线性判别分析使用说明工具产生背景
- 格式:docx
- 大小:37.67 KB
- 文档页数:4
linear discriminate analysis【实用版】目录1.线性判别分析的定义和基本概念2.线性判别分析的应用场景和问题解决能力3.线性判别分析的具体方法和步骤4.线性判别分析的优缺点和局限性5.线性判别分析的实际应用案例正文线性判别分析(Linear Discriminant Analysis,简称 LDA)是一种常用的监督学习方法,主要用于解决分类问题。
它是一种线性分类方法,通过找到一个最佳的线性分类器,将数据分为不同的类别。
LDA 基于数据分布的假设,即不同类别的数据具有不同的分布,通过最大化类内差异和最小化类间差异来实现分类。
LDA 的应用场景非常广泛,可以用于文本分类、图像分类、生物信息学、社会科学等领域。
在这些领域中,LDA 能够有效地解决分类问题,提高分类准确率。
例如,在文本分类中,LDA 可以通过分析词汇分布,将文本分为不同的主题或类别。
线性判别分析的具体方法和步骤如下:1.收集数据并计算数据矩阵。
2.计算数据矩阵的协方差矩阵和矩阵的特征值和特征向量。
3.根据特征值和特征向量构建线性分类器。
4.使用分类器对数据进行分类。
尽管 LDA 在分类问题上表现良好,但它也存在一些优缺点和局限性。
首先,LDA 要求数据矩阵的列向量是线性无关的,这可能会限制其在某些数据集上的表现。
其次,LDA 对数据中的噪声非常敏感,噪声的存在可能会对分类结果产生不良影响。
此外,LDA 是一种基于线性分类的方法,对于非线性分类问题可能无法有效解决。
尽管如此,LDA 在实际应用中仍然具有很高的价值。
例如,在文本分类中,LDA 可以有效地识别不同主题的文本,并为用户提供个性化的推荐。
在生物信息学中,LDA 可以用于基因表达数据的分类,以识别不同类型的细胞或疾病。
在社会科学中,LDA 可以用于对调查数据进行分类,以便更好地理解受访者的需求和偏好。
总之,线性判别分析是一种强大的分类方法,可以应用于各种领域。
线性判别分析(LinearDiscriminantAnalysis,LDA)⼀、LDA的基本思想线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,它是在1996年由Belhumeur引⼊模式识别和⼈⼯智能领域的。
线性鉴别分析的基本思想是将⾼维的模式样本投影到最佳鉴别⽮量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的⼦空间有最⼤的类间距离和最⼩的类内距离,即模式在该空间中有最佳的可分离性。
如下图所⽰,根据肤⾊和⿐⼦⾼低将⼈分为⽩⼈和⿊⼈,样本中⽩⼈的⿐⼦⾼低和⽪肤颜⾊主要集中A组区域,⿊⼈的⿐⼦⾼低和⽪肤颜⾊主要集中在B组区域,很显然A组合B组在空间上明显分离的,将A组和B组上的点都投影到直线L上,分别落在直线L的不同区域,这样就线性的将⿊⼈和⽩⼈分开了。
⼀旦有未知样本需要区分,只需将⽪肤颜⾊和⿐⼦⾼低代⼊直线L的⽅程,即可判断出未知样本的所属的分类。
因此,LDA的关键步骤是选择合适的投影⽅向,即建⽴合适的线性判别函数(⾮线性不是本⽂的重点)。
⼆、LDA的计算过程1、代数表⽰的计算过程设已知两个总体A和B,在A、B两总体分别提出m个特征,然后从A、B两总体中分别抽取出、个样本,得到A、B两总体的样本数据如下:和假设存在这样的线性函数(投影平⾯),可以将A、B两类样本投影到该平⾯上,使得A、B两样本在该直线上的投影满⾜以下两点:(1)两类样本的中⼼距离最远;(2)同⼀样本内的所有投影距离最近。
我们将该线性函数表达如下:将A总体的第个样本点投影到平⾯上得到投影点,即A总体的样本在平⾯投影的重⼼为其中同理可以得到B在平⾯上的投影点以及B总体样本在平⾯投影的重⼼为其中按照Fisher的思想,不同总体A、B的投影点应尽量分开,⽤数学表达式表⽰为,⽽同⼀总体的投影点的距离应尽可能的⼩,⽤数学表达式表⽰为,,合并得到求从⽽使得得到最⼤值,分别对进⾏求导即可,详细步骤不表。
线性判别分析在模式识别中的应用线性判别分析(Linear Discriminant Analysis,简称LDA)是一种常用的模式识别算法,在许多领域中都有广泛的应用。
本文将探讨LDA在模式识别中的应用,并对其原理进行详细解析。
一、线性判别分析简介线性判别分析是一种监督学习的分类算法,其基本思想是将原始空间中的样本投影到低维子空间,从而使得不同类别的样本在投影后的子空间中能够更好地分离。
其目标是使得同类样本的投影点尽可能接近,不同类样本的投影点尽可能远离。
通过计算投影矩阵,将数据从高维空间映射到低维空间,从而实现维度的降低和分类的目的。
二、线性判别分析的原理1. 类内离散度和类间离散度的定义为了对数据进行降维和分类,我们需要定义类内离散度和类间离散度两个指标。
类内离散度(within-class scatter matrix)用于衡量同类样本在投影子空间中的分散程度,可以通过计算各类样本的协方差矩阵之和得到。
类间离散度(between-class scatter matrix)用于衡量不同类样本在投影子空间中的分散程度,可以通过计算各类样本均值的差异得到。
2. 目标函数的定义线性判别分析的目标是最大化类间离散度,同时最小化类内离散度。
为了实现这一目标,我们可以定义一个目标函数,即广义瑞利商(generalized Rayleigh quotient)。
广义瑞利商的定义如下:J(w) = (w^T * S_B * w) / (w^T * S_W * w)其中,w为投影向量,S_B为类间离散度的协方差矩阵,S_W为类内离散度的协方差矩阵。
3. 目标函数的求解通过求解广义瑞利商的极值问题,我们可以得到最优的投影方向。
对目标函数进行求导,并令导数为0,我们可以得到广义特征值问题。
S_W^(-1) * S_B * w = λ * w其中,λ为广义特征值,w为对应的广义特征向量。
通过求解该特征值问题,我们可以得到最优的投影方向,从而实现数据的降维和分类。
人工智能机器学习技术练习(习题卷6)第1部分:单项选择题,共62题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]如果一个 SVM 模型出现欠拟合,那么下列哪种方法能解决这一问题?A)增大惩罚参数 C 的值B)减小惩罚参数 C 的值C)减小核系数(gamma参数)答案:A解析:2.[单选题]决策树每个非叶结点表示()A)某一个特征或者特征组合上的测试B)某个特征满足的条件C)某个类别标签答案:A解析:3.[单选题]以下不是开源工具特点的是A)免费B)可以直接获取源代码C)用户可以修改源代码并不加说明用于自己的软件中D)开源工具一样具有版权答案:C解析:4.[单选题]下列核函数特性描述错误的是A)只要一个对称函数所对应的核矩阵半正定,就能称为核函数;B)核函数选择作为支持向量机的最大变数;C)核函数将影响支持向量机的性能;D)核函数是一种降维模型;答案:D解析:5.[单选题]关于 Python 变量的使用,说法错误的是( )。
A)变量不必事先声明B)变量无需先创建和赋值即可直接使用C)变量无须指定类型D)可以使用del释放资源答案:B解析:6.[单选题]马尔可夫随机场是典型的马尔可夫网,这是一种著名的(__)模型。
A)无向图B)有向图C)树形图解析:7.[单选题]当k=3时,使用k近邻算法判断下图中的绿色方框属于()A)圆形B)三角形C)长方形D)以上都不是答案:B解析:8.[单选题](__)是具有适应性的简单单元组成的广泛并行互联的网络。
A)神经系统B)神经网络C)神经元D)感知机答案:B解析:9.[单选题]所有预测模型在广义上都可称为一个或一组(__)。
A)公式B)逻辑C)命题D)规则答案:D解析:10.[单选题]6. AGNES是一种()聚合策略的层次聚类算法A)A自顶向下B)自底向上C)由最近样本决定D)D最远样本决定答案:B解析:11.[单选题]互为对偶的两个线性规划问题的解存在关系()A)原问题无可行解,对偶问题也无可行解B)对偶问题有可行解,原问题可能无可行解C)若最优解存在,则最优解相同D)一个问题无可行解,则另一个问题具有无界解答案:B解析:12.[单选题]过滤式特征选择与学习器(),包裹式特征选择与学习器()。
判别分析方法汇总判别分析(Discriminant Analysis)是一种常用的统计分析方法,用于解决分类问题。
它是一种监督学习的方法,通过构建一个或多个线性或非线性函数来将待分类样本划分到已知类别的情况下。
判别分析方法广泛应用于模式识别、图像处理、数据挖掘、医学诊断等领域。
判别分析方法可以分为线性判别分析(Linear Discriminant Analysis, LDA)和非线性判别分析(Nonlinear Discriminant Analysis, NDA)两大类。
下面我们将介绍一些常见的判别分析方法。
1. 线性判别分析(LDA):LDA是判别分析方法中最常见的一种。
LDA假设每个类别的样本来自于多元正态分布,通过计算两个类别之间的Fisher判别值,构建一个线性函数,将待分类样本进行分类。
LDA的优点是计算简单、可解释性强,但它的缺点是对于非线性问题无法处理。
2. 二次判别分析(Quadratic Discriminant Analysis, QDA):QDA是LDA的一种扩展,它通过假设每个类别的样本来自于多元正态分布,但允许不同类别之间的协方差矩阵是不一样的。
这样,QDA可以处理协方差矩阵不同的情况,相比于LDA更加灵活,但计算复杂度较高。
3. 朴素贝叶斯分类器(Naive Bayes Classifier):朴素贝叶斯分类器是一种基于贝叶斯定理的分类方法。
它假设每个类别的样本属性之间是相互独立的,通过计算后验概率,选择具有最大概率的类别作为待分类样本的类别。
朴素贝叶斯分类器计算简单、速度快,但它对于属性之间有依赖关系的问题效果较差。
4. 支持向量机(Support Vector Machine, SVM):SVM是一种常用的判别分析方法,通过构建一个超平面,将不同类别的样本进行分类。
SVM的优点是能够处理非线性问题,且能够得到全局最优解。
但SVM计算复杂度较高,对于数据量较大的情况会有一定的挑战。
判别分析四种方法判别分析(Discriminant Analysis)是一种用于分类问题的统计方法, 它通过分析已知分类的样本数据,构造出一个判别函数,然后将未知类别的样本数据带入判别函数进行分类。
判别分析可以用于研究变量之间的关系以及确定分类模型等方面。
在判别分析中,有四种主要的方法,包括线性判别分析(Linear Discriminant Analysis, LDA)、二次判别分析(Quadratic Discriminant Analysis, QDA)、多重判别分析(Multiple Discriminant Analysis, MDA)和正则化判别分析(Regularized Discriminant Analysis, RDA)。
1.线性判别分析(LDA):线性判别分析是最常用的判别分析方法之一、它假设每个类别的样本数据都服从多元正态分布,并且各个类别具有相同的协方差矩阵。
基于这些假设,LDA通过计算类别间离散度矩阵(Sb)和类别内离散度矩阵(Sw),然后求解广义瑞利商的最大化问题,得到最佳的线性判别函数。
线性判别分析适用于样本类别数量较少或样本维度较高的情况。
2.二次判别分析(QDA):二次判别分析是基于类别的样本数据服从多元正态分布的假设构建的。
与LDA不同的是,QDA没有假设各个类别具有相同的协方差矩阵。
相反,QDA为每个类别计算一个特定的协方差矩阵,并将其带入到判别函数中进行分类。
由于QDA考虑了类内协方差矩阵的差异,因此在一些情况下可以提供比LDA更好的分类效果。
3.多重判别分析(MDA):4.正则化判别分析(RDA):正则化判别分析是近年来提出的一种改进的判别分析方法。
与LDA和QDA不同的是,RDA通过添加正则化项来解决维度灾难问题,以及对输入数据中的噪声进行抑制,从而提高分类的准确性。
正则化项的引入使得RDA可以在高维数据集上进行有效的特征选择,并获得更鲁棒的判别结果。
数据分析知识:数据分析中的线性判别分析数据分析中,线性判别分析是一种常见的分类方法。
它的主要目的是通过在不同类别间寻找最大化变量方差的线性组合来提取有意义的特征,并对数据进行分类。
线性判别分析在实际应用中非常有用,例如在医学诊断、金融风险评估和生物计量学等领域。
一、简要介绍线性判别分析线性判别分析是一种有监督的数据挖掘技术,在分类问题中常用。
整个过程包括两个主要的部分:特征提取和分类器。
特征提取的任务是从原始数据中提取有意义的特征,用以区分不同类别的样本。
而分类器则是将已知类别的样本分成预先定义的类别。
在实际应用中,线性判别分析通常用于二分类问题。
其基本思想是,在不同类别(即两个不同样本)之间寻找一个最优的超平面,使得在该平面上不同类别的样本能够被清晰地分开。
也就是说,在分类平面上,同类样本尽可能地被压缩到一起,而不同类别的样本尽可能地被分开。
二、分类器在线性判别分析中的应用在进行线性判别分析时,一般都会用到一个分类器。
分类器可以对已知类别的样本进行分类,并对新的未知样本进行预测。
常用的分类器有:最近邻分类器、支持向量机、朴素贝叶斯分类器和决策树等。
其中,最近邻分类器是一种较为简单的分类器,其原理是对未知样本进行分类时,找到离该样本最近的一个或几个已知样本,并将该样本划归到该已知样本所属的类别。
而支持向量机则是一种复杂且有效的分类器。
它采用最大间隔的思想,在将不同类别分开的同时,尽可能地避免分类器过拟合的情况。
朴素贝叶斯分类器则是一种基于贝叶斯定理的分类器,它假设不同变量之间相互独立,并通过给定类别的样本来估算样本中各个特征的概率分布。
最后,决策树则是一种可视化的分类器,它通过一系列的条件分支,将样本划分为不同的类别。
三、特征提取在线性判别分析中的应用特征提取是在原始数据基础上提取可识别和易于分类的特征过程。
在线性判别分析中,常用到的特征提取方法有:主成分分析、线性判别分析和奇异值分解等。
其中,主成分分析(Principal Component Analysis, PCA)是一种常见的数据降维方法。
判别分析及MATLAB应用
摘要
本文针对线性判别分析(LDA),总结了LDA的基本原理、求解过程
和MATLAB应用。
首先介绍了LDA的基本原理,即在最大化类内方差和最
小化类间方差之间寻求一个平衡,以作为类间距离的度量;然后,详细介
绍了求解LDA的算法流程,包括LDA的假设、建立数学模型、求解驻点过
程等;最后,结合MATLAB示例,介绍了如何在MATLAB中实现LDA,并介
绍了各种LDA的实现方法。
关键词:线性判别分析(LDA);最大似然估计;MATLAB
1 研究背景
统计学习理论中有两种重要分类模型:支持向量机(Support Vector Machine,SVM)和线性判别分析(Linear Discriminant Analysis,LDA)。
LDA是一种分类模型,它假设每个类别的概率密度函数都是一个
多元正态分布,利用极大似然估计,将各类样本数据的IC。
概率密度函
数的参数估计出来。
LDA可以有效的将特征进行降维,以得到较好的分类
结果。
2 线性判别分析原理
LDA是基于极大似然估计的一种分类模型,假定样本数据服从多元正
态分布,其目的是在最大化类内方差和最小化类间方差之间寻求一个平衡,以作为类间距离的度量。
(1)LDA的假设
LDA的假设有如下几点:
a.样本空间中两类样本具有多元正态分布。
线性判别分析使用说明
一、工具产生背景
在实际应用中,我们经常会遇到考察对象的分类结果是已知的情况。
例如,某商业银行根据信用卡等级评分模型将其划分为3个类别:信用等级高、信用等级中以及信用等级低。
判别分析是用来处理这种在已知分类结果的情况下对新数据集的归类。
它与聚类分析相反,因为在进行聚类分析之前,所考察对象可以分为哪几类是未知的。
判别分析可以通过训练数据集学习每个类别的特征,然后对新的数据集进行分类处理。
从统计学的角度看,判别分析可描述为:已知有k个总体G1,G2,…,Gk,现有样本y,要根据这k个总体和当前样本的特征,判定该样本y属于哪一个总体。
其主要工作是根据对已知总体的理解,建立判别规则(判别函数),然后根据该判别规则对新的样本属于那个总体做出判断。
常用的判别分析主要是线性判别分析和二次判别分析,二者拥有类似的算法特征,区别仅在于:当不同分类样本的协方差(描述维度间关系的指标Cov(X,Y)=E{[ X-E(X)][Y-E(Y) ]})矩阵相同时,使用线性判别分析;当不同分类样本的协方差矩阵不同时,则应该使用二次判别分析。
本文讲解线性判别分析,这也是最常用的判别分析方法。
二、功能按钮说明
软件打开后界面如下:
接下来具体介绍功能的使用:
1、选择训练数据集
选择用于训练模型的数据集。
需满足以下条件:
1)首行是字段,且至少有两个字段;
2)必须包含一个分类字段;
3)除了分类字段,其它字段均为数值型。
如下:
其中”Type”为分类字段。
增加训练数据集,可提高模型的预测效果。
2、分类字段
分类字段是必不可少。
当选择好训练数据集后会自动将所有字段添加到“分类字段”后的下拉框中,默认首个字段为当前选中的分类字段。
3、选择测试数据集
测试数据集就是待分类的新的数据集。
需满足以下条件:
1)首行是字段;
2)每个字段均为数值型;
3)不包含分类字段。
4、优化算法:
指定求解最优化问题的算法,默认为奇异值分解(svd)。
1)奇异值分解(svd)
2)最小平方差(lsqr)
3)特征分解(eigen)
5、先验概率
默认为None,表示每一个分类的先验概率是等可能的。
而有时候我们事先知道每个分类可能出现的概率,这时候也可以自定义。
此时各分类概率之间需用英文逗号隔开。
比如:
”0.2,0.3,0.4,0.1”
表示四个分类的概率分别为0.2,0.3,0.4,0.1且四个概率之和为1,如果概率和不为1则会对概率自动伸缩。
而这四个分类分别为“分类字段”指定的按照先后顺序出现的四个唯一值。
6、最小容差
判别类别可以收敛的最小容差,默认为0.0001,一般不需要改动。
7、输出判别结果
输出测试数据集的判别结果。
判别结果包含一个判定结果字段,和每条观测属于不同分类的概率。
各分类的概率之和为1,判别结果为概率最高的一个分类。
三、生成图表解释
1、权值向量,如下:
权值向量反应了每个分类对各个属性的依赖。
相当于线性方程的斜率。
2、截距,如下:
SUV = MPG_City * 1.078 – 1.01 * MPG_Highway + 0.003 * Weight – 0.108 * Wheelbase –
0.056 * Length + 11.09
在进行线性判别的时候通过这个表达式计算每个分类的值,然后取最大的一个值对应的分类即为判别结果。
3、均值,如下:
该表描述每个分类在不同变量上的均值。
4、协方差矩阵,如下:
该协方差矩阵反应了不同变量之间的关系。
5、预计判别准确率,如下:
预计判别准确率是根据训练数据集计算出来的判别函数判断自身(训练数据集),然后根据实际值和判别值而计算出的判别准确率。
该值越高说明判断越准确。
6、输出判别结果,如下:
输出的第一个字段为判定结果,其它字段分别为分类名,各分类的值为当前观测属于该分类的概率,各分类的概率之和为1,判别结果为概率最高的一个分类。