光电检测试验讲义
- 格式:doc
- 大小:165.50 KB
- 文档页数:16
光电检测技术实验指导书电气工程学院目录实验一半导体激光器工作域值及输出功率特性的测量 (2)实验二半导体激光器输出光谱特性曲线的测量 (9)实验三光电探测原理及特性测试(综合性) (13)实验四* CCD输出特性及二值化处理实验 (22)实验五 PSD位移传感器特性实验 (28)实验六反射式光纤位移传感器原理及定标实验 (32)实验七光电报警系统设计(设计性) (38)实验一 半导体激光器工作域值及输出功率特性的测量一、实验目的测试半导体激光器工作域值,测量输出功率-电流(P-I )特性曲线和输出功率的稳定性,从而对半导体激光器工作特性有个基本了解。
二、实验内容1、测试YSLD3125型半导体激光器工作域值。
2、测试YSLD3125型半导体激光器输出功率与电流(P-I )特性曲线。
3、测试YSLD3125型半导体激光器注入电流为30mA 时输出功率的稳定性。
三、实验仪器1、YSLD3125型半导体激光器(带尾纤输出,FC 型接口) 1只2、ZY606型LD/ LED 电流源 1台3、光功率计 1台4、万用表 1只四、实验原理1、激光器一般知识激光器是使工作物质实现粒子数反转分布产生受激辐射,再利用谐振腔的正反馈,实现光放大而产生激光振荡的。
激光,其英文LASER 就是Light Amplification by Stimulated Emission of Radiation (受激辐射的光放大)的缩写。
激光的本质是相干辐射与工作物质的原子相互作用的结果。
尽管实际原子的能级是非常复杂的,但与产生激光直接相关的主要是两个能级,设E u 表示较高能级,E l 表示较低能级。
原子能在高低能级间越迁,在没有外界影响时,原子可自发的从高能级越迁到低能级,并伴随辐射一个频率为h E E l u /)(-=ν的光子,这过程称自发辐射。
若有能量为l u E E h -≥ν的光子作用于原子,会产生两个过程,一是原子吸收光子能量从低能级越迁到高能级,同时在低能级产生一个空穴,称为受激越迁或受激吸收,此激发光子消失;二是原子在激发光子的刺激下,从高能级越迁到低能级,并伴随辐射一个频率h E E l u /)(-=ν的光子,这过程称受激辐射。
实验一光敏电阻特性参数测量及暗光街灯实验一、实验目的:1、了解光敏电阻的电阻特性,掌握光敏电阻的伏安特性及其随光照强度的变化规律。
2、利用光敏电阻的电阻变化特性,将之作为街灯自动点亮与熄灭的传感器件,掌握基于光敏电阻的暗光街灯的工作原理及应用。
二、实验原理:光敏电阻是最典型的光电效应器件,即其电导率随光照强度而发生变化。
半导体光电导器件是利用半导体材料的光电导效应制成的光电探测器件。
本实验旨在测定光敏电阻在不同光照环境下的电阻值,并测定其伏安特性随光照强度的变化规律。
根据实验测定,光敏电阻的电阻值随光亮度的增大而迅速减小。
利用这一特性,设计了暗光街灯演示实验。
其原理是当环境变暗时光敏电阻的阻值增大,当亮度降低到一定值时,即光敏电阻值增大到某一阈值时,光电传感电路系统自动点亮小灯泡,从而达到与暗光街灯相似的目的。
三、实验所需单元:直流稳压电源,光敏电阻,数字电压表,电流(毫安)表,暗光街灯电路,小灯泡(负载),万用表。
四、实验步骤:(一)光敏电阻特性测试图1.1 暗、亮电阻的测定图1.2 伏安特性测量电路(1) 光敏电阻的暗、亮电阻测定。
如图3.1所示,用万用表从光敏电子两端测定它在不同光照条件下的电阻值,将测得的结果填入表格。
(2) 光敏电阻伏安特性测定。
按图1.2所示连接各元件和单元,检查连接无误后,开启电源。
用一挡光物(如黑纸片或瓶盖)遮住光敏电阻(视为全暗),分别接插不同的电压U值(可调电压的获取:通过面板“电机控制1”或“电机控制2”的Vin输入5V,V out可输出如0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0V等不同电压值),利用电流表测定流过光敏电阻的电流值I,数字电压表测定U值。
改变光敏电阻的光照强度(如全暗、日光灯、手电筒、激光照射),重复测定I与U的关系,可得到图1.3所示的伏安特性关系曲线族。
(3) 分析上述测量结果,进一步了解光敏电阻的光敏特性,掌握其中的变化规律。
光电传感器实验讲义顾定安编河海大学物理实验中心2003.10光电传感器应用实验仪器介绍光电传感器是一种将光信号转变成电信号的光电转换器件。
由于光电器件灵敏度高、响应速度快、靠得住性高、结构简单、利用方便,而且具有“非接触测量”的特点,因此在自动检测和控制系统中有着十分普遍的应用。
光电器件工作的物理基础是光电效应。
在光的作用下,电子逸出物体表面的现象称为外光电效应,如光电管、光电倍增管等。
受光照的物体导电率发生转变,或产生必然方向电动势的现象称为内光电效应,如光敏电阻、光敏晶体管、光电池等。
光电传感器应用实验主要利用CSY10G型光电传感器系统实验仪完成一系列基于内光电效应的光电器件的应用实验。
比较简单的光电器件包括光敏电阻、光敏二极管、光敏三极管、光电池、光断续器等;特殊用途的光电器件有PSD光电位置传感器、热释电红别传感器、光纤传感器、CCD电荷耦合图象传感器等。
光电传感器系统实验仪将各类光电传感器、被测体、信号源、仪表显示、信号收集、处置电路及实验所需的温度、位移、光源、旋转装置等集中于一机。
仪器顶部工作台上安装各类传感器和测试部件,包括热释电红别传感器、温度源、慢速电机、衍射光栅、固体激光器、PSD光电位置传感器、CCD电荷图象传感器、位移平台、光电器件安装板、莫尔条纹光栅位移传感器、光纤传感器、光电断续器、旋转电机等,其布局如图1;正面面板为控制操作和测量显示面板,包括直流稳压电源、电压/频率表、微安表、电机开关及调速旋钮、光源和热源开关等,布局如图2上半部份;水平面板用于各类传感器件和相应的检测电路模块的连接,其接口布局如图2的下半部份。
图1 工作台布局图工作台的光电器件板上已装有七个器件和一个备用试件插座,器件散布如图2的右上角所示。
其中a b为光敏二极管、c d为红外光敏管、e f为光敏三极管、g h为红外接收管、i j为光电阻、k l为光电池、m n为发光二极管、o p为试件插座。
光电技术实验讲义--光电探测部分目录实验a 光电倍增管的静态和时间特性的测试 (2)实验b 光电探测器响应时间的测试 (9)验a 光电倍增管的静态和时间特性的测试光电倍增管是一种基于外光电效应(光电发射效应)的器件,由于其内部具有电子倍增系统,所以具有很高的电流增益,从而能够检测到极微弱的光辐射。
光电倍增管的另一大优点是响应速度很快,因此其时间特性的描述和测量都与其它光电器件有所不同。
此外,光电倍增管的光电线性好,动态范围大,因而被广泛应用于各种精密测量仪器和装备中。
由于光电发射需要一定的光子能量,所以大多数光电倍增管工作在紫外和可见光波段,目前在近红外波段也有应用。
由于使用面广,现已有多种结构、多种特性的管子可供选择。
一、实验目的(1)熟悉光电倍增管的静态特性和时间特性,掌握光电倍增管的正确使用方法。
(2)学习光电倍增管的基本特性测量方法。
二、实验内容(1)测量光电倍增管静态特性参数;(2)测量光电倍增管时间特性参数。
三、基本原理1.光电倍增营的主要特性和参数光电倍增管的特性参数,有灵敏度、电流增益、光电特性、阳极特性、暗电流等效噪声功率和时间特性等。
下面介绍本实验涉及到的特性和参数。
(1)灵敏度灵敏度是标志光电倍增管将光辐射信号转换成电信号能力的一个参数,一般指积分灵敏度,即白光灵敏度,单位取μA/lm。
通常,光电倍增管的使用说明书中都分别给出了它的阴极灵敏度和阳极灵敏度,有时还需要标出阴极的蓝光、红光或红外灵敏度。
①阴极灵敏度S k 阴极灵敏度S k 是指光电阴极本身的积分灵敏度。
测量时光电阴极为一极,其它各电极连在一起为另一极,在其间加上100~300V电压,如图1-1所示。
照在阴极上的光通量通常选在10-9~10-2lm的数量级,因为光通量过小会由于漏电流的影响而使光电流的测量准确度下降,而光通量过大也会引起测量误差。
②阳极灵敏度S A阳极灵敏度S A是指光电倍增管在一定工作电压下阳极输出电流与照在阴极面上光通量的比值。