第一章随机事件
- 格式:doc
- 大小:33.50 KB
- 文档页数:3
第一章随机事件及其概率§ 1.1 随机事件及其运算随机现象:概率论的基本概念之一。
是人们通常说的偶然现象。
其特点是,在相同的条件下重复观察时,可能出现这样的结果,也可能出现那样的结果,预先不能断言将出现哪种结果•例如,投掷一枚五分硬币,可能国徽”向上,也可能伍分”向上;从含有5件次品的一批产品中任意取出3件,取到次品的件数可能是0,1,2或3.随机试验:概率论的基本概念之一•指在科学研究或工程技术中,对随机现象在相同条件下的观察。
对随机现象的一次观察(包括试验、实验、测量和观测等),事先不能精确地断定其结果,而且在相同条件下可以重复进行,这种试验就称为随机试验。
样本空间:概率论术语。
我们将随机试验E的一切可能结果组成的集合称为E的样本空间,记为1。
样本空间的元素,即E的每一个结果,称为样本点。
随机事件:实际中,在进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.称试验E的样本空间I ■■的子集为E的随机事件,简称事件•在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别,由一个样本点组成的单点集,称为基本事件.样本空间门包含所有的样本点,它是门自身的子集,在每次试验中它总是发生的,称为必然事件.空集?不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生称为不可能事件.互斥事件(互不相容事件):若事件A与事件B不可能同时发生,亦即A B =①,则称事件A与事件B是互斥(或互不相容)事件。
互逆事件:事件A与事件B满足条件A B =①,A B =1 ,则称A与B是互逆事件,也称A与B是对立事件,记作B (或A = B )。
互不相容完备事件组:若事件组A,A2,…A满足条件A i A j二①,(i,i=t n ),nA-、_:,则称事件组A, A2,…A n为互不相容完备事件组(或称A, A2,…A n为样本空i=1间门的一个划分)。
§ 1.2 随机事件的概率概率:随机事件出现的可能性的量度。
第一章随机事件与概率§1.1 随机事件一、基本概念1.随机现象:预先不能断定结果的现象(有多种结果)投掷硬币、抽取牌张、观察天气、测量潮位、射击目标、顾客到来、考试排座、交通事故2.随机试验:对随机事件进行实验或观察,简称试验。
有的是人为设置,有的是必须经历。
通常所指的试验具有以下2个特征:(1)可以重复进行;(2)事先明确所有基本结果3.随机事件:试验的某种结果,事前不能确定,事后可观察到是否发生,简称事件(是个判断句)以、、,…等表示。
例1教师任取一个学号(随机),请对应的学生回答问题,站起来的可能“是男生”,“是女生”,“是戴眼镜的学生”,“是穿红衣服的学生”,“是高个子”,“是体重在60公斤以上的”“是叫张华的学生”——这些都是随机事件。
4.基本事件:不能再分解的“最简单”的事件,试验中各种最基本的可能结果。
例2在52张扑克牌中,任取一张,=“抽到◇”,=“抽到K”都是事件,其中可分解为13个最基本的结果,可分解为4个。
5.样本点:即基本事件,记为。
随机事件是某些基本事件(样本点)构成的集合。
6.样本空间:样本点的全体,即全集,记为Ω。
如投币:Ω={正,反} 抽牌:Ω=随机事件都是样本空间的子集。
例1中抽到任何一张◇,都认为已发生,类似地,抽到任何一张牌,都认为Ω已发生。
7.必然事件:试验中必然发生的事件,即Ω。
如投币:Ω=“正面朝上或反面朝上”。
抽牌:Ω=“抽到一张牌”。
8.不可能事件:试验中不可能发生的事件,是一个空集,记为。
如投币:=“正面朝上且反面朝上”。
抽牌:=“抽到一张电影票”。
例3在一批灯泡里,任取一只测试它的寿命(1000~3000小时):(1)试述一个事件;(2)指出一个样本点;(3)指出样本空间。
二、事件的关系与运算事件是集合,可以进行集合的运算,要求除了会用集合的语言表述外,还要会用事件的语言表述,并且着重于后者。
1.包含关系(或)集合语言:A中的样本点,全在内。
第一章 随机事件及其概率自然界和社会上发生的现象可以分为两大类: 一类是,事先可以预言其必然会发生某种结果,即在保持条件不变的情况下重复实验或观察,它的结果总是确定的。
这类现象称为确定性现象。
另一类是,事先不能预言其会出现哪种结果,即在保持条件不变的情况下重复实验或观察,或出现这种结果或出现那种结果。
这类现象称为随机现象。
随机现象虽然对某次实验或观察来说,无法预言其会出现哪种结果,但在相同条件下重复进行大量的实验或观察,其结果却又呈现出某种规律性。
随机现象所呈现出的这种规律性,称为随机现象的统计规律性。
概率论与数理统计就是研究随机现象统计规律性的一门数学学科。
§1 随机事件一、随机试验与样本空间我们把对随机现象进行的一次实验或观察统称为一次随机试验,简称试验,通常用大写字母E 表示。
举例如下:E 1:抛一枚硬币,观察正面H 、反面T 出现的情况;E 2:将一枚硬币抛掷两次,观察正面H 、反面T 出现的情况; E 3:将一枚硬币抛掷两次,观察正面H 出现的次数; E 4:投掷一颗骰子,观察它出现的点数; E 5:记录某超市一天内进入的顾客人数;E 6:在一批灯泡里,任取一只,测试它的寿命。
随机试验具有以下三个特点:(1)每次试验的结果具有多种可能性,并且能事先明确知道试验的所有可能结果; (2)每次试验前,不能确定哪种结果会出现; (3)试验可以在相同的条件下重复进行。
随机试验E 的所有可能结果的集合称为E 的样本空间,记作Ω。
样本空间的元素,即E 的每个结果,称为样本点,一般用ω表示,可记{}ω=Ω。
上面试验对应的样本空间:{}T H ,1=Ω;{}TT TH HT HH ,,,2=Ω; {}2,1,03=Ω;{}6,5,4,3,2,14=Ω; {} ,4,3,2,1,05=Ω;{}06≥=Ωt t 。
注意,试验的目的决定试验所对应的样本空间。
二、随机事件试验E 样本空间Ω的子集称为E 的随机事件,简称事件,通常用大写字母A ,B ,C ,…表示。
第一章随机事件及其概率总结随机事件是指在一定条件下,可能发生也可能不发生的现象或结果。
在任何随机事件中,我们都可以通过概率来描述它发生的可能性。
概率是一个在0到1之间的数字,表示一些随机事件发生的可能性大小。
以下是关于随机事件及其概率的总结。
1.随机事件的分类随机事件可以分为两类:简单事件和复合事件。
简单事件是指只有一个结果的随机事件,而复合事件是指有多个结果的随机事件。
例如,抛一枚硬币的结果可以是正面或反面,这就是一个简单事件;而抛两枚硬币的结果可以是两个正面、两个反面或一个正面一个反面,这就是一个复合事件。
2.样本空间样本空间是指一些随机事件所有可能结果的集合。
通过样本空间,我们可以计算概率。
例如,抛一枚硬币的样本空间为{正面,反面},抛两枚硬币的样本空间为{正正,正反,反正,反反}。
3.事件的概率事件的概率是指一些事件发生的可能性大小。
概率可以通过以下公式计算:概率=事件的可能数/样本空间的总数。
例如,抛一枚硬币出现正面的概率为1/2,即0.5;抛两枚硬币出现两个正面的概率为1/4,即0.254.组合事件的概率组合事件是指由两个或多个简单事件组成的事件。
组合事件的概率可以通过以下公式计算:概率=简单事件1的概率×简单事件2的概率×……×简单事件n的概率。
例如,从一副扑克牌中抽出一张红心和一张方块的概率为(26/52)×(13/51)=1/85.互斥事件和对立事件互斥事件是指两个事件不能同时发生的事件。
对立事件是指一个事件的发生排除了另一个事件的发生。
互斥事件的概率可以通过简单事件的概率之和计算;对立事件的概率可以通过1减去事件的概率计算。
6.大数定律大数定律是指随着试验次数的增加,事件的相对频率趋近于事件的概率。
也就是说,如果一个事件的概率为p,那么在进行n次独立的重复试验后,事件发生的频率将会接近于np。
例如,抛1000次硬币,正面出现的频率将会接近于500次。
第一章 随机事件与概率§1.1 随机事件及其运算1.1.1 随机现象在一定条件下必然出现的现象叫做确定性现象。
在相同的条件下可能出现也可能不出现,但在进行了大量重复地观测之后,其结果往往会表现出某种规律性的现象叫做随机现象。
(举例)为了研究和揭示随机现象的统计规律性,我们需要在相同条件下对随机现象进行大量重复地观测、测量或试验,统称为随机试验。
也有很多随机试验是不能重复的,比如某些经济现象、比赛等。
概率论与数理统计主要研究能够大量重复的随机现象,但也十分注意不能重复的随机现象的研究。
1.1.2 样本空间用{}ωΩ=表示随机现象的一切可能基本结果组成的集合,称为样本空间。
样本空间的元素,即每个基本结果ω,称为样本点。
例1 抛掷一枚硬币,观察正面和背面出现(这两个基本结果依次记为1ω和2ω)的情况,则该试验的样本空间为12{,}ωωΩ=例2 一枚骰子,观察出现的点数,则基本结果是“出现i 点”,分别记为iω(i =1,2,3,4,5,6),则该试验的样本空间为123456{,,,,,}ωωωωωωΩ= 例3 在一只罐子中装有大小和形状完全一样的2个白球和3个黑球,依次在2个白球上标以数字1和2,在3个黑球上标以数字3,4和5,从罐子中任取一个球,用i ω表示“取出的是标有i 的球”(i =1,2,3,4,5),则试验的样本空间为12345{,,,,}ωωωωωΩ=例4 在一个箱子中装有10个同型号的某种零件,其中有3件次品和7件合格品,从此箱子中任取3个零件,其中的次品个数可能是0,1,2,3,试验的样本空间为{0,1,2,3}Ω=例5 某机场问讯电话在一天内收到的电话次数可能是0,1,2,…,则试验的样本空间为{0,1,2,}Ω=L例6 考察某一大批同型电子元件的使用寿命(单位:h ),则使用的样本空间为[0,)Ω=+∞ 注意:1样本空间中的元素可以是数也不是数;2样本空间至少有两个样本点,仅含两个样本点的样本空间是最简单的样本空间;3从样本空间中所含的样本点个数来区分,样本空间可分为有限与无限两类,有限样本空间比如例1、2、3、4,无限比如例5、6,例5中样本点的个数是可列的,但例6中样本点的个数是不可列无限的。
1第一章 随机事件及其概率第一节 随机事件一. 必然现象与随机现象在自然界里,在生产实践和科学实验中,人们观察到的现象大体可归结为两种类型。
一类是可事前预言的,即在准确地重复某些条件下,它的结果总是肯定的,或是根据它过去的状态,在相同条件下完全可以预言将来的发展。
我们把这一类型现象称之为确定性现象或必然现象。
如在一个大气压下,水在100度时会沸腾等。
一类是事前不可预言的,即在相同条件下重复进行试验,每次结果未必相同;或是知道它过去状况,在相同条件下,未来的发展事前却不能完全肯定。
这一类型的现象我们称之为偶然性现象或随机现象。
如掷一个质地均匀的硬币,结果可能是正面向上,或是背面向上。
二. 样本空间尽管一个随机试验将要出现的结果是不确定的, 但其所有可能结果是明确的, 我们把随机试验的每一种可能的结果称为一个样本点, 记为ω;它们的全体称为样本空间, 记为Ω.事件 是指某一可观察特征的随机试验的结果。
基本事件是相对观察目的而言不可再分解的、最基本的事件,其它事件均可由它们复合而成,一般地,我们称由基本事件复合而成的事件为复合事件.如掷一枚骰子,向上的一面会出现1点,2点,3点,4点,5点,6点。
则样本点有6个。
若记,16i i i ω=≤≤,i ω即为样本点。
样本空间为123456{,,,,,}ωωωωωωΩ=。
记{}i i A ω=,i A 为一个基本事件,把“出现偶数点”这样一个事件记为B ,则246{,,}B ωωω=。
B 为一个复合事件。
三. 事件的运算规律事件间的关系及运算与集合的关系及运算是一致的,为了方便,给出下列对照表:表1.1没有相同的元素与互不相容和事件事件的差集与不发生发生而事件事件的交集与同时发生与事件事件的和集与至少有一个发生与事件事件的相等与相等与事件事件的子集是发生发生导致事件的余集的对立事件子集事件元素基本事件空集不可能事件全集必然事件样本空间集合论概率论记号B A B A AB B A B A B A B A B A AB B A B A B A B A B A B A B A B A B A A A A A ∅=-=⊂∅Ω ω,第二节 随机事件的概率一. 概率的定义定义1 设E 是随机试验, Ω是它的样本空间,对于E 的每一个事件A 赋于一个实数, 记为)(A P , 若)(A P 满足下列三个条件:1. 非负性:对每一个事件A ,有 0)(≥A P ;2. 完备性:()1P Ω=;3. 可列可加性:设 ,,21A A 是两两互不相容的事件,则有.)()(11∑∞=∞==i ii i AP A P2则称)(A P 为事件A 的概率.二. 概率的性质性质1:()0P ∅=。
第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。
2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。
二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。
(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。
2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。
1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。
2.基本事件:试验的每一可能的结果称为基本事件。
一个样本点w 组成的单点集{w}就是随机试验的基本事件。
3.必然事件:每次实验中必然发生的事件称为必然事件。
用Ω表示。
样本空间是必然事件。
4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。
1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。
2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。
3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。
4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。
5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。
第一章 随机事件
练习一
1、 设A 、B 、C 表示三个随机事件,试将下列事件用A 、B 、C 表示:
(1) A 发生,B 、C 都不发生;
(2) 三个事件都发生;
(3) 三个事件都不发生;
(4) 三个事件不多于一个发生;
(5) A 、B 都发生,而C 不发生;
(6) A 、B 、C 中至少有一个发生;
(7) A 、B 、C 中不多于两个发生;
(8) A 、B 、C 中至少有两个发生;
2、 写出下列随机试验的样本空间:
(1) 记录一个小班一次数学考试的平均分数(设以百分制记分);
(2) 生产产品直到有10件正品为止,记录生产产品的总件数;
(3) 对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就
停止检查,或检查4个产品就停止检查,记录检查结果;
(4) 在单位圆内任取一点,记录它的坐标。
练习二
1、 设A 、B 、C 是三事件,且P(A)=P(B)=P(C)=
14,P(AB)=0,P(AC)=P(BC)=116,求事件A 、B 、C 全不发生的概率。
2、 已知()0.3,()0.4,()0.5,()P A P B P AB P B A B ===求。
3、 设某长途汽车,在起点站有20位乘客,客车要停10站,设每位乘客在任一站下车是等可能的,求没有三位及三位以上的乘客在同一车站下车的概率。
4、 设电话号码由8位数字组成(首位不为0)。
试求下列事件的概率:A ={8位数字不出现重复},B ={8位数字不含0和8}。
5、 将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率。
6、 设20名运动员中有两名国家队员。
现将运动员任意平分为两组,求两组中各有一名国家运动员的概率。
7、 将4个优等生随机地分到12个班中去,设每个人分配到每班是等可能的。
求至少有两个人被分配在同一班的概率。
练习三
1、有5副不同尺寸的手套。
甲先任取一只,乙接着也任取一只,然后甲再任取一只,最后乙又任取一只。
试求(1)甲正好取到两只配对的手套的概率;(2)乙正好取到两只配对的手套的概率;(3)甲、乙两人取到手套都配对的概率。
2、在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码。
(1)求最小号
码为5的概率。
(2)求最大号码为5的概率。
3、设袋中有a只红球,b只白球。
每次从袋中任取一球,观察其颜色后放回,并放入c只与所取出的那只球
同色的球。
若在袋中连续取球三次,试求第三次才取到红球的概率。
4、某人忘了电话号码的最后一个数字,因而随意地拨号。
求他拨号不超过三次而接通所需要电话的概率,
若已知最后一个数字是奇数,那么此概率是多少
5、为了防止意外,在矿内同时设有两种报警系统A和B,每种系统单独使用时,其有效的概率分别为,,在
A失灵的条件下,B有效的概率为,求:(1)发生意外时,这两个报警系统至少有一个有效的概率;(2)B失灵的条件下,A有效的概率。
练习四
1、设甲袋中装有n只白球、m只红球;乙袋中装有N只白球、M只红球。
今从甲袋中任意取一只球放入乙袋
中,再从乙袋中任意取一只球。
问取到白球的概率是多少
2、一个机床有1
3
的时间加工零件A,其余时间加工零件B。
加工零件A时,停机的概率时,加工零件B时,
停机的概率为,求这个机床停机的概率。
3、10个乒乓球中有7个新球,第一次随机地取出2个,用完后放回去,第二次又随机地取出2个。
(1)问
第二次取到几个新球的概率最大(2)如果发现第二次取到的是两个新球,计算第一次没有取到新球的概率。
4、有两箱同种类的零件。
第一箱装50只,其中10只一等品;第二箱装30只,其中18只一等品。
今从两
箱中任挑出一箱,然后从该箱中取零件两次,每次任取一只,作不放回抽样。
求(1)第一次取到的零件是一等品的概率。
(2)第一次取到的零件是一等品的条件下,第二次取到的也是一等品的概率。
5、已知男子有是色盲患者,女子有是色盲患者。
今从男女人数相等的人群中随机地挑选一人,恰好是色盲
患者,问此人是男性的概率是多少
6、将两信息分别编码为A和B传递出去,接收站收到时,A被误收作B的概率为,而B被误收作A的概率为。
信息A与信息B传递的频繁程度为2:1,若接收站收到的信息是A,问原发信息是A的概率是多少
7、设共有10张彩票,其中只有2张可获奖。
甲、乙、丙三人依次抽取彩票一张,规则如下:每人抽出后不
放回,但补入两张与所抽彩票不同的彩票。
问甲、乙、丙三人中谁中奖的概率最大。
练习五
1、设三台机器相互独立地运转着,又第一台、第二台、第三台机器不发生故障的概率依次为,,。
求这三台
机器全不发生故障及它们中至少有一台发生故障的概率。
2、三人独立地去破译一份密码,已知各人能译出地概率分别为111
534
,,。
问能将此密码译出地概率是多少
3、设每次射击时命中率为,问至少必须进行多少次独立射击才能使至少有一次击中的概率不小于。