高中数学中数列的考点分析及复习建议
- 格式:doc
- 大小:14.50 KB
- 文档页数:3
高中数学数列与数列极限的性质及定理总结数列是高中数学中的重要概念之一,它是由一系列按照一定规律排列的数所组成的。
数列的研究对于理解数学的发展和应用具有重要意义。
本文将总结数列的性质及定理,并通过具体题目的分析,说明其考点和解题技巧,以帮助高中学生和家长更好地理解和应用数列。
一、数列的性质1. 有界性:数列可以是有界的,也可以是无界的。
有界数列是指其所有项都在某个范围内,无界数列则相反。
例如,数列{1, 2, 3, ...}是无界的,而数列{(-1)^n}是有界的,其项的取值范围在-1和1之间。
2. 单调性:数列可以是单调递增的,也可以是单调递减的。
单调递增数列是指其后一项大于或等于前一项,单调递减数列则相反。
例如,数列{1, 2, 3, ...}是单调递增的,而数列{3, 2, 1, ...}是单调递减的。
3. 有界单调性:数列既有界又单调,即既满足有界性,又满足单调性。
例如,数列{(-1)^n/n}既是有界的,其项的取值范围在-1和1之间,又是单调递减的。
二、数列极限的性质及定理1. 数列极限的定义:数列{a_n}的极限是指当n趋向于无穷大时,数列的项a_n趋向于某个常数L。
用数学符号表示为lim(a_n) = L。
例如,数列{1/n}的极限是0,即lim(1/n) = 0。
2. 数列极限的唯一性:如果数列{a_n}的极限存在,那么它是唯一的。
即数列的极限不依赖于数列的前几项,只与数列的性质有关。
例如,数列{(-1)^n/n}的极限是0,无论数列的前几项是多少。
3. 夹逼定理:夹逼定理是数列极限的重要定理之一,它用于求解一些复杂的极限问题。
夹逼定理的核心思想是通过夹逼数列来确定数列的极限。
例如,对于数列{1/n^2},我们可以通过夹逼定理得出其极限为0。
4. 递推数列的极限:递推数列是指通过前一项或前几项来确定后一项的数列。
递推数列的极限可以通过求解递推关系式来确定。
例如,对于数列{a_n = a_(n-1) +1/n},我们可以通过求解递推关系式得出其极限为无穷大。
一、 数列的概念及表示法(一) 定义1. 概念:按照一定顺序排列的数叫做数列,简称{}n a ,n 为序号。
数列中的每一个数叫做这个数列的项,第一项为首项,最后一项为末项。
2. 数列中项性质:有序性、可重复性、确定性 (二) 分类1. 按个数分为:有穷数列和无穷数列2. 按项的变化趋势分为:递增数列、递减数列、常数列、摆动数列 (三) 数列与函数数列是一种特殊的函数,数列是定义域为正整数集的数列,是一系列孤立的点。
(四) 表示法 1. 列表法2. 图像法:一系列孤立的点3. 通项公式法(并不是所有的数列都有通项公式) 将数列用一个数学式子表现出来的方法叫做通项公式法。
4. 递推公式如果已知数列的第一项,且从第二项开始的任一项与它的前一项间的关系可以用一个公式来表示,这个公式就叫数列的递推公式。
(五) 数列的性质 1. 单调性如果对所有的n *N ∈,都有,n n a a >那么数列为递增数列,否则为递减数列,如果相等为常数列。
2. 周期性如果对所有的,n *N ∈都有n n a a =+k (k 为正整数),那么称数列为以k 为周期的周期数列 3. 有界性如果对所有的,*N n ∈都有M a n ≤,那么就称数列为有界数列,否则为无界数列。
(六) 数列的前n 项和 数列前n 项的和。
(七) 题型1. 数列的概念及分类例1:1,0,-1,0 (2)sinπn …是什么数列? 摆动数列、周期数列、无穷数列 例2已知数列n a 的123,6a a ,且21nnn a a a ,则2008a( )(A )-3 (B )3 (C )-6 (D )6解:∵123,6a a ,且21nn n a a a , ∴3456783,3,6,3,3,6a a a a a a ,…∴数列n a 是以6为周期的周期数列. ∵200833464,∴200843a a .故选A2. 观察法求通项公式(1)9,99,999,9999… (2)-1,0,-1,0…(3)-1,7,-13,19, (4)246810,,,,,315356399…(5)11112,4,6,824816,… 解:(1)110-=n a n (2)⎩⎨⎧-=为偶数)(为奇数n n a n 0)(1(3)1(1)[16(1)]n n a n )(4)122nna n3. 数列的通项公式及数列中的项例:已知数列n a 的通项公式为3231nn a n .(1)求这个数列的第10项; (2)98101是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内;(4)在区间12(,)33内有无数列中的项?若有,有几项?若没有,请说明理由. 解:(1)令10n ,得第10项102831a . (2)令329831101n n ,得3100n .∵此方程无自然数解,∴98101不是该数列中的项.(3)∵3231331313131n n n a n n n ,又*n N ,∴30131n ,∴01n a .(4)令13223313nn a n ,则31969662n n n n,∴7683nn,∴7863n, ∴当且仅当2n时,不等式才成立,故在区间12(,)33内仅有一项为247a . 4. 通项公式求最值解:若数列n a 中,9(1)()10nna n ,则此数列中的最大项为 ( ) (A )第7项 (B )第8项 (C )第9项 (D )第8项,或第9项二、 求通项公式的方法(一) 累加法形如)(1n f a a n n =-+形式的均可利用累加法求通项公式 例1 已知数列满足2,111=-=+n n a a a ,求通项公式。
高中数学笔记----------4-数列基本概念:1.等差数列{a n }中:(1)a n =a+(n -1)d=a m +(n -m)d; p+q=m+n a p +a q =a m +a n . (2)a 1+a 2+…+a m , a k +a k+1+…+a k+m -1,…仍成等差数列.(3)a p =q,a q =p (p ≠q) a p+q =0; S p =q,S q =p (p ≠q) S p+q =-(p+q); S m+n =S m +S n +mnd ⑷S 2n-1=a n (2n-1) (常用于数列的比较中和代换中); Snn为等差数列,公差为d ∕23.等比数列{a n }中;(1) m+n=r+s, a m ·a n =a r ·a s(2) a 1+a 2+…+a m , a k +a k+1+…+a k+m -1,…仍成等比数列(4) 111 (1)(1) (1)11n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩注意:①a n-b n=(a -b)(an -1+a n -2b+a n -3b 2+…+ab n -2+b n -1)②S m+n =S m +q m S n =S n +q n S m .4.等差数列与等比数列的联系(1)如果数列{a n }成等差数列, 那么数列{n aA }(n aA 总有意义)必成等比数列. (2)如果数列{a n }成等比数列, 那么数列{log ||a n a }(a>0,a≠1)必成等差数列.(3)如果数列{ a n }既成等差数列也成等比数列,那么数列{ a n }是非零常数数列; 数列{a n }是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.(4)如果两等差数列有其公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 5.数列求和的常用方法.(1)公式法: ①等差数列求和公式, ②等比数列求和公式 ③常用公式:, 12+22+32+…+n 2=16n(n+1)(2n+1), 13+23+33+------+n 3=14 [n (n +1)]2(2)分组求和法: 在直接运用公式法求和有困难时,常将"和式"中"同类项"先合并在一起,再运用公式法求和.(3)倒序相加法: 在数列求和中,若和式中到首尾距离相等的两项和有其共性,则常考虑选用倒序相加法,发挥其共性的作用求和.(4)错位相减法: 如果数列的通项是由一个等差数列的通项与一个等比数列通项相乘构成,那么常选用错位相减法,将其和转化为"一个新的等比数列的和"求解".(5)裂项相消法: 如果数列的通项可"分裂成两项差"的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和,常用裂项形式有:①111(1)1n n n n =-++ ②1111()()n n k k n n k=-++ ③2211111()1211k k k k <=---+; 21111111(1)1k k k k k k k -<<=-+-- ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ⑤ 11(1)!!(1)!n n n n =-++⑥<< ⑦ 1n2<2(12n−1--12n+1);1n2<3(13n−2--13n+1)(注意:运用等比数列求和公式时,务必检查其公比与1的关系,必要时应分类讨论.裂项相消法更多的用于数列中不等式的证明) 6.数列的通项的求法:(11种类型) 类型1 )(1n f a a n n +=+ ;(累加法)解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
高中数学解数列极限问题的详细分析与实例分析数列极限是高中数学中一个重要的概念,也是学生们经常遇到的难点之一。
在解决数列极限问题时,我们需要掌握一些基本的解题技巧和方法。
本文将详细分析数列极限问题,并通过实例分析来说明解题方法和考点。
一、数列极限的定义和性质数列极限是指当数列的项数无限增加时,数列中的数值趋于一个确定的常数或无穷大。
数列极限的定义可以表述为:对于任意给定的正数ε,存在正整数N,使得当n>N时,数列的第n项与极限之间的差的绝对值小于ε。
在解决数列极限问题时,我们需要掌握一些基本的性质。
首先是数列极限的唯一性,即一个数列只有一个极限。
其次是数列极限的四则运算性质,即两个数列的极限之和、差、积、商仍然是有限的。
二、常见的数列极限问题1. 等差数列的极限问题等差数列是高中数学中最常见的一类数列,其通项公式为an=a1+(n-1)d,其中a1为首项,d为公差。
当公差d不为0时,数列的极限为无穷大或无穷小;当公差d为0时,数列的极限为首项a1。
例如,考虑数列{1, 3, 5, 7, ...},其中首项a1=1,公差d=2。
根据等差数列的通项公式,第n项为an=1+(n-1)2=2n-1。
当n趋于无穷大时,2n-1也趋于无穷大,因此该数列的极限为正无穷。
2. 等比数列的极限问题等比数列是指数列中相邻两项之比为常数的数列,其通项公式为an=a1*r^(n-1),其中a1为首项,r为公比。
当公比r的绝对值小于1时,数列的极限为0;当公比r 的绝对值大于1时,数列的极限为无穷大或无穷小。
例如,考虑数列{2, 4, 8, 16, ...},其中首项a1=2,公比r=2。
根据等比数列的通项公式,第n项为an=2*2^(n-1)=2^n。
当n趋于无穷大时,2^n也趋于无穷大,因此该数列的极限为正无穷。
3. 斐波那契数列的极限问题斐波那契数列是指数列中每一项都是前两项之和的数列,其通项公式为an=an-1+an-2,其中a1=1,a2=1。
高中数学解数列求和问题的技巧数列是高中数学中的重要概念之一,求和问题是数列中常见的考点。
解决数列求和问题需要掌握一些技巧和方法,下面我将介绍几种常见的数列求和问题及其解题技巧。
一、等差数列求和问题等差数列是指数列中相邻两项之间的差值恒定的数列。
求等差数列的前n项和,可以利用求和公式来解决。
求和公式为:Sn = (a1 + an) * n / 2,其中Sn表示前n项和,a1表示首项,an表示末项,n表示项数。
例如,给定一个等差数列的首项为3,公差为2,求前10项的和。
根据求和公式,首先计算出末项an:an = a1 + (n - 1) * d = 3 + (10 - 1) * 2 = 21。
然后代入公式计算出前10项的和:Sn = (a1 + an) * n / 2 = (3 + 21) * 10 / 2 = 120。
二、等比数列求和问题等比数列是指数列中相邻两项之间的比值恒定的数列。
求等比数列的前n项和,可以利用求和公式来解决。
求和公式为:Sn = a1 * (1 - q^n) / (1 - q),其中Sn表示前n项和,a1表示首项,q表示公比,n表示项数。
例如,给定一个等比数列的首项为2,公比为3,求前5项的和。
根据求和公式,代入相应的值计算出前5项的和:Sn = 2 * (1 - 3^5) / (1 - 3) = 242。
三、特殊数列求和问题除了等差数列和等比数列外,还存在一些特殊的数列,求和问题也有相应的解题技巧。
1. 平方数列求和问题:平方数列是指数列中的每一项都是前一项的平方。
例如,1,1,4,16,...。
求平方数列的前n项和,可以利用平方数的求和公式来解决。
求和公式为:Sn = (2^(n+1) - n - 2) / 3。
2. 斐波那契数列求和问题:斐波那契数列是指数列中的每一项都是前两项的和。
例如,1,1,2,3,5,...。
求斐波那契数列的前n项和,可以利用斐波那契数列的性质来解决。
数列一、考点分析:本章的知识结构图:数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度.有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法.应用问题考查的重点是现实客观事物的数学化,常需构造数列模型,将现实问题转化为数学问题来解决.复习建议:在进行数列二轮复习时,建议可以具体从以下几个方面着手:1.运用基本量思想(方程思想)解决有关问题;2.注意等差、等比数列的性质的灵活运用;3.注意等差、等比数列的前n项和的特征在解题中的应用;4.注意深刻理解等差数列与等比数列的定义及其等价形式;5.根据递推公式,通过寻找规律,运用归纳思想,写出数列中的某一项或通项,主要需注意从等差、等比、周期等方面进行归纳;6.掌握数列通项an与前n项和Sn 之间的关系;7.根据递推关系,运用化归思想,将其转化为常见数列;8.掌握一些数列求和的方法(1)分组求和(2)裂项相消(3)错位相减(4)倒序相加(5)公式法。
9.以等差、等比数列的基本问题为主,突出数列与函数、数列与方程、数列与不等式、数列与几何等的综合应用.一、 等差与等比数列的概念和性质1. 已知公差大于零的等差数列}{n a 的前n 项和为n S ,且满足:.22,1175243=+=⋅a a a a (1)求通项n a ;(2)若数列}{n b 是等差数列,且cn S b nn +=,求非零常数c ; 解:(1)34-=n a n(2)n n n n S n -=-+=222)341(, ⎪⎪⎩⎪⎪⎨⎧-===2102c b a 21-=c 2.设数列{a n }和{b n }满足a 1=b 1=6, a 2=b 2=4, a 3=b 3=3, 且数列{a n +1-a n }(n ∈N *)是等差数列,数列{b n -2}(n ∈N *)是等比数列. (1)求数列{a n }和{b n }的通项公式;(2)是否存在k ∈N *,使a k -b k ∈(0,21)?若存在,求出k ;若不存在,说明理由. 解:(1)927212+-=n n a n ,3)21(2-+=n n b(2)不存在3. (2008年海南宁夏卷)已知数列{}n a 是一个等差数列,且21a =,55a =-。
数 列 专 题考点一:求数列的通项公式1. 由a n 与S n 的关系求通项公式由S n 与a n 的递推关系求a n 的常用思路有:①利用S n -S n -1=a n (n≥2)转化为a n 的递推关系,再求其通项公式;数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n≥2.当n =1时,a 1若适合S n-S n -1,则n =1的情况可并入n≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n .}2.由递推关系式求数列的通项公式由递推公式求通项公式的常用方法:已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解.累加法:递推关系形如a n +1-a n =f(n),常用累加法求通项; 累乘法:递推关系形如a n +1a n=f(n),常用累乘法求通项;构造法:1)递推关系形如“a n +1=pa n +q(p 、q 是常数,且p≠1,q≠0)”的数列求通项,此类通项问题,常用待定系数法.可设a n +1+λ=p(a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列;2)递推关系形如“a n +1=pa n +q n(q ,p 为常数,且p≠1,q≠0)”的数列求通项,此类型可以将关系式两边同除以q n转化为类型(4),或同除以p n +1转为用迭加法求解.3)(倒数变形3.数列函数性质的应用数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性.函数思想在数列中的应用(1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法.;(3)数列{a n }的最大(小)项的求法可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1,找到数列的最小项.[例3] 已知数列{a n }.(1)若a n =n 2-5n +4,①数列中有多少项是负数②n 为何值时,a n 有最小值并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.求实数k 的取值范围.考点二:等差数列和等比数列等差数列 等比数列 【定义 a n -a n -1=常数(n≥2) a na n -1=常数(n≥2) 通项公式a n =a 1+(n -1)da n =a 1qn -1(q≠0)…也是等差数列,(1)若m 、n 、p 、q∈N *,且m +n =p +q ,则a m ·a n =a p ·a q特别地,若m +n =2p ,则a m ·a n =a 2p . (2)a n =a m qn -m(3) 若等比数列前n 项和为S n 则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列,即(S 2m -S m )2=S m (S 3m -S 2m )(m ∈N *,公比q≠-1). ,S n =na 1+a n 2=na 1+n n -12d(1)q≠1,S n =a 11-qn1-q =a 1-a n q 1-q(2)q =1,S n =na 11n n 个.解这类问题时,一般是转化为首项a 1和公差d(公比q)这两个基本量的有关运算. 2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.3.用函数的观点理解等差数列、等比数列(1)对于等差数列a n =a 1+(n -1)d =dn +(a 1-d),当d≠0时,a n 是关于n 的一次函数,对应的点(n ,a n )是位于直线上的若干个离散的点;当d >0时,函数是单调增函数,对应的数列是单调递增数列,S n 有最小值;:当d =0时,函数是常数函数,对应的数列是常数列,S n =na 1;当d <0时,函数是减函数,对应的数列是单调递减数列,S n 有最大值.若等差数列的前n 项和为S n ,则S n =pn 2+qn(p ,q∈R ).当p =0时,{a n }为常数列;当p≠0时,可用二次函数的方法解决等差数列问题.(2)对于等比数列a n =a 1qn -1,可用指数函数的性质来理解.当a 1>0,q >1或a 1<0,0<q <1时,等比数列{a n }是单调递增数列;当a 1>0,0<q <1或a 1<0,q >1时,等比数列{a n }是单调递减数列;当q =1时,是一个常数列;当q <0时,无法判断数列的单调性,它是一个摆动数列. 4.常用结论—(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S nn }仍为等差数列,其中m ,k 为常数.(2)若{a n },{b n }均是等比数列,则{ca n }(c≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n },{1a n}等也是等比数列.(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…成等比数列,且公比为a 3-a 2a 2-a 1=a 2-a 1qa 2-a 1=q .(4)等比数列(q≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其公比为q k.等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d.5)>5.易错提醒(1)应用关系式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n≥2时,一定要注意分n =1,n≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.(2)三个数a ,b ,c 成等差数列的充要条件是b =a +c2,但三个数a ,b ,c 成等比数列的必要条件是b 2=ac. 6.等差数列的判定方法(1)定义法:对于n≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n≥3,n ∈N *)成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn.%注意:在解答题中常应用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断. 7.等比数列的判定方法(1)定义法:若a n +1a n =q(q 为非零常数,n ∈N *)或a n a n -1=q(q 为非零常数且n≥2,n ∈N *),则{a n }是等比数列.(2)等比中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c·q n(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k·q n -k(k 为常数且k≠0,q≠0,1),则{a n }是等比数列.注意:前两种方法常用于解答题中,而后两种方法常用于选择、填空题中的判定.考点三:数列求和中应用转化与化归思想的常见类型:]1.公式法——直接利用等差数列、等比数列的前n 项和公式求和(1)等差数列的前n 项和公式:S n =na 1+a n 2=na 1+n n -12d ; (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 11-q n1-q ,q≠1.2.倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. 3.错位相减法这是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.求a 1b 1+a 2b 2+…+a n b n 的和就适用此法.做法是先将和的形式写出,再给式子两边同乘或同除以公比q ,然后将两式相减,相减后以“q n”为同类项进行合并得到一个可求和的数列(注意合并后有两项不能构成等比数列中的项,不要遗漏掉). 4.裂项相消法(注重积累!!!))利用通项变形,将通项分裂成两项或n 项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,适用于求通项为1a n a n +1的数列的前n 项和,其中{a n }若为等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1.利用裂项相消法求和时应注意哪些问题(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项.常见的拆项公式(1)1n n +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k ; (2) 12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(3) 1nn +1=1n -1n +1; (4) 1n +n +1=n +1-n ;(5)n +n +k =1k(n +k -n).5.分组求和法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. 6.并项求和法一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)nf(n)类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 7.放缩法是证明数列型不等式的压轴题的最重要的方法,放缩法的注意问题以及解题策略(1)明确放缩的方向:即是放大还是缩小,看证明的结论,是小于某项,则放大,是大于某个项,则缩小。
高中数学数列极限的性质与计算方法详解数列是高中数学中的重要概念,而数列的极限更是数学分析的基础。
在高中数学中,数列极限的性质和计算方法是一个重要的考点。
本文将详细解析数列极限的性质和计算方法,并通过具体题目进行举例,帮助高中学生和他们的父母更好地理解和掌握这一知识点。
一、数列极限的性质1. 有界性:如果数列{an}存在有界的上界和下界,那么该数列必定收敛。
例如,考虑数列{an} = (-1)^n,该数列的值在-1和1之间,因此数列{an}是有界的,且极限为0。
2. 单调性:如果数列{an}单调递增且有上界,或者单调递减且有下界,那么该数列必定收敛。
例如,考虑数列{an} = 1/n,该数列单调递减且有下界0,因此数列{an}是收敛的,且极限为0。
3. 夹逼定理:如果数列{an}满足an≤bn≤cn,并且lim an = lim cn = L,那么数列{bn}也收敛,并且极限为L。
例如,考虑数列{an} = 1/n,{bn} = (1 + 1/n)^n,{cn}= (1 + 1/n)^(n+1),显然有an≤bn≤cn,并且lim an = lim cn = 0,因此数列{bn}也收敛,且极限为0。
二、数列极限的计算方法1. 基本四则运算法则:如果数列{an}和{bn}的极限分别为A和B,那么数列{an + bn}的极限为A + B,数列{an - bn}的极限为A - B,数列{an * bn}的极限为A * B,数列{an / bn}的极限为A / B(其中B ≠ 0)。
2. 极限的乘法法则:如果数列{an}的极限为A,数列{bn}的极限为B,那么数列{an * bn}的极限为A * B。
例如,考虑数列{an} = 1/n,{bn} = n,显然lim an = 0,lim bn = ∞,但是lim (an * bn) = 1。
3. 极限的倒数法则:如果数列{an}的极限为A(A ≠ 0),那么数列{1/an}的极限为1/A。
高中数学数列极限的概念及相关题目解析数列是高中数学中的重要概念之一,而数列的极限更是数学学科中的基础知识。
在高中数学的学习中,理解和掌握数列极限的概念及相关题目的解析方法是非常重要的。
本文将从数列极限的定义、性质以及常见的数列极限题目出发,详细解析数列极限的相关知识。
一、数列极限的定义和性质数列极限是指当数列的项无限接近某个确定的值时,这个确定的值就是数列的极限。
数列极限的定义可以用数学符号表示为:对于数列{an},当n趋于无穷大时,如果存在一个常数a,使得对于任意给定的正数ε,都存在正整数N,使得当n>N 时,有|an-a|<ε成立,则称数列{an}的极限为a。
数列极限具有以下性质:1. 数列极限的唯一性:如果数列{an}的极限存在,那么它是唯一的。
2. 有界性:如果数列{an}的极限存在,那么它是有界的,即存在正数M,使得对于所有的n,都有|an|≤M成立。
3. 夹逼准则:如果对于数列{an}、{bn}和{cn},满足an≤bn≤cn,并且lim(an)=lim(cn)=a,那么lim(bn)=a。
二、数列极限的题目解析1. 求数列极限的方法:题目:已知数列{an}的通项公式为an=1/n,求lim(an)。
解析:对于这道题目,我们可以通过直接代入数值的方法来求解。
当n取不同的值时,计算出对应的an的值,然后观察an的变化规律。
当n趋于无穷大时,我们可以发现an的值趋近于0。
因此,根据数列极限的定义,lim(an)=0。
2. 判断数列极限是否存在:题目:已知数列{an}的通项公式为an=(-1)^n/n,判断lim(an)是否存在。
解析:对于这道题目,我们可以通过分析数列的变化规律来判断其极限是否存在。
当n取不同的奇数时,an的值为正数,而当n取不同的偶数时,an的值为负数。
因此,数列{an}的值在正数和负数之间不断变化,没有趋于一个确定的值,所以lim(an)不存在。
3. 利用夹逼准则求数列极限:题目:已知数列{an}的通项公式为an=√(n^2+1)-n,求lim(an)。
高中数学中数列的考点分析及复习建议
作者:李琳玉
来源:《当代教育》2010年第01期
数列在高中数学中所处的地位非常独特。
承前:采集了集合的方法,贯穿了函数的思想;启后:包罗了高中数学之万象,集数学思维方法之大成。
当然,数列的高考试题,归根结底,就是(或是可化归为)等差数列或等比数列的问题,掌握这两个基本数列的基本特征和基本性质,无疑是把握高考数列问题命脉的关键。
然而问题是,我们的学生真的(或基本)掌握了两个基本数列的基本特征和基本性质了吗?从我们对近一阶段学生考试的情况所进行的分析中,得出的结论是否定的!学生在数列中普遍存在的问题有:①证明不严谨,以偏概全。
②运算错漏率之高,令改卷教师咋舌。
③等差、等比数列的求和公式不过关,其中尤以后者为重。
④将数列问题化归为两个基本数列的能力差,
如何针对学生在数列中普遍存在的问题,做好高考最后阶段的复习工作,使我们的复习工作有计划、有针对性、有指导性,使学生对数列问题消除畏惧心理,增加得分率?为此,首先对高考数学中数列的考点进行一下分析。
一、高考数学数列中的考点分析
虽然数列在《教学大纲》中只有12课时,但在高考中,数列内容却占有重要的地位。
高考对数列的考试要求是:①理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,能根据数列的递推公式写出数列的前几项或证明其他一些性质。
②理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。
③理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。
由上述考试要求,我们知道,数列内容的考试试题,应以等差数列和等比数列的相关概念、通项公式、前n项和公式为主线,以数列的其他内容如通项与前n项和公式的关系、递推数列等相关内容为辅助。
但从高考新大纲的变化来看,加入了利用递推公式进行数列的相关问题的证明,考察由递归数列派生出来的新的等差或等比数列的相关问题。
二、复习建议
1.加大等差、等比数列通项公式、求和公式的训练力度。
在等差、等比数列的训练中,让学生回到首项和公差(或公比)中去,无疑是非常本色的方法。
例1:如在等差数列{an}中,点(a3+a5+a4+a5+a6)在直线y=2x+1 上,则该数列的首项a1=。
(A)1; (B)-1; (C)2; (D)-2.(答:B)
对于这道试题,采用下标规律而不能自拔者受阻了,回到首项和公差中去的学生(不见得是数学成绩好的学生)轻易解出来了。
例2:各项均为正数的等比数列{an}的前n项和为Sn,且S2 =74,S3 =111,则S5=。
(答:185)
对于这道试题,只记住死结论:在等比数列中, Sn,S2n -Sn ,S3n -.S2n 成等比数列的学生不知从何下手,机械地应用公式Sn=的学生在算出q=1(q=-)( 舍去)后,又发现代入上述公式不成立,只有知道讨论使用等比数列的求和公式的学生才能得到正确的答案。
通过以上两个例子,我们认为,对于数列通项公式和求和公式的训练,应尽量让学生能反复使用最原始的公式,并注意使公式成立的环境,让学生训练到求一般等差数列和等比数列的通项公式前项和公式变得轻松自然为止。
2.加强数列问题的运算训练,教会学生必要的运算检验方法。
高考数学中运算问题,历来令我们在高考一线的教师们头痛,而数列的运算,则将学生的运算水平低下暴露得非常具体。
运算训练从哪里入手?这里有几点建议:①进行单一公式运用的反复训练,特别是针对经过前一阶段检测发现学生普遍应用不过关的公式(如等比数列的前n项和公式)进行相应的训练。
②对数列问题的通性通法进行反复训练,使方法的牢固掌握和运算能力的提高同步进行。
③对同一方法进行变式训练,一直练到学生运算结论准确为止。
3.有计划地对学生进行数列综合问题的综合运算训练,提高学生的综合运算能力。
4.加强数列证明问题(或与之相关的题型)的训练,此类问题也是学生的一个薄弱环节。
例3.在数列{an}中,an+1=3an+2n +4 且a2= 6
(1)求a1; (2)求证数列{an+2n +2}是等比数列,并求an。
怎样证明数列{an}是等比(或等差)数列?证明(或an+1 -an)是一个与n无关的常数即可。
这么浅显的道理,怎么会有大量的学生不知从何下手?原因还是我们的训练力度不够。
对于上述问题,可进行如下变式训练:
1.在数列{an}中,a1=2,an+1=2an+2n-2,证明数列{an+2n}是等比数列,并求an。
2. 在数列{an}中,a1=2,an+1=2an+2n+1+3,证明数列{}是等差数列,并求出数列{an}的前n项和。
递归数列的问题,以上述结构出现的试题降低了求数列通项公式的难度,这样的试题往往是经过逆向编制出来的。
以上观点为本人在教学中的点滴体会,仅供同行们参考。