高中典型物理模型及解题方法
- 格式:doc
- 大小:671.50 KB
- 文档页数:14
高中物理必修一解题方法与技巧高中物理必修一是整个高中物理的基础,掌握好这一部分的解题方法与技巧对于后续的学习至关重要。
以下是一些常用的解题方法与技巧:1. 受力分析:这是解决物理问题的第一步,要明确研究对象所受的力,包括重力、弹力、摩擦力等。
根据物体的运动状态,分析其受力情况,建立平衡方程。
2. 运动学公式:要熟练掌握速度、加速度、位移等基本物理量的定义及计算公式,这些公式是解决运动学问题的基石。
同时,还要理解速度-时间图和位移-时间图的含义及绘制方法。
3. 牛顿第二定律:这是动力学部分的核心,要理解力和加速度的关系,会根据受力分析结合牛顿第二定律列方程求解。
4. 动量定理与动量守恒:对于涉及时间变化或冲量的物理问题,可以使用动量定理。
对于两个或多个物体相互作用的问题,如果系统不受外力或所受外力的矢量和为零,则系统的动量守恒。
5. 动能定理:对于涉及功和能的问题,动能定理是一个非常有用的工具。
它表示一个过程的合外力所做的功等于该过程中物体动能的改变。
6. 周期性和圆周运动:对于涉及周期性运动或圆周运动的问题,要理解向心力的概念,掌握向心加速度的计算公式。
同时,还要理解开普勒定律(特别是第一定律)的含义及应用。
7. 实验与测量:物理是一门以实验为基础的学科,实验数据的处理和误差分析非常重要。
要掌握基本的实验技能,理解误差产生的原因及减小误差的方法。
8. 解题策略与技巧:模型法:将复杂的物理现象抽象化,建立物理模型,有助于理解和解决问题。
隔离法与整体法:在分析系统问题时,有时需要将整个系统视为一个整体来考虑,有时又需要将系统中的某个部分隔离出来单独分析。
假设法:对于一些难以直接判断的问题,可以通过假设法进行反证,从而找到答案。
图象法:利用图象描述物理过程和状态,直观地反映物理量之间的关系,便于找到问题的解决方案。
9. 日常生活中的物理应用:物理与日常生活紧密相关。
通过观察生活中的物理现象,可以加深对物理概念和规律的理解,同时也能提高解决实际问题的能力。
高一物理48个解题模型高一物理48个解题模型物理是一门理论与实践相结合的学科,对于高中生来说,掌握解题模型是学好物理的关键。
下面将介绍一些高一物理常见的解题模型,帮助学生更好地应对各种物理问题。
1. 运动学模型:根据物体在运动中的速度、位移、加速度等信息,分析物体的运动规律。
2. 动量守恒模型:根据系统内物体的质量和速度,分析碰撞、爆炸等情况下动量的守恒关系。
3. 能量守恒模型:根据物体的势能、动能等信息,分析物体在能量转化过程中的关系。
4. 弹性碰撞模型:根据碰撞物体的质量和速度,分析碰撞后物体的速度和能量转化情况。
5. 万有引力模型:根据物体的质量和距离,分析物体之间的引力关系。
6. 电路分析模型:根据电路中的电阻、电容、电流等元件,分析电路中的电流、电压等参数。
7. 磁场分析模型:根据磁场的大小和方向,分析磁场对物体的作用力和磁感应强度等参数。
8. 电磁感应模型:根据磁感应强度和导线运动情况,分析感应电动势和感应电流等问题。
9. 光学成像模型:根据光的传播规律,分析凸透镜、凹透镜成像的特点和规律。
10. 热力学模型:根据物体的温度、热量和热容等参数,分析热力学过程中的能量转化和热平衡问题。
11. 物质结构模型:根据物质的化学成分和结构,分析物质的性质和变化规律。
12. 机械振动模型:根据弹簧振子、摆锤等物体的振动特性,分析振动频率和振幅等问题。
13. 波动模型:根据波的传播规律,分析波的频率、波速和波长等参数。
14. 电磁波模型:根据电磁波的特性,分析电磁波的频率、波长和传播速度等问题。
15. 电磁场分析模型:根据电磁场的大小和方向,分析电磁场对物体的作用力和电磁感应等问题。
除了上述模型外,还有很多其他解题模型,如力学模型、静电模型、波粒二象性模型等等。
在解题过程中,学生可以根据具体问题的要求选择合适的模型进行分析和计算。
同时,掌握解题方法也是解决物理问题的关键。
学生需要注重理论知识的学习,建立良好的物理思维和逻辑能力,通过大量的练习和实践,熟悉不同模型的应用,培养自己的解题能力。
高考物理经典解题模型及答题技巧1、"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度.2."绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题.3."挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法.4."追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等.5."运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系.6."皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题.7."斜面"模型:运动规律.三大定律.数理问题.8."平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动).9."行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题).10."全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法.11."人船"模型:动量守恒定律.能量守恒定律.数理问题.12."子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题.13."爆炸"模型:动量守恒定律.能量守恒定律.14."单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法.15."限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用.16."电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题.17."磁流发电机"模型:平衡与偏转.力和能问题.18."回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题.19."对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.20.电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度.21.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律.22.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题.23."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.24.远距离输电升压降压的变压器模型.1、注意看清题目,比如选择的是错误的、可能的、不正确的、或者一定的,这些关键字眼一定要仔细看清楚,以免丢了冤枉分。
高中物理超全大题解题模型公式汇总!
一、匀变速直线运动
二、共点力平衡
三、牛顿运动定律
1.斜面模型
2.板块模型
3.传送带模型
四、曲线运动
ω增大,F增大。
五、天体运动
1.相关物理量的关系图
2.变轨模型
六、碰撞和动量守恒
1.弹性正碰
满足动量守恒定律和机械能守恒定律
解得:
2.冲击摆
七、带电粒子在电场中的运动 1.加速+偏转模型
电加速:
电偏转:
水平方向:
竖直方向:
偏转角:
荧光屏上的偏移量:
2.电场+重力场的叠加场
▲图中qE=mg,则θ=45°
八、带电粒子在磁场中的运动
1.找圆心、求半径、算时间
物理方程:
几何关系:
速度偏向角:
▲算时间:
2.磁聚焦“透镜”
磁场圆半径与轨迹圆半径相等,即
2.有效切割长度
▲三种情况中有效切割长度均为d 3.电磁感应中的杆+导轨模型
运动过程中:
先做a减小的加速运动,后做匀速:
十、理想变压器
十一、原子物理
1.光电效应
2.氢原子能级。
高中物理考试常见的类型无非包括以下16种,本文介绍了这16种常见题型的解题方法和思维模板,还介绍了高考各类试题的解题方法和技巧,提供各类试题的答题模版,飞速提升你的解题能力,力求做到让你一看就会,一想就通,一做就对题型1 直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系.题型2 物体的动态平衡问题题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题.思维模板:常用的思维方法有两种.1解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;2图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化.题型3 运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类.一是绳杆末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.思维模板:1在绳杆末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳杆的方向和垂直绳杆的方向;如果有两个物体通过绳杆相连,则两个物体沿绳杆方向速度相等.2小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析.题型4 抛体运动问题题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上.思维模板:1平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足vx=v0,vy=gt;2斜抛运动物体在竖直方向上做上抛或下抛运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解题型5 圆周运动问题题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动.水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动.对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况.思维模板:1对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由F合=mv2/r=mrω2列方程求解即可;若物体的运动不是匀速圆周运动,则应将物体所受的力进行正交分解,物体在指向圆心方向上的合力等于向心力.2竖直面内的圆周运动可以分为三个模型:①绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力;②杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零;③外轨模型:只能提供背离圆心方向的力,物体在最高点时,若v<gR1/2,沿轨道做圆周运动,若v≥gR1/2,离开轨道做抛体运动.题型6 牛顿运动定律的综合应用问题题型概述:牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,综合性较强.天体运动类题目是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高.思维模板:以牛顿第二定律为桥梁,将力和运动联系起来,可以根据力来分析运动情况,也可以根据运动情况来分析力.对于多过程问题一般应根据物体的受力一步一步分析物体的运动情况,直到求出结果或找出规律.对天体运动类问题,应紧抓两个公式:GMm/r2=mv2/r=mrω2=mr4π2/T2 ①;GMm/R2=mg ②.对于做圆周运动的星体包括双星、三星系统,可根据公式①分析;对于变轨类问题,则应根据向心力的供求关系分析轨道的变化,再根据轨道的变化分析其他各物理量的变化.题型7 机车的启动问题题型概述:机车的启动方式常考查的有两种情况,一种是以恒定功率启动,一种是以恒定加速度启动,不管是哪一种启动方式,都是采用瞬时功率的公式P=Fv和牛顿第二定律的公式F-f=ma来分析.思维模板:1机车以额定功率启动.机车的启动过程如图所示,由于功率P=Fv恒定,由公式P=Fv和F-f=ma知,随着速度v的增大,牵引力F必将减小,因此加速度a也必将减小,机车做加速度不断减小的加速运动,直到F=f,a=0,这时速度v达到最大值vm=P额定/F=P额定/f.这种加速过程发动机做的功只能用W=Pt计算,不能用W=Fs计算因为F为变力.2机车以恒定加速度启动.恒定加速度启动过程实际包括两个过程.如图所示,“过程1”是匀加速过程,由于a恒定,所以F恒定,由公式P=Fv知,随着v的增大,P也将不断增大,直到P 达到额定功率P额定,功率不能再增大了;“过程2”就保持额定功率运动.过程1以“功率P达到最大,加速度开始变化”为结束标志.过程2以“速度最大”为结束标志.过程1发动机做的功只能用W=F·s计算,不能用W=P·t计算因为P为变功率.题型8以能量为核心的综合应用问题题型概述:以能量为核心的综合应用问题一般分四类.第一类为单体机械能守恒问题,第二类为多体系统机械能守恒问题,第三类为单体动能定理问题,第四类为多体系统功能关系能量守恒问题.多体系统的组成模式:两个或多个叠放在一起的物体,用细线或轻杆等相连的两个或多个物体,直接接触的两个或多个物体.思维模板:能量问题的解题工具一般有动能定理,能量守恒定律,机械能守恒定律.1动能定理使用方法简单,只要选定物体和过程,直接列出方程即可,动能定理适用于所有过程;2能量守恒定律同样适用于所有过程,分析时只要分析出哪些能量减少,哪些能量增加,根据减少的能量等于增加的能量列方程即可;3机械能守恒定律只是能量守恒定律的一种特殊形式,但在力学中也非常重要.很多题目都可以用两种甚至三种方法求解,可根据题目情况灵活选取.题型9力学实验中速度的测量问题题型概述:速度的测量是很多力学实验的基础,通过速度的测量可研究加速度、动能等物理量的变化规律,因此在研究匀变速直线运动、验证牛顿运动定律、探究动能定理、验证机械能守恒等实验中都要进行速度的测量.速度的测量一般有两种方法:一种是通过打点计时器、频闪照片等方式获得几段连续相等时间内的位移从而研究速度;另一种是通过光电门等工具来测量速度.思维模板:用第一种方法求速度和加速度通常要用到匀变速直线运动中的两个重要推论:①vt/2=v平均=v0+v/2,②Δx=aT2,为了尽量减小误差,求加速度时还要用到逐差法.用光电门测速度时测出挡光片通过光电门所用的时间,求出该段时间内的平均速度,则认为等于该点的瞬时速度,即:v=d/Δt.题型10电容器问题题型概述:电容器是一种重要的电学元件,在实际中有着广泛的应用,是历年高考常考的知识点之一,常以选择题形式出现,难度不大,主要考查电容器的电容概念的理解、平行板电容器电容的决定因素及电容器的动态分析三个方面.思维模板:1电容的概念:电容是用比值C=Q/U定义的一个物理量,表示电容器容纳电荷的多少,对任何电容器都适用.对于一个确定的电容器,其电容也是确定的由电容器本身的介质特性及几何尺寸决定,与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关.2平行板电容器的电容:平行板电容器的电容由两极板正对面积、两极板间距离、介质的相对介电常数决定,满足C=εS/4πkd3电容器的动态分析:关键在于弄清哪些是变量,哪些是不变量,抓住三个公式C=Q/U、C=εS/4πkd及E=U/d并分析清楚两种情况:一是电容器所带电荷量Q保持不变充电后断开电源,二是两极板间的电压U保持不变始终与电源相连.题型11带电粒子在电场中的运动问题题型概述:带电粒子在电场中的运动问题本质上是一个综合了电场力、电势能的力学问题,研究方法与质点动力学一样,同样遵循运动的合成与分解、牛顿运动定律、功能关系等力学规律,高考中既有选择题,也有综合性较强的计算题.思维模板:1处理带电粒子在电场中的运动问题应从两种思路着手①动力学思路:重视带电粒子的受力分析和运动过程分析,然后运用牛顿第二定律并结合运动学规律求出位移、速度等物理量.②功能思路:根据电场力及其他作用力对带电粒子做功引起的能量变化或根据全过程的功能关系,确定粒子的运动情况使用中优先选择.2处理带电粒子在电场中的运动问题应注意是否考虑粒子的重力①质子、α粒子、电子、离子等微观粒子一般不计重力;②液滴、尘埃、小球等宏观带电粒子一般考虑重力;③特殊情况要视具体情况,根据题中的隐含条件判断.3处理带电粒子在电场中的运动问题应注意画好粒子运动轨迹示意图,在画图的基础上运用几何知识寻找关系往往是解题的突破口.题型12带电粒子在磁场中的运动问题题型概述:带电粒子在磁场中的运动问题在历年高考试题中考查较多,命题形式有较简单的选择题,也有综合性较强的计算题且难度较大,常见的命题形式有三种:1突出对在洛伦兹力作用下带电粒子做圆周运动的运动学量半径、速度、时间、周期等的考查;2突出对概念的深层次理解及与力学问题综合方法的考查,以对思维能力和综合能力的考查为主;3突出本部分知识在实际生活中的应用的考查,以对思维能力和理论联系实际能力的考查为主.思维模板:在处理此类运动问题时,着重把握“一找圆心,二找半径R=mv/Bq,三找周期T=2πm/Bq或时间”的分析方法.1圆心的确定:因为洛伦兹力f指向圆心,根据f⊥v,画出粒子运动轨迹中任意两点一般是射入和射出磁场的两点的f的方向,沿两个洛伦兹力f作出其延长线的交点即为圆心.另外,圆心位置必定在圆中任一根弦的中垂线上如图所示.看大图2半径的确定和计算:利用平面几何关系,求出该圆的半径或运动圆弧对应的圆心角,并注意利用一个重要的几何特点,即粒子速度的偏向角φ等于圆心角α,并等于弦AB与切线的夹角弦切角θ的2倍如图所示,即φ=α=2θ.3运动时间的确定:t=φT/2π或t=s/v,其中φ为偏向角,T为周期,s为轨迹的弧长,v为线速度.题型13带电粒子在复合场中的运动问题题型概述:带电粒子在复合场中的运动是高考的热点和重点之一,主要有下面所述的三种情况.1带电粒子在组合场中的运动:在匀强电场中,若初速度与电场线平行,做匀变速直线运动;若初速度与电场线垂直,则做类平抛运动;带电粒子垂直进入匀强磁场中,在洛伦兹力作用下做匀速圆周运动.2带电粒子在叠加场中的运动:在叠加场中所受合力为0时做匀速直线运动或静止;当合外力与运动方向在一直线上时做变速直线运动;当合外力充当向心力时做匀速圆周运动.3带电粒子在变化电场或磁场中的运动:变化的电场或磁场往往具有周期性,同时受力也有其特殊性,常常其中两个力平衡,如电场力与重力平衡,粒子在洛伦兹力作用下做匀速圆周运动.思维模板:分析带电粒子在复合场中的运动,应仔细分析物体的运动过程、受力情况,注意电场力、重力与洛伦兹力间大小和方向的关系及它们的特点重力、电场力做功与路径无关,洛伦兹力永远不做功,然后运用规律求解,主要有两条思路.1力和运动的关系:根据带电粒子的受力情况,运用牛顿第二定律并结合运动学规律求解.2〖JP3〗功能关系:根据场力及其他外力对带电粒子做功的能量变化或全过程中的功能关系解决问题.该部分内容在试题调研高分宝典系列之高考决战压轴大题第72页到114页有更详细的讲解,请同学们参阅题型14以电路为核心的综合应用问题题型概述:该题型是高考的重点和热点,高考对本题型的考查主要体现在闭合电路欧姆定律、部分电路欧姆定律、电学实验等方面.主要涉及电路动态问题、电源功率问题、用电器的伏安特性曲线或电源的U-I图像、电源电动势和内阻的测量、电表的读数、滑动变阻器的分压和限流接法选择、电流表的内外接法选择等.有关实验的内容在试题调研第4辑中已详细讲述过,这里不再赘述.思维模板:1电路的动态分析是根据闭合电路欧姆定律、部分电路欧姆定律及串并联电路的性质,分析电路中某一电阻变化而引起整个电路中各部分电流、电压和功率的变化情况,即有R分→R总→I总→U端→I分、U分2电路故障分析是指对短路和断路故障的分析,短路的特点是有电流通过,但电压为零,而断路的特点是电压不为零,但电流为零,常根据短路及断路特点用仪器进行检测,也可将整个电路分成若干部分,逐一假设某部分电路发生某种故障,运用闭合电路或部分电路欧姆定律进行推理.3导体的伏安特性曲线反映的是导体的电压U与电流I的变化规律,若电阻不变,电流与电压成线性关系,若电阻随温度发生变化,电流与电压成非线性关系,此时曲线某点的切线斜率与该点对应的电阻值一般不相等.电源的外特性曲线由闭合电路欧姆定律得U=E-Ir,画出的路端电压U与干路电流I的关系图线的纵截距表示电源的电动势,斜率的绝对值表示电源的内阻.题型15以电磁感应为核心的综合应用问题题型概述:此题型主要涉及四种综合问题1动力学问题:力和运动的关系问题,其联系桥梁是磁场对感应电流的安培力.2电路问题:电磁感应中切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,这样,电磁感应的电路问题就涉及电路的分析与计算.3图像问题:一般可分为两类,一是由给定的电磁感应过程选出或画出相应的物理量的函数图像;二是由给定的有关物理图像分析电磁感应过程,确定相关物理量.4能量问题:电磁感应的过程是能量的转化与守恒的过程,产生感应电流的过程是外力做功,把机械能或其他形式的能转化为电能的过程;感应电流在电路中受到安培力作用或通过电阻发热把电能转化为机械能或电阻的内能等.思维模板:解决这四种问题的基本思路如下1动力学问题:根据法拉第电磁感应定律求出感应电动势,然后由闭合电路欧姆定律求出感应电流,根据楞次定律或右手定则判断感应电流的方向,进而求出安培力的大小和方向,再分析研究导体的受力情况,最后根据牛顿第二定律或运动学公式列出动力学方程或平衡方程求解.2电路问题:明确电磁感应中的等效电路,根据法拉第电磁感应定律和楞次定律求出感应电动势的大小和方向,最后运用闭合电路欧姆定律、部分电路欧姆定律、串并联电路的规律求解路端电压、电功率等.3图像问题:综合运用法拉第电磁感应定律、楞次定律、左手定则、右手定则、安培定则等规律来分析相关物理量间的函数关系,确定其大小和方向及在坐标系中的范围,同时注意斜率的物理意义.4能量问题:应抓住能量守恒这一基本规律,分析清楚有哪些力做功,明确有哪些形式的能量参与了相互转化,然后借助于动能定理、能量守恒定律等规律求解.题型16电学实验中电阻的测量问题题型概述:该题型是高考实验的重中之重,每年必有命题,可以说高考每年所考的电学实验都会涉及电阻的测量.针对此部分的高考命题可以是测量某一定值电阻,也可以是测量电流表或电压表的内阻,还可以是测量电源的内阻等.思维模板:测量的原理是部分电路欧姆定律、闭合电路欧姆定律;常用方法有欧姆表法、伏安法、等效替代法、半偏法等.。
Fm 高考常用24个物理模型物理复习和做题时需要注意思考、善于归纳整理,对于例题做到触类旁通,举一反三,把老师的知识和解题能力变成自己的知识和解题能力,下面是物理解题中常见的24个解题模型,从力学、运动、电磁学、振动和波、光学到原子物理,基本涵盖高中物理知识的各个方面。
主要模型归纳整理如下:模型一:超重和失重系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y ) 向上超重(加速向上或减速向下)F =m (g +a ); 向下失重(加速向下或减速上升)F =m (g -a ) 难点:一个物体的运动导致系统重心的运动绳剪断后台称示数 铁木球的运动 系统重心向下加速 用同体积的水去补充斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动?模型二:斜面搞清物体对斜面压力为零的临界条件斜面固定:物体在斜面上情况由倾角和摩擦因素决定=tg 物体沿斜面匀速下滑或静止 > tg 物体静止于斜面 < tg 物体沿斜面加速下滑a=g(sin 一cos )μθμθμθθμθaθ模型三:连接体是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法:指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程。
隔离法:指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒)与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。
平面、斜面、竖直都一样。
只要两物体保持相对静止记住:N=(N 为两物体间相互作用力),一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用讨论:①F 1≠0;F 2=0N=② F 1≠0;F 2≠0 N=(是上面的情况) F=F=F=F 1>F 2 m 1>m 2 N 1<N 2例如:N 5对6=(m 为第6个以后的质量) 第12对13的作用力N 12对13=211212m F m F m m ++⇒F 212m m m N+=122F=(m +m )a N=m a212m F m m +211212m F m m m F ++20F =211221m m g)(m m g)(m m ++122112m (m )m (m gsin )m mg θ++A B B 12m (m )m Fm m g ++F Mm Fnm 12)m -(n m 2 m 1 Fm 1 m 2╰ α模型四:轻绳、轻杆绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
高中典型物理模型及方法(精华)◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。
平面、斜面、竖直都一样。
只要两物体保持相对静止 记住:N= 211212m F m F m m ++ (N 为两物体间相互作用力),一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用⇒F 212m m m N +=讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m aN=212m F m m +② F 1≠0;F 2≠0 N=211212m F m m m F ++(20F =就是上面的情况)F=211221m m g)(m m g)(m m ++F=122112m (m )m (m gsin )m m g θ++ F=A B B 12m (m )m F m m g ++F 1>F 2 m 1>m 2 N 1〈N 2(为什么)N 5对6=F Mm (m 为第6个以后的质量) 第12对13的作用力 N 12对13=F nm12)m -(n◆2。
水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)研究物体通过最高点和最低点的情况,并且经常出现临界状态。
(圆周运动实例) ①火车转弯②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。
④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。
高中物理经典解题模型归纳高中物理作为一门全人类必修的基础课程,其内容涉及到了广泛的领域,涵盖了牛顿力学、电磁学、光学等知识。
在学习高中物理过程中,学生们会遇到各种各样的问题和难题,要解决这些问题,我们需要掌握一些常见的解题模型。
本文将会介绍几种高中物理中常见的解题模型,这些模型在解决不同类型的物理问题中非常有帮助。
一、运动问题的解题模型1、匀变速直线运动问题这类问题需要根据基本的运动公式来进行解答。
我们需要根据题目所给定的量去确定需要使用的公式,并将所需要的各种量代入计算从而求解出题目所需的答案。
2、含时间加速度的匀变速直线运动问题对于这类问题,我们需要使用高中物理中比较常见的运动学方程组来求解。
如下所示:v = u + at (1)s = ut + 1/2at² (2)v² = u² + 2as (3)其中 u、v、a、s、t 分别表示初速度、末速度、加速度、位移和时间。
3、抛体运动问题对于抛体运动问题,我们需要将其分成水平方向和竖直方向两个方向的分量进行分析。
通常需要使用初速度分解和运动中速度的叠加原理两个基本的解题方法。
二、力学问题的解题模型1、平衡问题对于平衡问题,我们需要采用受力分析的方法来解答。
受力分析就是根据牛顿第二定律,将物体所受到的各种力进行分析,最终确定物体所处的平衡条件。
通常情况下,我们会根据物体所受到的力和重力的大小进行分析,从而确定物体所处的平衡点位置。
2、动力学问题对于动力学问题,我们需要采用牛顿第二定律来解答。
根据牛顿第二定律的公式 F = ma,我们就可以根据物体所受到的作用力和其所处的速度来计算出物体所受到的加速度。
进一步地,我们也可以通过计算物体所处的加速度来得出物体所受到的作用力的大小。
三、电学问题的解题模型1、电路分析问题在电路分析问题中,我们需要根据欧姆定律、基尔霍夫定律、电容定律等来进行分析。
对于简单的电路问题,我们可以使用欧姆定律及串、并联电阻的等效电阻进行求解。
高中物理】16种常见题型的解题方法和思维模板2019-10-24 08:42高中物理考试常见的类型总结下来有16种,怎样才能做好每一类型的题目呢?今天小编为同学们整理了高中物理16种常见题型的解题方法和思维模板!快快收藏!题型1直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。
单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系。
题型2物体的动态平衡问题题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。
物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题。
思维模板:常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化。
题型3运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类。
一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.思维模板:主要有两种情况。
(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。
高中物理48个解题模型高考物理经典题型归纳
学好高中物理可以多积累些做题解题的经典模型。
下文小编给大家整理了高中物理最常用的几种解题模型,供参考!
高中物理解题常用经典模型1、'皮带'模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题.
2、'斜面'模型:运动规律,三大定律,数理问题.
3、'运动关联'模型:一物体运动的同时性,独立性,等效性,多物体参与的独立性和时空联系.
4、'人船'模型:动量守恒定律,能量守恒定律,数理问题.
5、'子弹打木块'模型:三大定律,摩擦生热,临界问题,数理问题.
6、'爆炸'模型:动量守恒定律,能量守恒定律.
7、'单摆'模型:简谐运动,圆周运动中的力和能问题,对称法,图象法.
8.电磁场中的'双电源'模型:顺接与反接,力学中的三大定律,闭合电路的欧姆定律.电磁感应定律.
9.交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题.
10、'平抛'模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动).
11、'行星'模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心.半径.临界问题).。
高中物理知识点总结高考物理48 个解题模型
高中阶段的物理常常会以模型的形式出现,这些模型应用在解题中提供了支持和辅助作用。
1高中物理解题模型汇总必修一
1、传送带模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题。
2、追及相遇模型:运动规律,临界问题,时间位移关系问题,数学法(函
数极值法。
图像法等)
3、挂件模型:平衡问题,死结与活结问题,采用正交分解法,图解法,三角形法则和极值法。
4、斜面模型:受力分析,运动规律,牛顿三大定律,数理问题。
必修二
1、“绳子、弹簧、轻杆”三模型:三件的异同点,直线与圆周运动中的动力
学问题和功能问题。
2、行星模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心。
半径。
临界问题)。
3、抛体模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动)。
选修3-1
1、“回旋加速器”模型:加速模型(力能规律),回旋模型(圆周运动),数理问题。
2、“磁流发电机”模型:平衡与偏转,力和能问题。
3、“电路的动态变化”模型:闭合电路的欧姆定律,判断方法和变压器的三。
高考物理模型及解题大招高考物理模型及解题大招一、背景介绍在高考中,物理作为一门重要的科目,是很多考生必须面对的难关。
为了在高考中获得更好的成绩,考生需要掌握物理相关的模型和解题大招。
二、高考物理模型介绍高考物理涉及的模型较多,下面将列举一些常见的模型及其应用。
1. 运动学方程这是物理中最基本的模型之一,适用于描述任何类型的运动。
在高考中,考生需要掌握各种运动学方程及其应用,如速度、位移、时间等。
熟练掌握这些方程是解题的基础。
2. 牛顿运动定律牛顿运动定律是经典力学中最重要的定律之一,它描述了物体的运动状态和受力情况之间的关系。
在高考中,考生需要掌握牛顿运动定律的表述方式和应用,包括如何确定受力方向和大小等。
3. 能量守恒定律能量守恒定律是热力学中最基本的定律之一,也是物理中最重要的定律之一。
它描述了能量在物理学中的变换和守恒。
在高考中,考生需要熟悉如何使用能量守恒定律来解决各种物理问题。
4. 热力学定律热力学定律是热力学中的基本原理,主要描述了热力学体系在热学平衡状态下的特性。
在高考中,考生需要掌握热力学定律的表述和应用,如热力学第一定律和第二定律等。
三、高考物理解题大招除了掌握各种物理模型,考生还需要掌握一些解题技巧,以下是一些常见的解题大招。
1. 分析题目在解题之前,考生需要认真仔细地阅读题目,了解题目所涉及的知识点和要求,分析题目的难度,然后再结合自己的知识、经验和思维来解决问题。
2. 列出解题步骤解题时,考生需要按照题目要求列出解题步骤,逐步分析和推导,以确保解题的正确性和完整性。
3. 注意数值和单位在解题过程中,考生需要注意数值和单位的转换,同时也要注意各种量之间的关系,以确保答案的准确性。
4. 多练习最后,考生需要多练习各种物理题目,熟悉各种解题技巧和知识点,以提高自己的解题能力,从而在高考中取得好成绩。
总之,高考物理是一个重要的科目,需要考生掌握各种物理模型和解题技巧。
只有通过不断的学习和练习,才能够在高考中取得好成绩。
高中物理68个解题模型物理作为一门自然科学,研究的是物质和能量之间的相互关系。
在高中物理学习中,解题是一个重要的环节。
为了帮助同学们更好地掌握物理知识,提高解题能力,本文将介绍高中物理中常见的68个解题模型。
一、力学部分1. 牛顿第一定律模型:物体静止或匀速直线运动时,合外力为零。
2. 牛顿第二定律模型:物体的加速度与作用在物体上的合外力成正比,与物体的质量成反比。
3. 牛顿第三定律模型:任何两个物体之间的相互作用力大小相等、方向相反。
4. 重力模型:物体受到的重力与物体的质量成正比。
5. 弹簧模型:弹簧的伸长或缩短与外力的大小成正比。
6. 摩擦力模型:物体受到的摩擦力与物体受到的压力成正比。
7. 斜面模型:物体在斜面上滑动时,重力分解为平行于斜面的分力和垂直于斜面的分力。
8. 动量守恒模型:在没有外力作用下,物体的总动量保持不变。
9. 能量守恒模型:在一个封闭系统中,能量的总量保持不变。
二、热学部分10. 热传导模型:热量从高温物体传递到低温物体。
11. 热膨胀模型:物体受热后会膨胀,受冷后会收缩。
12. 热平衡模型:两个物体处于热平衡时,它们的温度相等。
13. 热容模型:物体吸收或释放的热量与物体的质量和温度变化成正比。
14. 理想气体状态方程模型:PV = nRT,描述了理想气体的状态。
15. 热力学第一定律模型:热量的增加等于物体内能的增加与对外做功的总和。
三、光学部分16. 光的直线传播模型:光在均匀介质中直线传播。
17. 光的反射模型:光线与平面镜或曲面镜相交时,遵循入射角等于反射角的规律。
18. 光的折射模型:光线从一种介质射入另一种介质时,遵循折射定律。
19. 光的色散模型:光在经过棱镜等介质时,会发生色散现象。
20. 光的干涉模型:两束相干光叠加时,会出现干涉现象。
21. 光的衍射模型:光通过狭缝或物体边缘时,会发生衍射现象。
22. 光的偏振模型:光的振动方向只在一个平面上。
四、电学部分23. 电流模型:电流的大小等于单位时间内通过导体横截面的电荷量。
1专题:高中物理力学常见物理模型高考中常出现的物理模型:斜面模型、叠加体模型(包含滑块、子弹射入)、〔弹簧、轻绳、轻杆〕连接体模型、传送带模型、人船模型、碰撞模型等。
一、斜面模型每年各地高考卷中几乎都有关于斜面模型的试题。
以下结论有助于更好更快地理清解题思路和方法.1.自由释放的滑块能在斜面上(如右图)匀速下滑时,m 与M 之间的动摩擦因数μ=g tan θ.2.自由释放的滑块在斜面上(如右图所示):(1)静止或匀速下滑时,斜面M 对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左.3.自由释放的滑块在斜面上(如右图所示)匀速下滑时,M 对水平地面的静摩擦力为零,这一过程中再在m 上加上任何方向的作用力,(在m 停止前)M 对水平地面的静摩擦力依然为零..4.悬挂有物体的小车在斜面上滑行(如右图所示):(1)向下的加速度a =g sin θ时,悬绳稳定时将垂直于斜面;(2)向下的加速度a >g sin θ时,悬绳稳定时将偏离垂直方向向上; (3)向下的加速度a <g sin θ时,悬绳将偏离垂直方向向下.5.在倾角为θ的斜面上以速度v 0平抛一小球(如右 图所示):(1)落到斜面上的时间t =2v 0tan θg;(2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关;(3)经过t c =v 0tan θg 小球距斜面最远,最大距离d =(v 0sin θ)22g cos θ.6.如下图,当整体有向右的加速度a =g tan θ时,m 能在斜面上保持相对静止.7.在如以下图所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab 棒所能到达的稳定速度v m =mgR sin θB 2L 2.8.如以下图所示,当各接触面均光滑时,在小球从斜面顶端滑下的过程中,斜面后退的位移s =mm +ML .2v v tt二、叠加体模型叠加体模型〔包括滑块、子弹打木块、滑环直杆、传送带等模型,传送带另详述〕在高考中频现,常需求解摩擦力、相对滑动路程、摩擦生热、多次作用后的速度等。
╰α高中物理知识归纳----------------------------力学模型及方法1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
2斜面模型(搞清物体对斜面压力为零的临界条件)斜面固定:物体在斜面上情况由倾角和摩擦因素决定μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ)3.轻绳、杆模型杆对球的作用力由运动情况决定只有θ=arctg(g a)时才沿杆方向最高点时杆对球的作用力;最低点时的速度?,杆的拉力?若小球带电呢?假设单B下摆,最低点的速度V B=R2g⇐mgR=221BmvF整体下摆2mgR=mg2R +'2B '2A mv21mv 21+ 'A 'B V 2V = ⇒ 'A V =gR 53 ; 'A 'BV 2V ==gR 256> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功 若 V 0<gR ,运动情况为先平抛,绳拉直沿绳方向的速度消失即是有能量损失,绳拉紧后沿圆周下落机械能守恒。
而不能够整个过程用机械能守恒。
求水平初速及最低点时绳的拉力?换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v 1突然消失),再v 2下摆机械能守恒例:摆球的质量为m ,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A 时绳子受到的拉力是多少?4.超重失重模型 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y )向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)难点:一个物体的运动导致系统重心的运动1到2到3过程中 (1、3除外)超重状态 绳剪断后台称示数 系统重心向下加速 斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动? 铁木球的运动用同体积的水去补充5.碰撞模型:特点,①动量守恒;②碰后的动能不可能比碰前大;③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。
高中物理解题常用经典模型1、'皮带'模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题.2、'斜面'模型:运动规律,三大定律,数理问题.3、'运动关联'模型:一物体运动的同时性,独立性,等效性,多物体参与的独立性和时空联系.4、'人船'模型:动量守恒定律,能量守恒定律,数理问题.5、'子弹打木块'模型:三大定律,摩擦生热,临界问题,数理问题.6、'爆炸'模型:动量守恒定律,能量守恒定律.7、'单摆'模型:简谐运动,圆周运动中的力和能问题,对称法,图象法.8.电磁场中的'双电源'模型:顺接与反接,力学中的三大定律,闭合电路的欧姆定律.电磁感应定律.9.交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题.10、'平抛'模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动).11、'行星'模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心.半径.临界问题).12、'全过程'模型:匀变速运动的整体性,保守力与耗散力,动量守恒定律.动能定理.全过程整体法.13、'质心'模型:质心(多种体育运动),集中典型运动规律,力能角度.14、'绳件.弹簧.杆件'三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题.15、'挂件'模型:平衡问题,死结与活结问题,采用正交分解法,图解法,三角形法则和极值法.16、'追碰'模型:运动规律,碰撞规律,临界问题,数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等.17.'能级'模型:能级图,跃迁规律,光电效应等光的本质综合问题.18.远距离输电升压降压的变压器模型.19、'限流与分压器'模型:电路设计,串并联电路规律及闭合电路的欧姆定律,电能,电功率,实际应用.20、'电路的动态变化'模型:闭合电路的欧姆定律,判断方法和变压器的三个制约问题.21、'磁流发电机'模型:平衡与偏转,力和能问题.22、'回旋加速器'模型:加速模型(力能规律),回旋模型(圆周运动),数理问题.23、'对称'模型:简谐运动(波动),电场,磁场,光学问题中的对称性,多解性,对称性.24、电磁场中的单杆模型:棒与电阻,棒与电容,棒与电感,棒与弹簧组合,平面导轨,竖直导轨等,处理角度为力电角度,电学角度,力能角度。
高中物理力学典型模型解读王二毛一、斜面问题在每年各地的高考卷中几乎都有关于斜面模型的试题.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法.1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tanθ.图9-1甲2.自由释放的滑块在斜面上(如图9-1 甲所示):(1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零;(2)加速下滑时,斜面对水平地面的静摩擦力水平向右;(3)减速下滑时,斜面对水平地面的静摩擦力水平向左.3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零(见一轮书中的方法概述).图9-1乙4.悬挂有物体的小车在斜面上滑行(如图9-2所示):图9-2(1)向下的加速度a=g sin θ时,悬绳稳定时将垂直于斜面;(2)向下的加速度a>g sin θ时,悬绳稳定时将偏离垂直方向向上;(3)向下的加速度a<g sin θ时,悬绳将偏离垂直方向向下.5.在倾角为θ的斜面上以速度v0平抛一小球(如图9-3所示):图9-3(1)落到斜面上的时间t=2v0tan θg;(2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关;(3)经过t c=vtan θg小球距斜面最远,最大距离d=(v0sin θ)22g cos θ.6.如图9-4所示,当整体有向右的加速度a=g tan θ时,m能在斜面上保持相对静止.图9-47.在如图9-5所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab棒所能达到的稳定速度v m=mgR sin θB2L2.图9-58.如图9-6所示,当各接触面均光滑时,在小球从斜面顶端滑下的过程中,斜面后退的位移s=mm+ML.图9-6例1有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断.例如从解的物理量单位,解随某些已知量变化的趋势,解在一些特殊条件下的结果等方面进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性.举例如下:如图9-7甲所示,质量为M、倾角为θ的滑块A放于水平地面上.把质量为m的滑块B放在A的斜面上.忽略一切摩擦,有人求得B相对地面的加速度a=M+mM+m sin2θg sin θ,式中g为重力加速度.图9-7甲对于上述解,某同学首先分析了等号右侧的量的单位,没发现问题.他进一步利用特殊条件对该解做了如下四项分析和判断,所得结论都是“解可能是对的”.但是,其中有一项是错误..的,请你指出该项[2008年高考·北京理综卷]( )A.当θ=0°时,该解给出a=0,这符合常识,说明该解可能是对的B.当θ=90°时,该解给出a=g,这符合实验结论,说明该解可能是对的C.当M≫m时,该解给出a≈g sin θ,这符合预期的结果,说明该解可能是对的D.当m≫M时,该解给出a≈gsin θ,这符合预期的结果,说明该解可能是对的【解析】当A固定时,很容易得出a=g sin θ;当A置于光滑的水平面时,B 加速下滑的同时A向左加速运动,B不会沿斜面方向下滑,难以求出运动的加速度.图9-7乙设滑块A的底边长为L,当B滑下时A向左移动的距离为x,由动量守恒定律得:M xt=mL-xt解得:x=mL M+m当m≫M时,x≈L,即B水平方向的位移趋于零,B趋于自由落体运动且加速度a≈g.选项D中,当m≫M时,a≈gsin θ>g显然不可能.[答案] D【点评】本例中,若m、M、θ、L有具体数值,可假设B下滑至底端时速度v1的水平、竖直分量分别为v1x、v1y,则有:v 1y v 1x =hL-x=(M+m)hML1 2mv1x2+12mv1y2+12Mv22=mghmv1x=Mv2解方程组即可得v1x、v1y、v1以及v1的方向和m下滑过程中相对地面的加速度.例2在倾角为θ的光滑斜面上,存在着两个磁感应强度大小相同的匀强磁场,其方向一个垂直于斜面向上,一个垂直于斜面向下(如图9-8甲所示),它们的宽度均为L.一个质量为m、边长也为L的正方形线框以速度v进入上部磁场时,恰好做匀速运动.图9-8甲(1)当ab边刚越过边界ff′时,线框的加速度为多大,方向如何?(2)当ab边到达gg′与ff′的正中间位置时,线框又恰好做匀速运动,则线框从开始进入上部磁场到ab边到达gg′与ff′的正中间位置的过程中,线框中产生的焦耳热为多少?(线框的ab边在运动过程中始终与磁场边界平行,不计摩擦阻力)【解析】(1)当线框的ab边从高处刚进入上部磁场(如图9-8 乙中的位置①所示)时,线框恰好做匀速运动,则有:mg sin θ=BI1L此时I1=BLv R当线框的ab边刚好越过边界ff′(如图9-8乙中的位置②所示)时,由于线框从位置①到位置②始终做匀速运动,此时将ab边与cd边切割磁感线所产生的感应电动势同向叠加,回路中电流的大小等于2I1.故线框的加速度大小为:图9-8乙a=4BI1L-mg sin θm=3g sin θ,方向沿斜面向上.(2)而当线框的ab边到达gg′与ff′的正中间位置(如图9-8 乙中的位置③所示)时,线框又恰好做匀速运动,说明mg sin θ=4BI2L故I2=1 4 I1由I1=BLvR可知,此时v′=14v从位置①到位置③,线框的重力势能减少了32mgL sin θ动能减少了12mv2-12m(v4)2=1532mv2由于线框减少的机械能全部经电能转化为焦耳热,因此有:Q=32mgL sin θ+1532mv2.[答案] (1)3g sin θ,方向沿斜面向上(2)32mgL sin θ+1532mv2【点评】导线在恒力作用下做切割磁感线运动是高中物理中一类常见题型,需要熟练掌握各种情况下求平衡速度的方法.二、叠加体模型叠加体模型在历年的高考中频繁出现,一般需求解它们之间的摩擦力、相对滑动路程、摩擦生热、多次作用后的速度变化等,另外广义的叠加体模型可以有许多变化,涉及的问题更多.如2009年高考天津理综卷第10题、宁夏理综卷第20题、山东理综卷第24题,2008年高考全国理综卷Ⅰ 的第15题、北京理综卷第24题、江苏物理卷第6题、四川延考区理综卷第25题等.叠加体模型有较多的变化,解题时往往需要进行综合分析(前面相关例题、练习较多),下列两个典型的情境和结论需要熟记和灵活运用.1.叠放的长方体物块A、B在光滑的水平面上匀速运动或在光滑的斜面上自由释放后变速运动的过程中(如图9-9所示),A、B之间无摩擦力作用.图9-92.如图9-10所示,一对滑动摩擦力做的总功一定为负值,其绝对值等于摩擦力乘以相对滑动的总路程或等于摩擦产生的热量,与单个物体的位移无关,即Q 摩=f·s相.图9-10例3质量为M的均匀木块静止在光滑的水平面上,木块左右两侧各有一位拿着完全相同的步枪和子弹的射击手.首先左侧的射击手开枪,子弹水平射入木块的最大深度为d1,然后右侧的射击手开枪,子弹水平射入木块的最大深度为d2,如图9-11所示.设子弹均未射穿木块,且两子弹与木块之间的作用力大小均相同.当两颗子弹均相对木块静止时,下列说法正确的是(注:属于选修3-5模块)( )图9-11A.最终木块静止,d1=d2B.最终木块向右运动,d1<d2C.最终木块静止,d1<d2D.最终木块静止,d1>d2【解析】木块和射出后的左右两子弹组成的系统水平方向不受外力作用,设子弹的质量为m,由动量守恒定律得:mv-mv0=(M+2m)v解得:v=0,即最终木块静止设左侧子弹射入木块后的共同速度为v1,有:mv=(m+M)v1Q 1=f·d1=12mv2-12(m+M)v12解得:d1=mMv22(m+M)f对右侧子弹射入的过程,由功能原理得:Q 2=f·d2=12mv2+12(m+M)v12-0解得:d2=(2m2+mM)v02 2(m+M)f即d1<d2.[答案] C【点评】摩擦生热公式可称之为“功能关系”或“功能原理”的公式,但不能称之为“动能定理”的公式,它是由动能定理的关系式推导得出的二级结论.三、含弹簧的物理模型纵观历年的高考试题,和弹簧有关的物理试题占有相当大的比重.高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能问题等,几乎贯穿了整个力学的知识体系.为了帮助同学们掌握这类试题的分析方法,现将有关弹簧问题分类进行剖析.对于弹簧,从受力角度看,弹簧上的弹力是变力;从能量角度看,弹簧是个储能元件.因此,弹簧问题能很好地考查学生的综合分析能力,故备受高考命题老师的青睐.如2009年高考福建理综卷第21题、山东理综卷第22题、重庆理综卷第24题,2008年高考北京理综卷第22题、山东理综卷第16题和第22题、四川延考区理综卷第14题等.题目类型有:静力学中的弹簧问题,动力学中的弹簧问题,与动量和能量有关的弹簧问题.1.静力学中的弹簧问题(1)胡克定律:F=kx,ΔF=k·Δx.(2)对弹簧秤的两端施加(沿轴线方向)大小不同的拉力,弹簧秤的示数一定等于挂钩上的拉力.例4如图9-12甲所示,两木块A、B的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,两弹簧分别连接A、B,整个系统处于平衡状态.现缓慢向上提木块A,直到下面的弹簧对地面的压力恰好为零,在此过程中A和B的重力势能共增加了( )图9-12甲A.(m1+m2)2g2 k1+k2B.(m1+m2)2g2 2(k1+k2)C.(m1+m2)2g2(k1+k2k1k2)D.(m1+m2)2g2k2+m1(m1+m2)g2k1【解析】取A、B以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地面的压力为零时,向上提A的力F恰好为:F=(m1+m2)g设这一过程中上面和下面的弹簧分别伸长x1、x2,如图9-12乙所示,由胡克定律得:图9-12乙x 1=(m1+m2)gk1,x2=(m1+m2)gk2故A、B增加的重力势能共为:ΔE p=m1g(x1+x2)+m2gx2=(m1+m2)2g2k2+m1(m1+m2)g2k1.[答案] D【点评】①计算上面弹簧的伸长量时,较多同学会先计算原来的压缩量,然后计算后来的伸长量,再将两者相加,但不如上面解析中直接运用Δx=ΔFk进行计算更快捷方便.②通过比较可知,重力势能的增加并不等于向上提的力所做的功W=F·x总=(m1+m2)2g22k22+(m1+m2)2g22k1k2.2.动力学中的弹簧问题(1)瞬时加速度问题(与轻绳、轻杆不同):一端固定、另一端接有物体的弹簧,形变不会发生突变,弹力也不会发生突变.(2)如图9-13所示,将A、B下压后撤去外力,弹簧在恢复原长时刻B与A 开始分离.图9-13例5一弹簧秤秤盘的质量m1=1.5 kg,盘内放一质量m2=10.5 kg的物体P,弹簧的质量不计,其劲度系数k=800 N/m,整个系统处于静止状态,如图9-14 所示.图9-14现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在最初0.2 s内F是变化的,在0.2 s后是恒定的,求F的最大值和最小值.(取g=10 m/s2)【解析】初始时刻弹簧的压缩量为:x 0=(m1+m2)gk=0.15 m设秤盘上升高度x时P与秤盘分离,分离时刻有:k(x-x)-m1gm1=a又由题意知,对于0~0.2 s时间内P的运动有:12at2=x解得:x=0.12 m,a=6 m/s2故在平衡位置处,拉力有最小值F min=(m1+m2)a=72 N分离时刻拉力达到最大值F max=m2g+m2a=168 N.[答案] 72 N 168 N【点评】对于本例所述的物理过程,要特别注意的是:分离时刻m1与m2之间的弹力恰好减为零,下一时刻弹簧的弹力与秤盘的重力使秤盘产生的加速度将小于a,故秤盘与重物分离.3.与动量、能量相关的弹簧问题与动量、能量相关的弹簧问题在高考试题中出现频繁,而且常以计算题出现,在解析过程中以下两点结论的应用非常重要:(1)弹簧压缩和伸长的形变相同时,弹簧的弹性势能相等;(2)弹簧连接两个物体做变速运动时,弹簧处于原长时两物体的相对速度最大,弹簧的形变最大时两物体的速度相等.例6如图9-15所示,用轻弹簧将质量均为m=1 kg的物块A和B连接起来,将它们固定在空中,弹簧处于原长状态,A距地面的高度h1=0.90 m.同时释放两物块,A与地面碰撞后速度立即变为零,由于B压缩弹簧后被反弹,使A刚好能离开地面(但不继续上升).若将B物块换为质量为2m的物块C(图中未画出),仍将它与A固定在空中且弹簧处于原长,从A距地面的高度为h2处同时释放,C压缩弹簧被反弹后,A也刚好能离开地面.已知弹簧的劲度系数k=100 N/m,求h2的大小.图9-15【解析】设A物块落地时,B物块的速度为v1,则有:1 2mv12=mgh1设A刚好离地时,弹簧的形变量为x,对A物块有:mg=kx从A落地后到A刚好离开地面的过程中,对于A、B及弹簧组成的系统机械能守恒,则有:1 2mv12=mgx+ΔEp换成C后,设A落地时,C的速度为v2,则有:12·2mv22=2mgh2从A落地后到A刚好离开地面的过程中,A、C及弹簧组成的系统机械能守恒,则有:12·2mv22=2mgx+ΔE p联立解得:h2=0.5 m.[答案] 0.5 m【点评】由于高中物理对弹性势能的表达式不作要求,所以在高考中几次考查弹簧问题时都要用到上述结论“①”.如2005年高考全国理综卷Ⅰ第25题、1997年高考全国卷第25题等.例7用轻弹簧相连的质量均为2 kg 的A、B两物块都以v=6 m/s的速度在光滑的水平地面上运动,弹簧处于原长,质量为4 kg的物块C静止在前方,如图9-16 甲所示.B与C碰撞后二者粘在一起运动,则在以后的运动中:图9-16甲(1)当弹簧的弹性势能最大时,物体A的速度为多大?(2)弹簧弹性势能的最大值是多少?(3)A的速度方向有可能向左吗?为什么?【解析】(1)当A、B、C三者的速度相等(设为v A′)时弹簧的弹性势能最大,由于A、B、C三者组成的系统动量守恒,则有:(m A+m B)v=(m A+m B+m C)v A′解得:v A′=(2+2)×62+2+4m/s=3 m/s.(2)B、C发生碰撞时,B、C组成的系统动量守恒,设碰后瞬间B、C两者的速度为v′,则有:m B v=(mB+m C)v′解得:v′=2×62+4=2 m/sA的速度为vA′时弹簧的弹性势能最大,设其值为E p,根据能量守恒定律得:E p =12(m B+m C)v′2+12mAv2-12(m A+m B+m C)v A′2=12 J.(3)方法一A不可能向左运动.根据系统动量守恒有:(m A+m B)v=m A v A+(m B+m C)v B 设A向左,则v A<0,v B>4 m/s则B、C发生碰撞后,A、B、C三者的动能之和为:E′=12mAv2A+12(m B+m C)v2B>12(m B+m C)v2B=48 J实际上系统的机械能为:E=Ep +12(m A+m B+m C)v A′2=12 J+36 J=48 J根据能量守恒定律可知,E′>E是不可能的,所以A不可能向左运动.方法二B、C碰撞后系统的运动可以看做整体向右匀速运动与A、B和C相对振动的合成(即相当于在匀速运动的车厢中两物块相对振动)由(1)知整体匀速运动的速度v0=v A′=3 m/s图9-16乙取以v0=3 m/s匀速运动的物体为参考系,可知弹簧处于原长时,A、B和C 相对振动的速率最大,分别为:vAO=v-v0=3 m/svBO=|v′-v0|=1 m/s由此可画出A、B、C的速度随时间变化的图象如图9-16乙所示,故A不可能有向左运动的时刻.[答案] (1)3 m/s (2)12 J (3)不可能,理由略【点评】①要清晰地想象、理解研究对象的运动过程:相当于在以3 m/s匀速行驶的车厢内,A、B和C做相对弹簧上某点的简谐振动,振动的最大速率分别为3 m/s、1 m/s.②当弹簧由压缩恢复至原长时,A最有可能向左运动,但此时A的速度为零.例8探究某种笔的弹跳问题时,把笔分为轻质弹簧、内芯和外壳三部分,其中内芯和外壳质量分别为m和4m.笔的弹跳过程分为三个阶段:图9-17①把笔竖直倒立于水平硬桌面,下压外壳使其下端接触桌面(如图9-17甲所示);②由静止释放,外壳竖直上升到下端距桌面高度为h1时,与静止的内芯碰撞(如图9-17乙所示);③碰后,内芯与外壳以共同的速度一起上升到外壳下端距桌面最大高度为h2处(如图9-17丙所示).设内芯与外壳的撞击力远大于笔所受重力,不计摩擦与空气阻力,重力加速度为g.求:(1)外壳与内芯碰撞后瞬间的共同速度大小.(2)从外壳离开桌面到碰撞前瞬间,弹簧做的功.(3)从外壳下端离开桌面到上升至h2处,笔损失的机械能.[2009年高考·重庆理综卷]【解析】设外壳上升到h1时速度的大小为v1,外壳与内芯碰撞后瞬间的共同速度大小为v2.(1)对外壳和内芯,从撞后达到共同速度到上升至h2处,由动能定理得:(4m+m)g(h2-h1)=12(4m+m)v22-0解得:v2=2g(h2-h1).(2)外壳与内芯在碰撞过程中动量守恒,即:4mv1=(4m+m)v2将v2代入得:v1=542g(h2-h1)设弹簧做的功为W,对外壳应用动能定理有:W-4mgh1=12×4mv21将v1代入得:W=14mg(25h2-9h1).(3)由于外壳和内芯达到共同速度后上升至高度h2的过程中机械能守恒,只有在外壳和内芯的碰撞中有能量损失,损失的能量E损=12×4mv21-12(4m+m)v22将v1、v2代入得:E损=54mg(h2-h1).[答案] (1)2g(h2-h1) (2)14mg(25h2-9h1)(3)54mg(h2-h1)由以上例题可以看出,弹簧类试题的确是培养和训练学生的物理思维、反映和开发学生的学习潜能的优秀试题.弹簧与相连物体构成的系统所表现出来的运动状态的变化,为学生充分运用物理概念和规律(牛顿第二定律、动能定理、机械能守恒定律、动量定理、动量守恒定律)巧妙解决物理问题、施展自身才华提供了广阔空间,当然也是区分学生能力强弱、拉大差距、选拔人才的一种常规题型.因此,弹簧试题也就成为高考物理题中的一类重要的、独具特色的考题.四、传送带问题从1990年以后出版的各种版本的高中物理教科书中均有皮带传输机的插图.皮带传送类问题在现代生产生活中的应用非常广泛.这类问题中物体所受的摩擦力的大小和方向、运动性质都具有变化性,涉及力、相对运动、能量转化等各方面的知识,能较好地考查学生分析物理过程及应用物理规律解答物理问题的能力.如2003年高考全国理综卷第34题、2005年高考全国理综卷Ⅰ第24题等.对于滑块静止放在匀速传动的传送带上的模型,以下结论要清楚地理解并熟记:(1)滑块加速过程的位移等于滑块与传送带相对滑动的距离;(2)对于水平传送带,滑块加速过程中传送带对其做的功等于这一过程由摩擦产生的热量,即传送装置在这一过程需额外(相对空载)做的功W=mv2=2E k=2Q摩.例9如图9-18甲所示,物块从光滑曲面上的P点自由滑下,通过粗糙的静止水平传送带后落到地面上的Q点.若传送带的皮带轮沿逆时针方向匀速运动(使传送带随之运动),物块仍从P点自由滑下,则( )图9-18甲A.物块有可能不落到地面上B.物块仍将落在Q点C.物块将会落在Q点的左边D.物块将会落在Q点的右边【解析】如图9-18乙所示,设物块滑上水平传送带上的初速度为v0,物块与皮带之间的动摩擦因数为μ,则:图9-18乙物块在皮带上做匀减速运动的加速度大小a=μmgm=μg物块滑至传送带右端的速度为:v=v2-2μgs物块滑至传送带右端这一过程的时间可由方程s=v0t-12μgt2解得.当皮带向左匀速传送时,滑块在皮带上的摩擦力也为:f=μmg物块在皮带上做匀减速运动的加速度大小为:a 1′=μmgm=μg则物块滑至传送带右端的速度v′=v02-2μgs=v物块滑至传送带右端这一过程的时间同样可由方程s=v0t-12μgt2解得.由以上分析可知物块仍将落在Q点,选项B正确.[答案] B【点评】对于本例应深刻理解好以下两点:①滑动摩擦力f=μF N,与相对滑动的速度或接触面积均无关;②两次滑行的初速度(都以地面为参考系)相等,加速度相等,故运动过程完全相同.我们延伸开来思考,物块在皮带上的运动可理解为初速度为v0的物块受到反方向的大小为μmg的力F的作用,与该力的施力物体做什么运动没有关系.例10如图9-19所示,足够长的水平传送带始终以v=3 m/s的速度向左运动,传送带上有一质量M=2 kg 的小木盒A,A与传送带之间的动摩擦因数μ=0.3.开始时,A与传送带之间保持相对静止.现有两个光滑的质量均为m=1 kg 的小球先后相隔Δt=3 s自传送带的左端出发,以v0=15 m/s的速度在传送带上向右运动.第1个球与木盒相遇后立即进入盒中并与盒保持相对静止;第2个球出发后历时Δt1=13s才与木盒相遇.取g=10 m/s2,问:图9-19(1)第1个球与木盒相遇后瞬间,两者共同运动的速度为多大?(2)第1个球出发后经过多长时间与木盒相遇?(3)在木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少?【解析】(1)设第1个球与木盒相遇后瞬间,两者共同运动的速度为v1,根据动量守恒定律得:mv-Mv=(m+M)v1解得:v1=3 m/s,方向向右.(2)设第1个球与木盒的相遇点离传送带左端的距离为s,第1个球经过时间t与木盒相遇,则有:t 0=sv设第1个球进入木盒后两者共同运动的加速度大小为a,根据牛顿第二定律得:μ(m+M)g=(m+M)a解得:a=μg=3 m/s2,方向向左设木盒减速运动的时间为t1,加速到与传送带具有相同的速度的时间为t2,则:t 1=t2=Δva=1 s故木盒在2 s内的位移为零依题意可知:s=v0Δt1+v(Δt+Δt1-t1-t2-t0)解得:s=7.5 m,t0=0.5 s.(3)在木盒与第1个球相遇至与第2个球相遇的这一过程中,设传送带的位移为s′,木盒的位移为s1,则:s′=v(Δt+Δt1-t0)=8.5 ms1=v(Δt+Δt1-t1-t2-t0)=2.5 m故木盒相对于传送带的位移为:Δs=s′-s1=6 m则木盒与传送带间因摩擦而产生的热量为:Q=fΔs=54 J.[答案] (1)3 m/s (2)0.5 s (3)54 J【点评】本题解析的关键在于:①对物理过程理解清楚;②求相对路程的方法.。
高中典型物理模型及方法(精华)◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。
平面、斜面、竖直都一样。
只要两物体保持相对静止 记住:N= 211212m F m F m m ++ (N 为两物体间相互作用力),一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用⇒F 212m m m N +=讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m aN=212m F m m +② F 1≠0;F 2≠0 N=211212m F m m m F ++(20F =就是上面的情况)F=211221m m g)(m m g)(m m ++F=122112m (m )m (m gsin )m m g θ++ F=A B B 12m (m )m F m m g ++F 1>F 2 m 1>m 2 N 1<N 2(为什么)N 5对6=F Mm (m 为第6个以后的质量) 第12对13的作用力 N 12对13=F nm12)m -(n◆2.水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)研究物体通过最高点和最低点的情况,并且经常出现临界状态。
(圆周运动实例) ①火车转弯②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。
④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。
⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的)m 2m 1 Fm 1 m 2(1)火车转弯:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。
由于外轨略高于内轨,使得火车所受重力和支持力的合力F 合提供向心力。
为转弯时规定速度)(得由合0020sin tan v LRgh v R v m L hmg mg mg F ===≈=θθR g v ⨯=θtan 0(是内外轨对火车都无摩擦力的临界条件)①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧压力②当火车行驶V 大于V 0时,F 合<F 向,外轨道对轮缘有侧压力,F 合+N=R2mv③当火车行驶速率V 小于V 0时,F 合>F 向,内轨道对轮缘有侧压力,F 合-N'=R2mv即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道。
火车提速靠增大轨道半径或倾角来实现(2)无支承的小球,在竖直平面内作圆周运动过最高点情况:受力:由mg+T=mv 2/L 知,小球速度越小,绳拉力或环压力T 越小,但T 的最小值只能为零,此时小球以重力提供作向心力.结论:通过最高点时绳子(或轨道)对小球没有力的作用(可理解为恰好通过或恰好通不过的条件),此时只有重力提供作向心力. 注意讨论:绳系小球从最高点抛出做圆周还是平抛运动。
能过最高点条件:V ≥V 临(当V ≥V 临时,绳、轨道对球分别产生拉力、压力)不能过最高点条件:V<V 临(实际上球还未到最高点就脱离了轨道) 讨论:① 恰能通过最高点时:mg=Rm2临v ,临界速度V 临=gR ;可认为距此点2R h = (或距圆的最低点)25R h =处落下的物体。
☆此时最低点需要的速度为V 低临=gR 5 ☆最低点拉力大于最高点拉力ΔF=6mg ② 最高点状态: mg+T 1=L2m高v (临界条件T 1=0, 临界速度V 临=gR , V ≥V 临才能通过) 最低点状态: T 2- mg = L2m低v 高到低过程机械能守恒: mg2L m m 221221+=高低v vT 2- T 1=6mg (g 可看为等效加速度) ② 半圆:过程mgR=221mv 最低点T-mg=R2v m ⇒绳上拉力T=3mg ; 过低点的速度为V 低=gR 2小球在与悬点等高处静止释放运动到最低点,最低点时的向心加速度a=2g ③与竖直方向成θ角下摆时,过低点的速度为V 低 =)cos 1(2θ-gR ,此时绳子拉力T=mg(3-2cos θ)(3)有支承的小球,在竖直平面作圆周运动过最高点情况: ①临界条件:杆和环对小球有支持力的作用知)(由RU m N mg 2=- 当V=0时,N=mg (可理解为小球恰好转过或恰好转不过最高点)圆心。
增大而增大,方向指向随即拉力向下时,当④时,当③增大而减小,且向上且随时,支持力当②v N gR v N gR v N mg v N gR v )(000>==>><<作用时,小球受到杆的拉力>,速度当小球运动到最高点时时,杆对小球无作用力,速度当小球运动到最高点时长短表示)(力的大小用有向线段,但(支持)时,受到杆的作用力,速度当小球运动到最高点时N gR v N gR v mg N N gR v 0==<<恰好过最高点时,此时从高到低过程 mg2R=221mv低点:T-mg=mv 2/R ⇒ T=5mg ;恰好过最高点时,此时最低点速度:V 低 =gR 2注意物理圆与几何圆的最高点、最低点的区别:(以上规律适用于物理圆,但最高点,最低点, g 都应看成等效的情况)2(1)明确研究对象,必要时将它从转动系统中隔离出来。
(2)找出物体圆周运动的轨道平面,从中找出圆心和半径。
(3)分析物体受力情况,千万别臆想出一个向心力来。
(4)建立直角坐标系(以指向圆心方向为x 轴正方向)将力正交分解。
(5)⎪⎩⎪⎨⎧=∑===∑02222y x F R T m R m R v m F )(建立方程组πω 3.离心运动在向心力公式F n =mv 2/R 中,F n 是物体所受合外力所能提供的向心力,mv 2/R 是物体作圆周运动所需要的向心力。
当提供的向心力等于所需要的向心力时,物体将作圆周运动;若提供的向心力消失或小于所需要的向心力时,物体将做逐渐远离圆心的运动,即离心运动。
其中提供的向心力消失时,物体将沿切线飞去,离圆心越来越远;提供的向心力小于所需要的向心力时,物体不会沿切线飞去,但沿切线和圆周之间的某条曲线运动,逐渐远离圆心。
◆3斜面模型(搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定μ=tg θ物体沿斜面匀速下滑或静止 μ> tg θ物体静止于斜面 μ< tg θ物体沿斜面加速下滑a=g(sin θ一μcos θ)╰ α╰α◆4.轻绳、杆模型绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
如图:杆对球的作用力由运动情况决定只有θ=arctg(g a)时才沿杆方向最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢?V B =R 2g⇐mgR=221Bmv 假设单B 下摆,最低点的速度整体下摆2mgR=mg2R +'2B '2A mv 21mv 21+ 'A 'B V 2V = ⇒ 'A V =gR 53 ; 'A 'BV 2V ==gR 256> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功(1)5.通过轻绳连接的物体①在沿绳连接方向(可直可曲),具有共同的v 和a 。
特别注意:两物体不在沿绳连接方向运动时,先应把两物体的v 和a 在沿绳方向分解,求出两物体的v 和a 的关系式,②被拉直瞬间,沿绳方向的速度突然消失,此瞬间过程存在能量的损失。
讨论:若作圆周运动最高点速度 V 0<gR ,运动情况为先平抛,绳拉直时沿绳方向的速度消失即是有能量损失,绳拉紧后沿圆周下落机械能守恒。
而不能够整个过程用机械能守恒。
求水平初速及最低点时绳的拉力?换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v 1突然消失),再v 2下摆机械能守恒例:摆球的质量为m ,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A 时绳子受到的拉力是多少?◆5.超重失重模型系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y ) 向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)难点:一个物体的运动导致系统重心的运动1到2到3过程中 (1、3除外)超重状态绳剪断后台称示数 铁木球的运动m L·Fm S 1S 20 F t t s 系统重心向下加速 用同体积的水去补充斜面对地面的压力? 地面对斜面摩擦力?导致系统重心如何运动?◆6.碰撞模型:两个相当重要典型的物理模型,后面的动量守恒中专题讲解◆7.子弹打击木块模型: ◆8.人船模型:一个原来处于静止状态的系统,在系统内发生相对运动的过程中,在此方向遵从①动量守恒方程:mv=MV ;ms=MS ;②位移关系方程 s+S=d ⇒s=d Mm M + M/m=L m /L M载人气球原静止于高h 的高空,气球质量为M,人的质量为m.若人沿绳梯滑至地面,则绳梯至少为多长?◆9.弹簧振子模型:F=-Kx (X 、F 、a 、v 、A 、T 、f 、E K 、E P 等量的变化规律)水平型或竖直型 ◆10.单摆模型:T=2πg l / (类单摆)利用单摆测重力加速度◆11.波动模型:特点:传播的是振动形式和能量,介质中各质点只在平衡位置附近振动并不随波迁移。
①各质点都作受迫振动,②起振方向与振源的起振方向相同, ③离源近的点先振动,④没波传播方向上两点的起振时间差=波在这段距离内传播的时间 ⑤波源振几个周期波就向外传几个波长。
⑥波从一种介质传播到另一种介质,频率不改变, 波速v=s/t=λ/T=λf 波速与振动速度的区别 波动与振动的区别:波的传播方向⇔质点的振动方向(同侧法) 知波速和波形画经过Δt 后的波形(特殊点画法和去整留零法)◆12.图象模形:识图方法: 一轴、二线、三斜率、四面积、五截距、六交点 明确:点、线、面积、斜率、截距、交点的含义 中学物理中重要的图象 ⑴运动学中的s-t 图、v-t 图、振动图象x-t 图以及波动图象y-x 图等。