[nsfc]功能导向大面积有序纳米结构可控制备和应用基本科学问题研究
- 格式:doc
- 大小:93.53 KB
- 文档页数:43
化学研究的前沿领域随着科技的进步和人类对于世界的探求,化学作为一门重要的自然科学,不断迎来新的前沿领域。
本文将介绍几个当前化学研究的前沿领域,并探讨其对人类社会和生活的重要性。
一、纳米技术纳米技术是指在纳米尺度上进行研究和应用的技术,纳米级材料具有与大尺度材料不同的性质和特点。
纳米技术已经广泛应用于制药、材料科学和电子产业等领域,在药物传递、能源储存和信息存储等方面具有重要的应用潜力。
例如,纳米材料可以用于制造更高效的太阳能电池,从而解决能源危机问题;纳米级药物可以精确治疗癌症,减少对健康细胞的损害。
纳米技术的发展将为人类社会和生活带来革命性的改变。
二、功能性配位聚合物功能性配位聚合物是由金属离子或金属离子簇引发的化学反应制得的高分子化合物。
这种材料具有多样的结构和性能,可以应用于催化剂、传感器和储能等领域。
例如,一些功能性配位聚合物可以作为高效的催化剂用于环境修复和能源转换过程;某些配位聚合物可以作为优秀的传感器用于检测环境中的污染物和生物分子。
功能性配位聚合物的研究使得化学合成变得更加可控和高效,为解决环境问题和能源危机提供了新思路。
三、生物催化生物催化是指利用酶和其他生物体内产生的活性分子对化学反应进行加速或选择性催化的过程。
与传统的化学催化方法相比,生物催化具有更高的选择性和效率。
生物催化已经应用于生产化学品、制药和绿色化学等领域。
例如,酶催化可以减少化学反应使用的溶剂量、能耗和废弃物产生,从而减少对环境的污染;生物催化还可以合成一些传统化学方法难以合成的高经济和高附加值化合物。
生物催化的研究将促进化学工业的绿色化和可持续发展。
四、可持续化学可持续化学是指开发和推广对环境友好、资源节约和经济可行的化学过程和化学产品。
随着人类对环境保护和可持续发展的要求不断增加,可持续化学成为当前化学研究的重要方向。
在可持续化学领域,研究人员致力于开发具有低碳排放、高效能使用和可循环利用的新型材料和化学工艺。
化工进展Chemical Industry and Engineering Progress2024 年第 43 卷第 1 期2023年度国家自然科学基金委员会化学工程与工业化学领域科学基金项目申请与评审工作综述王天富1,2,周晨1,张国俊1(1 国家自然科学基金委员会化学科学部,北京 100085;2 上海交通大学环境科学与工程学院,上海 200240)摘要:总结了2023年度国家自然科学基金委员会化学工程与工业化学(B08)领域科学基金各类项目的申请、受理和资助概况,对B08下属16个二级代码的各类项目申请与资助情况进行了分析,为下一年度国家的项目申报提出了建议。
关键词:国家自然科学基金;化学工程与工业化学;申请;受理;资助中图分类号:TQ0 文献标志码:A 文章编号:1000-6613(2024)01-0560-05National Natural Science Foundation of China ’s fund applications andgrants in 2023: A review based on Chemical Engineering &Industrial ChemistryWANG Tianfu 1,2,ZHOU Chen 1,ZHANG Guojun 1(1 Department of Chemical Sciences, National Natural Science Foundation of China, Beijing 100085, China;2School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)Abstract: A summary of National Natural Science Foundation of China (NSFC)’s fund applications, grants and funding in 2023 was provided about the discipline of Chemical Engineering & Industrial Chemistry (B08), where the fund applications and grants for the 16 secondary application codes of B08 were provided, and the statistics for a series of funded programs were detailed, giving suggestions for proposal applications in the next year.Keywords: National Natural Science Foundation of China; Chemical Engineering & Industrial Chemistry; applications; grants; funding2023年是全面贯彻落实党的二十大精神的开局之年,是党领导人民全面建成社会主义现代化强国、向第二个百年奋斗目标进军新征程的重要一年。
2024年硕士点纳米科学与技术纳米科学与技术是一门研究和应用物质的微小尺度特性和现象的学科。
随着科技的不断发展,纳米科学和纳米技术已经成为当今世界的一个热门领域。
在2024年,纳米科学与技术的研究和应用将更加突出,给我们带来更多的机遇和挑战。
首先,随着纳米科学和纳米技术的快速发展,我们将迎来更多的创新和发现。
纳米尺度的特性使得物质表现出与宏观世界完全不同的性质和行为。
通过探索纳米尺度下的物质行为,我们可以设计和制造出具有高强度、高导电性、高磁性等优异性能的新材料。
这将在许多领域带来突破性的应用,如电子、光电子、生物医学、能源存储等领域。
其次,纳米科学与技术将有助于解决一些重大的全球性问题。
例如,纳米技术可以用于提高能源利用效率,减少能源消耗和污染。
通过纳米材料的设计和制备,我们可以制造出高效的太阳能电池、高容量的锂离子电池等,从而推动清洁能源的发展。
此外,纳米技术还可以应用于水处理、环境修复等方面,帮助改善环境质量,保护生态平衡。
除此之外,纳米科学和技术也将推动医学和生物科学的进步。
纳米技术在生物医学领域的应用已经取得了一些重要的突破,如纳米药物载体、纳米影像技术等。
这些技术的应用使得药物的输送更加精确、高效,同时减少了对健康组织的损害。
纳米技术还可以用于细胞工程、组织工程等方面,为医学研究和治疗提供新的手段和思路。
然而,纳米科学与技术的发展也带来了一些新的挑战和风险。
首先,纳米材料的制备和应用需要高超的技术和设备,这对研究人员提出了更高的要求。
其次,纳米材料的安全性和生态风险也需要引起关注。
纳米材料因其特殊的性质,可能对环境和生物体产生潜在的影响。
因此,我们需要在推动纳米科学和技术的发展的同时,加强相关的安全评估和监管。
总之,纳米科学与技术将在2024年迎来更加繁荣的发展。
通过纳米尺度下的探索和创新,我们将能够设计和制造出更多具有突出性能的新材料,推动清洁能源、医学和生物科学的进步。
然而,我们也需要认识到纳米科学与技术所带来的挑战和风险,并采取有效的措施来解决这些问题。
催化化学前沿领域催化化学前沿领域创作:在催化化学的前沿领域,科学家们不断探索着新的方法和技术,以改善能源转换效率、减少环境污染和提高化学反应的选择性。
催化剂作为催化反应中的关键角色,发挥着至关重要的作用。
催化化学的研究一直以来都是一个复杂而又具有挑战性的领域。
科学家们致力于寻找新的催化剂,以提高反应速率和选择性。
其中一种研究方向是基于金属有机骨架材料的催化剂。
这种材料以金属离子为中心,通过有机配体与其连接形成稳定的结构。
这种结构不仅具有高度可控性,还具有可调控的孔径和表面活性位点,从而能够实现高效催化反应。
另一个前沿领域是基于纳米催化剂的研究。
纳米催化剂具有高比表面积和丰富的表面活性位点,可以提高反应速率和选择性。
科学家们通过调控纳米催化剂的形貌、组成和结构,实现了对反应活性的精确控制。
此外,利用纳米催化剂还可以实现对反应的原位监测和调控,从而提高催化反应的效率和可控性。
近年来,人工智能在催化化学中的应用也成为研究的热点之一。
通过机器学习和深度学习等技术,科学家们可以快速筛选大量的催化剂,并预测其催化性能。
这种基于人工智能的方法不仅能够加快新催化剂的发现速度,还可以降低实验成本和提高催化反应的效率。
除了上述的研究方向,催化化学的前沿领域还涉及到催化剂的可持续性和环境友好性。
科学家们致力于开发更加环境友好的催化剂,以减少对稀有金属的依赖,并实现催化反应的可持续发展。
催化化学的前沿领域充满了无限的可能性和挑战。
科学家们通过不懈努力和创新思维,不断推动着催化化学的发展,为人类社会的可持续发展做出了重要贡献。
相信随着科技的进步和研究的深入,催化化学的前沿将会呈现出更加精彩的景象。
国家自然科学基金面上和青年项目
国家自然科学基金面上项目和青年项目是国家自然科学基金委(NSFC)对支持基础性、前瞻性、应用性研究计划的定向资助。
项目由“面上项目”和“青年项目”组成,为国家
自然科学基金的两大重要分类。
面上项目是指NSFC支持重大、前瞻性和创新性研究,以及进行创新活动的项目,它
重视学术发展的长远性,容许在研究初期申请者需要较多的时间来建立原理、技术架构和
培养项目团队,但它要求较高水平的研究成果,并在研究期限内取得成果。
青年项目支持新兴学科及重要前沿问题的研究,支持年轻学者和青年教师进行高水平
研究与创新活动,支持具有重要学术特色和社会意义的问题调查,支持新兴领域科技探索
性研究,以及偏专业化研究和技术研发等,旨在培育新一代自然科学家和技术人才。
国家自然科学基金面上项目和青年项目的设置有助于推动我国科研创新,推动国家及
社会经济走上可持续发展之路。
NSFC实施自然科学基金面上项目和青年项目,就是为了发挥科研活动的引领作用,支持我国科学家的创新研究,以建立国际科学创新成果和技术大
国的实力。
项目名称:纳米结构材料的程序化组装首席科学家:宋卫国中国科学院化学研究所起止年限:2009.1至2013.8依托部门:中国科学院一、研究内容(1)赋予纳米结构空间各向异性。
各向异性的纳米结构单元间的相互作用力是控制它们空间组装的前提,也是程序化组装的基础。
为此我们将系统地研究通过纳米结构单元的尺寸,形貌和表面化学功能调控,选区修饰,不对称粒子等手段引入空间各项异性的方法,可控地赋予纳米结构在不同空间区域的各向异性。
发展制备和表征单分散各向异性纳米结构单元的技术。
(2)纳米结构单元组装的空间调控:利用作用于纳米结构单元的空间各向异性,研究如何可控地将不同的纳米结构单元组装为初级结构;调控组装体中的组分序列和空间构型;设计和构建异质界面,在纳米结构单元之间引入对外界环境刺激敏感的生物或合成大分子;控制纳米结构组装体作为一个整体的性能。
(3)纳米结构单元的动态组装与过程调控:通过精细地调控在纳米结构单元之间的排斥力和吸引力的平衡,在纳米结构单元间始终保持一个可控且较强的排斥力,实现纳米结构单元的组装的动态化。
此外,利用各种界面作模板诱导纳米结构的组装,界面的动态特征也将用于强化实现纳米结构的动态组装。
利用外加场(光,电,磁),对纳米微粒的组装在过程乃至时间上实施调控。
将通过空间受控组装制得的初级纳米结构,程序化组装为多维度多层次的纳米结构组装体。
在特定区域引入特定组装功能,将其可控集成在器件单元上;将不同纳米结构组装体集成在一起,搭建多级多层次,功能可调,宏观可用的功能材料。
(4)研究组装过程与组装体的能量传递和物质传输:发展实时监控纳米组装单元和各级组装体的原理和方法。
通过对纳米结构的组装过程的动力学和热力学的研究,从纳米结构单元层面上认识组装过程中物质能量转化与界面行为,获得其中物质能量转化与界面行为的基本规律。
通过组装体的结构,调控在组装体中物质传输和能量传递,以适应不同应用过程的需要。
借鉴超分子合成和组装以及生物大分子程序化组装过程中的能量传递和物质传输规律,发展纳米层次的组装物理化学。
江雷:“十五”863纳米材料专项成果“十五”863纳米材料专项在纳电子材料与器件技术,重大疾病的诊断与治疗,环境友好材料,新型能源材料与技术,纳米特种功能材料等国际高技术竞争的热点领域均取得创新性突破.部分成果步入产业化前夜.江雷863计划纳米科技专项总体专素组组长江雷:”十五”863纳米材料专项成果“十五”863计划纳米材料专项在立项时强调”纳米效应”和”终端产品”,引导纳米材料产业化发展.在广大科研人员4年不懈努力和艰苦奋斗下,纳米材料专项取得了令人瞩目的成就,取得了一大批具有世界水平的研究成果.突破并掌握了--:~LL关键技术.缩小了同世界先进水平的差距.据不完全统计,”十五”期间纳米材料专项组申请国内外专利650多项.发表论文1890多篇.同时.在纳米技术应用上取得一系列新突破,对产业发展有两个重要的影响:对高新技术企业而言,纳米技术的突破往往伴随着核心技术自主知识产权,可以提高这些企业在国际上的竞争能力与市场开拓能力,形成发展的新增长点,使我国在该领域的国际高技术竞争中处于有利的战略地位:对传统企业而言+纳米技术辐射带动一大批传统企业(如化工,建材,轻工,冶金等)的技术改造.通过对传统材料改性.增强传统企业的活力,提高了产品市场竞争力.培育高新技术产业新生长点21世纪世界经济和社会的发展对纳米材料技术有着巨大的需求.纳米材料技术对人类的健康,财富和安全产生的重大影响,将超过2O世纪的抗生素,集成电路和人造聚合物对人类的影响.在一些关键的高技术领域,纳米材料技术具有着巨大的市场冲击力.瞄准这一目标,”十五”863纳米材料专项在纳电子材料与器件技术,重大疾病的诊断与治疗,环境友好材料,新型能源材料与技术,纳米特种功能材料等国际高技术竞争的热点领域均取得创新性突破,部分成果步入产业化前夜.肝炎,艾滋病快速诊断技术乙型肝炎和艾滋病是我国当前流行最为广泛,危害性最严重的重大传染病.据市场调查,国内每年对乙瓢日斟产业N0.12006肝和艾滋病检测的需求量在1亿人份以上.现行医院等医疗单位检测方法需要专门仪器及专业技术人员,其检测时间长,检测费用高,不能满足当前对乙肝和艾滋病广泛筛查的需求. 由云南大学,吉林大学及昆明云大生物技术有限公司共同承担的”乙肝, 艾滋病检测用纳米晶免疫试纸”课题采用自主研制的新型纳米晶,来提升免疫层析检测技术.使灵敏度较传统方法有极大提高,并实现了定量检测,准确率在99%以上;改性金及磁性HlV一1/2抗体诊断试纸的测试性能达到SFDA标准血清盘的检测标准;磁性乙肝诊断试纸的灵敏度可达0.1ng/ml,超过SFDA规定的检测标准.通过本课题的实施,已形成年产3OOO万条乙肝诊断试纸的生产能力.该课题的完成,将为重大传染病,癌症,心血管等疾病,畜禽检疫,食品安全,环境保护及其它工农业质量检测领域提供一类方便快捷,准确廉价的新型检测方法,进而产生良好的社会及经济效益.血液快速筛查用纳米生物传感器诞生由中国科学院电子学研究所承担的国家863计划课题”肝炎快速检测用纳米生物传感器”成功地研制出具有完全自主知识产权的体积,J,,检测速度快,操作简单直观,携带方便等优点的纳米生物传感器及其检测仪.并在北京市红十字血液中心等单位进行了应用示范研究.谷丙转氨酶血清/全血测试评估报告的主要技术指标均达到了要求.中国硅衬底半导体照明技术与日,羹三足鼎立由南昌大学承担的863纳米材料专项”ZnO单晶膜上GaN基纳米光电子材料生长及LED器件开发”课题在第一代半导体硅材料上.成功地制备了高质量的具有纳米量子阱结构的第三代半导体GaN材料.突破了焊接转移技术,用此新材料,研制成功成本低廉和可靠性高的光输出功率1~9毫瓦的垂直结构的GaN紫光, 蓝光LED,打破了目前日本日亚公司垄断蓝宝石衬底和美国CREE公司垄断碳化硅衬底半导体照明技术的局面,形成了蓝宝石,碳化硅,硅衬底半导体照明技术方案三足鼎立的局面.在硅衬底上制备GaNLED的生产成本是蓝宝石衬底GaNLED的1 /2,碳化硅衬底GaNLED的1/4.所以硅衬底上GaNLED作为一条新的半导体照明技术路线.具有广泛的发展空间和很强的国际竞争力.目前已经实现了小批量生产,每天产能40万只.拥有自主产权的扫描探针显徽集成系统步入产业化由于科学仪器或设备是进行科学研究必不可少的物质条件,因此发展和研制适用于纳米科学研究和技术开发的实验检测设备非常必要.扫描探针显微镜(SCanningPrObe microscope,SPM)为纳米科技的迅速发展起了重要的推动作用.已成为当前用于纳米科技研发的主要实验检测设备.由中国科学院化学研究所承担的”扫描探针显微集成系统的研制”课题研制成功扫描探针显微集成系统,能够进行电和光或电和力信号的同时检测,实现了扫描隧道和近场光学或扫描力和近场光学同时检测成像,具有反射,透射和荧光等工作模式,并获得一些有意义的结果.结果表明:扫描探针显微集成系统提高了现有探针显微技术的综合检测能力, 能够获取更多信息.拓展了现有技术的应用范围,为在微纳尺度上研究材料结构和性质提供新的系统.此外,研制推出的CSPM3OOO/4OOO系列扫描探针显微镜涵盖了扫描隧道和扫描力显微镜的所有检测成像功能,达到国内同类设备的最好水平,受到用户认可,目前销售额已超过200万元.基于一维纳米材料的纳米传感器获得应用由中国科学院合肥智能机械研究所承担的”基于一维纳米材料的纳AdvancedMaterialsIndustry米传感器及其应用”课题,研制出毒品快速检测仪.检测时间小于2分钟.检测毒品海洛因的灵敏度达到0 5ug/L,比传统的化学传感器要提高二个数量级,为打击贩毒犯罪活动提供一条可靠的检测途径.高容量,大功率锂离子电池用纳米负极材料的研制与开发由中国科学院金属研究所和物理研究所承担的”高容量,大功率锂离子电池用纳米负极材料的研制与开发”课题,以高容量,大功率纳米复合负极材料为主要研发目标,突破了纳米碳管内米碳纤维的控制制备和分散技术,研制出纳米碳管内米碳纤维复合负极材料,有效提高了电池的动力学性能和循环性能,研制负极材料的容量达到600mAh/g,约为现有商品化负极材料的18倍,且500次循环后容量衰减小于20%.目前该课题已经实现了高性能负极材料的产业化,建成高性能负极材料年产11O吨的生产线,其中纳米碳管内米碳纤维年产能2O吨,纳米孔硬碳球年产能6O吨,”元宵结构”负极年产能3O吨.固态纳晶染料敏化太阳能电池中国科学院物理研究所承担的“固态纳晶染料敏化太阳能电池”课题制备的具有自主知识产权的固态电介质纳晶太阳能电池效率达到58%的世界领先水平.制备的准固态电介质的纳晶太阳能电池效率达到6%~7%的世界先进水平,达到了产业化的基本要求.为保护相关的知识产权,共申请了1项国际发明专利和20项国家发明专利.这种新型的纳晶太阳能电池产业化将具有非常大的商业价值和社会价值.改造升级传统产业纳米材料以它奇异的特性.为传统产业的升级换代提供了新的机遇.纳米特种功能及结构材料将促进传统产业升级换代.我国国情决定了发展纳米产业首先应切入传统产业, 特别是一些具有资源优势和市场优势的产业,通过纳米技术调整产品结构,增加科技含量,为实现传统支柱产业的升级换代,促进GDP的增长方面发挥重要作用.目前纳米技术正在与传统产业技术迅速结合,传统产业通过纳米技术的改造,提升了原有产品的性能,提升了企业在市场中的竞争能力,这也是越来越多传统大型企业开始介入纳米领域的直接市场动力.高性能纳米化木器涂料进入水性化时代全世界因生产溶剂型涂料,每年排放到大气中的有机溶-/f0约为1000万吨,浪费了大量的资源,严重污染环境.这些溶剂型涂料又大多应用于家庭和办公环境,造成长时间接触的人因呼吸含有机物的气体而中毒甚至导致癌症.由北京化工大学承担的”纳米化聚丙烯酸系高性能水性木器涂料”课题制备出了耐水性好, 硬度高,漆膜丰满度好的聚丙烯酸系高性能水性木器涂料,主要性能指标达到同类油溶性涂料的国家标准.可挥发性有机物含量极低(6g/L).通过小试,模式和2000IIE/年规模的中试,形成了年产万吨的纳米化聚丙烯酸酯系共聚物乳液的合成和聚丙烯酸系水性木器涂料的制备两项工业化生产技术.该产品可以取代油性涂料广泛用于木器家具的涂装和家庭,宾馆的装修,具有良好的社会和经济效益.水分散环境友好型纳米结构漆实现产业化由吉林大学承担的”水分散环境友好型纳米结构漆”课题所研制出的产品适用于建筑,汽车,铁路,化工等工业用漆.已建成年产1000吨的水分散环境友好型纳米结构工业漆生产线2条,建成年产1000吨的水分散环境友好型纳米结构汽车漆生产线1条,建成年产1万吨水分散环境面衄斟尸业N0.12006友好型纳米结构建筑漆生产线1条. 产品各项指标达到或超过国家相关行业标准,并实现销售收入1102万元. 自修复纳米润滑抗磨损材料一一节能时代的先锋河南大学承担的”自修复纳米润滑抗磨损材料”课题,开发出四类产品,三类实现了产业化,填补了我国高档润滑剂的市场空白,为我国能源的节约做出了重要的贡献.其开发的可分散性SiO纳米粉体(白炭黑) 系列产品和油溶性铜纳米微粒已经达到年产100吨的生产能力.”油溶性三氟化镧纳米微粒”和”油溶性低熔点合金纳米微粒”微粒的平均粒径为5~10纳米和40~60纳米,在润滑基础油等多种有机介质中有良好的分散性,用作润滑油脂的减摩润滑添加剂,在中高负荷下有良好的润滑特性.”昆仑RHY778高性能汽油机油”是含有纳米铜添加剂的5w/30SJ汽油机油,有优良的清净分散性,氧化安定性,抗腐蚀性和磨损修复特性:节约燃油1—3%.目前该产品在试生产和试销售中.纳米金刚石复合涂层技术成功实现了产业化由上海交通大学承担的863纳米材料专项课题”纳米金刚石复合涂层的应用与产业化”采用化学气相沉积法lCVD),在硬质合金拉拔模具内孔和其他耐磨器件表面涂覆纳米金刚石复合涂层,利用纳米金刚石复合涂层技术研究开发出各种涂层拉拔模具和耐磨器件产品.解决了涂层附着力,均匀涂覆和涂层表面光洁度等关键技术问题,产品技术性能达到了国际先进水平,已由上海交友钻石涂层有限公司实现产业化.该产品已在江苏上上电缆集团有限公司,上海华普电缆有限公司等七十几家生产企业应用,为应用企业带来了显着的经济效益,新增产值14亿,利润4510万元, 税收6009万元,节约资金3571万元.纳米特种功能纤维技术提升我国纺织行业的国际竞争力东华大学等单位承担的”高聚物基纳米特种功能纤维及制品”课题为了提升传统化学纤维的舒适性和功能性,利用纳米技术开发高聚物基纳米复合功能材料及纤维材料作为主攻方向.攻克了纳米功能分散相在成纤高聚物基体中纳米尺度化及其均匀分散的难题,形成了热塑性高聚物与无机纳米功能颗粒有效复合及其复合树脂的高温,高压,高剪切细旦化纤维成形和聚丙烯基体中有机分散相的一维纳米化形态结构控制关键技术,首次实现了功能性,舒适性(细旦化)与可纺性的有效统一.该课题研发的系列细旦功能纤维的主要性能和技术指标达到或部分超过国际先进水平.目前已建成3000吨/年功能性纳米复合树脂的加工生产线一条,建成了年产10000吨/年功能性纤维加工能力的研发生产基地.课题研制的导湿功能PP 纤维及其制品,抗菌功能PP和PET纤维等已在上海依福瑞实业有限公司和上海金霞化纤有限公司等企业成功实现产业化,新增产值3.25亿元,新增利税累计达7200多万元.经过”十五”期间的发展洗礼,纳米技术领域已经形成了一支近千人的骨干人才队伍,无论是后备军的培养,还是人才队伍本身建设都有一个良好的发展.纳米材料”十五”期问的发展投入,积淀了很多关键设备, 为”十一五”纳米材料的发展奠定了良好的硬件基础.在”十五”纳米材料专项进行全方位探索布局取得的成果和经验的基础上,建议国家在”十一五”期间,以市场,应用和国家重大战略需求为导向,以面向和促进产业化为重点,针对国际纳米材料技术发展趋势,并结合我国国情,进行分层次布局:(1)加强纳米材料和纳米结构的加工与表征技术和仪器装备研发;(2)重点突破纳米材料和器件应用的关键技术,在安全,健康,能源,环境,资源,农业,信息等重大领域取得多层次的进展;(3)强调纳米科技与电子,生物等科学的融合, 快速提高纳米器件的研发水平,努力赶超国际先进水平.使我国纳米材料与器件技米在国际高技术产业竞争中处于优势的战略地位.嗍AdvancedMaterialsIndustry。
化学科学部“鼓励探索、突出原创”典型案例一、项目背景(重要性、必要性)的阐述硫化学在生命科学、材料科学、天然产物、医药农药、乃至我们日常生活的食品、香精香料中都扮演着举足轻重的作用。
2016年世界排名前200名的零售药中,含硫药物就达到33个。
然而,含硫结构化合物合成领域目前仍存在诸多瓶颈科学问题:(1)硫的孤对电子的强配位性极易将金属毒化;(2)硫的多氧化态导致反应可控性差;(3)硫的高活性使得体系兼容性低。
这些都严重制约着硫化学的发展和应用。
二、项目原创性(从无到有)的阐述该项目针对以上科学挑战,从共轭效应、电子效应、以及面具张力三个方面考虑,设计稳定易转化且无臭的双边过硫试剂,实现从无到有。
把原本毒化金属、挥发恶臭、氧化不兼容的巯基硫源转变成无臭稳定、绿色安全的无机硫盐,同时实现“从无机向有机”多样性功能转化。
传统非对称过硫化合物的构建方法,都是从构建S-S 键出发,这必然需要两个反应物都引入硫原子,大大降低了原子经济性和步骤经济性,同时巯基的起始原料取代会带来一系列兼容与环保问题。
虽然我们前期的单边过硫试剂“面具效应”策略为解决以上问题提供了可能性,但还存在以下问题:无法实现“两边”同时灵活改变,构建非对称过硫;无法实现四硫结构的构建(单边过硫最多只能实现三硫结构构建);无法实现环状、桥状过硫结构的构建;无法对过硫天然产物和药物构建进行更广谱的合成和后修饰衍生。
三、具体阐述该项目符合此属性的理由1. 该项目拟设计合成的新型双边多硫试剂是一个全新的构想,具有鲜明的首创性。
2. 该项目拟运用全新的“配体向金属中心传递电子的模型”来实现对硫的活化扰动激发自由基,让硫自由基实现可控阶梯氧化。
最终将该绿色高兼容的体系应用于复杂药物、生命大分子的调控性合成与修饰。
3. 该项目是该领域独创性的研究工作,课题特色鲜明,是“鼓励探索、突出原创”的典型案例。
“聚焦前沿、独辟蹊径”典型案例一、该项目所聚焦的前沿问题是什么?二氧化碳分离属于国际前沿研究课题。
项目名称:功能导向大面积、有序纳米结构可控制备和应用基本科学问题研究首席科学家:xxx起止年限:2011.1至2015.8依托部门:xxx二、预期目标(一)本项目的总体目标:本建议根据国家中长期发展规划,在上期项目研究工作的基础上,着眼于大面积、高有序纳米结构和材料制备的重大基础科学问题,结合国际上该领域发展趋势和我国的研究积累和重大战略需求,旨在发展纳米材料大面积、高有序生长方法学,揭示材料结构与性能的关系及其变化规律,特别注重结构和性能的调控以及功能导向大面积纳米阵列的构建和多功能集成,实现材料应用的突破和跨越。
争取在具有特定功能的大面积、高有序共轭有机、有机/无机分子体系纳米材料和结构的组装及其相关技术方面取得一些有影响和自主知识产权的成果,对有机纳米材料关键功能单元的设计、合成和功能调控规律加深认识,揭示分子、超分子各向异性相互作用对有机低维纳米结构形成的影响规律,对功能分子体系纳米结构材料的生长机理、自组装过程以及动力学有更深层次的认识,实现高有序有机纳米材料的可控制备和大面积自组装生长。
在大面积、高性能有序阵列结构与器件的制备方面取得创新性的突破。
突出新概念、新思想,在基于功能纳米材料的新概念器件、等方面取得一批具有广泛影响和自主知识产权的成果;在纳米器件的界面科学与工程、大面积纳米器件的构筑、组装方法,纳米器件的互连、集成、纳米电路的构筑方面取得突破,促进我国纳米电子学的发展。
(二)五年预期目标:通过本项目的实施,实现有机纳米结构形貌、尺寸、维数和性能的调控以及大面积、高有序的自组装生长方法学与机理的建立。
发展大面积纳米结构材料直接在光、电、生物和信息技术中的应用,基本实现大面积器件的构建和集成以及材料应用的突破和跨越。
提升我国在该领域的自主创新和发展核心技术的能力,取得一批具有原创性的重要科学成果。
形成一支在国际上有影响的研究队伍,培养一批高水平的研究人才。
在项目实施的5年内,达到如下目标:1. 继续人工类石墨烯纳米带有机功能分子的合成,实现具有独特光电性能的多种类石墨烯纳米带类有机功能分子的高效合成和宏量制备。
达到克量级的制备;实现电活性,光活性的多类特定结构和功能有机共轭分子的大量合成,形成功能性的有机纳米结构,实现多种高性能有机半导体分子大尺寸晶体和大面积晶态薄膜的可控制备,获得3-5类具有高效光、电和光电转换性能的材料。
2. 在有机、有机/无机功能分子体系聚集态多层次和多尺度上研究其纳米结构和性能的关系,发展定向、维数可控、大面积、高有序自组装生长的关键技术,建立具有自己特色的高效生长大面积、高有序有机、有机/无机功能纳米结构的机理和关键技术。
获得2-3项具有自主知识产权大面积、高性能的有机纳米阵列生长技术和1-2项新结构半导体材料有序晶态薄膜大面积组装技术。
为功能导向大面积、有序纳米结构的可控制备奠定坚实的材料基础,实现这些材料在高技术发展中关键技术的应用。
3. 纳米器件与制造是纳米科技中的前沿和核心研究领域,能够有力推动纳米材料、纳米加工、纳米检测、纳米物理等其他纳米科学分支的迅速发展。
实现大面积、高性能有序纳米阵列结构在在光电和信息器件中的应用是本项目的重要目标。
在项目执行期间实现高性能的场效应晶体管为驱动的相关器件的应用,特别是制备基于有机场效应晶体管单比特与多比特存储器件应有方面。
实现2-3类核心电路,如倒相器、环振荡器和存储器件的构建;在新结构光电器件等方面获得突破性进展,提出1-2具有自主知识产权的储能应用的器件。
4. 获得具有多重响应的,特别是对光电敏感的纳米结构器件,研究这些响应对纳米器件的分离、协同效应,力争实现这些新概念、新结构、多功能器件的应用,实现纳米器件的互连与集成和纳米电路的构筑,制备2-3类大面积、多功能器件应用和纳米电路的构筑。
5. 形成系列有自主知识产权的专利技术、发表系列高质量有影响的研究论文,每年发表论文50篇以上(影响因子大于6.0的8篇以上,大于3.0的30篇以上),加强优秀青年人才和有创新力团体的培养,形成一支高水平、在国际上有影响、有竞争力的研究队伍。
三、研究方案(一)学术思路:本研究围绕功能导向大面积、有序纳米结构的可控制备和应用基本科学问题研究而展开,从功能导向的高有序有机纳米材料的构筑方法、大尺寸高有序功能纳米材料的自组装生长机理和性能调控、大面积纳米结构材料在光电和信息器件中的应用以及纳米器件的关键科学问题研究等几个方面入手开展研究。
功能导向的高有序有机纳米材料的构筑是整体研究工作的基础,而大尺寸高有序功能纳米材料的自组装生长机理和性能调控是研究工作的关键,贯穿于整个项目研究过程中,是整个项目的桥梁;大面积纳米结构材料在光电和信息器件中的应用是整体研究工作的集成;纳米器件的关键科学问题研究主要是有效克服器件组装和集成中的关键问题。
这几方面的研究相互联系,相互交叉,整个方案可以图示如下:总体研究方案突出体现:(1)把握基础性、前瞻性和交叉性的研究特征,体现国家重大需求和科学前沿的有限目标;(2)加强化学、物理与材料等学科的交叉与合作;(3)鼓励原始创新和探索研究,突出重点,在研究计划的总体目标下加强研究项目的集成。
围绕关键科学问题,注重基础研究,发展关键技术。
项目将分成四个课题开展工作:1、功能导向分子材料设计、合成2、大尺寸有序纳米材料的自组装方法学和性能调控3、大面积纳米结构材料在光电和信息器件中的应用4、有机纳米结构在器件中的应用关键科学问题和技术项目的组织实施将围绕关键科学问题,注重“基础研究,发展关键技术”的总体思路,加强化学、物理与材料等学科的交叉与合作,注重原始创新研究。
凝练科学目标,积极促进学科交叉,各课题密切交叉,重视课题间前后衔接和团队攻关。
通过本项目的实施在形貌、尺寸、维数、结构和性能的调控以及大面积、高有序的自组装生长方法学与机理研究方面获得多项具有自主知识产权的新方法和关键技术。
实现大面积纳米阵列直接在光、电、生物和信息技术中的应用并基本实现大面积器件的构建和集成。
(二)技术途径:本项目根据国家中长期发展规划,在上期项目研究工作的基础上,着眼于大面积、高有序纳米结构和材料制备的重大基础科学问题,结合国际上该领域发展趋势和我国的研究积累和重大战略需求,发展纳米材料大面积、高有序生长方法学,揭示材料结构与性能的关系及其变化规律,以及大面积有机纳米结构材料在光电和信息器件中的应用等几方面入手,开展协同攻关。
1. 功能导向分子材料的设计、合成在上期取得重要进展的基础上,继续人工类石墨烯纳米带有机功能分子或薄膜的合成,围绕具有独特光电性能的类石墨烯纳米带有机功能分子,建立高效合成方法和宏量制备,合成多类不同结构的类石墨烯分子或薄膜,研究分子构成及纳米结构的变化规律和功能单元结构与性能关系,形成有特色的自主知识产权人工合成类石墨烯研究体系,用于器件构造的关键材料和技术。
◆设计合成具有优良加工、组装性质的共轭大-体系有机分子及其组合材料体系。
构造有机导体、有机半导体、有机半导体-无机半导体,D—A、A—D型等功能分子并研究宏观量制备技术和方法以及分子晶体的培养并制备金属、II-VI族化合物与聚合物形成的新型杂化材料,研究这些分子体系在固态下的电化学和光谱性质,电子、能量和质子转移过程,以及外界条件对这些性质的影响,为制备高性能的器件打下坚实基础。
◆设计、合成结构新型、组装和自组装性能优异可形成厘米级纳米阵列、稳定性好的小分子(C60和苝四甲酰二亚胺衍生物)和共轭高分子光伏及场效应材料,包括p-型和n-型半导体材料并研究这些分子体系的掺杂,通过对功能有机分子进行无机阴离子和金属及金属离子掺杂,制备有机掺杂复杂体系材料,提高其导电性和降低电子亲和势,产生高性能光电和光电转换材料,制备大尺寸阵列作为关键光电技术材料。
◆合成并引入可组装基团,带共轭支链和取代基区域规整的聚噻吩,支链采用苯乙烯、噻吩乙烯链段或吩噻嗪,共轭支链通过碳-碳双键与主链的噻吩环相连接,扩展聚合物的吸收谱带和提高电荷载流子迁移率。
通过调节共轭支链的长度和数目以及共轭主链的组成和结构来调控聚合物的吸收光谱。
通过控制活性层给体/受体互穿网络结构的组成和形貌改善电荷分离和传输性能,使用适当的电极修饰层改善电荷收集性能,宏观改善构建器件材料的能量转换性质和效率。
◆通过理论与计算设计具有新型结构的分子材料,对材料中分子和分子聚集体的微观结构与性能进行预测,合成具有光、电、磁行为的有机共轭“明星”分子,形成特色体系并研究分子的功能晶体生长,分子的有序控制合成及宏观量制备.开展结构-性能关系研究,分子间相互作用,分子排列的有序性,电导电子与局域电子自旋间相互作用,以及功能耦合等相关凝聚态问题的研究,为器件研究提供材料基础和组装原理。
◆结合超分子化学与晶体工程学,通过分子结构的裁剪和作用力调控实现微纳尺度上有机半导体分子的组装、排列和大面积有序结构,重点理解纳米尺度下分子间弱相互作用产生的协同驱动机制,揭示分子、超分子各向异性相互作用对有机低维结构形成的影响规律。
明确提出大面积组装和有机低维结构形成与动力学过程之间的关系。
建立和发展大尺寸有机低维晶体生长的手段和方法,有效调控大尺寸有机低维晶体结构和性能,发展多种高性能有机半导体分子大尺寸晶体和大面积晶态薄膜的制备技术。
2. 大尺寸有序纳米材料的自组装方法学和性能调控◆发展尺寸与结构可控的有机纳米结构制备方法,新的定向、定维自组装技术,复合异质结构中的超晶格材料的控制生长,超分子组装中的分子聚集态的趋向,功能有机纳米尺度超结构的形成,大面积、多层次有序纳米结构自组装问题。
从微观到宏观,揭示有机功能自组装纳米材料的本质,研究这些分子纳米结构固态下的电子、能量转移过程,特别是固态下的性质和性能并研究这些体系的大面积、有序结构生长。
明确组装、生长机理和过程,研究这些具有响应性纳米结构在器件方面的应用。
◆通过有机功能单元的结构设计和裁减,调控功能单元间的相互作用,进而调控其能带结构,通过选择光、电功能单元进行有序结构及异质结构组装,揭示在胶体、固态下的光物理过程,及分子内和分子间的协同效应;同时充分理解外界条件对这些性质的影响和响应,并理解自组装功能单元、表面、界面特别是界表面相互作用方式与其宏观性能的关系。
利用这些规律提出新概念为构建高性能器件提出依据。
◆固态化学反应结合极端条件、自组装、定向诱导、原位或者非原位的组装、分子模板等,发展新颖的二级和多级自组装技术,实现选择性自组装或依据器件要求自然生长图案化。
理解有机纳米材料的生长机理、过程等,从理论上进行模拟,发展有机纳米材料有序结构的形成机理相关理论,指导大尺寸、高有序生长和认识组装的相关动力学和热力学过程。