525 井漏:Mud losses526 生产布局:production layout527 导水裂隙带:water conducted zone528 形态控制:morphology control529 数字模型:Mathematical Model530 基质改良:substrate amendment531 脉岩:vein rock532 地应力场:crustal stress field533 CAD:Computer Aided Design (CAD)534 设备配套:equipment coordination535 胶结料:Cementing material536 着色剂:Colouring agent537 大红山铁矿:Dahongshan Iron Mine538 地温场:geo-temperature field539 露天边坡:open-pit slope540 储量管理:reserve management541 损失贫化:loss and dilution542 放煤步距:drawing interval543 急斜煤层:steep seam544 机械化采样:mechanical sampling545 水力联系:hydraulic connection546 物质组成:substance composition547 三角网:triangular network548 地面建设:surface construction549 开采境界:mining boundary550 关键层理论:key strata theory551 国产设备:domestic equipment552 陡帮开采:steep slope mining553 深凹露天矿:furrowpit554 尺寸优化:dimension optimization555 力学原理:mechanical principle556 二元线性回归:binary linear regression 557 分层设计:Hierarchical design558 应力叠加:Stress superposition559 巷旁充填:roadside packing560 横向变形:transverse deformation561 点荷载:point load562 薄矿脉:narrow vein563 充填体强度:Fillbody strength564 可行性论证:feasibility study565 单宽流量:unit discharge566 削坡:slope cutting567 生产单元:production cell568 永久支护:permanent support569 土方量:earth volume570 灾害预防:disaster prevention571 潞安矿区:Luan mining area572 统计资料:statistical data573 资源丰度:resource abundance574 矿压观测:mine pressure observation 575 采出率:recovery rate576 现场实测:site measurement577 塌陷区:subsided area578 综放:full-mechanized caving mining579 假顶:false roof580 土地利用/覆盖变化:land use/land cover change581 放顶煤开采:top coal caving582 关键设备:key equipments583 快速掘进:fast excavation584 最佳参数:optimal parameter585 综放面:fully mechanized top-coal caving face586 充填复垦:Filling reclamation587 近距离煤层:close distance coal seams588 分子间作用力:intermolecular force589 露天矿区:opencast mine area590 膏体充填:Paste backfilling591 有害元素:hazardous elements592 矿柱回采:Pillar extraction593 煤矸石山:coal gangue dump594 围岩支护:surrounding rock support595 水泥强度:cement intensity596 矿业开发:development of mining industry597 复杂地质条件:complex geological conditions598 石灰石矿:limestone ore599 回收工艺:recovery technology600 充填采矿法:Filling mining method601 老空水:goaf water602 导水裂缝带:water flowing fractured zone603 条带开采:strip pillar mining604 开滦矿区:Kailuan Mining Area605 煤田地质:coal geology606 极限平衡分析法:Limit equilibrium analysis method 607 矿业用地:mining land608 铲运机:carry scraper609 工序管理:process management610 充填系统:Backfill system611 技术实践:technical practice612 残矿:remnant ore613 近距离:short distance614 水淬渣:water-quenched slag615 尾砂充填:Tailings Backfilling616 维修技术:Maintenance Technology617 浅孔留矿法:Short-hole shrinkage method618 矿压规律:strata behavior regularity619 浆体管道:slurry pipeline620 综采放顶煤:fully mechanized top coal caving mining621 峰峰矿区:Fengfeng mining area622 精细评价:fine evaluation623 导水性:water conductivity624 耐性植物:tolerant plant625 支架设计:support design626 自燃煤矸石:spontaneous combustion gangue627 盆栽试验:pot culture experiment628 空场采矿法:open stope method629 下沉系数:subsidence coefficient630 人工矿柱:artificial pillar631 锰矿山:manganese mine632 阿希金矿:Axi gold deposit633 环境制约:environmental restriction634 三维图形:3D graph635 采高:Mining height636 控制变形:deformation control637 有利区块:favorable block638 设计与优化:design and optimization639 潜在滑动面:potential sliding surface640 直播造林:direct seeding641 作业流程:work flow642 运输设备:transport equipment643 土地复垦规划:Land reclamation planning644 损失补偿:loss compensation645 开采沉陷预计:mining subsidence prediction646 三次函数:cubic function647 低煤阶:low-rank coal648 储量计算:reserve estimation649 抛掷爆破:throwing blasting650 冒顶:roof falling651 煤层气开发:CBM development652 采煤工艺:mining craft653 工业品位:industrial grade654 隔水关键层:water-resisting key strata655 规划环境影响评价:plan environmental impact assessment(PEIA) 656 煤壁片帮:coal wall spalling657 矿山地质灾害:mine geological disaster658 矿压显现:ground behaviour659 压裂井:fracturing well660 开采设计:mining design661 螺旋钻采煤机:coal auger662 防水煤柱:waterproof pillar663 覆岩:overburden rock664 环境评估:environmental evaluation665 金属矿床:metallic deposits666 煤矿生产:production of coal mine667 采矿法:mining method668 炸药单耗:explosive unit consumption669 矿区废弃地:mining wasteland670 调采:adjusting mining671 综合机械化:comprehensive mechanization672 采煤沉陷:coal mining subsidence673 深孔预裂爆破:deep-hole presplitting explosion674 配套设备:matching equipment675 坚硬煤层:hard coal seam676 似膏体充填:paste-like backfill677 吸附势理论:Adsorption potential theory678 综合开发利用:comprehensive exploitation and utilization 679 多煤层:multiple coal seams680 水银洞金矿:Shuiyindong gold deposit681 刚性试验机:rigid testing machine682 留矿采矿法:shrinkage stoping method683 安全高效:safe and efficient684 机械化开采:mechanized mining685 采动损害:mining-induced damage686 充填巷:filling roadway687 采宽:mining width688 声波探测:acoustic detection689 水力采煤:hydraulic mining690 采煤塌陷区:coal mining subsidence area691 综合评价方法:synthetic evaluating method692 集输工艺:gathering process693 倾斜煤层:inclined seam694 生产水平:Production Level695 煤矿水仓:mine sump696 圆弧法:arc method697 早期强度:early stage strength698 充填技术:filling technique699 充填开采:backfill mining700 导水断裂带:water conducted zone701 震动放炮:vibration shot702 煤柱稳定性:stability of coal pillar703大直径深孔采矿:large-diameter longhole mining 704 移动角:displacement angle705 强制放顶:overhead caving706 全尾砂:Whole tailings707 塑性破坏:Plastic failure708 综合机械化开采:fully-mechanized mining709 乌龙泉矿:Wulongquan mine710 安全条件:safety condition711 采矿系统工程:Mining system engineering712 桃冲铁矿:Taochong Iron Mine713 生态复垦:Ecological reclamation714 煤层气藏:Coalbed methane pool715 巷道维护:maintenance of roadway716 聚能效应:shaped charge effect717 尾矿利用:Tailings utilization718 境界矿柱:boundary pillar719 采矿方法选择:Selection of mining method720 采矿方案:mining method721 全面采矿法:overall mining method722 矿石贫化率:ore dilution ratio723 服务年限:service life724 深部煤层:deep coal bed725 净初级生产力(NPP):net primary productivity (NPP)726 同一度:identical degree727 建筑物变形:building deformation728 新方案:new program729 塌陷地:subsided land730 采动程度:mining degree731 黄陵矿区:Huangling Mining Area732 稳定性系数:stability factor733 水位变化:Water level variation734 方格网:grid square735 木垛:wood crib736 Mohr-Coulomb准则:Mohr-Coulomb yield criterion737 级配优化:gradation optimization738 坡角:slope angle739 煤炭回收率:coal recovery rate740 相似模拟实验:simulation experiment741 时空关系:spatio-temporal relationship742 锚索加固:anchor cable reinforcement743 滑坡机制:landslide mechanism744 端头效应:end effect745 孔隙水压:pore pressure746 武都水库:Wudu Reservoir747 数字成图:digital mapping748 深孔松动爆破:Long hole loose blasting749 后期强度:later strength750 Ca/S比:Ca/S Ratio751 滑坡稳定:landslide stability752 设备运输:equipment transportation753 整体思维:whole thinking754 Borda数法:Borda method755 近距离煤层群:contiguous coal seam group 756 废弃矿山:abandoned mine757 煤层气成藏:CBM reservoir formation758 热激发煤矸石:thermal activated coal gangue 759 块度预测:Fragmentation prediction760 地压活动:ground pressure activities761 塌陷土地:subsided land762 底板破坏:floor damage763 煤层顶板:seam roof764 排沙量:discharged particle mass765 采场管理:stope management766 复杂矿体:complex orebody767 采空区处理:Mined-out area treatment768 套压:casing pressure769 利用途径:utilization approach770 开采技术:production technique771 压力衰竭:pressure depletion772 膨胀性:swelling property773 等温吸附:Adsorption isotherms774 高效开采:high efficient mining775 Janbu法:Janbu method776 矿压:rock pressure777 采动裂隙:mining-induced fracture778 覆岩破坏:strata failure779 矿压监测:mine pressure monitoring780 中小煤矿:middle and small coal mine781 小断层:small faults782 大倾角煤层:deep inclined seam783 建筑物下采煤:coal mining under buildings 784 巨厚煤层:extremely thick coal seam785 运移规律:migration rule。
答案CHAPTER 43 练习:A. 用括号内的词将汉语译成英语:1)The research about this enzyme can be traced back to 1970s.2)Recently, the use of reproducible resource has reached new heights.3)Vinegar could play on the taste buds.4)Pay attention to the harmony of appearance, smell, taste, texture whenconfecting the beverage.B. 根据课文判断下列陈述是否正确:1)T2)T3)T4) F5) F6)TCHAPTER 54练习:1)用表内提供的词组合成句子,描述图中勺的相对位置:Seven spoons are symmetrically and evenly spaced. Perforated spoon with black hand is at the far left and goes to the left of perforated spoon with stainless steelhand. Slotted spoons with black hand is next to perforated spoon with stainless steel hand on the right and goes to the left of slotted spoon with stainless steel hand. Three-cornered stirring spoon is next to slotted spoon with stainless steel hand on the right and goes to the left of solid spoons with black hand. Solid spoons with stainless steel hand is at the far right.2) 根据Fig 5-3 描述其余不同用具相对于球形切割器Ball cutter 的位置One ball cutter is placed horizontally below the center of the place, and a straight spatula goes to the top-left of it. Next to the straight spatula on the right is a cook’s fork. In front of the straight spatula is an offset spatula. A pie server is on the right of the offset spatula and in front of the cook’s fork.CHAPTER 63 练习:A.用建议的词进行汉译英1)Make the eye level even with the bottom of meniscus inside the tube.2)The electronic scales should be placed where they set level and where theyreceive a minimum amount of jarring.3)Use this method to analyze the arginine through HPLC, the linearity range isfrom 0.5 μg to 10 μg.4)Portion 100 ounce flour into 5 fractions.5)The column is 2 inch in diameter and 10 inch in highness.B. 用表内的词填空Now describe a similar experiment for finding the density of a beverage in a report style. Use the following words in the description. The procedure is: wash→dry→pour→measure→calculate.Density bottle was washed with brush firstly and then rinsed with alcohol. The empty bottle was dried and weighed by the scale. Then put exactly a volume of the liquid into the bottle. Next the full bottle was weighed by the scale and gained the mass. The mass of the liquid, therefore, can be calculated with subtraction between the mass of the full bottle and the mass of the empty bottle. Finally its density is calculated with the equation ρ = m/v. The operation should be done at the room temperature.E. 描述测量物体的单位Chapter 74 练习:构词1) Study the meanings of stems and affixes, and then give examples of words you know which are derived from these stems and affixes.2) Mach these stems and affixes with their meaningsChapter 83 练习:A. 学习实验方法和讨论结果的表述(用括号内的词或句型将汉文译成英文)1)The details of an analytical method for determination of the content ofglutamic acid is as following.2)Initiate the research with the determination of the pH range-finding.3)The food additive most frequently employed include sugar, salt, vinegar and soon.4)The enzyme reaction is terminated after a period of 2 hours by heating.5)According to the regulations, experimental dose-effect relationship must be noless than five concentration levels, each concentration level with triplicate parallel test, employed with a control.6)The sample should be watched in regard to the color changes in the process ofexperiment.7)Select the enzyme depending on the using temperature and pH.8)If there are indications that the liver is damaged after medicine feeding thenthe subacute experiment must be carried out.9)To establish of standard curves, pre-tests of at least three concentration levelsshould be conducted to establish the range.10)It could be demonstrated that this compound could be capable of showingdifferent colors under different pH in this experiment.11)In the experiment of detecting pesticide residue, GC has proved mostadaptable.12)In the chronic animal experiments, no less than four groups plus a controlgroup of experimental animals are employed, each consisting of at least 25 pairs of mice.13)The experiment should be operated in the temperature and humiditycontrolled room.14)The minimum toxic dosage level is expected to produce no toxicity, at the otherextreme the maximum dosage should be sufficient to cause pathological changes, but not cause high mortality before the end of the experiment. Otherdosages fall in between these two dosages.15)In the experiment need to be sampled at various intervals, the quantity ofsample in each group should increase accordingly.16)Observations and sampling should be made of every two hours.17)The change of the detective current is due to contamination of the electrode.18)Control group should be handled in the identical manner as the sample.19)The theory of that literature could be cited to show that our experimentalresults are right.20)This new chromatogram is about ten times as sensitive to pesticide residues asthe old one.21)Patient is as much as ten times more susceptible to toxic compounds thanhealthy individual.B. 构词1) Study the meanings of suffixes, stems and affixes, and then give examples of words you know which are derived from these suffixes, stems and affixes.2) Study the meanings of following stems and affixes. Mach these stems and affixes with their meaningsChapter 92 练习:A. 学习下列化学词汇的前缀、词干和后缀,根据它们的词义将下列的化学名词译成中文。
应用合成地震记录来标定地震层位是地震资料解释中非常重要的手段,也是将地震资料与测井资料相结合的一条纽带。
它最终使抽象的地震数据与实际的地质模型连接起来,为地震资料解释的可靠性提供了依据。
合成记录的精度将直接影响到地震地质层位标定的准确性,因此,提高合成记录的精度就成了地震层位标定的首要问题。
1合成记录的方法原理1.1合成地震记录制作的一般方法一般而言,人工合成地震记录,是利用声波和密度测井资料求取一反射系数序列,再将这一反射系数序列与某一子波反褶积得到结果。
S(t) = R(t) * W(t) (1)式中 S(t) —— 合成地震记录; R(t) —— 反射系数序列; W(t) —— 地震子波。
上式表明,合成记录的好坏与反射系数序列的求取和子波的选择有着密切的关系。
反射系数序列的准确性和精确程度又与测井资料(声波、密度)的采集、处理等过程密切相关;子波的选择,则要考虑子波的长度、相位、频率等诸多因素。
在实际工作中,所得到的结果往往不尽人意[1],主要表现在:(1) 合成地震记录与井旁地震道附近的地震剖面层位不吻合现象较多,或者说同相轴吻合的时窗长度有限;(2) 合成地震记录与井旁地震道附近的地震剖面能量不吻合现象较多,或者说同相轴“胖瘦”程度吻合有限;(3) 合成地震记录与井旁地震道附近的地震剖面存在一定的时移。
其原因主要在于:①子波受地质条件变化的影响,难以给得恰到好处;②深—时转换存在误差;③褶积模型并不能完全准确地反应地震记录;④实际地震记录存在噪声。
1.2实用优化方法1.2.1校正测井数据首先对测井数据进行校正,对反射系数序列进行非均匀采样[2,3]。
1.2.2选择合适的子波(1)子波的类型。
常用的子波有两类,一是典型子波,如Richer、Traperiod子波等;二是提取子波,提取子波一般有维纳—莱文森混相位子波提取法和自相关子波提取法两种[4,5]。
从剖面提取的实际子波制作的合成记录,虽然其合成地震记录层位精细标定应用研究*洪余刚 陈景山 代宗仰 李凌峰(西南石油学院资源与环境学院,四川省成都市610500)摘 要:通过对合成记录制作的一般方法进行分析,结合研究区实际地质、地震资料,提出合成记录的制作在层位标定中的实用优化方法,强调了子波的提取方法和子波相位引起的偏差。
冶金科技英语必备词汇•turnout 产量、产额•total assets 总资产•Scientific development concept 科学发展观•development strategy 发展战略•variety 品种•specifications 规格•iron and steel industry 钢铁工业•design Production capacity 设计产台匕能匕•ton 吨•hot rolled sheet (coil) 热轧板(卷) •cold rolled sheet (coil) 冷轧板(卷) •hot rolled rebar 热轧带肋钢筋•angle steel 角钢•channel steel 槽车冈•narrow strip 窄带钢•converter 转炉•oxygen top-bottom blowing 氧气顶底复吹•hot metal mixer 混铁炉•4-strands caster 四流连铸机•ladle钢包•LF(Ladle Furnace)精炼炉•6-strands billet caster 六流方坯连铸机•hot metal desulphurization station 铁水炉外脱硫系统•extract 提炼•flux 熔化;焊剂;溶剂•ore 矿石•slag 炉渣•gangue 脉石•concentrate (矿)精矿•electrolysis 电解•hot blast stove 热风炉•blast furnace 高炉•BFG (blaster furnace gas) 高炉煤气•Iron oxide power 氧化铁粉•impurity 杂质•spring 弹簧•liner n 炉衬•silicon 硅•brick 砖,砖•refractory耐火的,耐熔的n.耐火材料•magnesia 氧化镁•dolomite 白云石•lime 石灰•open hearth 平炉•calcium 钙•raw material 原料•post-treatment 炉外精炼,后处理•electric-arc furnace 电弧炉•iron-bearing materials 含铁原料•fuel 燃料•oxide 氧化物•sulphide 硫化物•sulfur 硫carbonate 碳酸盐magnetite 磁铁矿hematite 赤铁矿limonite 褐铁矿siderite 菱铁矿hydrous 含水的reducible 可还原的soft coal 烟煤hard coal 无烟煤coal injection 喷煤sintering 烧结alloy 合金weld 焊接scrap废钢,废料soaking furnace 均热炉cast iron 铸铁lead 铅magnetic alloy 磁合金solar furnace太阳能炉solute溶质solution 溶解spangles 锌花density 密度elongation 延伸率gravity 比重power单位功率strength 强度volume体积weight重量spectroscopic analysis 光谱分析graphite 石墨spindle 轴splash 飞溅sponge iron 海绵铁spot welder 点焊机spray喷雾spray coating 喷涂spray cooling喷雾冷去却square ingot 方钢锭stand机座steam蒸汽steam pump蒸汽泵steel band 钢带steel bar 钢条steel construction 钢结构steel pipe 钢管steel tapping hole 出钢口steel tapping spout 出钢槽stockyard料场;成品库stopper 塞棒structural steel 结构钢valve阀门sulfur removal 脱硫superficial hardening 表面淬火support roll 支承辐surface hardness 表面硬度heat treatment 热处理property 性质tension 表面张力suspended particles 悬浮颗粒pig iron 生铁ore矿石crushing 破碎yield产率grinding 磨碎screening 筛分separation 分选hand sorting 手选limestone石灰石primary crushing 粗碎secondary rushing 中碎fine crushing 2田碎filter过滤机feeding给矿,给料chemical process 化学过程metallurgical process 冶金过程chemical reaction 化学反应direct reduction 直接还原indirect reduction 间接还原vacuum decarburization 真空脱碳surface tension 表面张力coking炼焦high temperature carbonization 高温炭化coal preparation, coal washing 洗煤coal blending 酉己煤coking coal 炼焦煤coke oven 焦炉coal charging 装煤refractory materials 耐火材料joint接头lump ore 块矿ore fines 粉矿coal injection 喷煤coke ratio, coke rate 焦比furnace condition 炉况throat炉喉bosh炉腹shaft 炉身belly炉腰hearth炉缸bottom炉底•bosh angle 炉腹角•stack angle 炉身角•iron notch, slag notch 铁口•slag runner 渣沟•tapping sample 出钢样•casting sample 浇铸样•coolant冷却剂•return slag 回炉渣•vacuum degassing 真空脱气•bending roll 弯曲辐•thin-slab casting薄板坯连铸机•liquid core 液芯•driving roll 驱动辐•blowhole 气孔•vertical guide roll 导辑•cast iron 铸铁•straightening roll 矫直辐•wrought iron 熟铁•reinforced bar steel 钢筋钢•hot metal pretreatment 铁水预处理•process scrap加工废钢,边角废料•deoxidation 脱氧,还原•sheared end切头,切尾•finished product 成品•contamination 污染,污染物•rejected material 废品,废料•fluorspar,萤石,氟石•circulate (使)运行,(使)循环•machinability机械加工性,切削性•fireproof 耐火的•blower 送风机•pipe输送管•acetylene 乙炔•electric arc welding 电弧焊oxyacetylene flame 氧炔焰forge锻造flat-die forging 平模锻造oxyhydrogen flame 氢氧焰grainy structure颗粒状结构tungsten 鸨thermal cutting 热切害Ubinder粘合剂shell molding 壳型铸造pressure 压,压力deformation 变形finishing area 精整区roughing rolls 粗轧机组marking做记号,做标记packing 包装stacking 堆垛deep-drawing 深冲,深压semis半成品的semi-finished 半制成品slab板坯,板材bloom初坯,大方坯,毛坯conveyor belt 输送皮带screen筛选pelletize使成颗粒状ignite点火refractory brick 耐火砖liquid slag液体[液态]炉渣stock house 料仓skimmer撇渣器gas cleaning equipment 高炉气净化装置slag pit 渣池skip car 料车brick lining 砖内衬•cast house出铁场,铸造浇铸场•blower house 鼓风机室•chutes 斜道•hot metal car铁水罐运输车•slag ladle 钢渣罐•hot blast热鼓风•cleaned gas 净化气•waste gas stack 废气烟囱•hot dirty furnace gas 高炉废气•combustion chamber (排渣式)燃烧室•molten iron 铁水•cold rolled steel sheets 冷轧薄板•hot rolled steel coil 热轧钢卷•pickled steel sheets 酸洗薄板•pickled carbon steel coil 酸洗碳钢卷•color coating & Galvanizing 涂镀•rolled steel coil 轧钢卷•stainless steel coil 不锈钢卷•picking 酸洗•cold rolling 冷轧•annealing 退火•color coated & Galvanized steel sheets 涂镀薄板•cold Annealed steel coil 冷轧退火卷•color coated & hot Galvanized steel coil彩涂热镀锌卷•stainless steel 不锈钢•Hot rolled Carbon steel 热轧普碳钢•cold-rolled steel sheets 冷轧钢板•cold-rolled steel strip 冷轧带钢•common straight carbon steel 普通碳素钢•galvanized steel coil 镀锌钢板•steel strip 车钢带mill轧机annealing furnace 罩式退火炉cold hard rolled coils 冷硬卷unwinding speed 开卷速度side trimmer 切边剪mill entry 轧机入口mill exit轧机出口rolling force 轧制力intermediate roll中间辐surface quality control technology 表面质量控制技术jet type pickling 喷射酸洗tension meter roll 张力计辐deflector roll 转向辐pickling tank 酸洗槽nozzle喷嘴water quench tank 水封槽submerged inner cover 侵入式内盖cover liften开盖装置waste acid 废酸acid supply piping 供酸管道rinse water 漂洗水scarp chopper 碎边剪tightness test 密封测试cooling hood 冷却罩flow meter 流量计vertical jig 立式夹钳three claw jig 三爪夹钳housing 牌坊tension meter looper 张力计活套semi-endless rolling 半无头轧制recristallized 再结晶的microstructure 组织iron-Carbide-Diagram 铁碳相图ladle turret钢包回转台tundish中间包mould结晶器pendulum shear 摆剪liquid Core Reduction (LCR) 液芯压下slab板坯electro Magnetic Brake ( EMBr)电磁制动submerged Entry Nozzle (SEN)® 入式水口strand铸流caster连铸机secondary cooling water 二冷水bending unit顶弯装置segment扇形段withdrawal/ straightener unit 拉矫机funnel漏斗dummy bar弓|锭杆nozzle喷嘴strip带钢profile 板形diameter 直径Wiper切水板heater力口热器BUR balancing支承辐平衡dynamic profile control (DPC) 动态凸度控制screw down system (SDS) 压下系统pump 泵water tank 水箱water catcher水收集器flow流量•stand control 机架控制•strip tracking 带钢跟踪•Continuously Variable Crown (CVC)工作辐窜辐•Profile. Contour and Flatness Control (PCFC)板形,凸度,平直度控制•roller hearth furnace 辐底式炉•side guides (SG)侧导•flatness平直度•looper 活套•Automatic Gauge Control (AGC)自动厚度控制•Work Roll Bending (WRB)弯辐•swivel辐缝调平•emergency stop 急停•descaler除鳞机•width宽度•main drive 主传动•tension 张力•emergency shear 事故剪•Low/High Pressure (LP/HP)低、高压•Finish Mill (FM)轧机区•roll change(RC)换辐•cool冷却•alarm报警•Drive Side (DS)传动侧•Operate Side (OS)操作侧•work roll (WR)工作辐•backup roll(BUR)支撑辐•bending force 弯辊力•roll force 轧制力•differentials roll force 轧制力偏差length长度Motor马达bearing 轴承edger立辊lubrication 润滑crown凸度back up roll data支承辑数据walking beam 步进梁strapping打捆机marking 喷印机conveyor运输链chute plate 斜槽板wrapper roll 助卷辐mandrel bearing夕卜支撑臂downcoiler (DC)地下卷取机laminar cooling (LC)层流冷去却yield屈服强度temperature 温度pinch roll夹送辐mandrel 卷筒cross spray 侧喷水stripper car 卸卷小车lift car 提升小车weighting machine 称重机revolution 转速torque扭矩Run Out Table (ROT)输出辐道sampling station 取样站auxiliary drive 辅助传动breast roll 机架辐thickness 厚度hold downroller 压紧辐uncooled head头部不冷却mandrel collapse 芯轴收缩reset复位lock锁定cradle roll 托辐corrected position 位置修正rod活塞杆piston 丫舌塞monitoring 监视winding 绕组fan风扇oil lube 油管threading 穿带recoiling 重卷hydraulic cylinder 液压缸elongation 延伸率work roll bender工作辐弯辐feed table进料平台surface roughness 表面粗糙度coilpreparation station 钢卷准备站entry side walking beam 入□步进梁pneumatic system 气动系统straightener 矫直机walking beam conveyor 步进梁式运输链constant pressure control 恒压力控制strap捆带hydraulic oil 液压油peeler开卷器coil-holder cradle 托卷鞍座conveying table 输送台device for measuring coil width and for coil vertical centering 钢卷宽度测量和垂直对中装置•entry coil car 入□运卷小车•roller-holder cradle 托卷辐snubber roll 缓冲辐scrap box 废料箱traversable single mandrel pay-off reel 横移式单卷筒开卷机guiding table废料导向台pusher plate 推板coil-holder car 托卷小车coil measuring device 钢卷检测系统chock clamp轴承座锁紧strip centering device 带钢对中装置entry equipment 入口设备exit equipment 出口设备traversable tension reel 横移式张力卷取机chain wrapper链式助卷器edge sensing device边部检测装置unload car卸卷小车constant position control 恒位置控制guillotine shear 切头剪HGC, balancing, crowning system 液压压下、平衡和弯辊系统vertical roller guides 立辑侧导end support arm 外支撑spindle coupling 联轴器coil weighing device 钢卷称重装置automatic marking machine 自动喷号机car to feed coil to rolling line 上卷小车back tension pinch roll 后张力夹送辐unwinding speed 开卷速度anticoil-break roller 防皱辐back-up polisher支承辐擦拭器stand protection机架保护装置•push-up roll 下压辐•strap head 打捆头•pass line adjusting device 轧制线调整系统•Hot Annealing & Pickling Line 热轧带退火酸洗机组•Cold Annealing and Picking Line 冷轧带退火酸洗机组•Cold rolled Annealing and PickingLine冷轧退火酸洗机组•Skin Pass Mill 平整机组•Tension Leveling Line 张力矫直(拉矫机)物料科学Material Science物料科学定义Material Science Definition加工性能Machinability强度Strength抗腐蚀及耐用Corrosion & resistance durability金属特性Special metallic features抗敏感及环境保护Allergic, re-cycling & environmental protection化学元素Chemical element元素的原子序数Atom of Elements原子及固体物质Atom and solid material原子的组成、大小、体积和单位图表The size, mass, charge of an atom, and is particles (Pronton,Nentron and Electron)原子的组织图Atom Constitutes周期表Periodic Table原子键结Atom Bonding金属与合金Metal and Alloy铁及非铁金属Ferrous & Non Ferrous Metal金属的特性Features of Metal晶体结构Crystal Pattern晶体结构,定向格子及单位晶格Crystal structure, Space lattice & Unit cellX线结晶分析法X - ray crystal analyics method金属结晶格子Metal space lattice格子常数Lattice constant米勒指数Mill's Index金相及相律Metal Phase and Phase Rule固熔体Solid solution置换型固熔体Substitutional type solid solution 插入型固熔体Interstital solid solution金属间化物Intermetallic compound金属变态Transformation变态点Transformation Point磁性变态Magnetic Transformation同素变态Allotropic Transformation合金平衡状态Thermal Equilibrium相律Phase Rule自由度Degree of freedom临界温度Critical temperture共晶Eutectic包晶温度Peritectic Temperature包晶反应Peritectic Reaction包晶合金Peritectic Alloy亚共晶体Hypoeutetic Alloy过共晶体Hyper-ectectic Alloy金属的相融、相融温度、晶体反应及合金在共晶合金、固熔孺共晶合金及偏晶反应的比较Equilibrium Comparision金属塑性Plastic Deformation滑动面Slip Plan畸变Distortion硬化Work Hardening退火Annealing回复柔软Crystal Recovery再结晶Recrystallization金属材料的性能及试验Properties & testing of metal化学性能Chemical Properties物理性能Physical Properties颜色Colour磁性Magnetisum比电阻Specific resistivity & specific resistance比重Specific gravity & specific density比热Specific Heat热膨胀系数Coefficient of thermal expansion导热度Heat conductivity机械性能Mechanical properties屈服强度(降伏强度)(Yield strangth)弹性限度、阳氏弹性系数及屈服点elastic limit, Yeung's module of elasticity to yield point 伸长度Elongation断面缩率Reduction of area金属材料的试验方法The Method of Metal inspection不破坏检验Non - destructive inspections渗透探伤法Penetrate inspection磁粉探伤法Magnetic particle inspection放射线探伤法Radiographic inspection超声波探伤法Ultrasonic inspection显微观察法Microscopic inspection破坏的检验Destructive Inspection冲击测试Impact Test疲劳测试Fatigue Test潜变测试Creep Test潜变强度Creeps Strength第壹潜变期Primary Creep 第二潜变期Secondary Creep 第三潜变期Tertiary Creep主要金属元素之物理性质Physical properties of major Metal Elements工业标准及规格-铁及非铁金属Industrial Standard - Ferrous & Non - ferrous Metal磁力Magnetic 简介General 软磁Soft Magnetic 硬磁Hard Magnetic 磁场Magnetic Field 磁性感应Magnetic Induction 透磁度Magnetic Permeability 磁化率Magnetic Susceptibility (Xm)磁力(Magnetic Force)及磁场(Magnetic Field)是因物料里的电子(Electron)活动而产生抗磁体、顺磁体、铁磁体、反铁磁体及亚铁磁体Diamagnetism, Paramagnetic, Ferromagnetism,Antiferromagnetism & Ferrimagnetism 抗磁体Diamagnetism 磁偶极子Dipole 负磁力效应Negative effect 顺磁体Paramagnetic正磁化率Positive magnetic susceptibility铁磁体Ferromagnetism 转变元素Transition element 交换能量Positive energy exchange 外价电子Outer valence electrons 化学结合Chemical bond自发上磁Spontaneous magnetization 磁畴Magnetic domain 相反旋转Opposite span 比较抗磁体、顺磁体及铁磁体Comparison of Diamagnetism, Paramagnetic & Ferromagnetism 反铁磁体Antiferromagnetism 亚铁磁体Ferrimagnetism 磁矩magnetic moment 净磁矩Net magnetic moment 钢铁的主要成份The major element of steel 钢铁用"碳”之含量来分类Classification of Steel according to Carbon contents铁相Steel Phases钢铁的名称Name of steel纯铁体Ferrite渗碳体Cementitle奥氏体Austenite 珠光体及共释钢Pearlite &Eutectoid奥氏体碳钢Austenite Carbon Steel单相金属Single Phase Metal共释变态Eutectoid Transformation珠光体Pearlite 亚铁释体Hyppo-Eutectoid初释纯铁体Pro-entectoid ferrite过共释钢Hype-eutectoid珠光体Pearlite粗珠光体Coarse pearlite中珠光体Medium pearlite幼珠光体Fine pearlite磁性变态点Magnetic Transformation钢铁的制造Manufacturing of Steel连续铸造法Continuous casting process电炉Electric furnace均热炉Soaking pit全静钢Killed steel半静钢Semi-killed steel沸腾钢(未净钢)Rimmed steel钢铁生产流程Steel Production Flow Chart钢材的熔铸、锻造、挤压及延轧The Casting, Fogging, Extrusion, Rolling & Steel熔铸Casting锻造Fogging挤压Extrusion延轧Rolling冲剪Drawing & stamping特殊钢Special Steel简介General特殊钢以原素分类Classification of Special Steel according to Element特殊钢以用途来分类Classification of Special Steel according to End Usage 易车(快削)不锈钢Free Cutting Stainless Steel含铅易车钢Leaded Free Cutting Steel含硫易车钢Sulphuric Free Cutting Steel硬化性能Hardenability钢的脆性Brittleness of Steel低温脆性Cold brittleness回火脆性Temper brittleness日工标准下的特殊钢材Specail Steel according to JIS Standard铭钢-日工标准JIS G4104Chrome steel to JIS G4104铭钼钢钢材-日工标准G4105 62Chrome Molybdenum steel to JIS G4105银铭-日工标准G4102 63Chrome Nickel steel to JIS G4102银铭钼钢-日工标准G4103 64Nickel, Chrome & Molybdenum Steel to JIS G4103高锰钢铸-日工标准High manganese steel to JIS standard片及板材Chapter Four-Strip, Steel & Plate冷辘低碳钢片(双单光片)(日工标准JIS G3141) 73 - 95Cold Rolled (Low carbon) Steel Strip (to JIS G 3141)简介General美材试标准的冷辘低碳钢片Cold Rolled Steel Strip American Standard - American Society for testing and materials (ASTM)日工标准JIS G3141冷辘低碳钢片(双单光片)的编号浅释Decoding of cold rolled(Low carbon)steel strip JIS G3141材料的加工性能Drawing abillity硬度Hardness表面处理Surface finish冷辘钢捆片及张片制作流程图表Production flow chart cold rolled steel coil sheet冷辘钢捆片及张片的电镀和印刷方法Cold rolled steel coil & sheet electro-plating & painting method 冷辘(低碳)钢片的分类用、途、工业标准、品质、加热状态及硬度表End usages, industrial standard, quality, condition and hardness of cold rolled steel strip硬度及拉力Hardness & Tensile strength test拉伸测试(顺纹测试)Elongation test杯突测试(厚度:0.4公厘至1.6公厘,准确至0.1公厘3个试片平均数)Erichsen test (Thickness: to , figure round up to ) 曲面(假曲率)Camber厚度及阔度公差Tolerance on Thickness & Width平坦度(阔度大于500公厘,标准回火)Flatness (width>500mm, temper: standard)弯度Camber冷辘钢片储存与处理提示General advice on handling & storage of cold rolled steel coil & sheet防止生锈Rust Protection生锈速度表Speed of rusting焊接Welding气焊Gas Welding埋弧焊Submerged-arc Welding电阻焊Resistance Welding冷辘钢片(拉力:30-32公斤/平方米)在没有表面处理状态下的焊接状况Spot welding conditions for bared (free from paint, oxides etc) Cold rolled mild steel sheets(T/S:30-32 Kgf/ R m2) 时间效应(老化)及拉伸应变Aging & Stretcher Strains日工标准(JIS G3141)冷辘钢片化学成份Chemical composition - cold rolled steel sheet to JIS G3141冷辘钢片的“理论重量”计算方程式Cold Rolled Steel Sheet - Theoretical mass日工标准(JIS G3141)冷辘钢片重量列表Mass of Cold-Rolled Steel Sheet to JIS G3141冷辘钢片订货需知Ordering of cold rolled steel strip/sheet其它日工标准冷轧钢片(用途及编号)JIS standard & application of other cold Rolled Special Steel电镀锌钢片或电解钢片Electro-galvanized Steel Sheet/Electrolytic Zinc Coated Steel Sheet简介General电解/电镀锌大大增强钢片的防锈能力Galvanic Action improving Weather & Corrosion Resistance of the Base Steel Sheet上漆能力Paint Adhesion电镀锌钢片的焊接Welding of Electro-galvanized steel sheet点焊Spot welding滚焊Seam welding电镀锌(电解)钢片Electro-galvanized Steel Sheet生产流程Production Flow Chart常用的镀锌钢片(电解片)的基层金属、用途、日工标准、美材标准及一般厚度Base metal, application, JIS & ASTM standard, and Normal thickness of galvanized steel sheet锌镀层质量Zinc Coating Mass表面处理Surface Treatment冷轧钢片Cold-Rolled Steel Sheet/Strip热轧钢片Hot-Rolled Sheet/Strip电解冷轧钢片厚度公差Thickness Tolerance of Electrolytic Cold-rolled sheet热轧钢片厚度公差Thickness Tolerance of Hot-rolled sheet冷轧或热轧钢片阔度公差Width Tolerance of Cold or Hot-rolled sheet长度公差Length Tolerance理论质量Theoretical Mass锌镀层质量(两个相同锌镀层厚度)Mass Calculation of coating (For equal coating)/MM锌镀层质量(两个不同锌镀层厚度)Mass Calculation of coating (For differential coating)/MM镀锡薄铁片(白铁皮/马口铁)(日工标准JIS G3303)简介General镀锡薄铁片的构造Construction of Electrolytic Tinplate镀锡薄钢片(白铁皮/马日铁)制造过程Production Process of Electrolytic Tinplate锡层质量Mass of Tin Coating (JIS G3303-1987)两面均等锡层Both Side Equally Coated Mass两面不均等锡层Both Side Different Thickness Coated Mass级别、电镀方法、镀层质量及常用称号Grade, Plating type, Designation of Coating Mass & Common Coating Mass 镀层质量标记Markings & Designations of Differential Coatings硬度Hardness单相轧压镀锡薄铁片(白铁皮/马口铁)Single-Reduced Tinplate双相辗压镀锡薄钢片(马口铁/白铁皮)Dual-Reduction Tinplate钢的种类Type of Steel表面处理Surface Finish常用尺寸Commonly Used Size电器用硅[硅]钢片Electrical Steel Sheet简介General软磁材料Soft Magnetic Material滞后回线Narrow Hystersis矫顽磁力Coercive Force硬磁材料Hard Magnetic Material最大能量积Maximum Energy Product硅含量对电器用的低碳钢片的最大好处The Advantage of Using Silicon low Carbon Steel晶粒取向(Grain-Oriented)及非晶粒取向(Non-Oriented)Grain Oriented & Non-Oriented电器用硅[硅]钢片的最终用途及规格End Usage and Designations of Electrical Steel Strip电器用的硅[硅]钢片之分类Classification of Silicon Steel Sheet for Electrical Use电器用钢片的绝缘涂层Performance of Surface Insulation of Electrical Steel Sheets晶粒取向电器用硅钢片主要工业标准International Standard - Grain-Oriented Electrical Steel Silicon Steel Sheet for Electrical Use晶粒取向电器用硅钢片Grain-Oriented Electrical Steel晶粒取向,定取向芯钢片及高硼定取向芯钢片之磁力性能及夹层系数(日工标准及美材标准)Magnetic Properties and Lamination Factor of SI-ORIENT-CORE& SI-ORIENT-CORE-HI B Electrical Steel Strip (JIS and AISI Standard) 退火Annealing电器用钢片用家需自行应力退火原因Annealing of the Electrical Steel Sheet退火时注意事项Annealing Precautionary碳污染Prevent Carbon Contamination热力应先从工件边缘透入Heat from the Laminated Stacks Edges提防过份氧化No Excessive Oxidation应力退火温度Stress -relieving Annealing Temperature晶粒取向电器用硅[硅]钢片-高硼(HI-B)定取向芯钢片及定取向芯钢片之机械性能及夹层系数Mechanical Properties and Lamination Factors of SI-ORIENT-CORE-HI-B and SI-ORIENT-CORE Grain Orient Electrical Steel Sheets晶粒取向电器用硅[硅]钢;片-高硼低硫(LS)定取向钢片之磁力及电力性能Magnetic and Electrical Properties of SI-ORIENT-CORE-HI-B-LS晶粒取向电器用硅[硅]钢片-高硼低硫(LS)定取向钢片之机械性能及夹层系数Mechanical Properties and Lamination Factors of SI-ORIENT-CORE-HI-B-LS 晶粒取向电器用硅(硅)钢片-高硼(HI-B)定取向芯钢片,定取向芯钢片及高硼低硫(LS)定取向芯钢片之厚度及阔度公差Physical Tolerance of SI-ORIENT-CORE-HI-B, SI-ORIENT-CORE, & SI-CORE-HI-B-LS Grain Oriented Electrical Steel Sheets晶粒取向电器用硅(硅)钢片-高硼(HI-B)定取向芯钢片,定取向芯钢片及高硼低硫(LS)定取向芯钢片之标准尺寸及包装Standard Forms and Size of SI-ORIENT-CORE-HI-B,SI-CORE, &SI-ORIENT-CORE-HI-B-LS Grain-Oriented Electrical Steel Sheets绝缘表面Surface Insulation非晶粒取向电力用钢片的电力、磁力、机械性能及夹层系数Lamination Factors of Electrical, Magnetic & Mechanical Non-Grain Oriented Electrical 电器及家电外壳用镀层冷辘[低碳]钢片Coated (Low Carbon) Steel Sheets for Casing,Electricals & Home Appliances 镀铝硅钢片Aluminized Silicon Alloy Steel Sheet 简介General镀铝硅合金钢片的特色Feature of Aluminized Silicon Alloy Steel Sheet用途End Usages抗化学品能力Chemical Resistance镀铝(硅)钢片-日工标准(JIS G3314)Hot-aluminum-coated sheets and coils to JIS G 3314镀铝(硅)钢片-美材试标准(ASTM A-463-77)35.7 JIS G3314镀热浸铝片的机械性能Mechanical Properties of JIS G 3314 Hot-Dip Aluminum-coated Sheets and Coils 公差Size Tolerance镀铝(硅)钢片及其它种类钢片的抗腐蚀性能比较Comparsion of various resistance of aluminized steel & other kinds of steel镀铝(硅)钢片生产流程Aluminum Steel Sheet, Production Flow Chart焊接能力Weldability镀铝钢片的焊接状态(比较冷辘钢片)Tips on welding of Aluminized sheet in comparasion with cold rolled steel strip钢板Steel Plate钢板用途分类及各国钢板的工业标准包括日工标准及美材试标准Type of steel Plate & Related JIS, ASTM and Other Major Industrial Standards钢板生产流程Production Flow Chart钢板订货需知Ordering of Steel Plate不锈钢Stainless Steel不锈钢的定义Definition of Stainless Steel不锈钢之分类,耐腐蚀性及耐热性Classification, Corrosion Resistant & Heat Resistance of Stainless Steel铁铭系不锈钢片Chrome Stainless Steel马氏体不锈钢Martensite Stainless Steel低碳马氏体不锈钢Low Carbon Martensite Stainless Steel含铁体不锈钢Ferrite Stainless Steel银铭系不锈钢Nickel Chrome Stainless Steel释出硬化不锈钢Precipitation Hardening Stainless Steel铁锰铝不锈钢Fe / Mn / Al / Stainless Steel不锈钢的磁性Magnetic Property & Stainless Steel不锈钢箔、卷片、片及板之厚度分类Classification of Foil, Strip, Sheet & Plate by Thickness表面保护胶纸Surface protection film不锈钢片材常用代号Designation of SUS Steel Special Use Stainless表面处理Surface finish.9mm厚之片)机械性能Mechanical Properties of Thin Stainless Steel(Thickness from to ) - strip/sheet 不锈钢片机械性能(301, 304, 631, CSP)Mechanical Properties of Spring use Stainless Steel不锈钢-种类,工业标准,化学成份,特点及主要用途Stainless Steel - Type, Industrial Standard, Chemical Composition, Characteristic & end usage of the most commonly used Stainless Steel不锈钢薄片用途例End Usage of Thinner Gauge不锈钢片、板用途例Examples of End Usages of Strip, Sheet & Plate不锈钢应力退火卷片常用规格名词图解General Specification of Tension Annealed Stainless Steel Strips耐热不锈钢Heat-Resistance Stainless Steel银铬系耐热不锈钢特性、化学成份、及操作温度Heat-Resistance Stainless Steel铬系耐热钢Chrome Heat Resistance Steel银铭耐热钢Ni - Cr Heat Resistance Steel超耐热钢Special Heat Resistance Steel抗热超级合金Heat Resistance Super Alloy耐热不锈钢比重表Specific Gravity of Heat - resistance steel plates and sheets stainless steel不锈钢材及耐热钢材标准对照表Stainless and Heat-Resisting Steels发条片Power Spring Strip发条的分类及材料Power Spring Strip Classification and Materials上链发条Wind-up Spring倒后擦发条Pull Back Power Spring圆面("卜竹")发条Convex Spring Strip拉尺发条Measure Tape魔术手环Magic Tape魔术手环尺寸图Drawing of Magic Tap定型发条Constant Torque Spring定型发条及上炼发条的驱动力Spring Force of Constant Torque Spring and Wing-up Spring定型发条的形状及翻动过程Shape and Spring Back of Constant Torque Spring定型发条驱动力公式及代号The Formula and Symbol of Constant Torque Spring边缘处理Edge Finish硬度Hardness高碳钢化学成份及用途High Carbon Tool Steel, Chemical Composition and Usage每公斤发条的长度简易公式The Length of 1 Kg of Spring Steel StripSK-5 & AISI-301 每公斤长的重量/公斤(阔100-200 公厘)Weight per one meter long (kg) (Width 100-200mm)SK-5 & AISI-301 每公斤之长度(阔100-200 公厘)Length per one kg (Width 100-200mm) SK-5 & AISI-301每公尺长的重量/公斤(阔2.0-10公厘)-10mm)SK-5 & AISI-301每公斤之长度(阔2.0-10公厘)-10mm)高碳钢片High Carbon Steel Strip分类Classification用组织结构分类Classification According to Grain Structure用含碳量分类-即低碳钢、中碳钢及高碳钢Classification According to Carbon Contains弹簧用碳钢片CarbonSteel Strip For Spring Use冷轧状态Cold Rolled Strip回火状态Annealed Strip淬火及回火状态Hardened & Tempered Strip/ Precision - Quenched Steel Strip贝氏体钢片Bainite Steel Strip弹簧用碳钢片材之边缘处理Edge Finished 淬火剂Quenching Media 碳钢回火Tempering 回火有低温回火及高温回火Low & High Temperature Tempering高温回火High Temperature Tempering退火Annealing完全退火Full Annealing扩散退火Diffusion Annealing低温退火Low Temperature Annealing中途退火Process Annealing球化退火Spheroidizing Annealing光辉退火Bright Annealing淬火Quenching时间淬火Time Quenching奥氏铁孺回火Austempering马氏铁体淬火Marquenching高碳钢片用途End Usage of High Carbon Steel Strip 冷轧高碳钢-日本工业标准Cold-Rolled (Special Steel) Carbon Steel Strip to JIS G3311 电镀金属钢片Plate Metal Strip 简介General 电镀金属捆片的优点Advantage of Using Plate Metal Strip金属捆片电镀层Plated Layer of Plated Metal Strip镀银Nickel Plated镀铭Chrome Plated镀黄铜Brass Plated基层金属Base Metal of Plated Metal Strip低碳钢或铁基层金属Iron & Low Carbon as Base Metal不锈钢基层金属Stainless Steel as Base Metal铜基层金属Copper as Base Metal黄铜基层金属Brass as Base Metal轴承合金Bearing Alloy简介General轴承合金-日工标准JIS H 5401Bearing Alloy to JIS H 5401锡基、铅基及锌基轴承合金比较表Comparison of Tin base, Lead base and Zinc base alloy for Bearing purpose易溶合金Fusible Alloy焊接合金Soldering and Brazing Alloy软焊Soldering Alloy软焊合金-日本标准JIS H 4341Soldering Alloy to JIS H 4341硬焊Brazing Alloy其它焊接材料请参阅日工标准目录Other Soldering Material细线材、枝材、棒材Chapter Five Wire, Rod & Bar线材/枝材材质分类及制成品Classification and End Products of Wire/Rod铁线(低碳钢线)日工标准JIS G 3532Low Carbon Steel Wires ( Iron Wire ) to JIS G 3532光线(低碳钢线),火线(退火低碳钢线),铅水线(镀锌低碳钢线)及制造钉用低碳钢线之代号、公差及备注Ordinary Low Carbon Steel Wire, Annealed Low Carbon Steel Wire, Galvanized low Carbon Steel Wire & Low Carbon Steel Wire for nail manufacturing - classification, Symbol of Grade, Tolerance and Remarks.机械性能Mechanical Properites锌包层之重量,铜硫酸盐试验之酸洗次数及测试用卷筒直径Weight of Zinc-Coating, Number of Dippings in Cupric Sulphate Test and Diameters of Mandrel Used for Coiling Test 冷冲及冷锻用碳钢线枝Carbon Steel Wire Rods for Cold Heading & Cold Forging (to JIS G3507)级别,代号及化学成份Classification, Symbol of Grade and Chemical Composition直径公差,偏圆度及脱碳层的平均深度Diameter Tolerance, Ovality and Average Decarburized Layer Depth冷拉钢枝材Cold Drawn Carbon Steel Shafting Bar枝材之美工标准,日工标准,用途及化学成份AISI, JIS End Usage and Chemical Composition of Cold Drawn Carbon Steel Shafting Bar 冷拉钢板重量表Cold Drawn Steel Bar Weight Table高碳钢线枝High Carbon Steel Wire Rod (to JIS G3506)冷拉高碳钢线Hard Drawn High Carbon Steel Wire(to JIS G3521, ISO-84580-1&2)化学成份分析表Chemical Analysis of Wire Rod线径、公差及机械性能(日本工业标准G 3521)Mechanical Properties (JIS G 3521)琴线(日本标准G3522)Piano Wires ( to G3522)级别,代号,扭曲特性及可用之线材直径Classes, symbols, twisting characteristic and applied Wire Diameters直径,公差及拉力强度Diameter, Tolerance and Tensile Strength裂纹之容许深度及脱碳层Permissible depth of flaw and decarburized layer 常用的弹簧不锈钢线-编号,特性,表面处理及化学成份StainlessSpring Wire - National Standard number, Charateristic, Surface finish & Chemical composition弹簧不锈钢线,线径及拉力列表Stainless Spring Steel, Wire diameter and Tensile strength of Spring Wire处理及表面状况Finish & Surface各种不锈钢线在不同处理拉力比较表Tensile Strength of various kinds of Stainless Steel Wire under Different Finish圆径及偏圆度之公差Tolerance of Wire Diameters & Ovality铭银不锈钢及抗热钢弹簧线材-美国材验学会ASTM A313 - 1987Chromium - Nickel Stainless and Heat-resisting Steel Spring Wire - ASTM A313-1987化学成份Chemical Composition机械性能Mechanical Properties305, 316, 321及347之拉力表Tensile Strength Requirements for Types 305, 316, 321 and 347A1S1-302贰级线材之拉力表Tensile Strength of A1S1-302 Wire日本工业标准-不锈钢的化学成份(先数字后字母排列)JIS - Chemical Composition of Stainless Steel (in order of number & alphabet)美国工业标准-不锈钢及防热钢材的化学成份(先数字后字母排列)AISI - Chemical Composition of Stainless Steel & Heat-Resistant Steel(in order of number & alphabet)易车碳钢Free Cutting Carbon Steels (to JIS G4804 )化学成份Chemical composition圆钢枝,方钢枝及六角钢枝之形状及尺寸之公差Tolerance on Shape and Dimensions for Round Steel Bar, Square Steel Bar, HexagonalSteel Bar易车(快削)不锈钢Free Cutting Stainless Steel易车(快削)不锈钢种类Type of steel易车(快削)不锈钢拉力表Tensile Strength of Free Cutting Wires枝/棒无芯磨公差表(口)(口= 1/100 mm)Rod/Bar Centreless Grind Tolerance。
epa试验测试方法及计算方法English Answer:EPA Test Methods for Emissions.The Environmental Protection Agency (EPA) has developed a series of test methods to measure emissions from various sources, including stationary sources such as power plants and industrial facilities, and mobile sources such as vehicles and aircraft. These test methods are used to determine the levels of pollutants emitted into the atmosphere and to assess the effectiveness of pollution control technologies.Some of the most common EPA test methods include:Method 1: Sample and velocity traverses for stationary sources. This method describes the procedures for measuring the velocity and volumetric flow rate of gas streams in ducts, stacks, and chimneys.Method 2: Determination of stack gas velocity and volumetric flow rate (Type S pitot tube). This method is used to measure the velocity and volumetric flow rate of gas streams in stacks and ducts using a Type S pitot tube.Method 3: Gas analysis for the determination of dry molecular weight. This method is used to determine the dry molecular weight of a gas stream by measuring its density and composition.Method 4: Determination of moisture content in stack gases. This method is used to determine the moisture content of a gas stream by measuring the dew point or absolute humidity of the gas.Method 5: Determination of particulate matter emissions from stationary sources. This method is used to measure the concentration of particulate matter emissions from stationary sources by collecting the particles on a filter paper and measuring their mass.Method 10: Determination of carbon monoxide emissions from stationary sources. This method is used to measure the concentration of carbon monoxide emissions from stationary sources by using a continuous analyzer or a grab sample collection and analysis.Method 18: Measurement of gaseous organic compound emissions by gas chromatography. This method is used to measure the concentration of gaseous organic compound emissions from stationary sources by collecting a sample in a sorbent tube and analyzing it using gas chromatography.Calculation Methods.The EPA provides calculation methods for each test method to determine the concentration of pollutants emitted. The calculation methods typically involve using the measured data from the test method to calculate the mass or volume of the pollutant emitted per unit of time.For example, the calculation method for Method 5involves using the following equation to calculate theparticulate matter emission rate:ER = (C_s Q_sd) / (S t)。
焊接英语词汇2焊接材料电极焊接材料weldingconsumables电极electrode熔化电极consumableelectrode不熔化电极nonconsumableelectrode钨电极tungstenelectrode焊丝weldingwire.Weldingrod实心焊丝solidwire渡铜焊丝copper-platingweldingwire自保护焊丝self-shieldedweldingwire药芯焊丝flux-coredwire复合焊丝combinedwire堆焊焊丝surfacingweldingrod填充焊丝fillerwire焊条electrode/coveredelectrode焊芯corewire药皮coating(ofanelectrode)/covering(ofanelectrode)涂料coatingflux/coatingmaterial造气剂gasformingconstituents造渣剂slagformingconstituents合金剂alloyingconstituent脱氧剂dioxidizer稳弧剂arcstabilizer粘接剂binder水玻璃waterglass水玻璃模数modulesofwaterglass酸性焊条acidelectrode高钛型焊条hightitania(type)electrode钛钙型焊条limetitaniatypeelectrode钛铁矿形焊条ilmenitetypeelectrode氧化铁型焊条ironoxidetypeelectrode/highironoxidetypeelectrode 高纤维素型焊条highcellulose(type)electrode石墨型焊条graphitetypeelectrode碱性焊条basicelectrode/limetypecoveredelectrode低氢型焊条lowhydrogentypeelectrode高韧性超低氢焊条hightoughnesssuperlowhydrogenelectrode奥氏体焊条austeniticelectrode铁素体焊条ferriticelectrode不锈钢焊条stainlesssteelelectrode珠光体耐热钢焊条pearliticheatresistantsteelelectrode低温钢焊条lowtemperaturesteelelectrode/steelelectrodeforlowtemperature 铝合金焊条aluminumalloyarcweldingelectrode铜合金焊条copper-alloyarcweldingelectrode铜芯铸铁焊条castironelectrodewithsteelcore纯镍铸铁焊条purenickelcastironelectrode球墨铸铁焊条electrodeforweldingspheroidalgraphitecastiron 铸芯焊条electrodewithcastcorewire镍基合金焊条nickelbasealloycoveredelectrode蒙乃尔焊条Monelelectrode纯铁焊条pureironelectrode渗铝钢焊条alumetizedsteelelectrode高效率焊条highefficiencyelectrode铁粉焊条ironpowderelectrode焊接专业英语词汇(气焊、热剂焊、水下焊)气焊gaswelding氧乙炔焊oxy-acetylenewelding氢氧焊oxy-hydrogenwelding空气乙炔焊air-acetylenewelding氧乙炔焊oxy-acetyleneflame氢氧焰oxy-hydrogenflame氧煤气焰oxy-coalgasflame焊接火焰weldingflame混合比mixingratio混合气体可燃范围inflammablelimitofthegaseous 一次燃烧primarycombustion二次燃烧secondarycombustion燃烧速度combustionrate燃烧强度combustionintensity火焰热效率flameheatingefficiency焰芯innercone;flamecone内焰internalflame外焰flameenvelope中性焰neutralflame氧化焰oxidizingflame碳化焰carburizingflame回火flashback逆火backfire回烧flashback气体发生速度gasificationspeed焊炬torch;blowpipe等压式焊炬balancedpressuretorch射吸式焊炬injectortorch氧乙炔焊炬oxy-acetylenetorch焊割两用炬combinedcuttingandweldingtorch 混合室mixingchamber喷射器injector焊嘴weldingnozzle;weldingtip液氧气化器oxygenevaporator气瓶gascylinder乙炔瓶acetylenecylinder阀罩cylindercap气瓶阀cylindervalve汇流排cylindermanifold减压器pressureregulator;gasregulator单级减压器singlestageregulator两级减压器twostageregulator回火防止器flashbackarrestor干式回火防止器dryflashbackarrestor水封式回火防止器water-closingtypearrestor 净化器purifier乙炔发生器acetylenegenerator低压乙炔发生器lowpressureacetylenegenerator 热剂补焊thermitrepairwelding钢轨热剂焊thermitrailwelding热剂thermitpowder热剂钢水thermitsteel热剂反应thermitreaction热剂溶渣thermitslag热剂铸模thermitmold;moldforthermitweld热剂坩埚thermitcrucible焊筋collar水下焊underwaterwelding水下气体保护电弧焊underwatergasshieldedarcwelding水下等离子弧焊underwaterplasmaarcwelding温式水下焊wetmethodunderwaterwelding干式水下焊drymethodunderwaterwelding局部干式水下焊localdryunderwaterwelding水帘局部干式水下焊watercurtaintypedryunderwaterwelding 焊接专业英语词汇(钎焊)硬钎焊brazing软钎焊soldering烙铁钎焊ironsoldering火焰钎焊torchbrazing/torchsoldering热风钎焊hotgassoldering感应钎焊inductionbrazing电阻钎焊resistancebrazing接触反应钎焊contact-reactionbrazing电弧钎焊arcbrazing浸渍钎焊dipbrazing/dipsoldering盐浴钎焊saltbathdipbrazing(soldering)金属浴钎焊moltenmetalbathdipbrazing炉中钎焊furnacebrazing/furnacesoldering保护气氛钎焊brazingincontrolledatmosphere真空钎焊vacuumbrazing蒸气钎焊vaporphasesoldering超声波钎焊ultrasonicsoldering扩散钎焊diffusionbrazing波峰钎焊flowsoldering/wavesoldering分级钎焊stepbrazing/stepsoldering红外线钎焊infra-redbrazing(soldering)光束钎焊lightsoldering(brazing)激光钎焊laserbrazing(soldering)电子束钎焊electronbeambrazing钎接焊braze-welding钎料brazingfillermetal/solder硬钎料brazingfillermetal软钎料solder(m)自钎剂钎料self-fluxingbrazingalloy/self-fluxingfillermetal 活性钎料activefillermetal/activemetalbrazingalloy成形钎料preformedfillermetal/solderpreform非晶态钎料amorphousfillermetal粉状钎料powderedfillermetal钎料膏brazecream/brazepaste/soldercream/solderpaste 药皮钎料fluxcoatedbrazing(soldering)rod层状钎料sandwichfillermetal药芯钎料丝flux-coredcolderwire敷钎料板cladbrazingsheet钎剂brazingflux;solderingflux气体钎剂gasflux反应钎剂reactionflux松香钎剂colophonyflux;rosinflux钎剂膏fluxpaste阻流剂stopping-offagent钎剂活性fluxactivity钎剂活性温度范围activationtemperaturerangeofflux钎剂热稳定性thermalstabilityofflux3钎焊工艺钎焊过程brazing(soldering)process钎焊操作brazing(soldering)operation工艺镀层technologicalcoating钎焊面fayingface钎焊参数brazingprocessvariables钎焊温度brazingtemperature钎焊时间brazingtime钎焊保温时间holdingtimeofbrazing钎缝brazingseam;solderingseam钎缝界面区interfacialregion钎缝金属bracemetal钎角fillet钎焊接头bracedjoint;solderedjoint平面搭接头joggledlapjoint;flushlapjoint搭接对接接头buttandlapjoint搭接T形接头lappedT-joint;flangedT-joint锁缝接头foldedjoint平面锁缝接头licksideseamjoint;flatlockseamjoint 锁缝角接接头lockcornerjoint;cornerdoubleseam嵌入T形接头insetTjointT形管接头branchTsaddlejoint套管接头socketjoint外喇叭口套管接头flaretubefitting扩口套管接头spigotjoint钎焊性brazability;solderability润湿性wettability润湿角wettingangle;contactangle铺展性spreadability铺展系数spreadfactor;coefficientofspreading 钎着率brazedrate脱钎de-brazing;de-soldering润湿称量试验wettingbalancetest铺展性试验spreadabilitytest填缝性试验clearancefillabilitytest未钎透incompletepenetration虚钎coldsolderedjoint钎料熔析liquationoffillermetal溶蚀erosion钎料流失brazingfillermetalerosion钎剂夹杂fluxinclusion钎焊设备电阻钎焊机波峰钎焊机wavesolderingmachine冷壁真空钎焊炉coldwalltypevacuumbrazing热壁真空钎焊炉hotwalltypevacuumbrazingfurnace钎焊盒brazingretort钎剂涂敷器fluxer钎炬brazing(soldering)blowpipe喷灯brazinglamp烙铁solderiron焊接专业英语词汇(热喷涂与热切割)热喷涂thermalspraying火焰喷涂flamespraying电弧喷涂electricarcspraying等离子喷涂plasmaspraying高频感应喷涂highfrequencyspraying金属喷涂metalspraying;metallizing塑料喷涂plasticspraying陶瓷喷涂ceramicspraying喷熔spray-fusing表面粗糙化处理surfaceroughening电火花拉毛electrosparkroughening抛锚效应anchoring喷涂层spray-fusedcoating喷熔层spray-fusedcoating结合层bondcoating;undercoating工作层workcoating结合强度adhesivestrength涂层强度strengthofcoating封孔处理sealing封孔剂sealant喷涂率sprayrate沉积效率depositionefficiency孔隙率porosity喷涂材料sprayingmaterial自熔剂合金粉末self-fluxingalloypowder 喷炬(枪)spraytorch;2.热切割热切割thermalcutting(TC)气割gascutting;oxygencutting氧溶剂切割powdercutting氧-石英砂切割quartzpowdercutting电弧切割arccutting氧气电弧切割oxy-arccutting空气电弧切割airarccutting等离子弧切割plasmaarccutting(PAC)空气等离子弧切割airplasmaarccutting氧等离子切割oxygenplasmaarccutting水再压缩空气等离子弧切割airplasmawaterinjectionarccutting双层气流等离子弧切割dualgasplasmaarccutting;shieldedgasplasmaarccutting 激光切割lasercutting(LC);laserbeamcutting电子束切割electronbeamcutting喷气激光切割gasjetlasercutting碳弧切割carbonarccutting水下切割underwatercutting喷水式水下电弧切割waterjetmethodunderwaterarccutting氧矛切割oxygenlancing;oxygenlancecutting溶剂氧切割powderlancing手工气割manualoxygencutting自动气割automaticoxygencutting仿形切割shapecutting数控切割NC(numerical-control)cutting 快速切割high-speedcutting垂直切割squarecut叠板切割stackcutting坡口切割beveling;bevelcutting碳弧气割carbonarcairgouging火焰气刨flamegouging火焰表面清理scarfing氧熔剂表面修整powderwashing预热火焰preheatflame预热氧preheatoxygen切割氧cuttingoxygen/cuttingstream切割速度cuttingspeed切割线loneofcut/cutline切割面faceofcut/cutface切口kerf切口上缘cuttingshoulder切口宽度kerfwidth后拖量drag切割面平面度evennessofcuttingsurface/planenessofcuttingsurface 割纹深度depthofcuttingveins/striadepth切割面质量qualityofcutface上缘熔化度shouldermeltability/meltingdegreeofshoulder切口角kerfangle缺口notch挂渣adheringslag结瘤dross割炬cuttingtorch/cuttingblowpipe/oxygen-fuelgascuttingtorch割枪cuttinggun割嘴cuttingnozzle/cuttingtip快速割嘴divergentnozzle/high-speednozzle表面割炬gougingblowpipe水下割炬under-watercuttingblowpipe水下割条electrodeforunder-watercutting粉剂罐powderdispenser数控切割机NCcuttingmachine门式切割机flameplaner光电跟踪切割机photo-electrictracingcutting火焰切管机pipeflamecuttingmachine磁轮式气割机gascuttingmachinewithmagneticwheels 电阻焊摩擦焊爆炸焊扩散焊超声波焊等电阻焊resistancewelding(RW)点焊spotwelding;resistancespotwelding凸焊projectionwelding缝焊seamwelding滚点焊roll-spotwelding连续点焊stitchwelding多点焊multiplespotwelding手压点焊pushwelding;pokewelding脉冲点焊pulsationspotwelding;multiple-impulsewelding双面点焊directspotwelding单面点焊indirectspotwelding串联点焊seriesspotwelding多点凸焊multipleprojectionwelding频道进缝焊step-by-stepseamwelding压平缝焊mashseamwelding串联缝焊seriesseamwelding对接缝焊buttseamwelding;foil-buttseam电阻对焊upsetbuttwelding闪光对焊flashbuttwelding(FBW)储能焊storedenergywelding电容储能点焊condenserdischargespotwelding 高频电阻焊highfrequencyresistancewelding 冲击电阻焊percussionwelding胶接点焊spotweld-bonding;weld-bonding闪光flashing;flash过梁bridge;lintel顶锻upsetting;upset夹紧力clampingforce顶锻力upsettingforce;upsetforce电极压力electrodeforce;electrodepressure 电极滑移electrodeskid焊接循环weldingcycle预压时间squeezetime锻压时间forge-delaytime;forgetime焊接通电时间(电阻焊)weldingtime(resistancewelding) 预热时间preheattime加热时间heattime冷却时间cooltime间歇时间quenchtime;chilltime回火时间tempertime维持时间holdtime休止时间offtime闪光时间flashtime;flashingtime顶锻时间upsettime;upsettingtime有电顶锻时间upsetcurrenttime无电顶锻时间upsetcurrent-offtime闪光速度flashingspeed闪光电流flashingcurrent;flashcurrent顶锻电流upsetcurrent预热电流preheatcurrent回火电流tempercurrent调伸长度initialoverhange;extension 闪光留量flashallowance顶锻留量upsetallowance顶锻速度upsetspeed电极接触面electrodecontactsurface 贴合面fayingsurface焊点weldingspot熔核nugget熔核直径diameterofnugget塑性金属环区coronabond焊透率penetrationrate压痕indentation压痕深度depthofindentation压深率indentationratio翘离sheetseparation缩孔shrinkagecavity胡须intrusion电极粘损electrodepickup喷溅splash/expulsion毛刺fin飞边upsetmetal/fin焊点距weldspacing/spotweldspacing边距edgedistance分流shuntcurrent接触电阻contactresistance电阻焊机resistanceweldingmachine点焊机spotweldingmachine多点焊机multiplespotweldingmachine移动式点焊机portablespotweldingmachine缝焊机seamweldingmachine纵横两用缝焊机universalseamwelder对焊机buttresistanceweldingmachine凸焊机projectionweldingmachine三相低频焊机threephaselowfrequencywelder二次整流电阻焊机directcurrentresistanceweldersecondaryrectification电容储能电阻焊机condenserdischargeresistancewelder电容储能点焊机condensertypespotwelder/capacitorspotweldingmachine 工频电阻焊机mainsfrequencyresistanceweldingmachine低频电阻焊机frequencyconverterresistanceweldingmachine 高频焊机highfrequencyinductionwelder逆变式电阻焊机invertertyperesistanceweldingmachine全波阻焊电源fullwaveresistanceweldingpowersource斩波阻焊电源choppedwaveresistanceweldingpowersource旋转焊接变压器rotaryweldingtransformerC形点焊钳C-typeweldinghead/C-typegunX形点焊钳pincerspotweldinghead/pliersspotweldinghead 断续器contactor同步断续器synchronouscontactor异步断续器non-synchronouscontactor程序控制器sequencer程序时间调节器sequencertimer电极臂arm电极握杆electrodeholder电极台板backupdie/bolster电极水冷管electrodecoolingtube电极头electrodetip电极帽electrodecap锥头电极truncatedtipelectrode平头电极flattipelectrode尖头电极pointedtipelectrode球面电极radiustipelectrode偏心电极offestelectrode直电极straightelectrode弯电极crankedelectrode双弯电极doublecranked(swannecked)electrode 滚轮电极circularelectrode/weldingwheel斜棱滚轮电极bevelledwheel顶锻机构upsettingmechanism电极总行程totalelectrodestroke工作行程operationalstroke辅助行程electrodetravel/electrodestroke臂间距离hornspacing/throatopening电极臂伸出长度armextension摩擦焊frictionwelding(FW)转速frictionspeed摩擦压力frictionpressure/heatingpressure摩擦时间frictiontime摩擦变形量burn-offlength摩擦变形速度burn-offrate停车时间stoppingtime顶锻变形量forgelength顶锻变形速度forgerate摩擦表面frictionsurface储能摩擦焊fly-wheeltypefrictionwelding径向摩擦焊radialfrictionwelding扩散焊diffusionwelding(DW)过渡液相扩散焊transientliquidphasediffusionwelding 热等静压扩散焊hotisotaticpressurediffusionwelding 热轧扩散焊rolldiffusionwelding扩散缝焊seamdiffusionwelding超塑成形扩散焊supperplasticformingdiffusionbounding 隔离剂butteringmaterial爆炸焊explosivewelding(EW)爆炸点焊explosivespotwelding爆炸线焊explosivelinewelding多层板爆炸焊explosiveweldingofmultiplayerplates 多层管爆炸焊explosiveweldingofmultiplayertubes 覆板(覆管)claddingplat(tube)/flyerplate(tube) 基板(基管)baseplate(tube)/parentplate(tube)保护层buffer/protector基础base预置角presetangle间距initialstand-off/spacing装药量explosiveload装药密度chargedensity/loadingdensity质量比massratio平行法parallelplateconfiguration角度法presetangleconfiguration均匀布药averagearrangingexplosive梯形布药gradientarrangingexplosive爆炸焊参数explosiveweldingparameters初始参数initialparameters动态参数dynamicparameters界面参数interfaceparameters爆轰速度detonationvelocity覆板速度claddingplatevelocity碰撞点impactpoint碰撞点速度velocityoftheimpactpoint 弯折角bendingangle碰撞角collisionangle碰撞压力impactpressure格尼能Gurneyenergy垂直碰撞normalimpact倾斜碰撞obliqueimpact/inclinedimpact 对称碰撞symmetricalimpact来流upperstream出流downstream再入射流re-entrantjet自清理oneselfcleaning结合区bondzone平面结合planebond波状结合wave-likebond界面波长lengthoftheinterfacialwave界面波幅amplitudeoftheinterfacialwave熔化层moltenlayer熔化袋moltenpocket雷管区detonatorzone边界效应edgeeffect焊接性窗口weldabilitywindows焊着率ratioofweldingarea内爆法internalexplosionprocess外爆法externalexplosionprocess半圆柱试验法semi-cylinderexperimentmethod 超声波焊ultrasonicwelding(UW)超声波点焊ultrasonicspotwelding超声波缝焊ultrasonicseamwelding超声波点焊机ultrasonicspotwelder超声波缝焊机ultrasonicseamwelder冷压焊coldpressurewelding(CPW)热压焊hotpressurewelding热轧焊hotrollwelding旋弧压力焊rotatingarcpressurewelding埋弧压力焊submergedarcpressurewelding电渣压力焊electroslagpressurewelding气压焊gaspressurewelding锻焊forge-welding/blacksmithwelding磁力脉冲焊magnetic-pulsewelding焊接专业英语词汇(焊接卫生与安全)焊接烟尘weldfume焊接发尘量totalamountoffumes焊接烟尘浓度weldfumeconcentration焊接烟尘容限浓度thresholdlimitvaluesofweldfume(TLV)焊接发尘速率weldfumeemissionrate焊接有害气体weldingtoxicgases/weldharmfulgases标定卫生空气需要量nominalhygienicairrequirement焊工尘肺pheumocomsisofwelder焊工锰中毒chronicoccupationalmanganesepoisoningofwelder 焊工氟中毒fluorosisofwelder焊工金属烟热metalfumefeverofwelder电光性眼炎eye-flash(arceye)电光性皮炎electro-photodermatitis 电弧紫外线灼伤ultravioletrayburn 防电击装置voltagereducingdevice 除尘装置dustcollectiondevice焊工手套weldinggloves护脚weldingspats防护鞋shieldingshoes。
Designation:D7459–08Standard Practice forCollection of Integrated Samples for the Speciation of Biomass(Biogenic)and Fossil-Derived Carbon Dioxide Emitted from Stationary Emissions Sources1This standard is issued under thefixed designation D7459;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(´)indicates an editorial change since the last revision or reapproval.1.Scope1.1This practice defines specific procedures for the collec-tion of gas samples from stationary emission sources for subsequent laboratory determination of the ratio of biomass (biogenic)carbon to total carbon(fossil derived carbon plus biomass or biogenic carbon)in accordance with D6866.1.2This practice applies to stationary sources that burn municipal solid waste or a combination of fossil fuel(for example,coal,oil,natural gas)and biomass fuel(for example, wood,wood waste,paper,agricultural waste,biogas)in boil-ers,combustion turbines,incinerators,kilns,internal combus-tion engines and other combustion devices.1.3This practice applies to the collection of integrated samples over periods from1hour to24hours,or longer. 1.4The values stated in SI units are to be regarded as standard.No other units of measurement are included in this standard.1.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:2D1356Terminology Relating to Sampling and Analysis of AtmospheresD4840Guide for Sample Chain-of-Custody ProceduresD6866Test Methods for Determining the Biobased Con-tent of Natural Range Materials Using Radiocarbon and Isotope Ratio Mass Spectrometry Analysis2.2Federal Standards:340CFR60Appendix B,Performance Specification40CFR60Appendix A,Reference MethodUncertainties In Non-Proportional Sampling,Part75 Policy And Communication Efforts,EPA Contract No.EP-W-07-064,Work Assignment No.0-8,Task No.6 (February15,2008–Draft)3.Terminology3.1Definitions—For additional definitions of terms used in this practice,refer to Terminology D1356and Test Methods D6866.3.2Definitions of Terms Specific to This Standard:3.2.1biomass(biogenic)CO2,n—CO2recently removed from the atmosphere by plants,then returned to the atmosphere by combustion or biogenic decay.3.2.1.1Discussion—Biomass CO2emitted from combus-tion devices is often referred to as“carbon-neutral CO2.”3.2.1.2Discussion—Biomass carbon contains the isotope radiocarbon(carbon-14)in measurable quantities.Radiocarbon is a radioactive isotope of the element carbon,carbon-14, having8neutrons,6protons,and6electrons making up13 10-12natural abundance of carbon on earth.It decays exponen-tially with a half-life of about5700years and as such is not measurable in fossil materials derived from petroleum,coal, natural gas or any other source more than about50,000years old.3.2.2constant rate sampling,n—sampling conducted at a fixed sampling rate.3.2.3Fossil CO2,n—CO2introduced into the atmosphere through the combustion or thermal dissociation of fossil materials.3.2.3.1Discussion—Fossil-derived CO2is void of radiocar-bon and consists entirely of the“stable carbon”isotopes carbon-13(having7neutrons,6protons,and6electrons) making up 1.2%natural abundance carbon on earth and1This practice is under the jurisdiction of ASTM Committee D22on Air Quality and is the direct responsibility of Subcommittee D22.03on Ambient Atmospheres and Source Emissions.Current edition approved Aug.1,2008.Published August2008.2For referenced ASTM standards,visit the ASTM website,,orcontact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.3Available from Standardization Documents Order Desk,DODSSP,Bldg.4, Section D,700Robbins Ave.,Philadelphia,PA19111-5098,http:// .1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.Copyright by ASTM Int'l (all rights reserved); Tue Jun 22 02:54:24 EDT 2010Downloaded/printed bycarbon-12(having6neutrons,6protons,and6electrons)and making up98.8%natural abundance carbon on earth.3.2.4proportional sampling,n—sampling conducted such that the ratio of the sampling rate to stack gas velocity or volumetricflow rate is constant.3.2.5speciation,n—identification of the biomass and fossil-derived CO2components within bulk air effluents.3.2.6sub-sampling,n—the process of taking a representa-tive smaller amount of sample volume from a large bulk sample volume.4.Summary of Practice4.1Representative gas samples are collected at a constant rate from stationary emission sources into portable containers for shipment to off-site analytical facilities performing D6866 analysis.N OTE1—The complexity of the analytical method requires analysis to be performed off-site.4.2If the variability of stack gas velocity or CO2concen-tration,or both,is beyond specified limits,proportional rate sampling may need to be used.See Section8.N OTE2—The majority of combustion sources are such that their operational conditions do not vary significantly and,hence,constant rate sampling would provide representative samples.However,there are some sources,for example,peaking units,whose effluentflow rate(velocity)and CO2concentrations vary considerably.In such cases,it is necessary tosample proportionally.Guidelines are given on when proportional sam-pling is necessary.5.Significance and Use5.1Greenhouse gases are reported to be a major contributor to global warming.Since“biomass CO2”emitted from com-bustion devices represents a net-zero carbon contribution to the atmosphere(that is,plants remove CO2from the atmosphere and subsequent combustion returns it),it does not contribute additional CO2to the atmosphere.The measurement of biom-ass(biogenic)CO2allows regulators and stationary source owners/operators to determine the ratio of fossil-derived CO2 and biomass CO2in developing control strategies and to meet federal,state,local and regional greenhouse gas reporting requirements.5.2The distinction of the two types of CO2hasfinancial, control and regulatory implications.6.Apparatus6.1Probe—Tubing of sufficient length,equipped with an in-stack or out-stackfilter to remove particulate matter.The probe may be made of any material that is inert to CO2and resistant to temperature at sampling conditions,for example, stainless steel,borosilicate glass,quartz,or polytetrafluoroet-hylene.Thefilter may be a plug of glass wool.Samples may also be taken at the exhaust of any extractive continuous emission monitoring system(CEMS)used for monitoring pollutant or diluent concentrations,including both full extrac-tive and dilution sampling systems.N OTE3—Samples may be collected using EPA Method3in conjunction with applicable US EPA reference test methods requiring Method5 sampling apparatus.6.2Condenser—Air-cooled,water-cooled,or other con-denser to remove excess moisture that would interfere with the operation of the pump andflow meter.The condenser must not remove any CO2.The condenser may be omitted if the moisture concentrations are too low for condensation,for example,after dilution CEMS.N OTE4—CO2is slightly soluble in water;its effect is estimated to beless than about0.2%.Acid gases(for example,SO2,HCl)reduce thesolubility of CO2to a negligible level.In addition,since the methodinvolves ratios of biomass to fossil derived CO2,any solubility(if any)ofCO2in water does not affect the results.6.3Valve—Needle valve,or equivalent,to adjust sampling flow rate.The valve may be omitted if a pump that samples ata constant rate is used.6.4Pump—Leak-free diaphragm-type pump,or equivalent, to transport sample gas to theflexible bag.It may be necessary to install a small surge tank between the pump and rate meter to eliminate the pulsation effect of the diaphragm pump on the rotameter.6.5Rate Meter—Rotameter,or equivalent rate meter,ca-pable of measuring sampleflow rate to within62.0%of the selectedflow rate.6.6Sample Container—Air tight vessel that is compatible with the system design,which includesflexible bags,evacu-ated canisters such as Summa canisters,vacutainer,Tedlar bag, or syringes.6.6.1The capacity of the sample container must be large enough to contain at least2cm3of CO2(sample container capacity(L)3%CO2310$2cm3)at the end of the sampling period.6.6.2If sub-samples are used for shipment to the laboratory, then determine the size of the sub-sample container such that it will contain at least2cm3of pure CO2.6.7Flow Rate Indicator—Indicator that is proportional to stack gas velocity or volumetricflow rate.The following are acceptable indicators:Type S pitot tube(velocity pressure,as measured by manometer,transducer,etc.);ultrasonic,scintil-lation,thermal or other continuousflow devices;steam rates, boiler feed water,power generation(MW),process loads,fuel rates,or other proportional effluentflow equivalents.N OTE5—In most combustion sources,moisture can be assumed to be constant;however,if moisture varies by more than610%moisture (absolute)from the average,record hourly moisture content values to determine the effect on the constant sample rate.Constant sampling rate is based on the moisture content at stack conditions,while the actual sampling rate is determined on a dry basis.N OTE6—If a pitot tube is used,the determination of gas density is not needed.The square root of the velocity pressure should be used in the calculations.6.8Quality Assurance/Quality Control Equipment—As in-dicated in Section8.7.Procedure7.1Set up the sampling train as shown in Fig.1or Fig.2.7.2When using the Fig.1configuration,locate the tip of the sampling probe within or centrally located over the centroidal area of the duct or stack cross-section or at least1meter in from the duct or stack wall.When using the Fig.2configura-tion,it is preferable to sample after the CO2monitor’sintake.2Copyright by ASTM Int'l (all rights reserved); Tue Jun 22 02:54:24 EDT 2010Downloaded/printed byEnsure that the attachment of the CO 2sampling equipment does not interfere with the normal operation of the existing equipment by adding significant restriction or back pressure,or affecting the analyzer flow rate(s).N OTE 7—When using EPA Method 3in conjunction with EPA Method 5sampling apparatus,an integrated multipoint sample taken at each sampling point is acceptable.7.3If the flow indicator is a pitot tube,insert the sensing portion of the pitot in an interference-free location next to the probe,for example,attaching the pitot to the probe with the sensor tip extending at least 5.1cm beyond the tip of the probe.7.4Record the sample location,time and date of the commencement of collection and the operator’s name on the container.During the sampling period,record the date and time,the sample flow rate (including temperature and pres-sure),and readings from the flow rate indicator at least at the following frequencies.7.4.1$6hours sampling time —every hour7.4.23,4,or 5hours sampling time —every 30minutes 7.4.32hours sampling time —every 20minutes 7.4.41hour sampling time —every 10minutes7.5Sample at a constant rate within 610%of the initial reading.Record the %deviation from initial reading at each recording of sampling rate.7.6Using the readings from the flow rate indicator (for example,pressure differential,steam rate,fuel rate),calculate the mean (µ)and standard deviation (s ).If 2s /µx 100(or twotimes the relative standard deviation or 2RSD)#55%,the condition for constant rate sampling has been met;if not,then sampling must be conducted proportionally in accordance with 7.6.1through 7.6.3.N OTE 8—The #55%(2RSD)specification was developed based on electric utility coal-fired units where the %CO 2variation was #40%(2RSD).Under steady state conditions,the velocity or %CO 2variations from municipal solid waste or agricultural waste combustors are not expected to reach these levels,that is,55%for velocity or 40%for %CO 2.7.6.1Record the initial sampling flow and pitot tube pres-sure differential (or other stack flow monitoring devices or flow rate indicator),and calculate the ratio.7.6.2Maintain this ratio throughout the sampling period to within 610%of the initial ratio.7.6.3Calculate the %deviation from the initial ratio as follows:%Deviation ~each sampling period !5S Sampling Period RatioInitial Ratio–1D3100(1)7.7At the end of the sampling period,securely close thesample container and remove it from the apparatus.7.8Prepare the sample for shipment to the analytical laboratory by one of the following procedures:N OTE 9—The final sample must contain at least 2cm 3CO 2.In some cases,several sub-sample containers may be required for analysis.SeveralFIG.1Sampling Train Configuration Using aProbeFIG.2Sampling Train Configuration AfterCEMS3Copyright by ASTM Int'l (all rights reserved); Tue Jun 22 02:54:24 EDT 2010Downloaded/printed bysub-samples may be proportionately combined into a single sample container for analysis.The source may wish to retain several back-up samples.7.8.1Ship the sample container as is.7.8.2Transfer a sub-sample into a smaller container or proportionately combine multiple sub-samples.7.9Document sample custody to ensure sample and data integrity in accordance with Guide D4840.8.Quality Assurance and Quality Control8.1Constant Sampling Rate Check—Calculate the percent deviation from the initial sampling rate.No value shall exceed 610%.If this limit is exceeded,invalidate the sample.8.2Stack Flow Rate Variation—Calculate the average stack flow rate indicator and2RSD(twice the standard deviation relative to the average).The2RSD must be less than30%.8.3Leak Checks—Conduct a leak check of the container as follows:N OTE10—Since the analysis is based on a ratio of14C/12C,leaking containers would not invalidate the sample.However,large leaks might pose a problem by diluting the samples to the point where there isinsufficient CO2to analyze;therefore containers indicating leaks shouldnot be used.8.3.1Perform the leak check before(mandatory)the test. Fill the container with gas,connect a water manometer,and pressurize the container to5to10cm H20.Allow to stand for 10minutes.Any displacement in the water manometer indi-cates a leak.8.3.2An alternative leak check method forflexible bags is to pressurize the bag to5to10cm H20and allow to stand overnight.A deflated bag indicates a leak.8.3.3Do not use any container that indicates a leak.8.4Rate Meter Check—The rate meter needs no calibration. Ensure that it is clean and freeflowing.9.Report9.1Include the following information in the Field Sampling Report:9.1.1Source Identification and Description9.1.2Tester Information9.1.3Sampling Point Description(Outlet of CEMS,Sample Probe,or Other)9.1.4Sampling Data(Include pertinent data to substantiate results.)9.1.4.1Sample Identification9.1.4.2Dates,Start Time,End Time,Initial Sampling Rate 9.1.4.3Maximum Deviation of Sampling Rate from Initial 9.1.4.4Average Flow Rate(or Proportional Equivalent)and 2Relative Standard Deviation(2RSD)9.1.4.5Sub-Sample V olume and Number of Sub-Samples Being Shipped9.1.4.6Approximate Stack CO2Concentration(Dry Basis) 9.1.5QA/QC Data(From Most Recent Test)9.1.5.1Leak Check9.1.5.2Rate Meter Check:Cleanliness and Free Flowing (Non-sticking)10.Keywords10.1biomass;biomass(biogenic)CO2;carbon dioxide; emissions;fossil CO2;integrated;proportional;sampling; speciationASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed everyfive years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959, United States.Individual reprints(single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at610-832-9585(phone),610-832-9555(fax),or service@(e-mail);or through the ASTM website().4Copyright by ASTM Int'l (all rights reserved); Tue Jun 22 02:54:24 EDT 2010Downloaded/printed by。
电力英语一、锅炉部分1.临界压力锅炉supercritical pressure boiler2. 亚临界压力锅炉subcritical pressure boiler3. 超高压锅炉super-high pressure boiler4. 蒸汽锅炉steam boiler5. 蒸汽发生器steam generator6. 液态排渣锅炉wet bottom boiler7. 固态排渣锅炉dry bottom boiler8. 燃煤锅炉coal-fired boiler9. 燃气锅炉Gas-fired boiler10.燃油锅炉oil-fired boiler11.自然循环锅炉natural circulation boiler12.汽包(锅筒)锅炉drum boiler13.强制循环锅炉controlled circulation boiler14.直流锅炉once-through boiler15.复合循环锅炉combined circulation boiler16.旋风炉cyclone furnace boiler17.沸腾炉fluidized bed combustion(FBC)boiler18.循环硫化床circulating fluidized bed combustion(FBC)boiler19.增压循环硫化床锅炉 pressurized circulating fluidized bed combustion(PCFBC)boiler20.链条锅炉chain-grate boiler21.热水锅炉hot-water boiler22.废热(余热)锅炉water-heat boiler, heat recover steam generator(HRSG)23.启动锅炉start-up boiler24.厂用锅炉auxiliary boiler25.垃圾焚烧锅炉refuse-fired boiler, refuse incinerator27.露天锅炉outdoor boiler28.单炉膛锅炉single furnace boiler29.双炉膛锅炉twin furnace boiler30.W火焰锅炉W-flame boiler, vertical-fired boiler31.L火焰锅炉L-shape furnace boiler32.塔式锅炉tower boiler33.箱式锅炉box-type boiler34.炉墙furnace wall35. 汽包(锅筒)drum36.封头head37.汽包封头drum end plate, drum head38.下降管downcomer39.集中下降管centralized downcomer40.分散下降管distributed downcomer41.上升管riser42.管束(排)tube bundle43.管屏tube platen44.省煤器管economizer tube45.过热器管superheated tube46.再热器管reheater tube47.蛇形管coil48.吊挂管supporting tube49.引入管inlet pipe50.引出管outlet pipe51.饱和蒸汽管saturated steam pipe52.水冷壁管water wall tube53.鳍片管finned tube, fin tube, gilled tube54.内螺纹管rifled tube, grooved tube55.吸潮管moisture absorption piping56.水冷壁water wall57.膜式水冷壁membrane wall58.内螺纹水冷壁rifled tube water wall59.联箱header60.集汽联箱steam header61.卫燃带bailey wall, refractory belt62包墙管(包覆管)wall enclosure tube63.防渣管(弗斯顿管)slag screen, feston tube64.锅炉本体boiler proper65.锅炉机组boiler unit66.锅炉构架boiler structure67.炉膛boiler framework68.燃烧器furnace69.直流式燃烧器direct-flow burner70.旋流式燃烧器turbulent burner71.低NOX燃烧器low NOX burner72.摇摆式燃烧器tilting burner73.缝隙式燃烧器split burner74.燃烧室combustion chamber75.油枪oil gun torch76.风门damper77.一次风primary air78.二次风secondary air79.三次风tertiary air80.煤粉管道pulverized coal piping81.管板tube plate82.沸点boiling temperature83.过热器superheater84.前屏过热器front platen superheater85.后屏过热器rear plate superheater86.对流过热器convection superheater87.辐射过热器radiant superheater88.屏式过热器plate superheater89.顶棚过热器ceiling superheater90.包墙过热器wall enclosure superheater91.前包墙过热器front wall enclosure superheater92.后包墙过热器rear wall enclosure superheater93.侧包墙过热器side wall enclosure superheater94.吹灰器soot blower95.转动式吹灰器rotary soot bolwer96.伸缩式吹灰器retractable soot blower97.受热面积heating surface area, heat absorption area98.炉膛容积furnace volume99.炉膛热负荷furnace heat release rate, furnace heating absorption rate 100.汽水分离器steam separator, moisture separator101.起动分离器starting separator102.再循环管recirculating piping103.暖风器steam air heater104.再热器reheater105.再热器冷段primary reheater106.再热器热段final reheater107.顶棚ceiling108.省煤器economizer109.管式省煤器tube economizer110.管式空气预热器tubular air preheater111.回转式(再生式)空气预热器regenerative air preheater, rotary air preheater 112.板式空气预热器plate air preheater113.空气预热器air preheater114.三分仓空气预热器trisector regenerative air preheater115.漏风系数air leakage coefficient116.漏风率air leakage ratio117.漏风系统air leakage system118.漏风试验air leakage test119.安全门safety valve120.安全门开启压力opening pressure of safety valve121.安全门回座压力safety valve reseating pressure122.安全门压力整定试验pressure setting test of safety valve123.安全门动作压力safety valve operating pressure124.饱和蒸汽安全门saturated steam safety valve125. 过热蒸汽安全门superheated steam safety valve126.再热蒸汽安全门reheated steam safety valve127.防暴门explosion vent128.检查孔inspection hole129.事故喷水阀emergency water spray valve130.汽包事故放水阀emergency drum drain valve131.三通阀three-way valve132.反冲洗阀back wash valve133.取样阀sampling valve134.插板gate135.给水大旁路门feedwater overall bypass valve136.给水小旁路门feedwater individual bypass valve 137.大板梁plate girder, upper beam138.外护板outer casing139.锅炉排污blowdown140.定期排污扩容器intermittent blowdown flash tank 141.连续排污扩容器continuous blowdown flash tank 142.灰斗ash hopper143.冷灰斗bottom ash hopper, furnace hopper 144.混合器mixer145.齿圈(大牙轮)ring gear, geared ring146.空调器air conditioner147.空气压缩机air compressor148.给煤机coal feeder149.皮带式给煤机belt coal feeder150.刮板式给煤机scraper coal feeder151.叶轮式给煤机paddle coal feeder152.给粉机pulverizer coal feeder153.磨煤机coal pulverizer, coal mill154.钢球磨煤机tube mill155.中速辊式磨煤机roller mill, bowl mill, disk roll mill 156.双进双出钢求磨煤机double inlet and outlet tube mill 157.中速磨煤机medium speed mill158.风扇磨煤机beater wheel mill, beater mill159.排粉风机pulverized coal exhauster160.一次风机primary air fan161. 烟气再循环风机gas recirculation fan162.送风机forced draft fan, force fan163.引风机induced draft fan, induced fan164.离心风机centrifugal fan165.轴流风机axial-flow fan166.双速风机double speed fan167.轴流静叶可调风机adjustable static-blade axial-flow fanfixed pitch axial-flow fan168.轴流动叶可调风机adjustable moving-blade axial-flow fanvariable pitch axial-flow fan169.原煤斗raw coal bunker, raw coal silo 170.煤粉仓pulverized coal bunker171.输粉机pulverized coal conveyer172.刮板输粉机scraper pulverized coal conveyer 173.螺旋输粉机pulverized coal screw conveyer 174.粗粉分离器classifier175.细粉分离器(旋风分离器)cyclone separator176.锁气器air lock, flap177.减速机speed reduce178.看火孔observation hole179.人孔门man hole180.重油泵heavy oil pump181.重油加热器heavy oil heater182.汽-汽热交换器biflux183.煤气罐gas tank184.膨胀补偿节expansion joint185.直吹式制粉系统direct firing pulverizing system 186.中贮式制粉系统bin storage type pulverizing system 187.锅炉效率boiler efficiency188.锅炉热力计算boiler thermodynamic calculation 189.锅炉空气动力计算boiler aerodynamic calculation 190.锅炉水循环计算boiler water circulation calculation 191.锅炉水力计算boiler hydrodynamic calculation 192.锅炉强度计算boiler strength calculation193.锅炉热平衡boiler heat balance calculation 194.正平衡法direct balance method195.反平衡法indirect balance method196.过剩空气系数excess air coefficient197.排烟温度flue gas temperature198.单位蒸量specific evaporation199.低温腐蚀low temperature corrosion200.高温腐蚀high temperature corrosion201.结渣lagging202.结垢腐蚀deposit corrosion203.飞灰磨损fly ash erosion204炉膛负压furnace draft205.最高允许温度maximum permissible temperature 206.炉膛正压furnace pressure207.水循环water circulation208.循环倍率circulation ratio209.除尘器dust collector, precipitator210.静电除尘器electrostatic precipitator211.整流装置rectifying device212.锤打装置rapping gear213.含尘浓度dust loading concentration214.煤灰细度dust fineness215.除尘效率dust collection efficiency216.干式除尘器dry dust collector217.湿式除尘器wet dust collector, scrubber218.文丘里除尘器venture scrubber219.布袋除尘器fabric filter, bag house220.钢珠除尘装置shot-cleaning device221.水膜式除尘器centrifugal scrubber222.灰渣泵ash pump, slag pump223.轴封泵shaft sealing pump224.灰浆泵ash slurry pump225.除尘水泵dedusting pump226.回收水池water recovery pond227.清水池clean water pond228.灰浆池ash slurry pond229.油泵坑oil pump pit230.灰库ash silo231.灰场ash yard232.灰坝ash yard dam233.耐火砖firebrick234.保温材料heat-insulating material235.干式除灰(气力除灰)pneumatic pressure ash handling 236.水力除灰hydraulic ash handling237.正压气力除灰pneumatic pressure ash handling 238.负压气力除灰pneumatic pressure ash handling 239.仓式泵fluidizing transporter240.空气斜槽airslide, air gravity conveyor241.灰渣分除bottom and fly ash separate handling 242.灰渣混除bottom and fly ash mixed handling 243.灰渣利用bottom and fly ash recovery244.排渣槽bottom ash hopper245.埋刮板捞渣机submerged slag conveyor246.螺旋式捞渣机screw slag conveyor247.碎渣机clinker grinder, slag crusher248.振动筛vibrating screen249.稳燃器flame stabiliaer250.燃烧器蜗壳burner spiral case251.雾化器atomization252.机械雾化mechanical atomization253.蒸汽雾化steam atomization254.空气雾化air atomization255.气固两相流动gas-solid two-phase flow256.闭路循环closed cycle257.蒸汽带水carryoery258.炉膛灭火boiler flame failure, boiler flame blackout259.稳定燃烧stable combustion260.压力容器pressure vessel261.支吊架supports and hangers262.原煤管道raw coal piping263.风道air duct264.热风道hot air duct265.冷风道cold air duct266.穿墙套管wall-through bushing, wall-bushing267.伸缩节expansion joint268.送粉管道pulverized coal feed piping269.燃油管道fuel oil piping270.风管道air piping271.一次风管道primary air piping272.二次风管道secondary air piping273.落粉管pulverized coal chute274.除灰管道ash piping275.烟道gas dust, gas pass276.尾部烟道convection flue gas pass277.煤气管gas piping278.连续排污管continuous blowdown piping279.烟囱chimney, stack280.多管式烟囱multi-flue chimney281.燃烧combustion282.四角喷射燃烧corner firing283.燃烧速度combustion rate284.机械未完全燃烧热损失heat loss due to mechanical incomplete combustion 285化学未完全燃烧热损失heat loss due to chemical incomplete combustion 286.灰渣热损失heat loss due to sensible heat in refuse287.排烟热损失heat loss due to flue gas288.散热损失heat loss due to radiation289.热损失heat loss290.火焰flame291.不稳定燃烧instable combustion292.负压燃烧balance draft combustion293.微负压燃烧pressurized combustion294.炉膛容积热负荷furnace volume heat release rate295.炉膛温度furnace temperature296.锅炉水循环boiler water circulation297.偏离泡核沸腾departure from nucleate boiling(DNB)298.水压试验hydraulic test299.汽水共沸priming300.点火ignition301.点火准备ignition preparation302.着火点firing point, ignition temperature303.折焰角nose304.飞灰fly ash305.煤粉细度fineness of pulverized coal306.灰ash307.灰的熔化点ash fushion temperature, ash fushion point, ash melting point308.可磨系数grindability index309.最大蒸发量maximum evaporation310.锅炉热平衡boiler heat balance311.超负荷运行overload operation312.正压positive pressure313.负压negative pressure314.理论空气量theoretical air quantity315.过剩空气量excess air quantity316.冷风cold air317.热风hot air318.除渣slag removal319.烟气flue gas320.锅炉上水boiler water filling321.蠕胀爆管tube burst due to creep322.汽包满水overfeed of water into drum323.锅炉灭火boiler fire extinction324.爆燃puff325.爆炸(外爆)explosion326.内爆implosion327.防爆anti-explosion328.煤粉自燃pulverized coal self-ignition, pulverized coalspontaneous combustion329.堵灰ash fouling330.堵煤coal jamming, coal plugging331.燃烧切圆firing tangential circle332.火焰中心flame center333.积粉pulverized coal deposits334.粉灰ash deposits335.飞灰可燃物combustibles in fly ash336.点火用油fuel oil for ignition337.飞灰腐蚀fly ash corrosion338.受热面heating surface339.辐射受热面radiation heating surface340.对流受热面convection heating surface341.尾部受热面rear heat recovery surface342.含氧量oxygen content343.蒸发量evaporation, evaporative capacity 344.切换风air switch-over345.煤耗率coal consumption rate346.入炉煤发热量heating value of the as fired coal 347.停炉boiler shutdown348.熄火fire-off349.灰水回收recovery of ash slurry water 350.细灰fine ash351.粗灰coarse ash352.干灰dry ash353.湿灰wet ash354.燃烧系数combustion system, firing system 355.制粉系统coal pulverizing system356.除灰系统ash handling system电力英语二、汽轮机357.汽轮机steam turbine358.凝汽式汽轮机condensing steam turbine359.背压式汽轮机back pressure turbine360.抽汽式汽轮机steam extraction turbine361.中间再热式汽轮机reheating type steam turbine362.供热式汽轮机steam supply turbine, heat supply turbine, cogeneration turbine363.冲动式汽轮机impulse turbine364.反动式汽轮机reaction turbine365.轴流式汽轮机axial flow turbine366.辐流式汽轮机radial flow turbine367.单轴汽轮机tandem compound turbine, single-shaft turbine368.双轴汽轮机double-shaft turbine, cross compound turbine369.前置式汽轮机topping turbine370.燃气轮机gas turbine371.高压汽轮机high pressure turbine372.中压汽轮机medium pressure turbine373.低压汽轮机low pressure turbine374.超高压汽轮机ultra pressure turbine375.亚临界压力汽轮机subcritical pressure turbine376.超临界压力汽轮机supercritical pressure turbine377.空冷式汽轮机组air cooled turbine unit378.燃气轮机组(装置)gas turbine unit379.高压汽缸high-pressure(HP) cylinder380.中压汽缸intermediate-pressure(IP) cylinder381.低压汽缸low-pressure(LP) cylinder382.内汽缸inner casing383.外汽缸outer casing384.上汽缸upper casing385.下汽缸lower casing386.汽缸法兰螺栓加热装置cylinder flange heating appliance387.汽缸台板(底板)cylinder sole pin388.汽缸猫爪cylinder claw389.滑销sliding pin390.横销traverse pin391.纵销longitudinal pin392.立销vertical pin393.定位销aligning pin, locating pin394.汽轮机转子turbine rotor395.叶轮 impeller396.叶片blade,397.动叶片moving blade398.静叶片stationary blade399.叶根型式type of blade root400.末级叶片长度length of last stage blade401.喷嘴室nozzle box402.末级叶片强度last stage blade stress403.排汽室steam exhaust hood404.喷嘴nozzle405.围带shroud ring406.拉筋(拉金)lacing wire407.平衡块balance weight408.固定螺钉dowel409.隔板diaphragm410.隔板套diaphragm sleeve411.隔板汽封diaphragm seal, diaphragm sealing412.汽封steam seal gland, steam sealing413.迷宫式汽封labyrinth seal414.梳齿式汽封serrate-type steam seal415.汽封套seal bushing416.汽封块seal block417.汽封齿seal tooth418.轴承支架bearing stoll, bearing bracket419.主轴承箱main bearing box420.滚珠轴承ball bearing421.滚柱轴承roller bearing422.滑动轴承sliding bearing423.推力轴承thrust bearing424.止推环thrust collar425.瓦枕bearing pillow426.锁饼lock427.推力瓦块thrust bearing pad428.主油泵main oil pump429.备用油泵emergency bearing oil pump430.调速油泵regulation oil pump, speed governing oil pump 431.交流润滑油泵AC lube oil pump432.直流润滑油泵DC lube oil pump433.注油器oil injector434.同步器synchronizer435.同步器手轮synchronizer hand wheel436.控制滑阀pilot valve437.随动滑阀servo-valve438.分配滑阀distributing pilot valve, distributor valve439.中间滑阀intermediate valve440.微分器differentiator441.功率限制器load limiter442.动态校正器dynamic corrector443.滑阀套valve sleeve444.喷油嘴oil nozzle445.弹性调速器flexible governor446.调速器挡块governor stop447.危急遮断器滑阀emergency trip pilot valve448.撞击子ram449.防火滑阀fire protection pilot valve450.延滞滑阀delay pilot valve451.跟踪滑阀follow-up pilot valve452.电-液转换器electro-hydraulic converter, electro-hydraulic transducer 453.切换滑阀change-over pilot valve454.危急保安器emergency governor455.危急保安器滑阀emergency governor pilot valve456.超速试验滑阀overspeed test pilot valve457.喷油试验滑阀nozzle test pilot valve458.反馈滑阀feedback pilot valve459.起动排油阀oil drain valve at star-up460.紧急放油阀emergency oil relieve valve461.排油口oil diacharge outlet462.节流滑阀throttle pilot valve463.滑动油阀movable pilot valve464.高压自动关闭器high-pressure automatic closing gear465.中压自动关闭器medium pressure automatic closing gear466.高压油动机(高压伺服马达) high-pressure hydraulic actuator, high-pressure servo-motor467.中压油动机medium-pressure hydraulic actuator, medium-pressure servo-motor468.杠杆lever469.轴shaft470.主轴main shaft471.传动轴(主动轴) driven shaft472.被动轴(从动轴)driven shaft473.小轴axle474.联轴器coupling475.刚性联轴器rigid coupling476.半挠性联轴器semi-flexible coupling477.齿型联轴器serrated coupling478.冷油器oil cooler479.溢油器oil overflow valve480.排油烟机oil-fume extractor, oil fume exhaust 481.油烟分离器oil-fume separator482.油净化器oil purifier, oil conditioner483.过滤罐filtering tank484.布袋式过滤器bag filter, fabric filter485.齿轮油泵gear oil pump486.顶轴油泵jacking oil pump487.柱塞式油泵piston type oil pump488.螺杆式油泵worm type oil pump489.盘车装置turning gear490.盘车手轮turning gear hand wheel491.化桩板lagging enclosure492.齿轮gear493.直齿式齿轮spur gear494.斜齿式齿轮helical gear495.伞型齿轮bevel gear496.蜗轮worm wheel497.蜗杆worm stem498.弹簧spring499.密封油箱sealing oil tank500.空气侧交流密封油泵air side AC sealing oil pump 501.空气侧支流密封油泵air side DC sealing oil pump 502.压差阀differential pressure valve503.平衡阀balancing valve504.密封瓦sealing pad505.缓冲油箱buffer oil tank506.高位油箱head oil tank, elevated oil tank 507.事故油箱emergency oil tank508.磁性过滤器magnetic filter509.发电机内冷水箱generator inner cooling water tank 510.发电机内冷水泵generator inner cooling water pump 511.离子交换器ion exchanger512.干燥器dryer, drier513.冷凝式干燥器condensing type drier514.凝汽器condenser515.多压式凝汽器multi-pressure condenser516.单流程凝汽器single-pass condenser517.双流程凝汽器double-pass condenser518.黄铜管brass tube519.管板tube plate520.凝汽器喉部condenser throat521.热水井hot well522.凝结水泵condensate pump523.泵壳pump casing524.盘根gland packing525.盘根压盖gland top cover526.盘根端盖gland end cover527.填料packing528.轴封抽汽风机shaft seal extraction fan529.轴封抽汽冷却器shaft seal extraction cooler, gland cooler530.轴封漏汽加热器shaft seal leakage heater531.低压加热器low-pressure feed water heater532.中压加热器media-pressure feed water heater533.高压加热器high-pressure feed water heater534.蒸汽冷却器steam cooler535.疏水冷却器drain water cooler536.汽侧steam side537.水侧water side538.U型管U-tube539.除氧器deaerator540.储水池water storage pond541.卧式除氧器horizontal type deaerator542.立式除氧器vertical type deaerator543.喷雾式除氧器atomizing type deaerator544.淋水盘water spraying tray, sprinkling tray545.除氧水箱deaerated water tank546.稳压水箱surge water tank, stabilizing water tank547.除盐水箱demineralized water tank548.除盐水泵demineralized water pump549.汽动给水泵steam-driven feed water pump550.电动调速给水泵motor-driven variable speed feed water pump551.前置水泵booster pump552.给水泵feed water pump553.机械密封mechanical seal554.碳精密封环carbon seal ring, carbon packing ring555.动环moving ring556.静环static ring557.平衡盘balancing disc558.液力偶合器hydraulic coupler559.泵轮(主动轮)pump impeller, driving impeller560.涡轮(从动轮)whirling impeller, driven impeller561.勺管scoop tube562.辅助油泵auxiliary oil pump563.疏水泵drain pump564.疏水扩容器drain flash tank565.疏水箱drain tank566.热网加热器heater for heating network, heating network hot water heater567.生水加热器raw water heater568.热网水泵pump for heating network, heating network hot water pump 569.生水泵raw water pump570.除尘水泵pump for scrubber, scrubber water pump571.壳体case, shell572.水室water chamber573.封头end cover574.挡板baffle plate575.导流板guide plate576.射水泵water jet pump577.真空泵vaccum pump578.射水抽气器water jet air ejector579.射汽抽气器steam jet air ejector580.射水池water jet pond581.排水池drain water pond582.工业水泵industrial water pump, service water pump583.排污泵blowdown pump584.轴流泵axial flow pump585.清水泵clean water pump586.污水泵sewage pump587.排水泵water discharge pump588.立式深井泵vertical deep-well pump589.深井泵deep-well pump590.潜水泵submerged pump591.循环水泵circulating water pump592.清污机trash remover593.混流泵mixed flow pump594.离心泵centrifugal pump595.旋转滤网rotating type screen, screw type strainer596.胶球泵rubber ball recirculating pump597.收球网ball screen598.装球网ball collector599.管式冷却器tubular cooler, tube type cooler599/1.支撑斜钢supporting wedge600.板式冷却器plate type cooler601.冷却水池cooling water pond602.喷水池spraying water pond603.冷却水塔cooling tower604.自然通风冷却塔natural draft cooling tower605.逆流式冷却塔reverse flow cooling tower606.横流式塔transverse flow cooling tower607.机力通风冷却塔mechanical draft cooling tower608.空气冷却塔air cooling tower609.干式冷却塔dry cooling tower610.分水槽water diversion channel611.竖井shaft, well612.闸板井gate well613.闸门室gate chamber, gate house614.挡风板air baffle plate615.新(主)蒸汽管道main steam piping, live steam piping 616.主蒸汽系统main steam system617.再热蒸汽系统reheat steam syetem618.抽汽系统extraction steam system619.轴封供汽系统shaft seal steam supply system620.轴封shaft seal shaft gland621.门杆漏汽系统valve lever leakage steam system622.汽缸法兰螺栓加热系统casing flange and bolt heating system 623.真空系统vaccum system624.凝结水系统condensate system625.再热蒸汽管道reheat steam system626.给水系统feed water system627.循环水系统circulating water system628.工业水系统industrial water system, service water system 629.供油系统oil supply system630.密封油系统seal oil system631.厂用蒸汽系统auxiliary steam system632.调速系统speed governing system633.电液调速系统electro-hydraulic speed governing system 634.发电机内冷水系统generator inner cooling water system 635.热网系统heating network system636.导汽管steam lead pipe637.连通管inter-connecting pipe638.抽汽管道steam extraction pipe639.抽汽母管steam extraction header640.厂用蒸汽管道plant service steam piping641.厂用蒸汽母管plant service steam header642.蒸汽旁路系统steam bypass system643.蒸汽大旁路single stage steam bypass644.一级蒸汽旁路first stage steam bypass645.二级蒸汽旁路second stage steam bypass646.辅助蒸汽母管auxiliary steam header647.供汽联箱steam header648.回汽联箱return steam header649.供水联箱water supply header650.回水联箱return water header651.门杆漏汽管道valve lever steam leakage piping652.轴封漏汽管道shaft seal leakage steam piping653.抽空气管道air extraction piping654.压缩空气管道compressed air piping655.氢气管道hydrogen piping656.疏水管道drain water piping657.凝结水管道condensate piping658.循环水管道circulating water piping659.工业水管道industrial water piping, service water piping 660.冷却水管道cooling water piping661.给水管道feed water piping662.除盐水管道demineralized water piping663.减温水管道attemperating water piping664.再循环水管道recirculating water piping665.排水管道water discharge piping666.润滑油供油管道lube oil supply piping667.润滑油管lube oil piping668.调速油管governing oil piping669.回油管道return oil piping670.压力油管道pressure oil piping671.密封油管道seal oil piping672.脉动油管pulsating oil piping673.热网水管道heating network water piping674.平衡管balance pipe675.电动主闸门motor-operated main gate valve676.高压主汽门high-pressure main stop valve677.中压主汽门intermediate pressure main stop valve 678.旁路门bypass valve679.防腐汽门corrosion-proof valve680.高压调速汽门high-pressure governor valve681.中压调速汽门medium pressure governor valve682.对空排汽门atmospheric relief valve683.疏水门drain valve684.调整门adjusting valve685.电动门motor-operated valve686.手动门hand-operated valve687.减温器attemperator, desuperheater688.减压器(阀)pressure reducer(valve)689.减温减压器temperature and pressure reducer690.抽汽电动门motor-operated steam extraction valve 691.抽汽逆止门extraction check valve692.高压排汽逆止门high-pressure exhaust check valve 693.逆止门check valve, non-return valve694.入口门inlet valve695.出口门outlet valve696.球型阀globe valve697.闸板阀gate valve698.针型阀needle valve699.翻板阀tripper valve700.液压阀hydraulic valve701.控制阀control valve702.换向阀reverse flow valve703.疏水阀drain valve704.蝶阀butterfly valve705.衬胶门rubber lined valve706.高压加热器入口联成阀composite valve at high pressure heater inlet 707.高压加热器出口联成阀composite valve at high pressure heater outlet 708.高压加热器旁路门high pressure heater bypass valve709.水封阀门water seal valve710.排污门blow down valve711.排气门exhaust steam valve712.排汽门exhaust steam valve713.补水门water supply valve, make-up water valve714.补油门oil valve, oil supply valve715.补氢门hydrogen supply valve716.空气门air valve717.真空破坏阀vacuum breaking valve, vacuum breaker718.排汽安全门exhaust steam safety valve719.弹簧安全门spring relief valve720.排汽缸喷水门exhaust cylinder water-spraying valve721.电磁阀solenoid valve, magnet valve722.前截门front intercept valve723.后截门rear intercept valve724.排氢门hydrogen vent valve725.中间抽头门intermediate stage bleed-off valve726.最小流量阀minimum flow valve727.暖泵门pump warming valve728.泵体放水门pump-body water drain valve729.放水门water discharge valve730.减温水门attemperating water valve731.切换门change-over valve, diverting valve732.联络门interconnection valve733.液压逆止门hydraulic check valve734.再沸腾加热门reboiled heating valve735.放空气门air vent valve736.再循环门recirculation valve737.冷却水门cooling water valve738.热效率thermal efficiency, heat efficiency739.内效率internal efficiency740.额定工况rated operation condition741.最大工况maximum operation condition742.汽耗量steam consumption743.汽耗率steam consumption rate744.热耗率specific heat consumption, heat rate745.新蒸汽压力initial steam pressure, live steam pressure746.再热蒸汽冷段压力cold reheated steam pressure747.再热蒸汽热段压力hot reheated steam pressure748.再热蒸汽热段温度hot reheated steam temperature749.再热蒸汽冷段温度cold reheated steam temperature750.主蒸汽流量steam flow751.再热蒸汽流量reheated steam flow752.低压缸排汽流量low-pressure cylinder exhaust steam flow753.转速rotating speed, revolution754.真空度vaccum755.旋转方向rotation direction756.给水温度feedwater temperature757.调节级压力pressure at velocity stage758.临界转速critical speed759.吊装重量lifting weight760.速度变化率speed variation rate761.迟缓率delay rate762.凸轮转角cam torque angle763.过热度superheat degree764.温差temperature difference765.端差terminal temperature difference766.过冷度supercooling degree767.高压加热器投入率high pressure heater availability rate768.轴向位移axial shift, axial displacement769.大轴晃动值shaft swinging value, shaft eccentricity770. 高压缸膨胀high-pressure cylinder expansion771.中压缸膨胀intermediate pressure cylinder expansion772.低压缸膨胀low pressure cylinder expansion773.市政速油压governing oil pressure774.润滑油压lubricating oil pressure775.脉动油压impulse oil pressure776.附加保安油压additional safeguard oil pressure777.滑阀上油压oil pressure above pilot valve778.滑阀下油压oil pressure under pilot valve779.润滑油温lubricating oil temperature780.轴承加油温度bearing return oil temperature781.轴承钨金温度babbit metal temperature, bearing metal temperature 782.推力瓦块温度thrust pad temperature783.密封油压seal oil pressure784.油位oil level785.水中含氧量oxygen content of water786.凝结水硬度condensate hardness787.轴承振动值shaft(bearing) vibration amplitude788.垂直振动值vertical vibration amplitude789.水平振动值horizontal vibration amplitude790.轴向振动值axial vibration amplitude791.油膜振荡oil film oscillation, oil whipping792.冲转impulse starting793.冷态启动cold start794.热态启动hot start795.滑参数启动starting at sliding parameters, sliding pressure starting 796.滑参数停机shut-down at sliding parameters, sliding pressure shut-down 797.升速speed up798.升速率percentage of maximum momentary speed variation,speed-up rate799.负荷上升率loading rate800.基本负荷base load801.调峰运行peak load regulating operation, cyclic operation802.空转idling, idle running803.手动打闸停机hand trip, turbine hand trip804.暖机turbine warming up805.最短盘车时间minimum turning time806.低速暖机low speed warming807.中速暖机medium speed warming808.滑参数起动曲线starting curve at sliding parameters,sliding pressure starting-up curve809.滑参数停机曲线shut-down curve at sliding parameters,sliding pressure shut-down curve810.全周进汽full admission811.部分进汽partial admission, partial-arc admission812.喷嘴调节nozzle governing813.节流调节throttle governing814.破坏真空vaccum breaking815.汽缸金属温度cylinder metal temperature816.听音检查sound detection817.惰走时间idling time818.超速试验overspeed test819.真空严密性试验vaccum leakage test820.主汽门严密性试验main steam stop valve leakage test821.危急遮断器充油试验emergency governor oil filling test822.低油压保护试验low oil pressure protection test823.调速系统静止试验governing system pre-operation test824.调速系统动态特性试验governing system dynamic performance test825.调速系统静态特性试验governing system static performance test826.甩负荷试验load-dump test, load-rejection test827.空负荷试验no-load test828.满负荷试验full-load test829.超负荷试验overload test830.转子平衡试验rotor balancing test831.动平衡dynamic balancing832.静平衡static balancing833.热力试验thermodynamic test834.叶片频率试验blade frequency test 835.投入运行to be put into operation 836.开启opening837.关闭closing838.启动starting-up839.停止shutting down840.充氢hydrogen charging841.排氢hydrogen discharging842.补水water make-up843.补油oil make-up844.水位调整water level regulation 845.暖管warming846.手摇同步器hand synchronizer847.检查inspection, examination 848.巡检routing inspection849.蒸汽带水carry-over850.水击hydraulic shock, water hammer 851.超速overspeed852.轴承损坏(烧瓦)bearing burnt-out853.断叶片broken blade854.断轴broken shaft855.气蚀cavitation856.反转(倒转)reversal rotation857.调节级regulation stage858.压力级pressure stage859.抽真空vaccum extraction860.盘车turning861.法兰加热flange heating862.螺栓加热bolt heating863.漏汽steam leakage864.漏水water leakage865.炭精轴封carbon packing866.冒烟smoking, smoke belching 867.着火fire catching, fire868.强烈振动strong vibration869.管道破裂piping breaking870.无蒸汽运行no-steam operation。
State of CaliforniaAir Resources BoardMETHOD 2 Determination of Stack Gas Velocity and Volumetric Flow Rate(Type S Pitot Tube)Adopted: June 29, 1983Amended: July 1, 1999METHOD 2Determination of Stack Gas Velocity and Volumetric Flow Rate(Type S Pitot Tube)1Principle and Applicability1.1PrincipleThe average gas velocity in a stack is determined from the gas density and frommeasurement of the average velocity head with a Type S (Stausscheibe or reverse type) pitot tube.1.2ApplicabilityThis method is applicable for measurement of the average velocity of a gas stream and for quantifying gas flow.This procedure is not applicable at measurement sites which fail to meet the criteria ofMethod 1, Section 2.1. Also, the method cannot be used for direct measurement incyclonic or swirling gas streams; Section 2.4 of Method 1 shows how to determine cyclonic or swirling flow conditions. When unacceptable conditions exist, alternative procedures, subject to the approval of the Executive Officer, must be employed to make accurate flow rate determinations; examples of such alternative procedures are: (1) to installstraightening vanes; (2) to calculate the total volumetric flow rate stoichiometrically, or (3) to move to another measurement site at which the flow is acceptable.Any modification of this method beyond those expressly permitted shall be considered a major modification subject to the approval of the Executive Officer. The term Executive Officer as used in this document shall mean the Executive Officer of the Air ResourcesBoard (ARB), or his or her authorized representative.2ApparatusSpecifications for the apparatus are given below. Any other apparatus that has been demonstrated (subject to approval of the Executive Officer) to be capable of meeting the specifications will be considered acceptable.2.1Type S Pitot TubePitot tube made of metal tubing (e.g., stainless steel) as shown in Figure 2-1. It isrecommended that the external tubing diameter (dimension D t, Figure 2-2b) be between0.48 and 0.95 centimeters (3/16 and 3/8 inch). There shall be an equal distance from thebase of each leg of the pitot tube to its face-opening plane (dimensions P A and P B, Figure 2-2b); it is recommended that this distance be between 1.05 and 1.50 times the external tubing diameter. The face openings of the pitot tube shall, preferably, be aligned as shown in Figure 2-2; however, slight misalignments of the openings re permissible (see Figure 2-3).July 1999CARB Method 2 Page 2July 1999CARB Method 2 Page 3The Type S pitot tube shall have a known coefficient, determined as outlined in Section 4. An identification number shall be assigned to the pitot tube; this number shall be permanently marked or engraved on the body of the tube.A standard pitot tube may be used instead of a Type S, provided that it meets thespecifications of Sections 2.7 and 4.2; note, however, that the static and impact pressure holes of standard pitot tubes are susceptible to plugging in particulate-laden gas streams. Therefore, whenever a standard pitot tube is used to perform a traverse, adequate proof must be furnished that the openings of the pitot tube have not plugged up during thetraverse period; this can be done by taking a velocity head (∆p) reading at the final traverse point, cleaning out the impact and static holes of the standard pitot tube by "back-purging"with pressurized air, and then taking another ∆p reading. If the ∆p readings made before and after the air purge are the same ("5 percent), the traverse is acceptable. Otherwise,reject the run. Note that if ∆p at the final traverse point is unsuitably low, another point may be selected. If "back-purging" at regular intervals is part of the procedure, thencomparative ∆p readings shall be taken, as above, for the last two back purges at which suitably high ∆p readings are observed.2.2Differential Pressure GaugeAn inclined manometer or equivalent device. Most sampling trains are equipped with a 10-in. (water column) inclined-vertical manometer, having 0.01-in. H 2O divisions on the 0- to 1-in. inclined scale, and 0.1-in. H 2O divisions on the 1- to 10-in. vertical scale. This type of manometer (or other gauge of equivalent sensitivity) is satisfactory for the measurement of ∆p values as low as 1.3 mm (0.05 in.) H 2O. However, a differential pressure gauge of greater sensitivity shall be used (subject to the approval of the Executive Officer), if any of the following is found to be true: (1) the arithmetic average of all ∆p readings at the traverse points in the stack is less than 1.3 mm (0.05 in) H 2O; (2) for traverses of 12 or more points, more than 10 percent of the individual ∆p readings are below 1.3 mm (0.05in.) H 2O; (3) for traverses of fewer than 12 points, more than one ∆p reading is below 1.3mm (0.05 in.) H 2O.As an alternative to criteria (1) through (3) above, the following calculation may be performed to determine the necessity of using a more sensitive differential pressure gauge:pK+ p = T i n 1=i i n 1=i ∆∆∑∑Where:∆p i=Individual velocity head reading at a traverse point, mm(in.) H 2O n=total number of traverse pointsK=0.13 mm H2O when metric units are used and 0.005 in. H2O whenEnglish units are usedIf T is greater than 1.05, the velocity head data are unacceptable and a more sensitivedifferential pressure gauge must be used.NOTE: If differential pressure gauges other than inclined manometers are used (e.g.,magnehelic gauges), their calibration must be checked after each test series. To check the calibration of a differential pressure gauge, compare ∆p readings of the gauge withthose of a gauge-oil manometer at a minimum of three points, approximately representing the range of ∆p values in the stack. If, at each point, the values of ∆p, as read by thedifferential pressure gauge and gauge-oil manometer agree to within 5 percent, thedifferential pressure gauge shall be considered to be in proper calibration. Otherwise, the test series shall either be voided, or procedures to adjust the measured ∆p values and final results shall be used, subject to the approval of the Executive Officer.2.3Temperature GaugeA thermocouple, liquid-filled bulb thermometer, bimetallic thermometer, mercury-in-glassthermometer, or other gauge capable of measuring temperature to within 1.5 percent of the minimum absolute stack temperature. The temperature gauge shall be attached to thepitot tube such that the sensor tip does not touch any metal; the gauge shall be ininterference-free arrangement with respect to the pitot tube face openings (see Figure 2-1 and also Figure 2-7 in Section 4). Alternate positions may be used if the pitot tubetemperature gauge system is calibrated according to the procedure of Section 4. Provided that a difference of not more than 1 percent in the average velocity measurement isintroduced, the temperature gauge need not be attached to the pitot tube; this alternative is subject to the approval of the Executive Officer.2.4Pressure Probe and GaugeA piezometer tube and mercury or water-filled U-tube manometer capable of measuringstack pressure to within 2.5 mm (0.1 in.) Hg. The static tap of a standard type pitot tube or one leg of a Type S pitot tube with the face opening planes positioned parallel to the gas flow may also be used as the pressure probe.2.5BarometerA mercury, aneroid, or other barometer capable of measuring atmospheric pressure towithin 2.5 mm Hg (0.1 in. Hg). In many cases, the barometric reading may be obtainedfrom a nearby national weather service station, in which case the station value (which is the absolute barometric pressure) shall be requested and an adjustment for elevationdifferences between the weather station and the sampling point shall be applied at a rate of minus 2.5 mm (0.1 in.) Hg per 30-meter (100-foot elevation increase, or vice-versa for elevation decrease.July 1999CARB Method 2 Page 42.6Gas Density Determination EquipmentMethod 3 equipment, if needed (see Section 3.6), to determine the stack gas dry molecular weight, and Method 4 or Method 5 equipment for moisture content determination; other methods may be used subject to approval of the Executive Officer.2.7Calibration Pitot TubeA standard pitot tube used as a reference when calibration of the Type S pitot tube isnecessary (see Section 4). The standard pitot tube shall, preferably, have a knowncoefficient, obtained either (1) directly from the National Institute of Standards andTechnology(NIST), Fluid Mechanics (Bldg 230 room 105), Gaithersburg, MD 20899-0001, or (2) by calibration against another standard pitot tube with an NIST-traceable coefficient.Alternatively, a standard pitot tube designed according to the criterion given in 2.7.1through 2.7.5 below and illustrated in Figure 2-4 may be used. Pitot tubes designedaccording to these specifications will have baseline coefficients of about 0.99 "0.01.2.7.1Hemispherical (shown in Figure 2-4 ), ellipsoidal, or conical tip.2.7.2A minimum of six diameters straight run (based upon D, the external diameter of thetube) between the tip and the static pressure holes.2.7.3A minimum of eight diameters straight run between the static pressure holes and thecenterline of the external tube, following the 90 degree bend.2.7.4Static pressure holes of equal size (approximately 0.1 D), equally spaced in apiezometer ring configuration.2.7.5Ninety degree bend, with curved or mitered junction.2.8Differential Pressure Gauge for Type S Pitot Tube CalibrationAn inclined manometer or equivalent. If the single-velocity calibration technique isemployed (see Section 4.1.2.3), the calibration differential pressure gauge shall bereadable to the nearest 0.13 mm (0.005 in.) H2O. For multi-velocity calibrations, the gauge shall be readable to the nearest 0.13 mm (0.005 in.) H2O for ∆p values between 1.3 and25 mm (0.05 and 1.0 in.) H2O, and to the nearest 1.3 mm (0.05 in.) H2O for ∆p valuesabove 25 mm (1.0 in.) H2O. A special, more sensitive gauge will be required to read ∆p values below 1.3 mm (0.05 in.) H2O.July 1999CARB Method 2 Page 53Procedure3.1Set up the apparatus as shown in Figure 2-1. Capillary tubing or surge tanks installedbetween the manometer and pitot tube may be used to dampen ∆p fluctuations. It isrecommended, but not required, that a pre-test leak check be conducted as follows: (1) blow through the pitot impact opening until at least 7.6 cm (3 in.) H2O velocity pressureregisters on the manometer; then, close off the impact opening. The pressure shall remain stable for at least 15 seconds; (2) do the same for the static pressure side, except using suction to obtain the minimum of 7.6 cm (3 in.) H2O. Other leak-check procedures, subject to the approval of the Executive Officer, may be used.3.2Level and zero the manometer. Because the manometer level and zero may drift due to vibrations and temperature changes, make periodic checks during the traverse. Record all necessary data as shown in the example data sheet (Figure 2-5).3.3Measure the velocity head and temperature at the traverse points specified by Method 1.Ensure that the proper differential pressure gauge is being used for the range of ∆p values encountered (see Section 2.2). If it is necessary to change to a more sensitive gauge, do so, and remeasure the ∆p and temperature readings at each traverse point. Conduct a post-test leak-check (mandatory), as described in Section 3.1 above to validate thetraverse run.3.4Measure the static pressure in the stack. One reading is usually adequate.3.5Determine the atmospheric pressure.3.6Determine the stack gas dry molecular weight. For combustion processes or processes that emit essentially CO2, O2, CO, and N2, use Method 3. For processes emittingessentially air, an analysis need not be conducted; use a dry molecular weight of 29.0. For other processes, other methods, subject to the approval of the Executive Officer must be used.3.7Obtain the moisture content from Method 4 (or equivalent) or from Method 5.July 1999CARB Method 2 Page 63.8Determine the cross-sectional area of the stack or duct at the sampling location.Whenever possible, physically measure the stack dimensions rather than using blueprints. 4Calibration4.1Type S Pitot TubeBefore its initial use, carefully examine the Type S pitot tube in top, side, and end views to verify that the face openings of the tube are aligned within the specifications illustrated in Figure 2-2 or 2-3. The pitot tube shall not be used if it fails to meet these alignmentspecifications.After verifying the face opening alignment, measure and record the following dimensions of the pitot tube: (a) the external tubing diameter (dimension D t Figure 2-2b); and (b) thebase-to-opening plane distances (dimensions P A and P B Figure 2-2b). If D t is between0.48 and 0.95 cm (3/16 and 3/8 in.), and if P A and P B are equal and between 1.05 and 1.50D t, there are two possible options: (1) the pitot tube may be calibrated according to theprocedure outlined in Sections 4.1.2 through 4.1.5 below, or (2) a baseline (isolated tube) coefficient value of 0.84 may be assigned to the pitot tube. Note, however, that if the pitot tube is part of an assembly, calibration may still be required, despite knowledge of thebaseline coefficient value (see Section 4.1.1).If D t, P A and P B are outside the specified limits, the pitot tube must be calibrated as outlined in 4.1.2 through 4.1.5 below.4.1.1Type S Pitot Tube AssembliesDuring sample and velocity traverses, the isolated Type S pitot tube is not alwaysused; in many instances, the pitot tube is used in combination with other source-sampling components (thermocouple, sampling probe, nozzle) as part of an"assembly." The presence of other sampling components can sometimes affect thebaseline value of the Type S pitot tube coefficient; therefore, an assigned (orotherwise known) baseline coefficient value may or may not be valid for a givenassembly).The baseline and assembly coefficient values will be identical only when the relativeplacement of the components in the assembly is such that aerodynamic interferenceeffects are eliminated. Figures 2-6 through 2-8 illustrate interference-free componentarrangements for Type S pitot tubes having external tubing diameters between 0.48and 0.95 cm (3/16 and 3/8 in.). Type S pitot tube assemblies that fail to meet any orall of the specifications of Figures 2-6 through 2-8 shall be calibrated according to theprocedure outlined in Sections 4.1.2 through 4.1.5 below, and prior to calibration, thevalues of the intercomponent spacings (pitot-nozzle, pitot-thermocouple, pitot-probesheath) shall be measured and recorded.NOTE: Do not use any Type S pitot tube assembly which is constructed such thatthe impact pressure opening plane of the pitot tube is below the entry plane of thenozzle (see Figure 2-6B).July 1999CARB Method 2 Page 74.1.2Calibration SetupIf the Type S pitot tube is to be calibrated, one leg of the tube shall be permanentlymarked A, and the other, B. Calibration shall be done in a flow system having thefollowing essential design features:4.1.2.1The flowing gas stream must be confined to a duct of definite cross sectionalarea, either circular or rectangular. For circular cross-sections, the minimumduct diameter shall be 30.5 cm (12 in.); for rectangular cross-sections, the width(shorter side) shall be at least 25.4 cm (10 in.).4.1.2.2The cross-sectional area of the calibration duct must be constant over adistance of 10 or more duct diameters. For a rectangular cross-section, use anequivalent diameter, calculated from the following equation, to determine thenumber of duct diameters:Where,D e=Equivalent diameter.L=Length.W=Width.To ensure the presence of stable, fully developed flow patterns at thecalibration site, or "test section," the site must be located eight diametersdownstream and two diameters upstream from the nearest disturbances.NOTE: The eight- and two-diameter criteria are not absolute; other test sectionlocations may be used (subject to approval of the Executive Officer), providedthat the flow at the test site is stable and demonstrably parallel to the duct axis.4.1.2.3The flow system shall have the capacity to generate a test-section velocityaround 915 m/min (3,000 ft/min). This velocity must be constant with time toguarantee steady flow during calibration. Note that Type S pitot tubecoefficients obtained by single-velocity calibration at 915 m/min (3,000 ft/min)will generally be valid to within "3 percent for the measurement of velocitiesabove 305 m/min (1,000 ft/min) and to within "5 to 6 percent for theJuly 1999CARB Method 2 Page 8measurement of velocities between 180 and 305 m/min (600 and 1,000 ft/min).If a more precise correlation between C P and velocity is desired, the flowsystem shall have the capacity to generate at least four distinct, time-invarianttest-section velocities covering the velocity range from 180 to 1,525 m/min (600to 5,000 ft/min), and calibration data shall be taken at regular velocity intervalsover this range.4.1.2.4Two entry ports, one each for the standard and Type S pitot tubes, shall be cutin the test section; the standard pitot entry port shall be located slightlydownstream of the Type S port, so that the standard and Type S impactopenings will lie in the same cross-sectional plane during calibration. Tofacilitate alignment of the pitot tubes during calibration, it is advisable that thetest section be constructed of plexiglas or some other transparent material.4.1.3Calibration ProcedureNote that this procedure is a general one and must not be used without first referringto the special considerations presented in Section 4.1.5. Note also that thisprocedure applies only to single-velocity calibration. To obtain calibration data for theA andB sides of the Type S pitot tube, proceed as follows:4.1.3.1Make sure that the manometer is properly filled and that the oil is free fromcontamination and is of the proper density. Inspect and leak-check all pitotlines; repair or replace if necessary.4.1.3.2Level and zero the manometer. Turn on the fan and allow the flow to stabilize.Seal the type S entry port.4.1.3.3Ensure that the manometer is level and zeroed. Position the standard pitot tubeat the calibration point (determined as outlined in Section 4.1.5.1), and align thetube so that its tip is pointed directly into the flow. Particular care should betaken in aligning the tube to avoid yaw and pitch angles. Make sure that theentry port surrounding the tube is properly sealed.4.1.3.4Read ∆p std and record its value in a data table similar to the one shown inFigure 2-9. Remove the standard pitot tube from the duct and disconnect itfrom the manometer. Seal the standard entry port.July 1999CARB Method 2 Page 9July 1999CARB Method 2 Page 104.1.3.5Connect the Type S pitot tube to the manometer. Open the Type S entry port. Check the manometer level and zero. Insert and align the Type S pitot tube so that its A side impact opening is at the same point as was the standard pitot tube and is pointed directly into the flow. Make sure that the entry port surrounding the tube is properly sealed.4.1.3.6Read ∆p s and enter its value in the data table. Remove the Type S pitot tube from the duct and disconnect it from the manometer.4.1.3.7Repeat steps 4.1.3.3 through 4.1.3.6 above until three pairs of ∆p readings have been obtained.4.1.3.8Repeat steps 4.1.3.2 through 4.1.3.7 above for the B side of the Type S pitot tube.4.1.3.9Perform calculations, as described in Section 4.1.4 below.4.1.4Calculations4.1.4.1For each of the six pairs of ∆p readings (i.e., three from side A and three from side B) obtained in Section 4.1.3 above, calculate the value of the Type S pitot tube coefficient as follows:p p C = C s std p(std)p(s)∆∆Equation 2-2Where:C p(s)=Type S pitot tube coefficient C p(std)=Standard pitot tube coefficient; use 0.99 if the coefficient isunknown and the tube is designed according to the criteria ofSections 2.7.1 to 2.7.5 of this method∆p std =Velocity head measured by the standard pitot tube, cm (in.)H 2O∆p s=Velocity head measured by the Type S pitot tube, cm (in.) H2O 4.1.4.2Calculate Cp (side A), the mean A side coefficient, and Cp(side B), the meanB-side coefficient; calculate the difference between these two average values.4.1.4.3Calculate the deviation of each of the three A-side values of C p(s) from Cp(sideA), and the deviation of each B-side value of C p(s) from Cp(side B). Use the following equation:4.1.4.4Calculate σ, the average deviation from the mean, for both the A and B sides of the pitot tube. Use the following equation:3|B)or (ACC|=B)orA(side pp(s) 31−∑σEquation 2-44.1.4.5Use the Type S pitot tube only if the values of (side A) and (side B) are lessthan or equal to 0.01 and if the absolute value of the difference between Cp(A)and Cp(B) is 0.01 or less.4.1.5Special Considerations4.1.5.1 Selection of Calibration Point4.1.5.1.1When an isolated Type S pitot tube is calibrated, select a calibration pointat or near the center of the duct, and follow the procedures outlined inSections 4.1.3 and 4.1.4 above. The Type S pitot coefficients soobtained, i.e., C p (side A) and C p (side B), will be valid, so long as either:(1) the isolated pitot tube is used; or (2) the pitot tube is used with othercomponents (nozzle, thermocouple, sample probe) in an arrangement thatis free from aerodynamic interference effects (see Figures 2-6 through 2-8).July 1999CARB Method 2 Page 114.1.5.1.2For Type S pitot tube-thermocouple combinations (without sample probe),select a calibration point at or near the center of the duct, and follow theprocedures outlined in Section 4.1.3 and 4.1.4 above. The coefficients soobtained will be valid so long as the pitot tube-thermocouple combinationis used by itself or with other components in an interference-freearrangement (Figures 2-6 and 2-8).4.1.5.1.3For assemblies with sample probes, the calibration point should belocated at or near the center of the duct; however, insertion of the probesheath into a small duct may cause significant cross-sectional areablockage and yield incorrect coefficient values. Therefore, to minimize theblockage effect, the calibration point may be a few inches off center ifnecessary. The actual blockage effect will be negligible when thetheoretical blockage, as determined by a projected area model of theprobe sheath, is 2 percent or less of the duct cross-sectional area forassemblies without external sheaths (Figure 2-10a), and 3 percent or lessfor assemblies with external sheaths (Figure 2-10b).4.1.5.2For those probe assemblies in which pitot tube nozzle interference is a factor(i.e., those in which the pitot-nozzle separation distance fails to meet thespecification illustrated in Figure 2-6A), the value of C p(s) depends upon theamount of free-space between the tube and nozzle, and therefore, is a functionof nozzle size. In these instances, separate calibrations shall be performed witheach of the commonly used nozzle sizes in place. Note that the single-velocitycalibration technique is acceptable for this purpose, even though the largernozzle sizes (>0.635 cm or 1/4 in.) are not ordinarily used for isokineticsampling at velocities around 915 m/min. (3,000 ft/min.), which is the calibrationvelocity; note also that it is not necessary to draw an isokinetic sample duringcalibration.4.1.5.3For a probe assembly constructed such that its pitot tube is always used in thesame orientation, only one side of the pitot tube need be calibrated (the sidewhich will face the flow). The pitot tube must still meet the alignmentspecifications of Figure 2-2 or 2-3, however, and must have an averagedeviation (σ) value of 0.01 or less (see Section 4.1.4.4).4.1.6Field Use and Recalibration4.1.6.1Field UseJuly 1999CARB Method 2 Page 124.1.6.1.1When a Type S pitot tube (isolated or in an assembly) is used in the field,the appropriate coefficient value (whether assigned or obtained bycalibration) shall be used to perform velocity calculations. For calibratedType S pitot tubes, the A side coefficient shall be used when the A side ofthe tube faces the flow, and the B side coefficient shall be used when theB side faces the flow; alternatively, the arithmetic average of the A and Bside coefficient values may be used, irrespective of which side faces theflow.4.1.6.1.2When a probe assembly is used to sample a small duct 30.5 to 91.4 cm(12 to 36 in.) in diameter, the probe sheath sometimes blocks a significantpart of the duct cross-section, causing a reduction in the effective value ofC p(s). Conventional pitot-sampling probe assemblies are notrecommended for use in ducts having inside diameters smaller than 30.5cm (12 in.).4.1.6.2 Recalibration4.1.6.2.1 Isolated Pitot TubesAfter each field use, the pitot tube shall be carefully reexamined in top,side, and end views. If the pitot face openings are still aligned within thespecifications illustrated in Figure 2-2 or 2-3, it can be assumed that thebaseline coefficient of the pitot tube has not changed. If, however, thetube has been damaged to the extent that it no longer meets thespecifications of Figure 2-2 or 2-3, the damage shall either be repaired torestore proper alignment of the face openings or the tube shall bediscarded.4.1.6.2.2 Pitot Tube AssembliesAfter each field use, check the face opening alignment of the pitot tube, asin Section 4.1.6.2.1; also, remeasure the intercomponent spacings of theassembly. If the intercomponent spacings have not changed and the faceopening alignment is acceptable, it can be assumed that the coefficient ofthe assembly has not changed. If the face opening alignment is no longerwithin the specifications of Figures 2-2 or 2-3, either repair the damage orreplace the pitot tube (calibrating the new assembly, if necessary). If theintercomponent spacings have changed, restore the original spacings orrecalibrate the assembly.4.2 Standard Pitot Tube (if applicable)If a standard pitot tube is used for the velocity traverse, the tube shall be constructedaccording to the criteria of Section 2.7 and shall be assigned a baseline coefficient value of July 1999CARB Method 2 Page 13July 1999CARB Method 2 Page 140.99. If the standard pitot tube is used as part of the assembly, the tube shall be in an interference-free arrangement (subject to the approval of the Executive Officer).4.3 Temperature GaugesAfter each field use, calibrate dial thermometers, liquid-filled bulb thermometers,thermocouple-potentiometer systems, and other gauges at a temperature within 10 percent of the average absolute stack temperature. For temperatures up to 405o C (761o F), use an ASTM Mercury in glass thermometer as a reference; alternatively, either a referencethermocouple and potentiometer (calibrated by NIST) or thermometric fixed points, e.g., ice bath and boiling water (corrected for barometric pressure) may be used. For temperatures above 405o C (761o F) use an NIST-calibrated reference thermocouple-potentiometer system or an alternate reference, subject to the approval of the Executive Officer.If, during calibration, the absolute temperatures measured with the gauge being calibrated and the reference gauge agree within 1.5 percent, the temperature data taken in the field shall be considered valid. Otherwise, the pollutant emission test shall either be considered invalid or adjustments (if appropriate) of the test results shall be made, subject to the approval of the Executive Officer.4.4 BarometerCalibrate the barometer used against a mercury barometer.5CalculationsCarry out calculations, retaining at least one extra decimal figure beyond that of the acquired data. Round off figures after final calculation.5.1 Nomenclature A =Cross-sectional area of stack, m 2 (ft 2).B ws =Water vapor in the gas stream (from Method 5 or Reference Method 4),proportion by volume.C p =Pitot tube coefficient, dimensionless.K p=Pitot tube constant,] O)H (mm K)(Hg) (mm (g/gmole) [ sec m34.972/12o for the metric system and] O)H .(in R)(Hg) .(in )(lb/lbmole [ sec ft85.492/12o for the English system.。