二次函数中角的存在性问题
- 格式:pdf
- 大小:805.91 KB
- 文档页数:4
二次函数与三角形的存在性问题一、预备知识1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y )(1)线段对称轴是直线2x 21x x +=(2)AB 两点之间距离公式:221221)()(y y x x PQ -+-=中点公式:已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为⎪⎭⎫ ⎝⎛++222121y y ,x x 。
2、两直线的解析式为11b x k y +=与 22b x k y +=如果这两天两直线互相垂直,则有121-=⋅k k3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2(1)当k1=k2,b1≠b2 ,L1∥L2(2)当k1≠k2, ,L1与L2相交(3)K1×k2= -1时, L1与L2垂直二、三角形的存在性问题探究:三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形(一)三角形的性质和判定:1、等腰三角形性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。
判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。
2、直角三角形性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。
判定:有一个角是直角的三角形是直角三角形。
3、等腰直角三角形性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。
判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形4、等边三角形性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。
判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。
总结:(1)已知A 、B 两点,通过“两圆一线”可以找到所有满足条件的等腰三角形,要求的点(不与A 、B 点重合)即在两圆上以及两圆的公共弦上(2)已知A 、B 两点,通过“两线一圆”可以找到所有满足条件的直角三角形,要求的点(不与A 、B 点重合)即在圆上以及在两条与直径AB 垂直的直线上。
二次函数背景下的相似三角形存在性问题
二次函数背景下的相似三角形存在性问题是中考数学常考的题型,在考试中一般出现在压轴题的位置,综合性强,难度略大。
这篇文章主要来讨论下二次函数背景下的相似三角形存在性问题的解题思路方法及应用举例。
【模型解读】
在坐标系中确定点,使得由该点及其他点构成的三角形与其他三角形相似,即为“相似三角形存在性问题”.
【相似判定】
判定1:三边对应成比例的两个三角形是相似三角形;
判定2:两边对应成比例且夹角相等的两个三角形是相似三角形;
判定3:有两组角对应相等的三角形是相似三角形.
以上也是坐标系中相似三角形存在性问题的方法来源,根据题目给的已知条件选择恰当的判定方法,解决问题.
【题型分析】
通常相似的两三角形有一个是已知的,而另一三角形中有1或2个动点,即可分为“单动点”类、“双动点”两类问题.
【思路总结】
根据相似三角形的做题经验,可以发现,判定1基本是不会用的,这里也一样不怎么用,对比判定2、3可以发现,都有角相等!
所以,要证相似的两个三角形必然有相等角,关键点也是先找到一组相等角.
然后再找:
思路1:两相等角的两边对应成比例;
思路2:还存在另一组角相等.
事实上,坐标系中在已知点的情况下,线段长度比角的大小更容易表示,因此选择方法可优先考虑思路1.
一、如何得到相等角?
二、如何构造两边成比例或者得到第二组角?
搞定这两个问题就可以了.
【例题】
【分析】
综上所述,点P的坐标为(3,2)或(3,9).
【总结】
【练习】
声明:文章图文来源网络,意在分享,仅限交流学习使用,如有分享不当或侵权,请联系删除。
专题13 二次函数中角度、面积及平行四边形存在性问题题型一、角度及平行四边形存在性问题1. (2019·湖北咸宁中考)如图,在平面直角坐标系中,直线221+-=x y 与x 轴交于点A ,与y 轴交于点B ,抛物线c bx x y ++-=221经过A ,B 两点且与x 轴的负半轴交于点C . (1)求该抛物线的解析式;(2)若点D 为直线AB 上方抛物线上的一个动点,当∠ABD =2∠BAC 时,求点D 的坐标;(3)已知E ,F 分别是直线AB 和抛物线上的动点,当B ,O ,E ,F 为顶点的四边形是平行四边形时,直接写出所有符合条件的E 点的坐标.【答案】见解析.【解析】解:(1)在122y x =-+中,y =0时,x =4;x =0时,y =2, 即A (4,0),B (0,2),将A 、B 两点坐标代入抛物线解析式,得:8402b c c -++=⎧⎨=⎩,解得:b =32,c =2, 即抛物线解析式为:213222y x x =-++. (2)如图,过点B 作BE ∥x 轴交抛物线于点E ,过D 作DF ⊥BE 于F ,∴∠BAC =∠ABE ,∵∠ABD =2∠BAC , ∴∠ABD =2∠ABE , 即∠DBE =∠BAC ,设点D 的坐标为(x ,213222x x -++),则BF =x ,DF =21322x x -+, ∵tan ∠DBE =DF BF , tan ∠BAC =OBOA,∴DF BF =OB OA,即2132224x x x -+=, 解得:x =0(舍)或x =2, 即点D 的坐标为:(2,3). (3)B (0,2),O (0,0)设E 点坐标为(m ,122m -+),F 点坐标为(n ,213222n n -++), ①若四边形BOEF 是平行四边形,则2113222222m n m n n =⎧⎪⎨-+=-++⎪⎩,解得:22m n =⎧⎨=⎩, 即E 点坐标为(2,1);②若四边形BOFE 是平行四边形时,则2131222222m n n n m =⎧⎪⎨-++=-+⎪⎩,解得:2222m m n n ⎧⎧=+=-⎪⎪⎨⎨=+=-⎪⎪⎩⎩ 即E点坐标为(2+12-1+; ③若四边形BEOF 是平行四边形时,则2=0131222222m n n n m +⎧⎪⎨-++-+=⎪⎩,解得:2222m m n n ⎧⎧=-+=--⎪⎪⎨⎨=-=+⎪⎪⎩⎩, 即E 点坐标为:(2--3)或(2-+3;综上所述,E 点坐标为:(2,1),(2+1,(2-,1,(2--3),(2-+3.题型二、面积、平行四边形存在性问题2. (2019·山西中考)抛物线y =ax 2+bx +6经过点A (-2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为m (1<m <4). 连接AC ,BC ,DB ,DC . (1)求抛物线的函数表达式; (2)当△BCD 的面积是△AOC 面积的34时,求m 的值. (3)在(2)条件下,若M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形. 若存在,请直接写出M 点坐标,若不存在,请说明理由. 【答案】见解析.【解析】解:(1)将A 、B 两点坐标代入y =ax 2+bx +6得: 426016460a b a b -+=⎧⎨++=⎩,解得:3432a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的函数表达式为:233642y x x =-++.(2)过D 作DE ⊥x 轴于E ,交直线BC 与G ,过C 作CF ⊥DE 交ED 的延长线于F , 如图所示,由题意知A (-2,0),即OA =2,C (0,6),即OC =6,∴△AOC 的面积为:1122OA OC ⋅=×2×6=6,∵△BCD 的面积是△AOC 面积的34, ∴△BCD 的面积为:92, 设直线BC 的解析式为:y =kx +n ,由题意知, 4k +n =0,n =6,解得:k =32-,n =6,即直线BC 的解析式为:y =32-x +6,∴点G 的坐标为(m ,32-m +6),∴DG =233366422m m m ⎛⎫-++--+ ⎪⎝⎭=2334m m -+, ∴S △BCD =12DG OB ⋅=2362m m -+, 即2362m m -+=92,解得:m =1(舍)或m =3,即m 的值为3. (3)存在.由(2)知,B (4,0),D (3,154), 设M (x ,0),N (n ,y ),其中y =233642n n -++①当四边形BDMN 是平行四边形时,有:43154x ny +=+⎧⎪⎨-=⎪⎩,即21533=6442n n --++,解得:n=1或n=1,x即M0),0); ②当四边形BDNM 是平行四边形时, 有:43154n xy +=+⎧⎪⎨=⎪⎩,即21533=6442n n -++,解得:n =-1或n =3,x =0或4(舍),即M 点坐标为(0,0);③当四边形BNDM 是平行四边形时, 有:43154n xy +=+⎧⎪⎨=⎪⎩,即21533=6442n n -++,解得:n =-1或n =3,x =8或4(舍),即M 点坐标为(8,0);综上所述,点M 的坐标为:0),0),(0,0),(8,0).3. (2019·黑龙江哈尔滨中考)如图,在平面直角坐标系中,点O 为坐标原点,直线y =34x +4与x 轴交于点A ,与y 轴交于点B ,直线BC 与x 轴交于点C ,且点C 与点A 关于y 轴对称;(1)求直线BC 的解析式;(2)点P 为线段AB 上一点,点Q 为线段BC 上一点,BQ =AP ,连接PQ ,设点P 的横坐标为t ,△PBQ 的面积为S (S ≠0),求S 与t 之间的函数关系式(不要求写出自变量t 的取值范围).【解析】解:(1)在y =34x +4中,x =0时,y =4;y =0时,x =-3, 即B (0,4),A (-3,0), ∵点A 与点C 关于y 轴对称, ∴点C 的坐标为(3,0), 设直线BC 解析式为:y =kx +b ,430b k b =⎧⎨+=⎩,解得:443b k =⎧⎪⎨=-⎪⎩,即直线BC 的解析式为:y =43-x +4.(2)如图,过点P 作PM ∥y 轴交x 轴于M ,过点Q 作QN ⊥AB 于N ,过C 作CH ⊥AB 于H ,由勾股定理得:AB=BC=5,CH=245,∵P点横坐标为t,∴点P的坐标为(t,43t+4),即AM=3+t,∵PM∥OB,∴AP AMAB AO=,即353AP t+=,∴AP=()533t+=553t+,∴PB=53t -,∵BQ=AP=553t +,∴BQ NQBC CH=,即5532455tNQ+=,∴NQ=24855t+,∴S=15248 2355t t ⎛⎫⎛⎫-+⎪⎪⎝⎭⎝⎭=2433 32t⎛⎫-++⎪⎝⎭;4. (2019·四川达州中考)如图1,已知抛物线y=-x2+bx+c过点A(1,0),B(-3,0). (1)求抛物线的解析式及其顶点C的坐标;(2)设点D是x轴上一点,当tan(∠CAO+∠CDO)=4时,求点D的坐标;(3)如图2,抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段PA交BE于点M,交y轴于点N,△BMP和△EMN的面积分别为m、n,求m-n的最大值.【答案】见解析.【解析】解:(1)把点(1,0),(﹣3,0)代入y=﹣x2+bx+c,得,01093b cb c=-++⎧⎨=--+⎩,解得b=﹣2,c=3,∴y=﹣x2﹣2x+3=-(x+1)2+4,∴此抛物线解析式为:y=﹣x2﹣2x+3,顶点C的坐标为(﹣1,4);(2)由(1)知:抛物线对称轴为x=﹣1,设抛物线对称轴与x轴交于点H,H(﹣1,0),在Rt△CHO中,CH=4,OH=1,∴tan∠COH=CHOH=4,∵∠COH=∠CAO+∠ACO,∴当∠ACO=∠CDO时,tan(∠CAO+∠CDO)=tan∠COH=4,如下图所示,当点D在对称轴左侧时,∵∠ACO=∠CDO,∠CAO=∠CAO,∴△AOC∽△ACD,∴AC AOAD AC=,∵AC =AO =1, ∴AD =20,OD =19, ∴D (﹣19,0);当点D 在对称轴右侧时,点D 关于直线x =1的对称点D '的坐标为(17,0), ∴点D 的坐标为(﹣19,0)或(17,0);(3)设P (a ,﹣a 2﹣2a +3),设直线PA 的解析式为:y =kx +b , 将P (a ,﹣a 2﹣2a +3),A (1,0)代入y =kx +b ,2230ak b a a k b ⎧+=--+⎨+=⎩, 解得,k =﹣a ﹣3,b =a +3, ∴y =(﹣a ﹣3)x +a +3, 当x =0时,y =a +3, ∴N (0,a +3), 如下图所示,∵m =S △BPM =S △BPA ﹣S 四边形BMNO ﹣S △AON ,n =S △EMN =S △EBO ﹣S 四边形BMNO , ∴m -n =S △BPA ﹣S △EBO ﹣S △AON=12×4×(﹣a 2﹣2a +3)﹣12×3×3﹣12×1×(a +3) =﹣2(a +98)2+8132,∴当a =﹣98时,m -n 有最大值8132.题型三、二次函数有关对称性及自定义函数最值研究5.(2019·湖南长沙中考)已知抛物线22(2)(2020)y x b x c =-+-+-(b ,c 为常数). (1)若抛物线的顶点坐标为(1,1),求b ,c 的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c 的取值范围. 【答案】见解析.【解析】解:(1)由题意知,抛物线的解析式为:()2211y x =--+,=2241x x -+-,∴b -2=4,c -2020=-1, ∴b =6,c =2019.(2)设抛物线上关于原点对称不重合的两点坐标为:(x ,y )、(-x ,-y ), 代入解析式有:222(2)(2020)2(2)(2020)y x b x c y x b x c ⎧=-+-+-⎨-=---+-⎩, ∴()24220200x c -+-=, 即c =2x 2+2020, ∴c ≥2020.6. (2019·山东临沂中考)一次函数y =kx +4与二次函数y =ax 2+c 的图像的一个交点坐标为(1,2),另一个交点是该二次函数图像的顶点 (1)求k ,a ,c 的值;(2)过点A (0,m )(0<m <4)且垂直于y 轴的直线与二次函数y =ax 2+c 的图像相交于B ,C 两点,点O 为坐标原点,记W =OA 2+BC 2,求W 关于m 的函数解析式,并求W 的最小值. 【答案】见解析. 【解析】解:(1)由题意得,k +4=-2, 解得k =-2,二次函数顶点为(0,4), ∴c =4,把(1,2)代入二次函数表达式得:a +c =2, 解得a =-2(2)由(1)得二次函数解析式为y =-2x 2+4,令y =m ,得2x 2+m -4=0即x=±,设B ,C 两点的坐标分别为(x 1,m )(x 2,m ),则12x x + ∴W =OA 2+BC 2=2224-m m 4=m -2m+8=m-172+⨯+() ∴当m =1时,W 取得最小值7.。
二次函数与三角形的存在性问题一、预备知识1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y )(1)线段对称轴是直线2x 21x x +=(2)AB 两点之间距离公式:221221)()(y y x x PQ -+-=中点公式:已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为⎪⎭⎫ ⎝⎛++222121y y ,x x 。
|2、两直线的解析式为11b x k y +=与 22b x k y +=如果这两天两直线互相垂直,则有121-=⋅k k~3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2(1)当k1=k2,b1≠b2 ,L1∥L2(2)当k1≠k2, ,L1与L2相交(3)K1×k2= -1时, L1与L2垂直二、三角形的存在性问题探究:三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形(一)三角形的性质和判定:1、等腰三角形性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。
判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。
—2、直角三角形性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。
判定:有一个角是直角的三角形是直角三角形。
3、等腰直角三角形性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。
判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形4、等边三角形性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。
判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。
总结:(1)已知A、B两点,通过“两圆一线”可以找到所有满足条件的等腰三角形,要求的点(不与A、B点重合)即在两圆上以及两圆的公共弦上~(2)已知A、B两点,通过“两线一圆”可以找到所有满足条件的直角三角形,要求的点(不与A、B点重合)即在圆上以及在两条与直径AB垂直的直线上。
中考数学几何模型第二十四节:二次函数相等角存在性问题438.二次函数面积定值相等角存在性问题(初三)如图,已知点A(―1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式:(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.439.二次函数内心在x轴上相等角存在性问题(初三)如图,已知:抛物线y=x2+bx+c与直线1交于点A(―1,0),C(2,―3),与x轴另一交点为B.(1)求抛物线的解析式(2)在抛物线上找一点P,使△ACP的内心在x轴上,求点P的坐标;(3)M是抛物线上一动点,过点M作x轴的垂线,垂足为N,连接BM.在(2)的条件下,是否存在点M,使∠MBN=∠APC?若存在,请求出点M的坐标;若不存在,请说明理由.440.二次函数角度相等四边形面积最大值(初三)x+3的图象与x轴交于点A,与y轴交于点B,点C的坐标为(―2,0),如图,在平面直角坐标系x0y中,一次函数y=―12抛物线经过A,B,C三点(1)求抛物线的解析式;(2)直线AD与y轴负半轴交于点D,且∠BAO=∠DAO,求证:OB=OD(3)在(2)的条件下,若直线AD与抛物线的对称轴1交于点E,连接BE,在第一象限内的抛物线上是否存在一点P,使四边形BEAP的面积最大?若存在,请求出点P的坐标及四边形BEAP面积的最大值;若不存在,请说明理由.441.二次函数面积定值二倍角存在性问题(初三)如图,抛物线y=ax2+bx+c经过A(―1,0)、B(4,0)、C(0,2)三点,点D(x,y)为抛物线上第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当△BCD的面积为3时,求点D的坐标;(3)过点D作DE⊥BC,垂足为点E,是否存在点D,使得△CDE中的某个角等于∠ABC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.442.二次函数相等角存在性问题讨论(初三)如图,已知二次函数y=―x2+bx+c的图象经过点A(―1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式(2)抛物线上是否存在点P,使∠PAB=∠ABC,若存在请直接写出点P的坐标.若不存在,请说明理由.443.二次函数相等角存在性问题线段比值的定值(初三)已知,抛物线y=ax2+bx+c经过A(―1,0)、B(3,0)、C(0,3)三点,点P是抛物线上一点.(1)求抛物线的解析式:(2)当点P位于第四象限时,连接AC,BC,PC,若∠PCB=∠ACO,求直线PC的解析式;的值是否为定值?若是,请求出(3)如图2,当点P位于第二象限时,过P点作直线AP,BP分别交y轴于E,F两点,请问CECF此定值;若不是,请说明理由.444.二次函数铅垂定理面积最大值相等角存在性问题(初三)如图,已知抛物线y=ax2+bx+c与两坐标轴相交于点A(―1,0)、B(3,0)、C(0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.445.二次函数将军饮马最小值相等角存在性问题(初三)如图,直线y=―x+3与x轴、y轴分别交于B、C两点,抛物线y=―x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使EC+ED的值最小,求EC+ED的最小值;(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出P点坐标;若不存在,请说明理由.446.二次函数相等角存在性问题动点翻折问题(初三)如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,拋物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.(1)填空:b=________(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD=∠ACB,求点P的坐标;(3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.447.二次函数铅垂定理面积最大值相等角存在性问题(初三)如图,已知抛物线y=ax2+bx+5经过A(―5,0),B(―4,―3)两点,与x轴的另一个交点为C,顶点为D,连接CD.(1)求该抛物线的表达式;(2)点P为该拋物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该拋物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.答案438【解】(1)设抛物线的解析式为y=a(x+1)(x―3),将C(0,1)代入得―3a =1,解得:a =―13,∴拋物线的解析式为y =―13x 2+23x +1.(2)如图,过点P 作PD ⊥x,交BC 于点D.设直线BC 的解析式为y =kx +b,则{3k +b =0b =1,解得:k =―13,∴直线BC 的解析式为y =―13x +1.设点P (x,―13x 2+23x +1),则D (x,―13x +1)∴PD =(―13x 2+23x +1)―(―13x +1)=―13x 2+x,∴S △PBC =12OB ⋅DP =12×3×(―13x 2+x )=―12x 2+32x.又∵S △PBC =1,∴―12x 2+32x =1,整理得:x 2―3x +2=0,解得:x =1或x =2,∴点P 的坐标为(1,43)或(2,1).(3)存在.作△ABC 的外接圆E,与x 轴下方对称轴的交点就是所求的Q 点,连接QC 、BQ,弦BC 所对的圆周角相等,即∠BQC =∠BAC .∵A(―1,0),C(0,1),∴OC =OA =1∴∠BAC =45∘.∵∠BQC =∠BAC =45∘,则∠CEB =90∘.设⊙E 的半径为x,则Rt △CEB 中,由勾股定理可知CM 2+BE 2=BC 2,即2x 2=10,解得:x =5(负值舍去),∵AC 的垂直平分线的为直线y =―x,AB 的垂直平分线为直线x =1,∴点E 为直线y =―x 与x =1的交点,即E(1,―1),∴Q 的坐标为(1,―1―5).439【解】(1)把点A(―1,0),C(2,―3)代入y =x 2+bx +c,得到方程组:{0=1―b +c ―3=4+2b +c ,解得{b =―2c =―3,∴抛物线的解析式为y =x 2―2x ―3;(2)作点C 关于x 轴的对称点C 1,则C 1(2,3),连接AC 1并延长与抛物线交于点P,由图形的对称性可知P 为所求的点,设直线AC 1的解析式为y =mx +n,由题意得:{0=―m +n 3=2m +n ,解得:{m =1n =1,∴直线AC 1的解析式为y =x +1,将直线和拋物线的解析式联立得:{y =x +1y =x 2―2x ―3,解得{x=―1y=0(舍去)或{x=4y=5,∴P(4,5);(3)存在点M,理由如下:已知A(―1,0),P(4,5),由两点距离公式可得:AP=(―1―4)2+(0―5)2=52,同理可求得AC=32,PC=217,∴AP2+AC2=PC2,∠PAC=90∘,∴tan ∠APC=ACAP =35,∵∠MBN=∠APC,∴tan ∠MBN=tan ∠APC,∴MNBN =35,设点M(m,m2―2m―3),则|m2―2m―3||3―m|=35(m≠3),解得m=―25或m=―85,当m=―25时,m2―2m―3=(―25)2―2×(―25)―3=―5125,∴M(―25,―5125),当m=―85,m2―2m―3=(―85)2―2×(―85)―3=―6925,∴M(―85,6925),∴综上所述,M的坐标为(―25,―5125),(―85,6925).440【解】(1)令y=0,则―12x+3=0,解得x=6,令x =0,则y =3,∴A(6,0),B(0,3),设抛物线的解析式为y =ax 2+bx +c,把A,B,C 三点坐标代入解析式,得:{36a +6b +c =0c =34a ―2b +c =0,解得:{a =―14b =1c =3,∴抛物线的解析式为y =―14x 2+x +3;(2)证明:∵在平面直角坐标系xOy 中,∴∠BOA =∠DOA =90∘,在△BOA 和△DOA 中,{∠BOA =∠DOAOA =OA ∠BAO =∠DAO,∴△BOA≅△DOA (ASA),∴OB =OD,(3)存在,理由如下:如图,过点E 作EM ⊥y 轴于点M,∵y =―14x 2+x +3=―14(x ―2)2+4,∴抛物线的对称轴是直线x =2,∴E 点的横坐标是2,即EM =2,∵B(0,3),∴OB =OD =3,∴BD =6,∵A(6,0),∴OA =6,∴S △ABE =S △ABD ―S △DBE =12×6×6―12×6×2=12,设点P 的坐标为(t,―14t 2+t +3),连接PA,PB,过点P 作PN ⊥x 轴丁点H 1,交直线AB 于点N,过点B 作BH 2⊥PN 于点H 2,∴N (t,―12t +3),∴PN =―14t 2+t +3―(―12t +3)=―14t 2+32t,∵AH 1+BH 2=OA =6,S △ABP =S △NBP +S △ANP =12PN ∙BH 2+12PN ⋅AH 1=12PN ⋅OA,∴S △ABP =12×6(―14t 2+32t )=―34(t ―3)2+274,∵―34<0,抛物线开口向下,函数有最大值,∴当t =3时,△BPA 面积的最大值是274,此时四边形BEAP 的面积最大,∴四边形BEAP 的面积最大值为274+12=754,∴当P 点坐标是(3,154)时,四边形BEAP 面积的最大值是754.441【解】(1)将A(―1,0)、B(4,0)、C(0,2)代入y =ax 2+bx +c 得:{a ―b +c =016a +4b +c =0c =2,解得{a =―12b =32c =2故抛物线的解析式为y =―12x 2+32x +2.(2)如图1,过D 作DG ⊥x 轴,与BC 交于K 点,由B(4,0)、C(0,2)可得直线BC 的解析式为y =―12x +2,设D (x,―12x 2+32x +2),K (x,―12x +2)∴DK =―12x 2+32x +2―(―12x +2)=―12x 2+2x∴S △BCD =12×0OB ×DK =12×4×(―12x 2+2x )=―x 2+4x =3,解得:∴x =1或3,∵当x =1时,y =3,当x =3时,y =2,∴点D 的坐标为(1,3)或(3,2).(3)存在,分两种情况考虑:①当∠DCE =2∠ABC 时,如图2,取点F(0,―2),连接BF.∵OC =OF,OB ⊥CF,∴∠ABC =∠ABF ,∴∠CBF =2∠ABC.∵∠DCB =2∠ABC ,∴∠DCB =∠CBF,∴CD//BF.∵点B(4,0),F(0,―2),∴直线BF 的解析式为y =12x ―2,∴直线CD 的解析式为y =12x +2.联立直线CD 及抛物线的解析式成方程组得:{y =12x +2y =―12x 2+32x +2,解得:{x =0y =2(舍去),{x =2y =3,∴点D 的坐标为(2,3);②当∠CDE =2∠ABC 时,过点C 作CN ⊥BF 于点N,交OB 于H.作点N 关于BC 的对称点P,连接NP 交BC 于点Q,如图3所示.∵∠OCH =90∘―∠OHC,∠OBF =90∘―∠BHN ,∠OHC =∠BHN在△OCH与△OBF中{∠OOH=∠BOF∠OCH=∠OBF,∴△OCH∽△OBF,∴OHOF =OCOB,即OH2=24∴OH=1,H(1,0).设直线CN的解析式为y=kx+n(k≠0),:∵C(0,2),H(1,0),∴{n=2k+n=0,解得{k=―2 n=2,∴直线CN的解析式为y=―2x+2.联立直线BF及直线CN成方程组得:{y=12x―2y=―2x=2,解得:{x=85y=―65,∴点N的坐标为(85,―65).∵点B(4,0),C(0,2),∴直线BC的解析式为y=-12x+2.∵NP⊥BC,且点N(85,-65),∴直线NP的解析式为y=2x-225.联立直线BC及直线NP成方程组得:{y=-12x+2y=2x-225,解得:{x=6425y=1825,∴点Q的坐标为(6425,1825).∵点N(85,-65),点N,P关于BC对称,∴点P的坐标为(8825,6625).∵点C(0,2),P(8825,6625),∴直线CP 的解析式为y =211x +2.将y =211x +2代入:y =-12x 2+32x +2整理,得:11x 2-29x =0,解得:x 1=0(舍去),x 2=2911,∴点D 的横坐标为2911.综上所述:存在点D,使得△CDE 的某个角恰好等于∠ABC 的2倍,点D 的横坐标为2或2911.442.【解】(1)根据题意得{-1-b +c =0-9+3b +c =0,解得{b =2c =3.故抛物线的解析式为y =-x 2+2x +3;(2)分两种情况,如图中的P1和P2:①易知,二次函数y =-x 2+2x +3的对称轴是直线x =1,当x =0时,y =3,则C(0,3),点C 关于对称轴的对应点P 1(2,3),②AP 2//BC 时,满足题意,设直线BC 的解析式为y =kx +3,则3k +3=0,解得k =-1.则直线BC 的解析式为y =-x +3,设与BC 平行的直线AP 2的解析式为y =-x +m,把A(-1,0)代入得:则1+m =0,解得m =-1.则与BC 平行的直线AP 2的解析式为y =-x -1,联立拋物线解析式得:{y =-x -1y =-x 2+2x +3,解得{x =4y =-5,{x =-1y =0(舍去).P 2(4,-5).综上所述,P 1(2,3),P 2(4,-5).443.【解】(1)将A(-1,0)、B(3,0)、C(0,3)代入y =ax 2+bx +c,∴{a -b +c =09a +3b +c =0c =3,∴{a =-1b =2c =3,∴y =-x 2+2x +3(2)如图,过点B 作MB ⊥CB 交于点M,过点M 作MN ⊥x 轴交于点N,∵A(-1,0)、C(0,3),B(3,0),∴OA =1,OC =3,BC =32,∴tan ∠ACO =13,∵∠PCB =∠ACO,∴tan ∠BCM =13=BM BC=BM 32∴BM =2,∵OB =OC,∴∠CBO =45∘,∴∠NBM =45∘,∴MN =NB =1,∴M(2,-1),设直线CM 的解析式为y =kx +b,∴{b =32k +b =-1,∴{k =-2b =3,∴直线PC 的解析式为y =-2x +3;(3)CE CF 的值是为定值13.理由如下:设P (t,-t 2+2t +3),设直线AP 的解析式为y =k 1x +b 1,把A(-1,0),P (t,-t 2+2t +3)代入得:∴{tk 1+b 1=-t 2+2t +3-k 1+b 1=0,∴{k 1=3-t b 1=3-t ,∴直线AP 的解析式为y =(3-t)x +(3-t),∴E(0,3-t),∴CE =EO -CO =3-t -3=-t,设直线BP 的解析式为y =k 2x +b 2,把B(3,0)、P (t,-t 2+2t +3)代入得:∴{k 2t +b 2=-t 2+2t +33k 2+b 2=0,∴{k 2=-t -1b 2=3t +3,∴直线BP 的解析式为:y =(-t -1)x +3t +3,∴F(0,3t +3),∴OF =3t +3∴CF =CO -OF =3-(3t +3)=-3t,∴CE CF =13,∴CE CF 的值是为定值13.444.【解】(1)将A(-1,0)、B(3,0)、C(0,3)代入y =ax 2+bx +c,{a -b +c =09a +3b +c =0c =3,解得:{a =-1b =2c =3,∴抛物线的解析式为y =-x 2+2x +3.∵y =-x 2+2x +3=-(x -1)2+4,∴顶点D 的坐标为(1,4)(2)①过点F 作FM ⊥x 轴,交BD 于点M,如图1所示.设直线BD 的解析式为y =mx +n(m ≠0),将(3,0)、(1,4)代入y =mx +n,{3m +n =0m +n =4,解得:{m =-2n =6,∴直线BD 的解析式为y =-2x +6.∵点F 的坐标为(x,-x 2+2x +3),∴点M 的坐标为(x,-2x +6),(1<x <3)∴FM =-x 2+2x +3-(-2x +6)=-x 2+4x -3,∴S △BDF =12FM ⋅(x B -x D )=(-x 2+4x -3)×1=-(x -2)2+1.∵-1<0,∴当x =2时,S △BDF 取最大值,最大值为1.②过点E 作EN//BD 交y 轴于点G1,交抛物线于点F 1,在y 轴负半轴取OG2=OG1,连接EG2,射线EG2交抛物线于点F 2,如图2,F1和F2足满足条件的F 点.∵EF 1//BD,∴∠AEF 1=∠DBE.∵OG1=OG2,EO ⊥G1G2,∴∠AEF 2=∠AEF 1=∠DBE.∵E 是线段AB 的中点,A(-1,0),B(3,0),∴点E 的坐标为(1,0).设直线EF1的解析式为y=-2x+b1,将E(1,0)代入y=-2x+b1,得-2+b1=0,解得:b1=2,∴直线EF1的解析式为y=-2x+2.联立直线EF1、抛物线解析式成方程组,{y=-2x+2y=-x2+2x+3,解得:{x=2-5y=25-2,或{x=2+5y=-25-2(舍去),∴点F1的坐标为(2-5,25-2).当x=0时,y=-2x+2=2,∴点Gl的坐标为(0,2),∴点G2的坐标为(0,-2).同理,可求出直线EF2的解析式为y=2x-2.联立直线EF2、抛物线解析式成方程组,{y=2x-2y=-x2+2x+3,解得:{x=-5y=-25-2,或{x=5y=25-2(舍去),∴点F2的坐标为(-5,-25-2).综上所述:当∠AEF=∠DBE时,点F的坐标为(2-5,25-2)或(-5,-25-2).445.【解】(1)直线y=-x+3与x轴、y轴分别交于B、C两点,则点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式得:{-9+3b+c=0c=3,解得:{b=2c=3,故抛物线的表达式为:y=-x2+2x+3,(2)如图1,作点C关于x轴的对称点C',连接CD交x轴于点E,则此时EC+ED为最小,∵抛物线的顶点D坐标为(1,4),点C'(0,-3),将C'、D的坐标代入一次函数表达式并解得:直线C'D的表达式为:y=7x-3,当y=0时,x=3,7故点E(3,0),由两点距离公式可得:DC'=52,则EC+ED的最小值为DC'=52;7(3)设BC与对称轴交于点M,则∠AMB=2∠BMN=∠OCB,以点M为圆心,MA为半径作圆,交对称轴与点P1、P2,∴∠AMB=∠APP1B,此时P1就是x轴上方,符合题意的P点,作点P1关于x轴的对称点P2,此时P2就是x轴下方符合题意的P点.易知∠CBO=45∘,∴△BMN是等腰直角三角形。
二次函数中与角有关的存在性问题与角有关的存在性问题包括相等角的存在性、二倍角或半角的存在性,其他倍数关系角的存在性等,解决这类问题我们通常利用以下知识点去构造相关角:①平行线的同位角、内错角相等;②等腰三角形的等边对等角;③相似三角形对应角相等;④全等三角形对应角相等;⑤三角形的外角定理等。
然后利用解直角三角形、相似三角形边的比例关系作为计算工具去计算求解,难度相对较大,需要同学们灵活运用,融会贯通。
【类型一 相等角的存在性问题】(一).利用平行线、等腰三角形构造相等角例1 如图,直线33+-=x y 与x 轴、y 轴分别交于A ,B 两点,抛物线c bx x y ++-=2与直线y =c 分别交y 轴的正半轴于点C 和第一象限的点P ,连接PB ,得BOA PCB ≌△△(O 为坐标原点)。
若抛物线与x 轴正半轴交点为点F ,设M 是点C ,F 间抛物线上的一点(包括端点),其横坐标为m . (1)直接写出点P 的坐标和抛物线的解析式. (2)求满足POA MPO ∠=∠的点M 的坐标.解:(1)易得点P 坐标为(3,4),抛物线解析式为432++-=x x y .(2) ①当点M 在线段OP 上方时,∵CP ∥x 轴,∴当点C 、M 重合时,∠MPO=∠POA ,∴点M 的坐标为(0,4);②当点M 在线段OP 下方时,在x 轴正半轴取点D ,连接DP ,使得DO=DP ,此时∠DPO=∠POA.设点D 坐标为(n ,0),则DO=n ,()16322+-=n DP ,∴()16322+-=n n ,解得:n=625,∴点D 坐标为⎪⎭⎫⎝⎛0625,. 设直线PD 解析式为b kx y +=,代入得:7100724+-=x y .联立抛物线解析式得⎪⎭⎫⎝⎛49124,724M 综上所述:点M 的坐标为(0,4)或⎪⎭⎫⎝⎛49124,724(二).利用相似三角形构造相等角例2 如图,抛物线c bx x y ++=221与x 轴交于A 、B 两点,与y 轴交于点C ,其对称轴交抛物线于点D ,交x 轴于点E ,已知OB=OC=6. (1)求抛物线的解析式及点D 的坐标;(2)连接BD ,F 为抛物线上一动点,当EDB FAB ∠=∠时,求点F 的坐标;解:(1)因为OB=OC=6,所以B (6,0),C ()6,0-, 将B、C点坐标代入解析式,得()8221622122--=--=x x x y , 所以点D 的坐标为(2,—8)(2)如图1,过F 作FG ⊥x 轴于点G ,设⎪⎭⎫ ⎝⎛--6221,F 2x x x ,则FG=62212--x x ,AG=x +2,当EDB FAB ∠=∠时,且B ED GA ∠=∠F ,所以BDE FAG ∽△△,所以FGAGEB DE =,即262212482=--+=x x x , 当点F 在x 轴上方时,则有12422--=+x x x ,解得x=—2(舍去)或x=7,此时F 点的坐标为⎪⎭⎫ ⎝⎛297,;当点F 在x 轴下方时,则有)(12422---=+x x x ,解得x=—2(舍去)或x=5,此时F 点的坐标为⎪⎭⎫⎝⎛-275,,,综上可知点F 的坐标为⎪⎭⎫ ⎝⎛297,或⎪⎭⎫ ⎝⎛-275,.【类型二二倍角或半角的存在性问题】(一).二倍角的构造方法如图,已知α∠,我们可以利用等腰三角形和外角定理去构造α2,在BC 边上找一点D,使得BD=AD,则α2ADC=∠.这样我们就构造出了二倍角,接下来利用三角函数(一般用正切)计算就可以了。
二次函数综合--角度存在性问题【题型解读】二次函数综合中的角度问题是大部分地区全卷的压轴题,具有较好的区分度和选拔功能,此类试题不仅可以考查二次函数与平面几何的基础知识,还可以考查数形结合、分类讨论等数学思想方法,以及阅读理解能力、收集处理信息能力、运用数学知识探究问题的能力等.解题关键是,充分挖掘题目中的隐含条件,构造角,利用解直角三角形或相似进行计算求解.【主要类型】1.相等角的存在性,主要形式为基于动点构造某个角使其与特定已知角相等2.二倍角的存在性,主要形式为基于动点构造某个角使其等于特定已知角的2倍3.半角的存在性,主要形式为基于动点构造某个角使其等于特定已知角的一半【方法总结】角度存在性问题主要解题突破口在于构造相关角,主要有以下几种构造方法:⑴构造相等角的方法①利用平行线的性质或者等腰三角形的性质构造相等角②利用相似三角形构造相等角⑵构造二倍角的方法⑶构造半角的方法【典型例题】1.如图,已知直线BC的解析式为y=﹣x+3,与x轴,y轴交于点B,C.抛物线y=ax2+bx+3过A(﹣1,0),B,C三点,D点为抛物线的顶点,抛物线的对称轴与x轴交于点E,连接BD,CD.(1)求二次函数及直线CD的解析式;(2)点P是线段CD上一点(不与点C,D重合),当△BCP的面积为时,求点P的坐标.(3)点F是抛物线上一点,过点F作FG⊥CD交直线CD于点G,当∠CFG=∠EDB 时,请直接写出点F的坐标.2.如图,已知二次函数y=ax2+x+b的图象经过点A(﹣3,0)和点B(0,4),∠BAO 的平分线分别交抛物线和y轴于点C,D.点P为抛物线上一动点,过点P作x轴的垂线交直线AC于点E,连接PC.(1)求二次函数的解析式;(2)当以点P,C,E为顶点的三角形与△ADO相似时,求点P的坐标;(3)设点F为直线AC上一点,若∠BFD=∠ABO,请直接写出点F的坐标.3.如图,在平面直角坐标系中,一次函数y=x﹣2的图象分别交x、y轴于点A、B,抛物线y=x2+bx+c经过点A、B,点P为第四象限内抛物线上的一个动点.(1)求此抛物线对应的函数表达式;(2)如图1所示,过点P作PM∥y轴,分别交直线AB、x轴于点C、D,若以点P、B、C为顶点的三角形与以点A、C、D为顶点的三角形相似,求点P的坐标;(3)如图2所示,过点P作PQ⊥AB于点Q,连接PB,当△PBQ中有某个角的度数等于∠OAB度数的2倍时,请直接写出点P的横坐标.4.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过AB两点,与x轴的另一个交点为C.(1)直接写出点A和点B的坐标.(2)求抛物线的解析式.(3)D为直线AB上方抛物线上一动点.①连接DO交AB于点E,若DE:OE=3:4,求点D的坐标;②是否存在点D,使得∠DBA的度数恰好是∠BAC的2倍?如果存在,直接写出点D的坐标;如果不存在,请说明理由.5.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+4(a≠0)经过点A(﹣8,0)、B(2,0),与y轴交于点C,点D是AB中点,连接CD.点P是抛物线上一点.(1)求a、b的值;(2)若S△CDP=S△CDO,求点P的横坐标;(3)过点P作直线CD的垂线,垂足为E,若∠CPE=∠CDO,求点P的横坐标.。
第22章二次函数中的存在性问题-重难点题型总结【】【题型1 二次函数中直角三角形存在性问题】【例1】(2021•罗湖区校级模拟)如图,已知抛物线y=﹣x2+2x+3与x轴交于点A、B,与y轴交于点C,点P是抛物线上一动点,连接PB,PC.(1)点A的坐标为,点B的坐标为;(2)如图1,当点P在直线BC上方时,过点P作PD上x轴于点D,交直线BC于点E.若PE=2ED,求△PBC的面积;(3)抛物线上存在一点P,使△PBC是以BC为直角边的直角三角形,求点P的坐标.【变式1-1】(2021春•望城区校级月考)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x 轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3),连接AC,点P为第二象限抛物线上的动点.(1)求a、b、c的值;(2)连接P A、PC、AC,求△P AC面积的最大值;(3)在抛物线的对称轴上是否存在一点Q,使得△QAC为直角三角形,若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理由.【变式1-2】(2021•长沙模拟)如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.点P为线段MB上一个动点,过点P作PD⊥x轴于点D,若OD=m.(1)求二次函数解析式;(2)设△PCD的面积为S,试判断S有最大值或最小值?若有,求出其最值,若没有,请说明理由;(3)在MB上是否存在点P,使△PCD为直角三角形?若存在,请写出点P的坐标;若不存在,请说明理由.【变式1-3】(2021•长沙模拟)如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,是否存在以点C、M、N为顶点的三角形为等腰直角三角形?若存在,请直接写出此时点M的坐标,若不存在,请说明理由.【题型2 二次函数中等腰三角形存在性问题】【例2】(2020秋•曾都区期末)如图,抛物线y=ax2+4x+c经过A(﹣3,﹣4),B(0,﹣1)两点,点P是y轴左侧且位于x轴下方抛物线上一动点,设其横坐标为m.(1)直接写出抛物线的解析式;(2)将线段AB绕点B顺时针旋转90°得线段BD(点D是点A的对应点),求点D的坐标,并判断点D是否在抛物线上;(3)过点P作PM⊥x轴交直线BD于点M,试探究是否存在点P,使△PBM是等腰三角形?若存在,求出点m的值;若不存在,说明理由.【变式2-1】(2020秋•云南期末)如图,直线y=−12x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B,C和点A(﹣1,0).(1)求B,C两点的坐标.(2)求该二次函数的解析式.(3)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使△PCD是以CD 为腰的等腰三角形?如果存在,直接写出点P的坐标;如果不存在,请说明理由.【变式2-2】(2021•南充)如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=5 2.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.【变式2-3】(2021•建华区二模)综合与探究如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A、C两点,且与x轴交于另一点B(点B在点A右侧).(1)求抛物线的解析式及点B坐标;(2)设该抛物线的顶点为点H,则S△BCH=;(3)若点M是线段BC上一动点,过点M的直线ED平行y轴交x轴于点D,交抛物线于点E,求ME 长的最大值及点M的坐标;(4)在(3)的条件下:当ME取得最大值时,在x轴上是否存在这样的点P,使得以点M、点B、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.【题型3 二次函数中平行四边形存在性问题】【例3】(2020秋•元阳县期末)如图,直线y=−12x+c与x轴交于点A(﹣3,0),与y轴交于点C,抛物线y=12x2+bx+c经过点A,C,与x轴的另一个交点为B(1,0),连接BC.(1)求抛物线的函数解析式.(2)M为x轴的下方的抛物线上一动点,求△ABM的面积的最大值.(3)P为抛物线上一动点,Q为x轴上一动点,当以B,C,Q,P为顶点的四边形为平行四边形时,求点P的坐标.【变式3-1】(2020秋•泰山区期末)如图,抛物线y=12x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图.(1)求直线AB和抛物线的表达式;(2)在y轴上找一点Q,使得△AMQ的周长最小,在备用图中画出图形并求出点Q的坐标;(3)在坐标平面内是否存在点N,使以点A、O、C、N为顶点且AC为一边的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【变式3-2】(2021春•雨花区期末)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)求抛物线的解析式;(2)若点P从点B出发,沿着射线BC运动,速度每秒√2个单位长度,过点P作直线PM∥y轴,交抛物线于点M.设运动时间为t秒.①在运动过程中,当t为何值时,使(MA+MC)(MA﹣MC)的值最大?并求出此时点P的坐标.②若点N同时从点B出发,向x轴正方向运动,速度每秒v个单位长度,问:是否存在t使点B,C,M,N构成平行四边形?若存在,求出t,v的值;若不存在,说明理由.【变式3-3】(2021•北碚区校级模拟)如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣6与x轴交于A,C(﹣6,0)两点(点A在点C右侧),交y轴于点B,连接BC,且AC=4.(1)求抛物线的解析式.(2)若P是BC上方抛物线上不同于点A的一动点,连接P A,PB,PC,求当S△PBC−12S△P AC有最大值时点P的坐标,并求出此时的最大值.(3)如图2,将原抛物线向右平移,使得点A刚好落在原点O,M是平移后的抛物线上一动点,Q是直线BC上一动点.当A,M,B,Q组成的四边形是平行四边形时,请直接写出此时点Q的坐标.【题型4 二次函数中菱形存在性问题】【例4】(2020秋•巴南区期末)如图,抛物线y=﹣x2+bx+c与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求b,c的值;(2)如图1,点P为直线BC上方抛物线上的一个动点,设点P的横坐标m.当m为何值时,△PBC的面积最大?并求出这个面积的最大值.(3)如图2,将该抛物线向左平移2个单位长度得到新的抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点D,点M为直线BC上的一点,点N是平面坐标系内一点,是否存在点M,N,使以点B,D,M,N为顶点的四边形为菱形,若存在,请直接写出点M的坐标;若不存在,请说明理由.【变式4-1】(2021•湘潭)如图,一次函数y=√33x−√3图象与坐标轴交于点A、B,二次函数y=√33x2+bx+c图象过A、B两点.(1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.【变式4-2】(2021春•无棣县月考)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO,PC,并将△POC沿y轴对折,得到四边形POP'C.是否存在点P,使四边形POP'C为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【变式4-3】(2020秋•南岸区期末)如图,在平面直角坐标系xOy中,二次函数y=x2+bx+c的图象与x轴交于点A(4,0)和B(﹣1,0),交y轴于点C.(1)求二次函数y=x2+bx+c的表达式;(2)将点C向右平移n个单位得到点D,点D在该二次函数图象上.点P是直线BD下方该二次函数图象上一点,求△PBD面积的最大值以及此时点P的坐标;(3)在(2)中,当△PBD面积取得最大值时,点E是过点P且垂直于x轴直线上的一点.在该直角坐标平面内,是否存在点Q,使得以点P,D,E,Q四点为顶点的四边形是菱形?若存在,直接写出满足条件的点Q的坐标;若不存在,请说明理由.【题型5 二次函数中矩形存在性问题】【例5】(2021春•九龙坡区校级期末)如图1,若二次函数y=﹣x2+3x+4的图象与x轴交于点A、B,与y轴交于点C,连接AC、BC.(1)求三角形ABC的面积;(2)若点P是抛物线在一象限内BC上方一动点,连接PB、PC,是否存在点P,使四边形ABPC的面积为18,若存在,求出点P的坐标;若不存在,说明理由;(3)如图2,若点Q是抛物线上一动点,在平面内是否存在点K,使以点B、C、Q、K为顶点,BC为边的四边形是矩形?若存在,请直接写出点K的坐标;若不存在,请说明理由.【变式5-1】(2021•齐齐哈尔)综合与探究如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.(1)求抛物线的解析式;(2)抛物线上C、D两点之间的距离是2√2;(3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.【变式5-2】(2021春•杏花岭区校级月考)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(2)若点P为直线BC下方抛物线上一动点,当点P运动到某一位置时,△BCP的面积最大,求△BCP 的最大面积及此时点P的坐标;(3)点M为抛物线对称轴上一动点,点N为坐标平面内一点,若以点B,C,M,N为顶点的四边形是矩形,直接写出点M的坐标.【变式5-3】(2021•北碚区校级模拟)如图,已知抛物线y=ax2+bx﹣4与x轴交于A,B两点,与y轴交于点C,且点A的坐标为(﹣2,0),直线BC的解析式为y=12x﹣4.(2)如图1,过点A作AD∥BC交抛物线于点D(异于点A),P是直线BC下方抛物线上一点,过点P作PQ∥y轴,交AD于点Q,过点Q作QR⊥BC于点R,连接PR.求△PQR面积的最大值及此时点P 的坐标.(3)如图2,点C关于x轴的对称点为点C′,将抛物线沿射线C′A的方向平移2√5个单位长度得到新的抛物线y′,新抛物线y′与原抛物线交于点M,原抛物线的对称轴上有一动点N,平面直角坐标系内是否存在一点K,使得以D,M,N,K为顶点的四边形是矩形?若存在,请直接写出点K的坐标;若不存在,请说明理由.【题型6 二次函数中正方形存在性问题】【例6】(2021•渝中区校级二模)在平面直角坐标系xOy中,抛物线y=ax2+bx+3与y轴交于点C,与x 轴交于A,B两点(点A在点B的左侧),其中A(﹣2,0),并且抛物线过点D(4,3).(1)求抛物线的解析式;(2)如图1,点P为直线CD上方抛物线上一点,过P作PE∥y轴交BC于点E,连接CP,PD,DE,求四边形CPDE面积的最值及点P的坐标;(3)如图2,将抛物线沿射线CB方向平移得新抛物线y=a1x2+b1x+c1(a1≠0),是否在新抛物线上存在点M,在平面内存在点N,使得以A,C,M,N为顶点的四边形为正方形?若在,直接写出此时新抛物线的顶点坐标,若不存在,请说明理由.【变式6-1】(2020秋•高明区期末)如图,抛物线y=x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y 轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求该抛物线的函数表达式;(2)点Q在该抛物线的对称轴上,若△ACQ是以AC为腰的等腰三角形,求点Q的坐标;(3)若P为BD的中点,过点P作PF⊥x轴于点F,G为抛物线上一动点,GM⊥x轴于点M,N为直线PF上一动点,当以F、M、G、N为顶点的四边形是正方形时,直接写出点M的坐标.【变式6-2】(2021•合川区校级模拟)如图,在平面直角坐标系.xOy中,直线y=x﹣4与x轴交于点A,与y轴交于点B,过A,B两点的抛物线交x轴于另一点C(﹣2,0).(1)求抛物线解析式;(2)如图1,点F是直线AB下方抛物线上一动点,连接F A,FB,求出四边形F AOB面积最大值及此时点F的坐标.(3)如图2,在(2)问的条件下,点Q为平面内y轴右侧的一点,是否存在点Q及平面内任意一点M 使得以A,F,Q,M为顶点的四边形是正方形?若存在,直接写出点Q的坐标;若不存在,说明理由.【变式6-3】(2021•海南模拟)如图,平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A(﹣3,0),B (4,0),交y轴于点C(0,4).(1)求抛物线的函数表达式;(2)直线y=34x+94与抛物线交于A、D两点,与直线BC交于点E.若点M(m,0)是线段AB上的动点,过点M作x轴的垂线,交抛物线于点F,交直线AD于点G,交直线BC于点H.①当S EOG=12S△AOE时,求m的值;②在平面内是否存在点P,使四边形EFHP为正方形?若存在,请求出点P的坐标,若不存在,请说明理由.。
二次函数中角度的存在性问题类型一:等角构造法(作垂直,找相似)例1:如图,抛物线y=x2-4x+3与x轴交于点A,B两点,与y轴交C,连接AC.抛物线上是否存在点M,使∠OBM =∠OCA.若存求出点M的坐标;若不存在,请说明理由.分析:1.假设∠OBM=∠OCA,过M作ME垂直x轴,构造∆MEB~∆AOC,利用对应边成比例,可求出M点坐标。
2.利用对称性,求出点M的对称点H,可得∠HBO=∠OBM,延长BH交抛物线于点M’,则点M’就为所求的。
类型二:2倍角构造法(作垂直平分线,构造等腰三角形,则外角就为已知角的两倍)例2.如图,直线y=-3x+3与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c经过点A,B.抛物线上是否存在点M,使直线AM与y轴所夹锐角是∠ABO的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.分析:1.作AB的垂直平分线CD,交y轴于点D,则构造等腰三角形BDA,所以∠ODA=2∠OBA,延长AD交抛物线于点M,则联立解析式可求点M坐标。
2.利用对称性可求点M的对称点H(或者求D点的对称点),则延长AH交抛物线于M’。
类型三:半角构造法(作角平分线或向外延长作等腰三角形)例3:如图,抛物线交x 轴于A ,C 两交y 轴于点B ,连接AB .抛物线上是否存在点M ,使∠ACM =?若存在,请求出点M 的坐标;若不存在,请说明理由.分析:方法1:作∠OAB 的J 角平分线AE ,求出E 点坐标及AE 解析式。
过点C 作CM ∥AE ,则∠MCA=∠OAE=∠OAB ,则点M 就为所求作的。
然后利用对称性,可求点M ’.4x 31x 31y 2+--=BAO ∠2121方法2:延长OA 至D ,使AD 等于AB ,构造等腰三角形BAD,则∠ADB=∠OAB ,过C 点作CM ∥BD,则点M 就为所求作的。
然后一样利用对称性求出点M ’。
21。
二次函数解析几何专题——存在性问题存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。
这类题目解法的一般思路是:假设存在→推理论证→得出结论。
若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。
由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。
一、方法总结解存在性问题的一般步骤:(1)假设点存在;(2)将点的坐标设为参数;(3)根据已知条件建立关于参数的方程或函数。
二、常用公式(1)两点间距离公式:若A (x 1,y 1),B (x 2,y 2),则|AB|=221221)()(y y x x -+-(2)中点坐标公式:1212,22x x y y x y ++==(3)斜率公式:①;②(为直线与x 轴正方向的夹角)2121y y k x x -=-tan k θ=θ(4)①对于两条不重合的直线l 1、l 2,其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2②如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则l 1⊥l 2⇔k 1k 2=-1.题型一 面积问题例1.如图,抛物线y =-x 2+bx +c 与x 轴交于A (1,0),B (-3,0)两点.(1)求该抛物线的解析式;(2)在(1)中的抛物线上的第二象限内是否存在一点P ,使△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值;若不存在,请说明理由.变式练习:1.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.O B A CyxA xy BO能力提升:1.(2013菏泽)如图1,△运动到何处时,四边形PDCQ的面积最小?此时四边形2.如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.3.如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx-4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,①求t的值;②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.yD BMA CO xE 图1的坐标,并求出△POB的面积;若不存在,请说明理由.)中抛物线的第二象限图象上是否存在一点与△POC的坐标;若不存在,请说明理由;c的图象的顶点C的坐标为(0,-2),交m(m>1)与x轴交于D。