第一章随机事件
- 格式:doc
- 大小:33.50 KB
- 文档页数:3
第一章随机事件及其概率§ 1.1 随机事件及其运算随机现象:概率论的基本概念之一。
是人们通常说的偶然现象。
其特点是,在相同的条件下重复观察时,可能出现这样的结果,也可能出现那样的结果,预先不能断言将出现哪种结果•例如,投掷一枚五分硬币,可能国徽”向上,也可能伍分”向上;从含有5件次品的一批产品中任意取出3件,取到次品的件数可能是0,1,2或3.随机试验:概率论的基本概念之一•指在科学研究或工程技术中,对随机现象在相同条件下的观察。
对随机现象的一次观察(包括试验、实验、测量和观测等),事先不能精确地断定其结果,而且在相同条件下可以重复进行,这种试验就称为随机试验。
样本空间:概率论术语。
我们将随机试验E的一切可能结果组成的集合称为E的样本空间,记为1。
样本空间的元素,即E的每一个结果,称为样本点。
随机事件:实际中,在进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.称试验E的样本空间I ■■的子集为E的随机事件,简称事件•在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别,由一个样本点组成的单点集,称为基本事件.样本空间门包含所有的样本点,它是门自身的子集,在每次试验中它总是发生的,称为必然事件.空集?不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生称为不可能事件.互斥事件(互不相容事件):若事件A与事件B不可能同时发生,亦即A B =①,则称事件A与事件B是互斥(或互不相容)事件。
互逆事件:事件A与事件B满足条件A B =①,A B =1 ,则称A与B是互逆事件,也称A与B是对立事件,记作B (或A = B )。
互不相容完备事件组:若事件组A,A2,…A满足条件A i A j二①,(i,i=t n ),nA-、_:,则称事件组A, A2,…A n为互不相容完备事件组(或称A, A2,…A n为样本空i=1间门的一个划分)。
§ 1.2 随机事件的概率概率:随机事件出现的可能性的量度。
第一章随机事件与概率§1.1 随机事件一、基本概念1.随机现象:预先不能断定结果的现象(有多种结果)投掷硬币、抽取牌张、观察天气、测量潮位、射击目标、顾客到来、考试排座、交通事故2.随机试验:对随机事件进行实验或观察,简称试验。
有的是人为设置,有的是必须经历。
通常所指的试验具有以下2个特征:(1)可以重复进行;(2)事先明确所有基本结果3.随机事件:试验的某种结果,事前不能确定,事后可观察到是否发生,简称事件(是个判断句)以、、,…等表示。
例1教师任取一个学号(随机),请对应的学生回答问题,站起来的可能“是男生”,“是女生”,“是戴眼镜的学生”,“是穿红衣服的学生”,“是高个子”,“是体重在60公斤以上的”“是叫张华的学生”——这些都是随机事件。
4.基本事件:不能再分解的“最简单”的事件,试验中各种最基本的可能结果。
例2在52张扑克牌中,任取一张,=“抽到◇”,=“抽到K”都是事件,其中可分解为13个最基本的结果,可分解为4个。
5.样本点:即基本事件,记为。
随机事件是某些基本事件(样本点)构成的集合。
6.样本空间:样本点的全体,即全集,记为Ω。
如投币:Ω={正,反} 抽牌:Ω=随机事件都是样本空间的子集。
例1中抽到任何一张◇,都认为已发生,类似地,抽到任何一张牌,都认为Ω已发生。
7.必然事件:试验中必然发生的事件,即Ω。
如投币:Ω=“正面朝上或反面朝上”。
抽牌:Ω=“抽到一张牌”。
8.不可能事件:试验中不可能发生的事件,是一个空集,记为。
如投币:=“正面朝上且反面朝上”。
抽牌:=“抽到一张电影票”。
例3在一批灯泡里,任取一只测试它的寿命(1000~3000小时):(1)试述一个事件;(2)指出一个样本点;(3)指出样本空间。
二、事件的关系与运算事件是集合,可以进行集合的运算,要求除了会用集合的语言表述外,还要会用事件的语言表述,并且着重于后者。
1.包含关系(或)集合语言:A中的样本点,全在内。
第一章 随机事件
练习一
1、 设A 、B 、C 表示三个随机事件,试将下列事件用A 、B 、C 表示:
(1) A 发生,B 、C 都不发生;
(2) 三个事件都发生;
(3) 三个事件都不发生;
(4) 三个事件不多于一个发生;
(5) A 、B 都发生,而C 不发生;
(6) A 、B 、C 中至少有一个发生;
(7) A 、B 、C 中不多于两个发生;
(8) A 、B 、C 中至少有两个发生;
2、 写出下列随机试验的样本空间:
(1) 记录一个小班一次数学考试的平均分数(设以百分制记分);
(2) 生产产品直到有10件正品为止,记录生产产品的总件数;
(3) 对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就
停止检查,或检查4个产品就停止检查,记录检查结果;
(4) 在单位圆内任取一点,记录它的坐标。
练习二
1、 设A 、B 、C 是三事件,且P(A)=P(B)=P(C)=
14,P(AB)=0,P(AC)=P(BC)=116,求事件A 、B 、C 全不发生的概率。
2、 已知()0.3,()0.4,()0.5,()P A P B P AB P B A B ===求。
3、 设某长途汽车,在起点站有20位乘客,客车要停10站,设每位乘客在任一站下车是等可能的,求没有三位及三位以上的乘客在同一车站下车的概率。
4、 设电话号码由8位数字组成(首位不为0)。
试求下列事件的概率:A ={8位数字不出现重复},B ={8位数字不含0和8}。
5、 将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率。
6、 设20名运动员中有两名国家队员。
现将运动员任意平分为两组,求两组中各有一名国家运动员的概率。
7、 将4个优等生随机地分到12个班中去,设每个人分配到每班是等可能的。
求至少有两个人被分配在同一班的概率。
练习三
1、有5副不同尺寸的手套。
甲先任取一只,乙接着也任取一只,然后甲再任取一只,最后乙又任取一只。
试求(1)甲正好取到两只配对的手套的概率;(2)乙正好取到两只配对的手套的概率;(3)甲、乙两人取到手套都配对的概率。
2、在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码。
(1)求最小号
码为5的概率。
(2)求最大号码为5的概率。
3、设袋中有a只红球,b只白球。
每次从袋中任取一球,观察其颜色后放回,并放入c只与所取出的那只球
同色的球。
若在袋中连续取球三次,试求第三次才取到红球的概率。
4、某人忘了电话号码的最后一个数字,因而随意地拨号。
求他拨号不超过三次而接通所需要电话的概率,
若已知最后一个数字是奇数,那么此概率是多少
5、为了防止意外,在矿内同时设有两种报警系统A和B,每种系统单独使用时,其有效的概率分别为,,在
A失灵的条件下,B有效的概率为,求:(1)发生意外时,这两个报警系统至少有一个有效的概率;(2)B失灵的条件下,A有效的概率。
练习四
1、设甲袋中装有n只白球、m只红球;乙袋中装有N只白球、M只红球。
今从甲袋中任意取一只球放入乙袋
中,再从乙袋中任意取一只球。
问取到白球的概率是多少
2、一个机床有1
3
的时间加工零件A,其余时间加工零件B。
加工零件A时,停机的概率时,加工零件B时,
停机的概率为,求这个机床停机的概率。
3、10个乒乓球中有7个新球,第一次随机地取出2个,用完后放回去,第二次又随机地取出2个。
(1)问
第二次取到几个新球的概率最大(2)如果发现第二次取到的是两个新球,计算第一次没有取到新球的概率。
4、有两箱同种类的零件。
第一箱装50只,其中10只一等品;第二箱装30只,其中18只一等品。
今从两
箱中任挑出一箱,然后从该箱中取零件两次,每次任取一只,作不放回抽样。
求(1)第一次取到的零件是一等品的概率。
(2)第一次取到的零件是一等品的条件下,第二次取到的也是一等品的概率。
5、已知男子有是色盲患者,女子有是色盲患者。
今从男女人数相等的人群中随机地挑选一人,恰好是色盲
患者,问此人是男性的概率是多少
6、将两信息分别编码为A和B传递出去,接收站收到时,A被误收作B的概率为,而B被误收作A的概率为。
信息A与信息B传递的频繁程度为2:1,若接收站收到的信息是A,问原发信息是A的概率是多少
7、设共有10张彩票,其中只有2张可获奖。
甲、乙、丙三人依次抽取彩票一张,规则如下:每人抽出后不
放回,但补入两张与所抽彩票不同的彩票。
问甲、乙、丙三人中谁中奖的概率最大。
练习五
1、设三台机器相互独立地运转着,又第一台、第二台、第三台机器不发生故障的概率依次为,,。
求这三台
机器全不发生故障及它们中至少有一台发生故障的概率。
2、三人独立地去破译一份密码,已知各人能译出地概率分别为111
534
,,。
问能将此密码译出地概率是多少
3、设每次射击时命中率为,问至少必须进行多少次独立射击才能使至少有一次击中的概率不小于。