真核与原核微生物的区别
- 格式:docx
- 大小:21.75 KB
- 文档页数:3
原核生物与真核生物的区别生物界是一个庞大而多样化的领域,其中包含了两大主要类别:原核生物和真核生物。
这两者之间存在着许多重要的区别,包括细胞结构、基因组组织、代谢途径等等。
本文将详细探讨原核生物与真核生物在这些方面的区别。
一、细胞结构原核生物是由单细胞组成的微生物,其细胞结构相对简单。
原核生物的细胞没有真核生物的细胞核,DNA以浓缩的形式存在于细胞质中,称为核区。
细胞质中还包含一些原核生物特有的结构,如质粒(plasmids)和核糖体(ribosomes)。
质粒是自主复制的环状DNA分子,其中包含了一些额外的基因信息,可以传递给其他细胞。
核糖体则是原核生物中用于蛋白质合成的重要结构。
相比之下,真核生物的细胞结构更为复杂。
真核生物的细胞包含有真核细胞核,其中包裹着多个线性DNA分子(染色体)。
细胞核内还存在着许多其他重要的亚细胞结构,如内质网、线粒体、高尔基体等等。
这些亚细胞结构在细胞功能和代谢过程中起着关键作用。
二、基因组组织原核生物和真核生物在基因组组织方面也有明显的区别。
原核生物的基因组较小,通常只包含一条环状DNA分子。
此外,原核生物中的基因通常是连续排列的,不存在内含子(introns)和外显子(exons)的区别。
这意味着原核生物的基因可以直接转录为mRNA,然后翻译成蛋白质。
真核生物的基因组较为复杂,通常包含多条线性DNA分子。
基因组中的基因通常包含内含子和外显子,其中外显子包含了编码蛋白质所需的信息,而内含子则需要在转录过程中剪接掉。
这种基因结构的复杂性使得真核生物可以产生更多样化和功能多样的蛋白质。
三、代谢途径原核生物和真核生物在代谢途径上也存在差异。
原核生物的代谢途径相对简单,常见的代谢路径包括糖酵解、脂肪酸合成、无氧呼吸等。
原核生物的代谢途径通常发生在细胞质中,没有发达的亚细胞结构来分隔不同的代谢过程。
真核生物的代谢途径更为复杂,涉及到许多不同亚细胞结构的合作。
例如,葡萄糖的代谢包括在细胞质中进行的糖酵解,以及在线粒体中进行的线粒体呼吸。
原核生物和真核生物的区别有哪些不同
原核生物和真核生物根本区别是后者是有成型的细胞核,许多真核细胞里还有其它细胞器,比如高尔基体,线粒体或者叶绿体等等,而原核细胞没有核膜包被的细胞核。
原核生物和真核生物的区别有哪些不同
1原核生物和真核生物的区别
1、本质区别
真核生物与原核生物最本质的区别是有无成型的细胞核/有
无真正的细胞核/有无核膜包被的细胞核。
2、分类不同
真核生物分为动物、植物和真菌;原核生物有细菌、蓝藻、衣原体、支原体、立克次氏体、放线菌等等(口诀:放一只细篮子)。
3、与蛋白质结合不同
真核生物的细胞核内的DNA与蛋白质结合,构成染色质/染色体;原核生物的DNA呈裸露的环状,一般不与蛋白质结合。
4、基因存在位置不同
真核生物的基因存在于细胞核、线粒体和叶绿体内;原核生物的基因主要位于拟核和质粒。
5、细胞器不同
真核生物有多种细胞器和复杂的膜系统;原核生物只有一种细胞器——核糖体。
2常见的原核生物和真核生物
一、原核生物
原核生物是指一类细胞核无核膜包裹,只有称作核区的裸露DNA的原始单细胞生物。
它包括细菌、放线菌、立克次氏体、衣原体、支原体、蓝细菌和古细菌等。
它们都是单细胞原核生物,结构简单,没有细胞器,个体微小,一般为1~10 µm,仅为真核细胞的十分之一至万分之一。
二、真核生物
真核生物是所有单细胞或多细胞的、其细胞具有细胞核的生物的总称,它包括所有动物、植物、真菌和其他具有由膜包裹着的复杂亚细胞结构的生物。
真核生物分为动物、植物和真菌等。
原核生物与真核生物的区别原核生物与真核生物是生物界中两大主要类型,它们之间存在着许多明显的区别。
原核生物是指没有细胞核和细胞器的微生物,包括细菌和蓝藻;真核生物则是指有真正的细胞核和细胞器的生物,包括动植物、真菌和原生动物。
本文将就原核生物与真核生物的区别进行详细讨论。
首先,在细胞结构上,原核生物通常是单细胞生物,细胞体积较小,且没有细胞核和细胞器,其遗传物质以DNA环状分子存在于胞质中。
而真核生物则是多细胞生物或单细胞生物,细胞较大,具有真正的细胞核,其中包含线性DNA分子,并且拥有各种细胞器,例如线粒体、叶绿体和内质网等。
其次,在遗传物质组成上,原核生物的基因组相对简单,基因数量少且基因间存在着重叠,基因之间没有非编码区域。
而真核生物的基因组更为复杂,基因数量多且编码区域与非编码区域相互交错,基因之间有明确的分界。
此外,真核生物的基因组中还存在着大量的垃圾DNA,而原核生物的基因组中几乎没有垃圾DNA。
此外,在RNA合成和加工过程中,原核生物的mRNA在转录后可以直接被翻译成蛋白质,而真核生物的mRNA需要在细胞核中经过剪接和修饰等加工过程后才能被翻译成蛋白质。
这一过程使得真核生物在基因表达调控上更为灵活和复杂。
另外,原核生物和真核生物在生命周期和生殖方式上也存在着显著差异。
原核生物的生命周期相对简单,通常为单细胞有丝分裂或不完全分裂;而真核生物的生命周期较为复杂,包括有丝分裂、减数分裂和生殖细胞的形成等过程。
此外,真核生物的生殖方式更为多样化,包括性生殖和无性生殖等多种形式。
总的来说,原核生物与真核生物之间存在着诸多的区别,包括细胞结构、遗传物质组成、RNA加工过程、基因表达调控、生命周期和生殖方式等方面。
这些区别反映了生物进化过程中的多样性和复杂性,也为我们理解生物之间的关系和生命的奥秘提供了重要线索。
第三章: 微生物细胞的结构和功能1.概述原核微生物分为: 细菌和古生菌. 真核微生物分为:真菌,原生动物,微藻类三域系统:细菌,古生菌,真核生物.原核微生物和真核微生物的主要区别:1.基因组由无核膜包裹的双链环状DNA组成。
2.缺乏由单位膜分割,包围的细胞器。
3.核糖体为70S型。
2.原核微生物原核微生物的构造可分为一般构造(一般都具有的)和特殊构造(部分种类或特定环境下才形成的)。
A.原核微生物的细胞壁细胞壁是位于细胞最外层厚实,坚韧的外被,主要由肽聚糖构成,有固定细胞外型和保护细胞等多种生理功能。
通过染色,质壁分离,电子显微镜观察超薄切片,光学显微镜观察原生质体等方法可证实细胞壁的存在。
细胞壁的主要功能有:1。
固定细胞外型和提高机械强度,使其免受渗透压等外力的损伤。
2。
为细胞的生长,分裂和鞭毛运动所必需。
3。
阻拦酶蛋白和抗生素等大分子进入细胞,保护免受溶菌酶,消化酶和青霉素等有害物质的损伤。
4。
赋予细胞具有特定的抗原性,致病性以及对抗生素和噬菌体的敏感性。
革兰氏染色的基本原理:革兰氏阳性菌和革兰氏阴性菌主要由于其细胞壁化学成分不同而引起的脱色能力不同。
革兰氏阳性菌细胞壁较厚,肽聚糖网层次多交联致密,染色后进行脱色处理,因失水反而使网孔缩小,再加上其不含脂类,故乙醇处理不会溶出缝隙,能把结晶紫和碘复合物留在壁能成紫色。
革兰氏阴性菌细胞壁薄,脂含量高,肽聚糖层薄交联差,遇脱色剂后外膜溶解,结晶紫碘复合物溶出,格兰氏阳性菌的细胞壁: (金黄色葡萄球菌)特点: 厚度大,化学组成简单,90%肽聚糖和10%磷壁酸成分与作用:1.肽聚糖: 是真细菌特有成分,典型的肽聚糖层厚约20~80nm,由25~40层左右的网格状分子交织成的网套覆盖在整个细胞上。
肽聚糖分子是由肽和聚糖2部分组成,其中的肽有四肽尾和肽桥2种,聚糖则由N-乙酰葡糖胺和N-乙酰胞壁酸相互间隔连接而成(β-1,4-糖苷键)。
作用:构成骨架,起支持和保护作用。
判断题1.微生物系统分类单元从高到低依次为界、门、纲、目、科、属、种(×)最高为域2.株是微生物分类最小单位(×)种是微生物分类最小单位3.溶原性噬菌体的DNA整合在宿主DNA上,不能独立进行繁殖(√)4.放线菌属于真核微生物(×)放线菌是原核微生物5.大多数放线菌属革兰氏阴性菌(×)除枝动菌属外,其余放线菌均为革兰氏阳性菌6.放线菌的菌体由纤细的长短不一的菌丝组成,在固体培养基上呈辐射状,菌丝分支,为单细胞(√)7.霉菌的菌落疏松,菌丝细小,与培养基结合紧密,不易用接种环挑取(×)霉菌菌落形态较大8.菌苔是细菌在固体培养基上的培养特征之一(×)菌落是细菌在固体培养基上的培养特征之一9.大肠杆菌属于单细胞微生物,金黄色葡萄球菌属于多细胞微生物(×)细菌都是单细胞10.大肠杆菌是革兰氏阴性菌,金黄色葡萄球菌是革兰氏阳性菌(√)11.碱性染料能与细胞中带正电的组分结合,常用于细菌染色(×)碱性染料是和细胞中带负电的组分结合12.革兰氏阳性菌细胞壁的脂肪含量比革兰氏阴性菌高(×)低13.红螺菌的同化作用类型为光能异养型(√)14.渗透酶属于诱导酶,其他酶属于结构酶(×)渗透酶是载体蛋白15.一切厌氧微生物都含有超氧化物歧化酶(×)耐氧厌氧微生物含超氧化物歧化酶,一切厌氧微生物都不具有过氧化氢酶16.分子氧对专性厌氧微生物的抑制和杀死作用是因为这些微生物缺乏过氧化氢酶(√)17.主动运输需要载体和能量,促进扩散不需要载体和能量(×)促进扩散要载体不要能量18.大多数微生物可以合成自身所需的生长因子,不必从外界摄取(√)19.核糖体的功能是合成蛋白质(√)20.明胶是最常用的凝固剂(×)琼脂最常用的凝固剂21.浓乳糖蛋白胨培养基是合成培养基(×)是天然培养基22.豆芽汁培养基是合成培养基(×)是天然培养基23.分批培养时,细菌首先经历一个适应期,此时细胞处于代谢活动低潮,细胞数目不增加(√)24.恒化培养与恒浊培养的区别是前者菌体始终处于对数期(×)区别前者保持细菌浓度不变,后者保持营养成分浓度不变25.乳糖操纵子是由结构基因、操纵基因、调节基因组成(√)26.操纵子的结构基因通过转录、翻译控制蛋白质的合成,操纵基因和调节基因通过转录、翻译控制结构基因的表达(√)27.细菌所有遗传信息都储存在细菌染色体上(×)细菌为原核微生物,无染色体,基因还可以存在质粒上28.遗传型相同的个体在不同环境下会有不同的表现型(√)29.低剂量的紫外线照射,对微生物没有影响,但超过某一阈值的紫外线照射,则会导致微生物基因突变(×)低剂量紫外线照射导致基因突变30.导致牛得疯牛病的朊病毒的遗传物质是DNA(×)是蛋白质31.HgCl2的杀菌机理是与微生物酶的-SH基结合,使酶失去活性,或与菌体蛋白质结合,使之变性或沉淀(√)32.反消化作用是在好氧条件下进行的(×)在厌氧条件下进行33.好氧活性污泥法处理废水过程中,去除的有机污染物全部转化为二氧化碳和水(×)大部分转化为微生物自身组成34.活性污泥法处理废水,易产生污泥膨胀问题(√)35.用霉菌、酵母菌处理有机废水时,有时会出现活性污泥丝状膨胀,这时可以通过修改工艺来解决(√)36.对厌氧消化-甲烷发酵,污水pH一般保持在6.5-7.5之间(√)37.自然界中产甲烷菌有很多种,有些是好氧的,有些是厌氧的,有些是兼性厌氧的(×)甲烷菌都是厌氧的38.导致水体富营养化的生物主要是硅藻(×)是蓝藻39.水体中有机物浓度越高,微生物代谢作用消耗的溶解氧越多(√)40.任何土质中微生物种类都按细菌、真菌、放线菌、原生动物、藻类的顺序由多到少排列(×)任何土质中微生物种类都按细菌、放线菌、真菌、原生动物、藻类的顺序由多到少排列填空题1.微生物和其他类型微生物相比具有个体极小、分布广种类多、繁殖快、易变异特点。
一、微生物如何命名?答:二名法,即用两个拉丁词命名一个微生物的种,由一个属名和一个种名组成,都用斜体字表达,属名在前,用拉丁文名词表达,第一个字母大写;种名在后,用拉丁名形容词表达,第一个字母小写。
为了防止同物异名或同名异物,在微生物名后缀有命名人的姓。
如果细菌只鉴定到属,则只有属名,没有种名。
也可在署名后加sp.(单)spp.(复),sp.和spp.是种的编号。
二、原核微生物和真核微生物的区别?答:原核微生物:核很原始,发育不全,只是DNA链高度折叠成一个核区,无核膜,核质裸露,与细胞质无明显界限,没有细胞器,只有细胞质膜内陷形成的不规则泡沫结构体系,不进行有丝分裂,不进行有丝分裂。
真核微生物:细胞核发育完好,核内有核仁和染色质,有核膜,将细胞核和细胞质分开,两者有明显界限,有高度分化的细胞器,进行有丝分裂,除蓝细菌以外的藻类、酵母菌、霉菌、伞菌、原生动物、微型后生动物。
三、论述细菌细胞的基本结构?答:细胞的基本结构有细胞壁、细胞质膜、细胞质及其内含物和拟核。
1、细胞壁结构与组成:G+细胞壁厚,其厚度为20-80nm,结构较简单,含肽聚糖,磷壁酸,少量蛋白质和脂肪。
G-细胞壁较薄,厚度为10nm,结构较复杂,分外壁层和内壁层,外壁层又分三层,最外层脂多糖,中间层磷脂层,内层脂蛋白。
内壁层含有肽聚糖。
功能:(1)维持细胞外形(2)保护细胞免受机械损伤和渗透压危害(3)鞭毛运动支点(4)正常细胞分裂必需(5)一定的屏障作用(6)噬菌体受体位点所在(7)与细菌的抗原性、致病性有关2、细胞膜结构与组成:细胞膜是紧贴在细胞壁内的一层柔软而又富有弹性的薄膜,细胞膜所含的脂类均为磷脂,占菌体10%,蛋白质60%—70%,脂肪30%—40%,多糖2%。
有上下两层致密的着色层和中间的不着色层组成。
不着色层是由正负电荷、有极性的磷脂双分子层构成,两性分子,亲水基朝膜内外水相,疏水基在不着色区域。
蛋白质流动镶嵌在功能区域。
《环境工程微生物学》复习题 _分章_有答案第一章绪论1、解释概念:微生物;微生物学;2、填空:1)微生物分类以其()属性及()属性及()为依据。
2)微生物的命名是采用生物学中的(双名)法,即用两个拉丁字命名一个微生物的种。
这个种的名称是由一个(属名)和一个(种名)组成。
4)微生物是一类(个体弱小),(构造简单),(进化地位低),肉眼看不见,必须借助(光学)或者(电子显微镜)等特殊设备才干弱小生物的总称。
5)微生物的分类系统采用:(界)、(门)、(纲)、(目)、(科)、(属)、(种),(种)是基本单位。
6)EcherichiacoliK12(λ)中: K12 表示()、λ 表示();7)微生物的命名采用(二名)法,即用两个拉丁字命名一个微生物的种,这个种的名称前者为(种名),后者为(属名),均用(斜体字)书写,属名第一个字母大写。
8)LouiPateur 的贡献主要在于证明(微生物)活动和否定微生物(自然发生)学说,并创立了(病原)学说。
9) (病毒)是一类非细胞结构的微生物。
10)RobertKoch 的贡献:建立了(微生物学)研究的基本技术;证实病害的(病原菌)学说。
建立了判断病原物的著名的(柯赫氏)法则。
3、判断() 1)从进化程度看,原核微生物比真核微生物进化程度高。
() 2) 真核微生物和原核微生物的主要区别在于是否有细胞壁。
() 3)大肠埃希氏杆菌的拉丁学名为 echerichiacoli。
4、选择题1)RobertKoch 的贡献在于:(AD)多选A.建立了微生物学研究基本技术 C.观察发现了微生物的活动 B.发明了显微镜 D.证实病害的病原学说2)下面表述正确的是:大肠埃希氏杆菌 Echerichiacoli。
()多选A.Echerichia 代表属名 C.coli 代表种名 B.coli 代表属名D.Echerichia 代表种名 3)属于LouiPateur 的贡献的有();多选A.证明微生物活动 C.提出了判断病原物的原则 B.否定微生物自然发生学说 D.创立了病原学说4)不属于Leeuwenhock (1632~1723)的贡献的是:()多选 A.观察发现了微生物 C.建立了微生物培养技术 B.创立了病原学说 D.发现了生物固氮 5、问答题1)原核微生物与真核微生物的区别 2)简述微生物的特点。
第一章习题答案一. 名词解释1.芽孢:某些细菌在其生长发育后期,在细胞内形成的一个圆形或椭圆形、壁厚抗逆性强的休眠构造。
2.糖被:包被于某些细菌细胞壁外的一层厚度不定的透明胶状物质,成分是多糖或多肽。
3.静息孢子:是一种长期长在细胞链中间或末端的形大、壁厚、色深的休眠细胞,富含贮藏物,能抵御干旱等不良环境。
4.菌落:将单个细菌细胞或一小堆同种细胞接种到固体培养基表面,当它占有一定的发展空间并处于适宜的培养条件时,该细胞就会迅速生长繁殖并形成细胞堆,此即菌落。
5.基内菌丝:当孢子落在固体基质表面并发芽后,就不断伸长、分枝并以放射状向基质表面和内层扩展,形成大量色浅、较细的具有吸收营养和排泄代谢废物功能的基内菌丝6.孢囊:指固氮菌尤其是棕色固氮菌等少数细菌在缺乏营养的条件下,由营养细胞的外壁加厚、细胞失水而形成的一种抗干旱但不抗热的圆形休眠体,一个营养细胞仅形成一个孢囊。
7.质粒:指细菌细胞质内存在于染色体外或附加于染色体上的遗传物质,绝大多数由共价闭合环状双螺旋DNA分子构成。
8.微生物:是指肉眼看不见或看不清楚的微小生物的总称。
包括细菌、放线菌、霉菌、酵母菌和病毒等大类群。
9.鞭毛:是从细菌质膜和细胞壁伸出细胞外面的蛋白质组成的丝状结构,使细胞具有运动性。
10.菌落:将单个或一小堆同种细胞接种到固体培养基表面,经培养后会形成以母细胞为中心的一堆肉眼可见的、有一定形态构造的子细胞集团称菌落。
11.枯草芽孢杆菌Bacillus subtilis12.鞭毛Flagella13.Actinomyces 放线菌14荚膜:有些细菌在生命过程中在其表面分泌一层松散透明的粘液物质,这些粘液物质具有一定外形,相对稳定地附于细胞壁外面,称为荚膜。
二. 填空1 芽孢的结构一般可分为孢外壁、芽孢衣、皮层和核心四部分.2 细菌的繁殖方式主要是裂殖,少数种类进行芽殖。
3 放线菌产生的孢子有有性孢子和无性孢子两种。
4 细菌的核糖体的沉降系数是70s.5 细菌的鞭毛有三个基本部分,基体,钩形鞘,和鞭毛丝6 微生物修复受损DNA的作用有光复活作用和切除修复.7 基因工程中取得目的基因的途径有 3 条。
酵母菌的培养特征1、在固体培养基上的培养特征将酵母菌接种在固体培养基上,给予合适的环境条件,经过培养一定时间后,在固体培养基表面上长出表面湿润而光滑的酵母菌落。
其颜色通常有白色和红色(如黏红酵母),有黏性。
培养时间久后菌落表面转为干燥,并呈褶皱状,菌落大小和细菌差不多。
2.在液体培养基中的生长特征有的酵母菌在液面上形成薄膜,有的酵母菌产生沉淀沉在瓶底,发酵型的酵母菌产生二氧化碳气体是培养基表面充满泡沫。
细菌在固体培养基、液体培养基和半固体培养基上的生长特性1、固体培养基标本或液体培养物划线接种到固体培养基表面后,单个细菌经分裂繁殖可形成一个肉眼可见的细菌集团,称为菌落(colony)。
(1)菌落的形态特征:大小、形状(露滴状、圆形、菜花样、不规则等)、突起或扁平、凹陷、边缘(光滑、波形、锯齿状、卷发状等)、颜色(红色、灰白色、黑色、绿色、无色、黄色等)、表面(光滑、粗糙等)、透明度(不透明、半透明、透明等)和粘度等。
据细菌菌落表面特征不同,可将菌落分为3型:①光滑型菌落(S型菌落):菌落表面光滑、湿润、边缘整齐,新分离的细菌大多呈光滑型菌落。
②粗糙型菌落(R型菌落):菌落表面粗糙、干燥、呈皱纹或颗粒状,边缘大多不整齐。
R型菌落多为S型细菌变异失去菌体表面多糖或蛋白质形成。
R型细菌抗原不完整,毒力和抗吞噬能力都比S型细菌弱。
但也有少数细菌新分离的毒力株就是R型,如炭疽孢杆菌、结核分枝菌等。
③粘液型菌落(M型菌落):菌落粘稠、有光泽、似水珠样。
多见于厚荚膜或丰富粘液层的细菌、结核杆菌等。
(2)菌落溶血特征:菌落溶血有下列3种情况:①α溶血:又称草绿色溶血,菌落周围培养基出现1~2mm的草绿色环,为高铁血红蛋白所致;②β溶血:又称完全溶血,菌落周围形成一个完全清晰透明的溶血环,是细菌产生的溶血素使红细胞完全溶解所致;③γ溶血:即不溶血,菌落周围的培养基没有变化,红细胞没有溶解或缺损。
(3)色素:有些细菌产生水溶性色素,使菌落和周围的培养基出现绿色、金黄色、白色、橙色、柠檬色等颜色,产生的色素有水溶性或脂溶性。
真核与原核的区别【主要是看有无成形的细胞核.】以下是具体分析:原核细胞 procaryotic cell 指没有核膜而只有一个构成核样体的染色体且不进行有丝分裂的细胞。
这种细胞不发生原生质流动,观察不到变形虫样运动。
鞭毛呈单一的结构。
光合作用、氧化磷酸化在细胞膜进行,没有叶绿体、线粒体等细胞器的分化。
由这种细胞构成的生物,称为原核生物,它包括所有的细菌和蓝藻类。
即构成细菌和蓝藻等低等生物体的细胞。
它没有真正的细胞核,只有原核或拟核,所含的一个基因带(或染色体),是环状双股单一顺序的脱氧核糖核酸分子,没有组蛋白与之结合无核仁,缺乏核膜。
外层原生质中有70 S核糖体与中间体,缺乏高尔基体、内质网、线粒体和中心体等。
转录和转译同时进行,四周质膜内含有呼吸酶。
无有丝分裂和减数分裂,脱氧核糖核酸复制后,细胞随即分裂为二。
真核细胞 eukaryotic cell 指含有真核(被核膜包围的核)的细胞。
其染色体数在一个以上,能进行有丝分裂。
还能进行原生质流动和变形运动。
而光合作用和氧化磷酸化作用则分别由叶绿体和线粒体进行。
除细菌和蓝藻植物的细胞以外,所有的动物细胞以及植物细胞都属于真核细胞。
由真核细胞构成的生物称为真核生物。
在真核细胞的核中,DNA与组蛋白等蛋白质共同组成染色体结构,在核内可看到核仁。
在细胞质内膜系统很发达,存在着内质网、高尔基体、线粒体和溶酶体等细胞器,分别行使特异的功能。
原核细胞的形状常与细胞外沉积物(如细胞壁)有关,如细菌细胞呈棒形,球形,弧形、螺旋形等不同形状。
单细胞的动物或植物形状更复杂一些,如草履虫像鞋底状,眼虫呈梭形且带有长鞭毛,钟形虫呈袋状。
一般说来,真核细胞的体积大于原核细胞,卵细胞大于体细胞。
原核生物是由原核细胞组成的生物,包括蓝细菌、细菌、古细菌、放线菌、立克次氏体、螺旋体、支原体和衣原体等。
草履虫、酵母菌、衣藻、变形虫、都属于真核生物。
高中生物课本中已经说得很明确,动植物都属于真核生物,还包括真菌。
1、G+菌和G-菌细胞壁结构和组成上有何差别,以及与革兰氏染色反应的关系。
结构:G+菌细胞壁厚,仅1层;G-菌细胞壁薄,有多层。
组成:G+菌细胞壁含有肽聚糖且含量高、磷壁酸;G-菌细胞壁薄含有肽聚糖但含量低,不含磷壁酸,但含有脂多糖、膜蛋白等。
与革兰氏染色反应的关系:G+菌细胞壁含有肽聚糖且含量高,经酒精脱色时,失水网孔变小,能够阻止结晶紫和碘复合物被洗脱;而G-菌细胞壁的外膜易被酒精洗脱,内层肽聚糖层薄,不能够阻止结晶紫和碘复合物被洗脱。
2、什么是糖被,其成分是什么,有何功能。
成分:多糖和糖蛋白;功能:保护作用,贮藏养料,作为透性屏障和离子交换系统,表面附着作用,细菌间的信息识别作用,堆积代谢废物;3、试述一位著名的微生物学家对微生物学的主要贡献?你从中有何启发。
巴斯德:发酵的实质;否定了生物的自然发生说;巴斯德消毒法;疫苗生产法。
启发:勇于实践,实践-理论-实践。
勤奋。
不畏权威。
4、简述原核微生物和真核微生物的主要区别?原核微生物:是指一大类细胞核无核膜包裹,只有称为核区的裸露的DNA的原始的单细胞生物,包括古细菌和真细菌两大类。
真核微生物:是指细胞核具有核膜,能进行有丝分裂,细胞质中存有线粒体或同时存在叶绿体等多种细胞器的微生物,包括真菌、微藻类、原生动物、地衣等。
原核微生物与真核微生物的主要区别:比较项目真核微生物原核微生物细胞大小较大(通常直径>2微米)较小若有壁,其主要成分纤维素、几丁质多数为肽聚糖细胞膜中甾醇有无(支原体例外)细胞膜含呼吸和光组分无有细胞器有无鞭毛结构如有则粗而复杂(9+2型)如有则细而简单核膜有无DNA含量底(约5%)高(约10%)组蛋白有少核仁有无染色体数一般大于1 一般为1有丝分裂有无减数分裂有无鞭毛运动方式挥鞭毛旋转马达式遗传重组方式有性生殖、准性生殖转化、转导、接合繁殖方式有性、无性等多种一般为无性(二等分裂)5、试述革兰氏染色方法步骤及原理。
简要方法步骤:涂片→干燥→冷却→结晶初染→碘液媒染→酒精脱色→番红复染→干燥→镜检。
原核生物与真核生物主要差异:1•有无真核(nucleolus),原核没有,真核有。
2•有无细胞器。
3•核糖体,原核生物的为70S,而真核生物的为80S。
原核生物(广义的细菌),是指一类细胞核无核膜包裹,只存在称作核区的裸露DNA的原始单细胞生物,包括真细菌和古生菌两大类。
根据外表特征,可以把它们分为细菌(狭义),放线菌,蓝细菌,支原体,立克氏体和衣原体。
细菌的一般形态基本形态:球状,杆状,螺旋状球状:细胞个体呈现球形或椭圆形,不同种的球菌在细胞分裂时会形成不同的空间排列方式,常被作为分类依据。
杆状:细胞呈杆状或圆柱形,一般其粗细(直径)比较稳定,而长度则常因培养时间、培养条件不同而有较大变化。
杆状细菌的排列方式常因生长阶段和培养条件而发生变化,一般不作为分类依据。
假单胞菌:不行成芽孢,革兰氏染色阴性。
这是一群营养需求简单的化能有机营养细菌。
假单胞菌群分布广泛,在土壤和水体中具有重要生态意义,能够分解动植物材料中许多可溶性化合物。
分支杆菌:分支杆菌不同于放线菌,其菌丝容易分裂成杆状或球状体,分支杆菌好氧,接触酶阳性。
芽孢杆菌属是芽孢杆菌目中数量很大的一个群体。
革兰氏阳性杆菌,产芽孢,化能异养,周生鞭毛,能运动。
好氧,厌氧或兼性厌氧,接触酶阳性。
梭菌:厌氧,并能形成抗高温芽孢,是引起食品甚至罐头食品腐坏的主因,破伤风梭菌引起破伤风。
螺旋状:弧菌:大多数为端生鞭毛,有些种为周生鞭毛。
氧化酶阳性,弧菌能够发酵,兼性厌氧。
菌体只有一个弯曲,其程度不足一圈,形似“C”字或逗号,鞭毛偏端生。
螺菌:螺旋形弯曲杆状,端生鞭毛运动。
菌体回转如螺旋,螺旋数目和螺距大小因种而异。
鞭毛二端生。
细胞壁坚韧,菌体较硬。
螺旋体:菌体细长,柔韧,弯曲成螺旋状而得名。
螺旋体靠轴丝伸缩运动,无鞭毛。
不产生芽孢,裂殖。
属于化能异养型,有腐生和寄生两大类。
轴丝位于细胞壁和细胞膜之间,轴丝的超微结构和化学组成类似于一般细菌的鞭毛,轴丝和原生质柱状体由多层膜结构的外鞘包被。
真核与原核微生物的区别work Information Technology Company.2020YEAR酵母菌的培养特征1、在固体培养基上的培养特征将酵母菌接种在固体培养基上,给予合适的环境条件,经过培养一定时间后,在固体培养基表面上长出表面湿润而光滑的酵母菌落。
其颜色通常有白色和红色(如黏红酵母),有黏性。
培养时间久后菌落表面转为干燥,并呈褶皱状,菌落大小和细菌差不多。
2.在液体培养基中的生长特征有的酵母菌在液面上形成薄膜,有的酵母菌产生沉淀沉在瓶底,发酵型的酵母菌产生二氧化碳气体是培养基表面充满泡沫。
细菌在固体培养基、液体培养基和半固体培养基上的生长特性1、固体培养基标本或液体培养物划线接种到固体培养基表面后,单个细菌经分裂繁殖可形成一个肉眼可见的细菌集团,称为菌落(colony)。
(1)菌落的形态特征:大小、形状(露滴状、圆形、菜花样、不规则等)、突起或扁平、凹陷、边缘(光滑、波形、锯齿状、卷发状等)、颜色(红色、灰白色、黑色、绿色、无色、黄色等)、表面(光滑、粗糙等)、透明度(不透明、半透明、透明等)和粘度等。
据细菌菌落表面特征不同,可将菌落分为3型:①光滑型菌落(S型菌落):菌落表面光滑、湿润、边缘整齐,新分离的细菌大多呈光滑型菌落。
②粗糙型菌落(R型菌落):菌落表面粗糙、干燥、呈皱纹或颗粒状,边缘大多不整齐。
R型菌落多为S型细菌变异失去菌体表面多糖或蛋白质形成。
R型细菌抗原不完整,毒力和抗吞噬能力都比S型细菌弱。
但也有少数细菌新分离的毒力株就是R型,如炭疽孢杆菌、结核分枝菌等。
③粘液型菌落(M型菌落):菌落粘稠、有光泽、似水珠样。
多见于厚荚膜或丰富粘液层的细菌、结核杆菌等。
(2)菌落溶血特征:菌落溶血有下列3种情况:①α溶血:又称草绿色溶血,菌落周围培养基出现1~2mm的草绿色环,为高铁血红蛋白所致;②β溶血:又称完全溶血,菌落周围形成一个完全清晰透明的溶血环,是细菌产生的溶血素使红细胞完全溶解所致;③γ溶血:即不溶血,菌落周围的培养基没有变化,红细胞没有溶解或缺损。
原核微生物和真核微生物的区别:原核微生物的核很原始,发育不全只是DNA链高度折叠形成的一个核区,没有核膜,核质裸露,与细胞质没有明显界限,叫拟核或似核。
原核微生物没有细胞器,只有由细胞质膜内陷形成的不规则的泡沫结构体系。
真核微生物有发育完好的细胞核,内有核仁和染色质,其有核膜将细胞核和细胞质分开,使两者有明显的界限,其有高度分化的细胞器,进行有丝分裂病毒的繁殖过程:1吸附:大肠杆菌T系噬菌体以它的尾部末端吸附到敏感细胞表面上某一特定的化学成分2侵入:尾部借助尾丝的帮助,固着在敏感细胞的细胞壁上,尾部的酶水解细胞壁的肽聚糖形成小孔,尾鞘消耗A TP获得能量而收缩,将尾髓压入宿主细胞内,尾髓将头部的DNA注入宿主细胞内,蛋白质外壳留在宿主细外,此时,宿主细胞壁上的小孔被修复3复制与聚集:噬菌体侵入宿主细胞后,立即引起宿主的代谢改变,抑制宿主细胞内的DNA、RNA和蛋白质合成,宿主的核酸不能按自身的遗产特性复制和合成蛋白质,而由噬菌体核酸所携带的遗传信息控制,借用宿主细胞的合成机构和核糖体mRNA tRNA A TP 及酶等复制核酸,进而合成噬菌体的蛋白质,核酸和蛋白质聚集合成新的噬菌体,这过程叫装配4宿主细胞裂解和成熟噬菌体粒子的释放:噬菌体粒子成熟后,噬菌体的水解酶水解宿主细胞壁而使宿主细胞裂解,噬菌体被释放出来。
烈性噬菌体:侵入宿主细胞后,随即引起宿主细胞裂解的噬菌体温和噬菌体:侵入宿主细胞后,其核酸附着并整合在宿主染色体上,和宿主的核酸同步复制,宿主细胞不裂解而继续生长。
菌胶团:有些细菌由于其遗传特性决定,细菌之间按一定的排列方式互相黏集在一起,被一个公共荚膜包围形成一定形状的细菌集团。
鞭毛:具有鞭毛的细菌都能运动,不具鞭毛的细菌一般不能运动。
鞭毛靠细胞质膜上的A TP 酶水解A TP时释放的能量而运动。
菌落:由一个细菌繁殖起来的,由无数细菌组成具有一定形态特征的细菌集团。
按生长情况判断细菌呼吸类型:如果细菌在培养基的表面及穿刺线的上部生长者为好氧菌,沿穿刺线自上而下生长者为兼性厌氧菌或兼性好氧菌,如果只在穿刺线的下部生长者为厌氧菌。
酵母菌的培养特征
1、在固体培养基上的培养特征
将酵母菌接种在固体培养基上,给予合适的环境条件,经过培养一定时间后,在固体培养基表面上长出表面湿润而光滑的酵母菌落。
其颜色通常有白色和红色(如黏红酵母),有黏性。
培养时间久后菌落表面转为干燥,并呈褶皱状,菌落大小和细菌差不多。
2.在液体培养基中的生长特征
有的酵母菌在液面上形成薄膜,有的酵母菌产生沉淀沉在瓶底,发酵型的酵母菌产生二氧化碳气体是培养基表面充满泡沫。
细菌在固体培养基、液体培养基和半固体培养基上的生长特性
1、固体培养基
标本或液体培养物划线接种到固体培养基表面后,单个细菌经分裂繁殖可形成一个肉眼可见的细菌集团,称为菌落(colony)。
(1)菌落的形态特征:
大小、形状(露滴状、圆形、菜花样、不规则等)、突起或扁平、凹陷、边缘(光滑、波形、锯齿状、卷发状等)、颜色(红色、灰白色、黑色、绿色、无色、黄色等)、表面(光滑、粗糙等)、透明度(不透明、半透明、透明等)和粘度等。
据细菌菌落表面特征不同,可将菌落分为3型:
①光滑型菌落(S型菌落):菌落表面光滑、湿润、边缘整齐,新分离
的细菌大多呈光滑型菌落。
②粗糙型菌落(R型菌落):菌落表面粗糙、干燥、呈皱纹或颗粒状,
边缘大多不整齐。
R型菌落多为S型细菌变异失去菌体表面多糖或蛋白质形成。
R型细菌抗原不完整,毒力和抗吞噬能力都比S型细菌弱。
但也有少数细菌新分离的毒力株就是R型,如炭疽孢杆菌、结核分枝菌等。
③粘液型菌落(M型菌落):菌落粘稠、有光泽、似水珠样。
多见于厚
荚膜或丰富粘液层的细菌、结核杆菌等。
(2)菌落溶血特征:
菌落溶血有下列3种情况:
①α溶血:又称草绿色溶血,菌落周围培养基出现1~2mm的草绿色环,
为高铁血红蛋白所致;
②β溶血:又称完全溶血,菌落周围形成一个完全清晰透明的溶血环,
是细菌产生的溶血素使红细胞完全溶解所致;
③γ溶血:即不溶血,菌落周围的培养基没有变化,红细胞没有溶解或
缺损。
(3)色素:有些细菌产生水溶性色素,使菌落和周围的培养基出现绿色、金黄
色、白色、橙色、柠檬色等颜色,产生的色素有水溶性或脂溶性。
(4)气味:某些细菌在培养基中生长繁殖后可产生特殊气味,如铜绿假单胞菌
(生姜气味)、变形杆菌(巧克力烧焦的臭味)、厌氧梭菌(腐败的恶臭味)、白色假丝酵母菌(酵母味)和放线菌(泥土味)等。
2.液体培养基
细菌在液体培养基中有3种生长现象:大多数细菌在液体培养基生长繁殖后呈均匀混浊;少数链状排列的细菌如链球菌、炭疽芽胞杆菌等则呈沉淀生长;枯草芽胞杆菌、结核分枝杆菌和铜绿假单胞菌等专性需氧菌一般呈表面生长,常形成菌膜。
3.半固体培养基
半固体培养基主要用于细菌动力试验,有鞭毛的细菌除了沿穿刺线生长外,在穿刺线两侧也可见羽毛状或云雾状混浊生长。
无鞭毛的细菌只能沿穿刺线呈明显的线状生长,穿刺线两边的培养基仍然澄清透明,为动力试验阴性。