江苏省扬州市梅岭中学2017_2018学年八年级数学下学期期中试题苏科版
- 格式:docx
- 大小:373.07 KB
- 文档页数:9
2017-2018学年江苏省扬州市邗江区梅岭中学八年级(下)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.为了解我市八年级10000名学生的身高,从中抽取了500名学生,对其身高进行统计分析,以下说法正确的是()A. 10000名学生是总体B. 本次调查采用的是普查C. 样本容量是500名学生D. 每个学生的身高是个体2.下列约分中,正确的是()A. B. C. D.3.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有()A. 1组B. 2组C. 3组D. 4组4.如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm.矩形ABCD的周长为32cm,则AE的长是()A. 5 cmB. 6cmC. 7cmD. 8cm5.分式(a,b均为正数),字母的值都扩大为原来的2倍,则分式的值()A. 扩大为原来2倍B. 缩小为原来倍C. 不变D. 缩小为原来的6.甲乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是()A. 甲乙同时到达B地B. 甲先到达B地C. 乙先到达B地D. 谁先到达B地与速度v有关7.如图,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点,若∠DAC=20°,∠ACB=66°,则∠FEG等于()A. B. C. D.8.如图,正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=4,BE=DF=3,则以EF为直径的圆的面积为()A.B.C.D.二、填空题(本大题共10小题,共30.0分)9.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有______个红球.10.当x=______时,分式的值等于0.11.菱形的周长为16,两邻角度数的比为1:2,此菱形的面积为______.12.已知函数y=(m-2)x|m|-3是反比例函数,则m=______.13.在▱ABCD中,若添加一个条件:______,则四边形ABCD是矩形.14.若关于x的分式方程+=2的解为正数,则m的取值范围是______.15.如图,在Rt△ABC中,∠B=90°,AC=10,BC=8,点D在线段BC上一动点,以AC为对角线的平行四边形ADCE中,则DE的最小值是______.16.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=______度.17.对于正数x,规定f(x)=,例如f(4)═=,f()==,则f(2014)+f(2013)+…+f(2)+f(1)+f()+f()+…+f()=______.18.如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE=2.若∠EOF=45°,则F点的坐标是______.三、计算题(本大题共2小题,共16.0分)19.(1)计算•(1-)(2)解方程-=120.先化简,再求值:,其中x满足x2+3x-1=0.四、解答题(本大题共8小题,共80.0分)21.已知△ABC的顶点A、B、C在网格格点上,按要求在网格中画图.(1)△ABC绕点O逆时针旋转90°得到△A1B1C1;(2)画△A1B1C1关于点O的中心对称图形△A2B2C2.22.某公司的一批某品牌衬衣的质量抽检结果如下:(1)请结合表格数据直接写出这批衬衣中任抽1件是次品的概率.(2)如果销售这批衬衣600件,至少要准备多少件正品衬衣供买到次品的顾客退换?23.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.24.某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫都按每件150元的价格销售,则两批衬衫全部售完后的利润是多少元?25.甲、乙两人两次同时在同一家粮店购买粮食(假设两次购买粮食的单价不相同),甲每次购买粮食100千克,乙每次购买粮食用去100元.(1)假设x、y分别表示两次购买粮食时的单价(单位:元/千克),试用含x、y的代数式表示:甲两次购买粮食共需付款______元,乙两次共购买______千克粮食;若甲两次购买粮食的平均单价为每千克Q1元,乙两次购买粮食的平均单价为每千克Q2元,则Q1=______,Q2=______.(2)若谁两次购买粮食的平均单价低,谁购买粮食的方式就较合算.请你判断甲、乙两人购买粮食的方式哪一个较合算,并说明理由.26.阅读下面的解题过程:已知=,求的值.解:由=,知x≠0,所以=3,即x+=3所以=x2+=(x+)2-2x•=32-2=7所以的值为说明:该题的解法叫做“倒数法”请你利用“倒数法”解下面题目:已知:=4.求(1)x-的值;(2)的值.27.如图1,已知点E,F,G,H分别是四边形ABCD各边AB,BC,CD,DA的中点,根据以下思路可以证明四边形EFGH是平行四边形:(1)如图2,将图1中的点C移动至与点E重合的位置,F,G,H仍是BC,CD,DA 的中点,求证:四边形CFGH是平行四边形;(2)如图3,在边长为1的小正方形组成的5×5网格中,点A,C,B都在格点上,在格点上画出点D,使点C与BC,CD,DA的中点F,G,H组成正方形CFGH;(3)在(2)条件下求出正方形CFGH的边长.28.如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM=______,AP=______.(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC=______.答案和解析1.【答案】D【解析】解:A、八年级10000名学生的身高是总体,故A错误;B、抽样调查,故B错误;C、样本容量是500,故C错误;D、每个学生的身高是个体,故D正确;故选:D.总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.2.【答案】C【解析】解:A、=x4,故本选项错误;B、=1,故本选项错误;C、==,故本选项正确;D、=,故本选项错误;故选:C.根据分式的基本性质,分别对每一项进行解答,即可得出答案.本题考查了约分,约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.3.【答案】C【解析】解:①根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形,可知①能判断这个四边形是平行四边形;②根据平行四边形的判定定理:两组对边分别相等的四边形是平行四边形,可知②能判断这个四边形是平行四边形;③根据平行四边形的判定定理:两条对角线互相平分的四边形是平行四边形,可知③能判断这个四边形是平行四边形;④根据平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,可知④不能判断这个四边形是平行四边形;故给出下列四组条件中,①②③能判断这个四边形是平行四边形,故选:C.根据平行四边形的判断定理可作出判断.此题主要考查了平行四边形的判定定理,准确无误的掌握定理是做题的关键.4.【答案】B【解析】解:在Rt△AEF和Rt△DEC中,EF⊥CE.∴∠FEC=90°.∴∠AEF+∠DEC=90°.而∠ECD+∠DEC=90°.∴∠AEF=∠ECD,在△AEF与△DCE中,,∴△AEF≌△DCE(AAS).∴AE=CD,AD=AE+4.∵矩形ABCD的周长为32cm.∴2(AE+ED+DC)=32,即2(2AE+4)=32,整理得:2AE+4=16解得:AE=6(cm).故选:B.先证∠AEF=∠ECD,再证Rt△AEF≌Rt△DCE,然后结合题目中已知的线段关系求解即可.本题综合考查了矩形的性质,三角形全等的判定和性质,熟练掌握性质定理是解题的关键.5.【答案】B【解析】解:∵,∴分式的值缩小为原来的.故选:B.要使字母的值都扩大为原来的两倍,即a=2a,b=2b,根据这个可以求出原式的值.此题考查的是对分式的性质的理解和运用,扩大或缩小n倍,就将原来的数乘以n或除以n.6.【答案】B【解析】解:设从A地到B地的距离为2s,而甲的速度v保持不变,∴甲所用时间为,又∵乙先用v的速度到达中点,再用2v的速度到达B地,∴乙所用时间为,∴甲先到达B地.故选:B.设从A地到B地的距离为2s,根据时间=路程÷速度可以求出甲、乙两人同时从A 地到B地所用时间,然后比较大小即可判定选择项.此题主要考查了一元一次方程在实际问题中的应用,解题时首先正确理解题意,根据题意设未知数,然后利用已知条件和速度、路程、时间之间的关系即可解决问题.7.【答案】D【解析】解:∵AD=BC,E,F,G分别是AB,CD,AC的中点,∴GF是△ACD的中位线,GE是△ACB的中位线,又∵AD=BC,∴GF=GE,∠FGC=∠DAC=20°,∠AGE=∠ACB=66°,∴∠FGE=∠FGC+∠EGC=20°+(180°-66°)=134°,∴∠FEG=(180°-∠FGE)=23°.故选:D.根据中位线定理和等腰三角形等边对等角的性质求解.主要考查了中位线定理和等腰三角形两底角相等的性质.8.【答案】A【解析】解:如图,延长BE交CF于G,∵AB=5,AE=4,BE=3,∴AE2+BE2=AB2,∴△ABE是直角三角形,∴同理可得,△DFC是直角三角形,∵AE=FC=4,BE=DF=3,AB=CD=5,∴△ABE≌△CDF,∴∠BAE=∠DCF,∵∠ABC=∠AEB=90°,∴∠CBG=∠BAE,同理可得,∠BCG=∠CDF=∠ABE,∴△ABE≌△BCG,∴CG=BE=3,BG=AE=4,∴EG=4-3=1,GF=4-3=1,∴EF=,∴以EF为直径的圆的面积=π×()2=,故选:A.先延长BE交CF于G,再根据全等三角形的性质,得出CG=BE=3,BG=AE=4,进而得到得出EG=1,GF=1,再根据勾股定理得出EF的长,即可得到以EF为直径的圆的面积.此题考查正方形的性质以及全等三角形的判定与性质的运用,解决问题的关键是根据全等三角形的性质得出EG=FG=1,再利用勾股定理计算.9.【答案】6【解析】解:设袋中有x个红球.由题意可得:=0.2,解得:x=6,即袋中有6个红球,故答案为:6.在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.10.【答案】-1【解析】解:∵分式的值等于0,∴x2-1=0,1-x≠0,解得:x=-1.故答案为:-1.直接利用分式有意义的条件以及分式的值为零的条件分析得出答案.此题主要考查了分式有意义的条件以及分式的值为零的条件,正确把握分式的定义是解题关键.11.【答案】8【解析】解:如图,∵两邻角度数之比为1:2,两邻角和为180°,∴∠ABC=60°,∠BAD=120°,∵周长为16,∴边长AB=4,∴菱形的对角线AC=4,BD=2×4sin60°=4,∴面积=AC•BD=×4×4=8.故答案为:8根据“两邻角度数之比为1:2”求出菱形的内角,再根据周长求出边长,所以两对角线的长度可求,利用菱形的面积等于对角线乘积的一半即可求解.此题考查菱形的性质,本题求出菱形的一个内角是60°是求两对角线的关键,利用对角线乘积的一半求菱形的面积需要熟练掌握.12.【答案】-2【解析】解:依题意得:|m|-3=-1且m-2≠0,解得m=-2.故答案是:-2.由反比例函数的定义得到|m|-3=-1且m-2≠0,由此求得m的值.本题考查了反比例函数的定义,反比例函数的一般形式是(k≠0)或y=kx-1.13.【答案】∠A=90°或∠A=∠B或AC=BD或…(答案不唯一)【解析】解:由题意可得,∠A=90°(答案不唯一).简单的矩形判定定理的考查,已知平行四边形,再加一个角是直角即可.熟练掌握矩形的性质及判定定理.14.【答案】m<7且m≠3【解析】解:解方程+=2得到:x=.∵关于x的分式方程+=2的解为正数,∴>0,且≠2,解得m<7且m≠3.故答案是:m<7且m≠3.根据解分式方程的一般步骤,可得分式方程的解,根据解为正数,可得不等式,解不等式即可得答案.此题主要考查了分式方程的解,解出分式方程,根据解为正数列出不等式是解题关键.15.【答案】6【解析】【分析】此题考查的是平行四边形的性质,三角形中位线的性质,勾股定理,正确理解DE 最小的条件是解题的关键.平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.【解答】解:平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小.∵OD⊥BC,∠B=90°,∴OD∥AB,又∵平行四边形ADCE中,OC=OA,DE=2OD,∴OD是△ABC的中位线,∴OD=AB,AB=2OD,∴DE=AB.∵在Rt△ABC中,∠B=90°,AC=10,BC=8,∴AB==6,∴DE=6.故答案为6.16.【答案】15【解析】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,即∠E=15°,故答案为:15.连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.17.【答案】2013【解析】解:f(x)=,f()==,∴f(x)+f()=+==1,则原式=[f(2014)+f()]+[f(2013)+f()]+…+[f(2)+f()]+f(1)=1+1+…+1+=2013.故答案为:2013根据新定义表示出f(),进而求出f(x)+f()=1,原式结合后,利用此规律计算即可得到结果.此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.18.【答案】(4,)【解析】解:如图:延长BA使AD=CE,连接EF,OD.∵四边形ABCO是正方形,点B(4,4)∴OC=BC=AB=4=OA∵OE=2,OC=4∴CE=2∴BE=2∵CE=AD=2,OA=OC=4,∠OCB=∠OAD=90°∴△OCE≌△OAD(SAS)∴∠EOC=∠AOD,OD=OE∵∠EOF=45°,∠COA=90°∴∠COE+∠AOF=45°∴∠AOF+∠AOD=45°∴∠FOD=45°=∠EOF,且OF=OF,OD=OE∴△EOF≌△DOF(SAS)∴EF=FD在Rt△BEF中,EF2=BE2+BF2.∴(AF+2)2=4+(4-AF)2.∴AF=∴点F(4,)故答案为:(4,)延长BA使AD=CE,连接EF,OD.由题意可证△OCE≌△OAD,可得∠EOC=∠AOD,OD=OE,可证∠FOD=∠EOF,即可证△EOF≌△DOF,可得EF=FD,根据勾股定理可求AF的长,即可求点F的坐标.本题考查了正方形的性质,坐标与图形的性质,全等三角形的判定和性质,添加恰当的辅助线构造全等三角形是本题的关键.19.【答案】解:(1)•(1-),=,=,=a+2;(2)解方程-=1,去分母,两边同时乘以(x+1)(x-1),(x+1)2-4=x2-1,x=1,经检验,x=1是方程的增根,原方程无实数解.【解析】(1)先将括号内通分,相减后,再相乘,可得结论;(2)先去分母,再求出x的值,代入最简公分母进行检验即可.本题考查的是解分式方程和分式的混合运算,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.【答案】解:====3x2+9x,∵x2+3x-1=0,∴x2+3x=1,∴原式=3x2+9x=3(x2+3x)=3×1=3.【解析】根据分式的减法和除法可以化简题目中的式子,然后根据x2+3x-1=0即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的计算方法.21.【答案】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;【解析】(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)分别作出A1,B1,C1的对应点A2,B2,C2即可;本题考查作图-旋转变换、中心对称变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:(1)抽查总体数m=50+100+200+300+400+500=1550,次品件数n=0+4+16+19+24+30=93,这批衬衣中任抽1件是次品的概率为=0.06.(2)根据(1)的结论:这批衬衣中任抽1件是次品的概率为0.06,则600×0.06=36(件).答:准备36件正品衬衣供顾客调换.【解析】(1)根据概率的求法,找准两点:1、符合条件的情况数目;2、全部情况的总数;二者的比值就是其发生的概率;(2)需要准备调换的正品衬衣数=销售的衬衫数×次品的概率,依此计算即可.此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.23.【答案】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.【解析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.此题考查平行四边形的性质和判定问题,关键是根据平行四边形的判定解答即可.24.【答案】解:(1)设第一批衬衫x件,则第二批衬衫为2x件.根据题意得:=-10.解得;x=120.答;该商家购进的第一批衬衫是120件.(2)12000÷120=100,100+10=110.两批衬衫全部售完后的利润=120×(150-100)+240×(150-110)=15600元.答:两批衬衫全部售完后的利润是15600元.【解析】(1)设第一批衬衫x件,则第二批衬衫为2x件,接下来依据第二批衬衫每件进价贵了10元列方程求解即可;(2)先求得每一批衬衫的数量和进价,然后再求得两批衬衫的每一件衬衫的利润,最后根据利润=每件的利润×件数求解即可.本题主要考查的是分式方程的应用,依据第二批衬衫每件进价贵了10元列出关于x的方程是解题的关键.25.【答案】(100x+100y)(+)【解析】解:(1)甲两次购买粮食共要付粮款为(100x+100y)元,乙两次共购买的粮食为(+)公斤;甲两次购粮的平均单价为每公斤Q1==元,乙两次购粮的平均单价为每公斤Q2=200÷[+]=元;故答案为:(100x+100y);(+);;;(2)乙购买粮食的方式更合算些.理由:Q1-Q2=-=,∵x≠y,x>0,y>0,∴(x-y)2>0,2(x+y)>0,∴Q1-Q2>0即Q1>Q2,∴乙购买粮食的方式更合算些.(1)根据两次购买粮食的单价及买的千克数,表示出甲两次买粮食的钱数即可;用100元除以两次单价,相加即可得到乙购买粮食的千克数;表示出甲两次购买粮食的平均单价为Q1元,乙两次购买粮食的平均单价为Q2元即可;(2)由(1)得到Q1-Q2,通分并利用同分母分式的减法法则计算,利用完全平方公式整理后判断差为正数,可得出Q1>Q2,即乙购买粮食的方式更合算些.此题考查了分式混合运算的应用,弄清题意是解本题的关键.分式的混合运算最后结果的分子、分母要进行约分,注意运算的结果要化成最简分式或整式.26.【答案】解:(1)∵=4,∴=,∴x-2-=,∴x-=,(2)∵,=x2-6+,=(x-)2-2,=-2,=,∴=.【解析】(1)将已知条件的两边式计算各自的倒数,约分后可得结论;(2)计算所求式子的倒数,再将x-代入可得结论.本题考查分式的求值问题,解题的关键是正确理解题目给出的解答思路,注意分式的变形,本题属于基础题型.27.【答案】(1)证明:如图2,连接BD,∵C,H是AB,DA的中点,∴CH是△ABD的中位线,∴CH∥BD,CH=BD,同理FG∥BD,FG=BD,∴CH∥FG,CH=FG,∴四边形CFGH是平行四边形;(2)如图3所示,(3)解:如图3,∵BD=,∴FG=BD=,∴正方形CFGH的边长是.【解析】(1)连接BD根据三角形的中位线的性质得到CH∥BD,CH=BD,同理FG∥BD,FG=BD,由平行四边形的判定定理即可得到结论;(2)根据三角形的中位线的性质和正方形的性质即可得到结果;(3)根据勾股定理得到BD=,由三角形的中位线的性质得到FG=BD=,于是得到结论.本题考查了平行四边形的判定和性质,正方形的性质,勾股定理,正确的作出图形是解题的关键.28.【答案】8-2t2+t8【解析】解:(1)如图1.∵DM=2t,∴AM=AD-DM=8-2t.∵在直角梯形ABCD中,AD∥BC,∠ADC=90°,NP⊥AD于点P,∴四边形CNPD为矩形,∴DP=CN=BC-BN=6-t,∴AP=AD-DP=8-(6-t)=2+t;故答案为:8-2t,2+t.(2)∵四边形ANCP为平行四边形时,CN=AP,∴6-t=8-(6-t),解得t=2,(3)①存在时刻t=1,使四边形AQMK为菱形.理由如下:∵NP⊥AD,QP=PK,∴当PM=PA时有四边形AQMK为菱形,∴6-t-2t=8-(6-t),解得t=1,②要使四边形AQMK为正方形.∵∠ADC=90°,∴∠CAD=45°.∴四边形AQMK为正方形,则CD=AD,∵AD=8,∴CD=8,∴AC=8.故答案为:8.(1)由DM=2t,根据AM=AD-DM即可求出AM=8-2t;先证明四边形CNPD为矩形,得出DP=CN=6-t,则AP=AD-DP=2+t;(2)根据四边形ANCP为平行四边形时,可得6-t=8-(6-t),解方程即可;(3))①由NP⊥AD,QP=PK,可得当PM=PA时有四边形AQMK为菱形,列出方程6-t-2t=8-(6-t),求解即可,②要使四边形AQMK为正方形,由∠ADC=90°,可得∠CAD=45°,所以四边形AQMK为正方形,则CD=AD,由AD=8,可得CD=8,利用勾股定理求得AC即可.本题是四边形综合题,其中涉及到直角梯形的性质,矩形的判定与性质,等腰直角三角形的性质,轴对称的性质,等腰三角形的性质,正方形的性质等知识,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.。
2017-2018学年度第二学期八年级数学期中试卷一、填空题(共12题,每小题2分,共计24分)1.调查市场上某品牌酸奶的质量情况,采用调查方式是.(填“普查”或“抽样调查”)2.把一个正六边形绕着其对称中心旋转一定的角度,要使旋转后的图形与原来的图形重合,那么旋转的角度至少是°.3.在菱形ABCD中,AC=10,BD=24,则菱形的边长等于.4.如图,为某冷饮店一天售出各种口味雪糕数量的扇形统计图,其中售出红豆口味的雪糕200支,那么售出巧克力口味雪糕的数量是支.5.某种玉米种子在相同条件下发芽试验的结果如下:根据以上数据可以估计,该玉米种子发芽的概率为(精确到0.1).6.“平行四边形的对角线相等”是事件.(填“必然”、“随机”、“不可能”)7.在平行四边形ABCD中,AC、BD相交于点O,已知AC=10,BD=6,则边AB的取值范围是.如图,平行四边形ABCD与平行四边形DCFE周长相等,且∠BAD=60°,∠F=100°,则8.如图,把∆ABC绕着点A顺时针旋转α后,得到∆AB,C,,若∠C=20°,点C、B,、C,共线,则∠α= °.9.已知,在矩形ABCD中,BE平分∠ABC交AD于E,CF平分∠BCD交边AD于F.若AB=3,EF=1,则AD= .10.如图,在正方形ABCD中,点F在边BC上,把∆ABF沿着AF折叠,点B落在正方形内一点E处,射线DE与射线AF交于点G,则∠AGD= .11.如图,在四边形ABCD中,∠A=90°,AB=9,AD=12,点E、F分别是AB、AD的中点,点H是线段EF上的一个动点,连接CH,点P是线段CH的中点,当点H从点E沿着EF向终点F运动的过程中,点P移动的路径长为.二、选择题(共6题,每小题3分,共计18分)13、下列图形中,既是轴对称图形又是中心对称图形的是()A B C D14、今年我市有近3500名考生参加中考,为了解这些考生的数学成绩,从中抽取800名考生的数学成绩进行统计分析,这个问题中样本是()A、每位考生的数学成绩B、3500名考生的数学成绩C、被抽取的800名考生的数学成绩D、被抽取的800名学生15、下列命题中正确的是()A、有一组邻边相等的四边形是菱形B、有一个角是直角的平行四边形是矩形C、对角线垂直的平行四边形是正方形D、一组对边平行的四边形是平行四边形16、顺次连接下列各四边形各边中点所得的四边形一定是矩形的是()A、等腰梯形B、矩形C、平行四边形D、对角线互相垂直的四边形17、如图,在菱形ABCD中,AB=2,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB,C,D,,则图中阴影部分的面积为()A、1+3B、2+3C、3D、3-318、如图,在矩形ABCD中,∠CAD=68°,将矩形ABCD绕点D逆时针旋转90°得到矩形DGEF,顶点G在边CD上,AC的对应边为GF,连接BE,则∠CBE的度数为()A、23°B、30°C、22°D、18°三、解答题(共8小题,共计78分)19、已知,在四边形ABCD中,AD=AC=BC,∠B=∠D=40°(1)求∠DAC的度数(2)求证:四边形ABCD是平行四边形(1)表中a=___,b=___,并补全直方图(2)若用扇形统计图描述此成绩分布情况,则分数段60⩽x<70对应扇形的圆心角度数是___;(3)请估计该年级分数良好(分数在80及80以上为良好)的学生有多少人?21.如图,在正方形网格中,每个小正方形的边长为1个单位长度,平面直角坐标系xoy 的原点O 在格点上,x 轴、y轴都在网格线上,△ABC 的顶点A 、B 、C 都在格点上(1)将△ABC 向左平移两个单位得到△A 1B 1C 1,请在图中画出△A 1B 1C 1(2)△ABC 和△A 2B 2C 2关于原点O 成中心对称,请在图中画出△A 2B 2C 2(3)请写出C 2的坐标_________,并判断以点B 1、C 1、B 2、C 2为顶点的 .22、如图,在矩形ABCD 中,AB=3,E 在边AD 上,且AE=4,点F 是CD 的中点,EF 平分∠BED ,求DE 的长23. (本题满分10分)如图,在平面直角坐标系中,四边形ABCD 是正方形,点A ()a ,2、C都在直线x y 21=上,且点C 在点A 的右侧,求点C 的坐标.24. (本题满分8分)我们数学上将内角度数小于0180的四边形叫做凹凸四边形,形如上图(1),(2),(4)是凸四边形,(3)不是凸四边形.操作:已知如图,两个全等的三角形纸片△ABC 和△DEF ,其中4,3,6===BC AC AB ,按照下列要求把这两个三角形纸片无缝拼接,且没有重叠,画出所有可能的示意图,并写出所拼出图形的周长.(1)拼接成轴对称的凸四边形,写出对应的周长.(2)拼接成中心对称的凸四边形,写出对应的周长.25.(本题满分12分)如图,在△ABC中,∠C=90°,∠A=30°BC=4cm,点D从点B出发沿BC方向以每秒1个单位长的速度向点C匀速运动,同时点E从点A出发沿AB方向以每秒a个单位长的速度向点B匀速运动,当其中一个点到达终点时,两点同时停止.设点D 运动的时间是t秒(t>0).过点E作EF⊥AC,垂足为点F,连接DF,得到平行四边形BDFE.(1)求出a的值;(2)分别连接BF、DE,在运动过程中,BF能与DE互相垂直吗?如果能,求出t的值,如果不能,请说明理由.(3)当△DEF为直角三角形,求t的值.26.如图(1),矩形OABC的边OA、OC在坐标轴上,点B坐标为(5,4),点P是射线BA上的一动点,把矩形OABC沿着CP折叠,点B落在点D处;(1)当点C、D、A共线时,AD=;(2)如图(2),当点P与点A重合时,CD与x轴交于点E,过点E作EF⊥AC,交BC于点F,请判断四边形CEAF的形状,并说明理由;(3)若点D正好落在x轴上,请直接写出点P的坐标.2017-2018学年度第二学期八年级数学期中试卷解析一填空题(共12题,每小题2分,共计24分)1 抽样调查2 60°3 134 1005 0.86 随机7 2<AB<88 20°9 140°10 5或711 45°12 如图所示,当点H与点E重合时,中点P的位置为P1,当点H与点F重合时,中点P的位置为P2,点P运动的路径即为P1P2的长度.要求得P1P2的长度,即要求出EF的长度,EF的长度可以根据勾股定理求出.15答案:413 A既是轴对称图形又是中心对称图形,B是轴对称图形,C是中心对称图形,D是轴对称图形 A14 A是个体,B是总体,C是样本答案:C15A、有一组邻边相等的平行四边形是菱形,C对角线垂直的平行四边形是菱形D、两组组对边平行的四边形是平行四边形B16 顺次连接任意四边形各边中点所得的四边形一定是平行四边形,如果四边形的对角线相等所得中点四边形是菱形,如果对角线垂直所得中点四边形是矩形D17 设线段C ,D ,与线段BC 的交点为E ,由菱形性质可得∠CD ,E=60°,∠D ,CE=30°,所以∠CED ,=90°,S 阴影部分的面积=S △ABC - S △CD ,E ,S △ABC =21S 菱形ABCD =3, CD ,=AC-AD ,=23-2,则D ,E=3-1,CE=3-3,可以求出S △CD ,E =23-3 ;D18 连接BD 和DE ,则三角形BDE 为等腰直角三角形,所以∠BED=45°,因为∠GED=90°-68°=22°,所以∠BEG=45°-22°=23°,因为BC ∥GE ,所以∠CBE=∠BEG=23°A19 因为AD=AC ,∠D=40°,所以∠ACD=40°,∠DAC=180°-40°-40°=100°(3)因为AC=BC ,∠B=40°,所以∠BAC=40°,所以∠BAC=∠ACD ,所以AB ∥CD ,又因为∠DAB+∠B=180°,所以AD ∥BC ,所以四边形ABCD 是平行四边形20、(1)a=8 b=0.3 (2)72° (3)16021.平移变换、中心对称作图、矩形判定(1)略 (2)略 (3) (-3,-1) 矩形22 延长EF 交BC 的延长线于点G ,则△DEF ≌△CGF ,所以DE=CG ;因为EF 平分∠BED ,所以∠BEF=∠DEF ,又因为AD ∥BG ,所以∠DEF=∠BGF ,所以∠BEF=∠BGF ,所以BE=BG ;在RT △ABE 中由勾股定理得BE=5,所以BG=5,设DE=x ,则BG=4+2x ,所以CG=ED=21 2123 因为点A 在直线x y 21上,将A 点坐标代入求出a 值,然后DC AD =,∠ADC=090,考虑到分别从A 、C 两点向x 轴作垂线交于E 、F 两点,从而得到△AED ≌△DFC ,令b DE =,从而得出C 点坐标,且点C 在直线x y 21=上,将C 点坐标代入求出b 值,进而求出C 点坐标. ()3,6C24 首先根据题目所给材料,理解凸四边的特点就是每一个内角都小于0180.结合题目所给的△ABC 和△DEF三边的数值或者观察,可知∠ACB=∠DFE>090.第一问中,要组成轴对称图形,考虑对称性和不重叠的关系,所以有以下情况: 第一种A 、C 两点分别与D 、F 两点对应重合;第二种C 、B 两点分别与F 、E 两点对应重合;第三种A 、B 两点分别与D 、E 两点对应重合.但是第一种和第二种不属于凸四边形,只有第三种符合题意要求.在第二问中,要求组成中心对称图形,所以有以下情况:第一种A 、C 两点分别与F 、D 两点对应重合,且此时四边形ABCE 为平行四边形; 第二种C 、B 两点分别与E 、F 两点对应重合,同理得到四边形ABDC 为平行四边形; 第三种A 、B 两点分别与E 、D 两点对应重合,同理得到四边形DCEF 为平行四边形。
学校___________ 编号________ 班级_________ 姓名______________ 学号________ …………………………………………密……………………………………………封…………………………………………线……………………………………………2017--2018学年度第二学期初二数学期中试卷二含答案考试范围:苏科版《数学》八年级下册第九、十、十一章内容;考试时间:120分钟;考试题型:选择题、填空题、解答题;考试分值:130分。
注意事项:1.本次考试时间为120分钟,卷面总分为130分.考试形式为闭卷.2.所有试题必须作答在答题卡上规定的区域内,注意题号必须对应,否则不给分. 3.答题前,务必将姓名、准考证号用0.5毫米黑色签字笔填写在试卷及答题卡上. 一、选择题(本大题共6小题,每小题3分,共18分. 在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1. 下列图形是中心对称图形的是 ············································································· ( )2. 若分式23x x --有意义,则x 满足的条件是 ··························································· ( )A .x ≠0B .x ≠2C .x ≠3D .x ≥33.下列函数中,是反比例函数的为 ( )A .12+=x yB .22xy =C .3y x =D .x y =2 4.在代数式2x 错误!未找到引用源。
2017-2018学年八年级数学下期中考试试题(苏州市带答案)2017-2018学年第二学期期中试卷初二数学考试时间120分钟总分130分一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将你认为正确的答案填在答题卡相应的位置上) 1.下列图形中,既是中心对称图形又是轴对称图形的是………………………………(▲ )A. B. C. D. 2.在代数式、中,分式的个数有………………………(▲ ) A.2个 B.3个 C.4个 D.5个 3.若将分式中的字母的值分别扩大为原来的倍,则分式的值…………(▲ ) A.扩大为原来的倍 B.缩小为原来的 C.不变 D.缩小为原来的 4.若二次根式有意义,则的取值范围是………………………………………(▲ ) A. B. C. D. 5.如果与最简二次根式是同类二次根式,那么a的值是………………(▲ ) A.-2 B.-1 C.1 D.2 6.已知反比例函数的图像经过点(-1,2),则这个函数的图像一定经过点……(▲ ) A.(1,2) B.(2,1) C.(-1,-2) D.(-2,1) 7.若M( ,)、N( ,)、P( , )三点都在函数(k>0)的图象上,则、、的大小关系是……………………………………………………………(▲ ) A. B. C. D. 8.矩形具有而菱形不具有的性质是………………………………………………………(▲ ) A.对角线互相垂直 B.对角线互相平分 C.对角线相等 D.每条对角线平分一组对角 9.如图,点D、E、F分别是△ABC三边的中点,则下列判断错误的是……………(▲ ) A.四边形AEDF一定是平行四边形B.若AD平分∠A,则四边形AEDF是正方形 C.若AD⊥BC,则四边形AEDF是菱形 D.若∠A=90°,则四边形AEDF是矩形 10.如图,等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A 在直线y=x 上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x 轴、y轴,若双曲线(k≠0)与有交点,则 k的取值范围是………………………………………………(▲ ) A、 B、 C、 D、二、填空题(本大题共8题,每小题3分,共24分,请将答案填在答题卡相应的位置上) 11.当时,的值为0. 12. 若分式方程有增根,则的值为. 13.已知函数是反比例函数,则 = . 14.已知函数的图象与反比例函数的图象的一个交点为A ,则= . 15.如图,□ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24cm,△OAB的周长是18cm,则 EF 的长为. 16.若分式方程的解为非负数,则的取值范围是. 17.如图,正方形的面积是12,是等边三角形,点在正方形内,在对角线上有一点 ,使最小,则这个最小值为 18. 如图:两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是.(把你认为正确结论的序号都填上)2017-2018学年第二学期期中试卷初二数学命题人:谢煜校对:高东一、选择题:(每题3分,共30分) 1 2 3 4 5 6 7 8 9 10 二、填空题:(每题3分,共24分) 11. 12. 13. 14. 15. 16. 17. 18.三、解答题:(共76分) 19. (16分)计算:① ②20.(8分)解方程:① ② .21. (5分)先化简,再求值:,其中 .22.(6分)如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC ,DF∥BE ,AE=CF.求证:(1)△AFD △CEB;(2)四边形ABCD是平行四边形.23. (6分) 如图,在平面直角坐标系中,△ABC和△A1B1C1 关于点E成中心对称. (1) 画出对称中心E,并写出点E的坐标; (2) 画出△A1B1C1绕点O逆时针旋转90°后的△ A2B2C2; (3) 画出与△A1B1C1关于点O成中心对称的△A3B3C3.24.(5分)甲、乙两人每小时共做35个零件,甲做160个零件所用的时间与乙做120个零件所用的时间相等。
2017~2018学年第二学期初二期中调研测试含答案数学 2018.4注意事项:1.本试卷满分130分,考试时间120分钟;2.答卷前将密封线内的项目填写清楚,所有解答均须写在答题卷上,在本试卷上答题无效.一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应位置上.)1.下列图形中,中心对称图形是2.若代数式12x +在实数范围内有意义,则实数x 的取值范围是 A.2x =- B.2x ≠- C.2x <- D.2x >-3.下列式子为最简二次根式的是4.一只不透明的袋子中装有一些白球和红球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到红球是A.不可能事佚B.必然事件C.确定事件D.随机事件5.去年我市有约7万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是A.这1000名考生是总体的一个样本B.约7万名考生是总体C.每位考生的数学成绩是个体D. 1000名学生是样本容量6.如图,在ABCD Y 中,90ODA ∠=︒,10AC =cm ,6BD = cm ,则AD 的长为A. 4 cmB. 5 cmC. 6 cmD. 8 cm7.下列性质中,菱形具有而矩形不一定具有的是A.对角线互相平分B.对角线互相垂直C.对边平行且相等D.对角线相等8.在反比例函数2k y x-=的图像上有两点1122(,),(,)A x y B x y .若120x x >>时,12y y > , 则k 取值范围是A. 2k ≥B. 2k >C. 2k ≤D. 2k <9.如图,矩形纸片ABCD 中,AB =6cm, BC =8cm ,现将其沿AE 对折,使得点B 落在边 AD 上的点1B 处,折痕与边BC 交于点E ,则CE 的长为A. 6cmB. 4cmC. 2cmD. 1 cm10.如图,在ABCD Y 中,2AD AB =, F 是AD 的中点,作CE AB ⊥,垂足E 在线段AB 上,连接,EF CF ,则下列结论中一定成立的是①2BCD DCF ∠=∠;②EF CF =; ③2BEC CEF S S ∆∆=; ④3DFE AEF ∠=∠.A.①②③B.①③④C.①②④D.②③④二、填空题:(本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.)11.化简: = .12.当x = 时,分式211x x -+的值为零. 13.“抛掷图钉实验”的结果如下:由表可知,“针尖不着地的”的概率的估计值是 .(精确到0.01)14.在ABCD Y 中,220A C ∠+∠=︒,则B ∠= .15.菱形ABCD 的对角线AC =6cm, BD =8cm ,则菱形ABCD 的面积是 cm 2 .16.某物质的密度ρ (kg/m 3)关于其体积V (m 3)的函数图像如图所示,那么ρ与V 之间的 函数表达式是ρ= .17.如图,在四边形ABCD 中,P 是对角线BD 的中点,,E F 分别是,AB CD 的中点, ,100A D B C F P E =∠=︒,则PFE ∠= ° .18.如图,正方形ABCD 的边长为4. E 为BC 上一点,1,BE F =为AB 上一点,2,AF = P 为AC 上一点,则PF PE +的最小值为 .三、解答题:(本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色,墨水签字笔.)19.计算:(本题满分8分,每小题4分)(1) 01(3)π--; (2) 22111a a a a a ++---.20.解方程: (本题满分8分,每小题4分)(1) 512552x x x +=--; (2) 221x x x x +=-+.21.(本题满分6分)先化简,再求值: 35(2)242a a a a -÷+---,其中12a =-.22.(本题满分6分)如图所示,在平面直角坐标系中,方格纸中的每个小正方形的边长为1个 单位,己知(1,0),(2,2),(4,1)A B C -----,请按要求画图:(1)以A 点为旋转中心,将ABC ∆绕点A 顺时针旋转90°得11AB C ∆,画出11AB C ∆;(2)作出ABC ∆关于坐标原点O 成中心对称的222A B C ∆.23.(本题满分6分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了八年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)请你补全条形统计图;(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是 度;(3)若全校八年级共有学生900人,估计八年级一周课外阅读时间为6小时的学生有多少人?24.(本题满分6分)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,己知小明的速度是小芳速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.25.(本题满分8分)如图,在矩形ABCD 中,,M N 分别是边,AD BC 的中点,,E F 分别是线段,BM CM 的中点.(1)判断四边形MENF 是什么特殊四边形,并证明你的结论;(2)若四边形MENF 是正方形,求:AD AB 的值.26.(本题满分9分)如图,在平面直角坐标系xoy 中,直线2y x =-与y 轴相交于点A ,与反比例函数k y x=在第一象限内的图象相交于点(,2)B m . (1)求该反比例函数关系式; (2)当14x ≤≤时,求k y x =的函数值的取值范围; (3)将直线2y x =-向上平移后与反比例函数在第一象限内的图象相交于点C ,且ABC ∆的面积为18,求平移后的直线的函数关系式.27.(本题满分9分)我们宅义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.请解决下列问题:(1)已知:如图1,四边形ABCD 是等对角四边形,,60,75A C A B ∠≠∠∠=︒∠=︒, 则: C ∠= ° ,D ∠= °;(2)图①、图②均为4×4的正方形网格,线段,AB BC 的端点均在网点上.按要求在图①、图②中以AB 和BC 为边各画一个等对角四边形ABCD .(要求:四边形ABCD 的顶点D 在格点上,所画的两个四边形不全等)(3)已知:在等对角四边形ABCD 中,60,90,2,1DAB ABC AB CD ∠=︒∠=︒==, 求BC 的长.(在直角三角形中,30°角所对直角边等于斜边的一半).28.(本题满分10分)如图1,已知直线2y x =分别与双曲线8,k y y x x==交于第一象限内,P Q 两点,且OQ PQ =.(1)则P 点坐标是 ; k = .(2)如图2,若点A 是双曲线8y x =在第一象限图像上的动点,//AB x 轴,//AC y 轴, 分别交双曲线k y x=于点,B C ; ①连接BC ,请你探索在点A 运动过程中,ABC ∆的面积是否变化,若不变,请求出ABC ∆的面积;若改变,请说明理由;②若点D 是直线2y x =上的一点,请你进一步探索在点A 运动过程中,以点,,,A B C D 为顶点的四边形能否为平行四边形,若能,求出此时点A 的坐标;若不能,请说明理由.1112。
苏科版(完整版)八年级数学下册期中试卷及答案doc一、选择题1.下列图案中,是中心对称图形的是()A.B.C.D.2.下列调查中,适合采用普查的是()A.了解一批电视机的使用寿命B.了解全省学生的家庭1周内丢弃塑料袋的数量C.为保证某种新研发的战斗机试飞成功,对其零部件进行检查D.了解扬州市中学生的近视率3.如图,将△ABC沿着它的中位线DE折叠后,点A落到点A’,若∠C=120°,∠A=26°,则∠A′DB的度数是()A.120°B.112°C.110°D.100°4.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱5.如果a=32,b=3﹣2,那么a与b的关系是()A.a+b=0 B.a=b C.a=1bD.a>b6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件8.如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A .8B .7C .6D .5 9.三角形两边长分别为3和6,第三边的长是方程x 2﹣13x+36=0的两根,则该三角形的周长为( )A .13B .15C .18D .13或1810.在四边形中,能判定这个四边形是正方形的条件是()A .对角线相等,对边平行且相等B .一组对边平行,一组对角相等C .对角线互相平分且相等,对角线互相垂直D .一组邻边相等,对角线互相平分二、填空题11.在平面直角坐标系中,点P (5,﹣3)关于原点对称的点的坐标是___.12.若分式x 3x 3--的值为零,则x=______.13.某次测验后,将全班同学的成绩分成四个小组,第一组到第三组的频率分别为0.1,0.3,0.4,则第四组的频率为_________.14.若()14,A y -、()22,B y -都在反比例函数6y x=的图像上,则1y 、2y 的大小关系为1y _________2y (填“>”、“<”、“=”)15.如图是某市连续5天的天气情况,最大的日温差是________℃.16.如图,点E 在正方形ABCD 的边CD 上,以CE 为边向正方形ABCD 外部作正方形CEFG ,O 、O′分别是两个正方形的对称中心,连接OO′.若AB =3,CE =1,则OO′=________.17.如图,反比例函数y =x k (x >0)的图象经过矩形OABC 的边AB 的中点D ,若矩形OABC 的面积为8,则k =_____.18.空气是混合物,为直观介绍空气各成分的百分比,宜选用_____统计图. 19.如图,菱形ABCD 的边长为6,∠ABC=60°,则对角线AC 的长是 .20.若关于x 的一元二次方程2410kx x ++=有实数根,则k 的取值范围是_______.三、解答题21.如图,四边形ABCD 是正方形,点E 是BC 边上的动点(不与点B 、C 重合),将射线AE 绕点A 按逆时针方向旋转45°后交CD 边于点F ,AE 、AF 分别交BD 于G 、H 两点. (1)当∠BEA =55°时,求∠HAD 的度数;(2)设∠BEA =α,试用含α的代数式表示∠DFA 的大小;(3)点E 运动的过程中,试探究∠BEA 与∠FEA 有怎样的数量关系,并说明理由.22.如图,矩形ABCD 中,AB =8,AD =6,点O 是对角线BD 的中点,过点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形DEBF 是平行四边形;(2)当DE =DF 时,求EF 的长.23.如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E , F 分别为 OB , OD 的中点,延长 AE 至 G ,使 EG =AE ,连接 CG .(1)求证: △ABE ≌△CDF ;(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.24.如图,在平面直角坐标系xOy 中,边长为1个单位长度的正方形ABCD 的边BC 平行于x 轴,点A 、C 分别在直线OM 、ON 上,点A 的坐标为(3,3),矩形EFGH 的顶点E 、G 也分别在射线OM 、ON 上,且FG 平行于x 轴,EF :FG =3:5.(1)点B 的坐标为 ,直线ON 对应的函数表达式为 ;(2)当EF =3时,求H 点的坐标;(3)若三角形OEG 的面积为s 1,矩形EFGH 的面积为s 2,试问s 1:s 2的值是一个常数吗?若是,求出这个常数;若不是,请说明理由.25.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制了如下尚不完整的统计图表:调查结果统计表组别 A B CD E 分组(元) 030x ≤< 3060x ≤<频数调查结果频数分布直方图 调查结果扇形统计图请根据以上图表,解答下列问题:(1)填空:这次调查的样本容量是 ,a = ,m = ;(2)补全频数分布直方图;(3)求扇形统计图中扇形B 的圆心角度数;(4)该校共有1000人,请估计每月零花钱的数额x 在3090x ≤<范围的人数.26.解方程:224124x x x +-=-- 27.如图,在平面直角坐标系中,△ABC 和△A 'B 'C '的顶点都在格点上.(1)将△ABC 绕点B 顺时针旋转90°后得到△A 1BC 1;(2)若△A 'B 'C '是由△ABC 绕某一点旋转某一角度得到,则旋转中心的坐标是 .28.阅读下列材料:已知:实数x 、y 满足22320.25x x y x x +=++(0.75)x ≠-,求y 的最大值. 解:将原等式转化成x 的方程,得21(3)(2)04y x y x y -+-+=①. 若3y =,代入①得0.75x =-,0.75x ≠-,3y ∴≠,因此①必为一元二次方程.21(2)4(3)404y y y y ∴∆=---⨯=-+≥,解得4y ≤,即y 的最大值为4. 根据材料给你的启示,解决下面问题:已知实数x 、y 满足223221x x y x x ++=++15x ⎛⎫≠- ⎪⎝⎭,求y 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】本题根据中心对称图形的概念求解.【详解】A 选项是中心对称图形,故本选项符合题意;B 选项是轴对称图形,故本选项不合题意;C 选项是轴对称图形,故本选项不合题意;D 选项是轴对称图形,故本选项不合题意.故选:A .【点睛】本题考查中心对称图形的识别,按照其定义求解即可,注意与轴对称图形的区别.2.C解析:C【分析】根据调查的实际情况逐项判断即可.【详解】解:A. 了解一批电视机的使用寿命,调查具有破坏性,适合抽样调查,不合题意;B. 了解全省学生的家庭1周内丢弃塑料袋的数量,调查费时费力,适合抽样调查,不合题意;C. 为保证某种新研发的战斗机试飞成功,对其零部件进行检查,考虑安全性,适合全面调查,符合题意;D. 了解扬州市中学生的近视率,调查费时费力,适合抽样调查,不合题意.故选:C【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,事关重大的调查往往选用普查.3.B解析:B【分析】根据轴对称和平行线的性质,可得∠A'DE=∠B,又根据∠C=120°,∠A=26°可求出∠B的值,继而求出答案.【详解】解:由题意得:DE∥BC,∴∠A'DE=∠B=180°﹣120°﹣26°=34°,∴∠BDE=180°﹣∠B=146°,故∠A'DB=∠BDE﹣∠A'DE=146°﹣34°=112°.故选:B.【点睛】本题考查了轴对称以及三角形中位线的性质,解题的关键是熟知三角形的中位线平行于第三边.4.D解析:D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,因此,A、了解全班同学每周体育锻炼的时间,数量不大,宜用全面调查,故本选项错误;B、旅客上飞机前的安检,意义重大,宜用全面调查,故本选项错误;C、学校招聘教师,对应聘人员面试必须全面调查,故本选项错误;D、了解全市中小学生每天的零花钱,工作量大,且普查的意义不大,不适合全面调查,故本选项正确.故选D.5.A解析:A【分析】先利用分母有理化得到a2),从而得到a与b的关系.【详解】2),∵a而b2,∴a=﹣b,即a+b=0.故选:A.【点睛】﹣2是解答本题的关键.6.B解析:B【分析】根据轴对称图形和中心对称图形的概念求解即可.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项错误.故答案为B.【点睛】本题考查了轴对称图形和中心对称图形的识别,掌握轴对称图形和中心对称图形的概念是解答本题的关键.7.B解析:B【详解】随机事件.根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.8.D解析:D【分析】连接DN,根据三角形中位线定理得到EF=12DN,根据题意得到当点N与点B重合时,DN最大,根据勾股定理计算,得到答案.【详解】连接DN,∵点E,F分别为DM,MN的中点,∴EF是△MND的中位线,∴EF=12 DN,∵点M,N分别为线段BC,AB上的动点,∴当点N与点B重合时,DN最大,此时DN10,∴EF长度的最大值为:12×10=5,故选:D.【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.9.A解析:A【解析】试题解析:解方程x2-13x+36=0得,x=9或4,即第三边长为9或4.边长为9,3,6不能构成三角形;而4,3,6能构成三角形,所以三角形的周长为3+4+6=13,故选A.考点:1.解一元二次方程-因式分解法;2.三角形三边关系.10.C解析:C【分析】根据所给条件逐一进行判断即可得.【详解】A选项中,根据“对边平行且相等和对角线相等”只能判定该四边形是矩形;B选项中,根据“一组对边平行,一组对角相等”只能判定该四边形是平行四边形;C选项中,根据“对角线互相平分且相等,对角线互相垂直”可判定该四边形是正方形;D选项中,根据“一组邻边相等,对角线互相平分”只能判定该四边形是菱形;故选C.二、填空题11.(﹣5, 3)【详解】解:关于原点对称的点的坐标是横、纵坐标都互为相反数,从而点P(5,﹣3)关于原点对称的点的坐标是(﹣5, 3).故答案为: (﹣5, 3).解析:(﹣5, 3)【详解】解:关于原点对称的点的坐标是横、纵坐标都互为相反数,从而点P(5,﹣3)关于原点对称的点的坐标是(﹣5, 3).故答案为: (﹣5, 3).12.-3【分析】分式的值为零:分子等于零,且分母不等于零.【详解】依题意,得|x|-3=0且x-3≠0,解得,x=-3.故答案是:-3.【点睛】考查了分式的值为零的条件.若分式的值为零解析:-3【分析】分式的值为零:分子等于零,且分母不等于零.【详解】依题意,得|x|-3=0且x-3≠0,解得,x=-3.故答案是:-3.【点睛】考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.13.2【分析】根据一个事件频率总和等于1即可求出【详解】解:第四组的频率【点睛】本题考查了在一个实验过程中,通过其它组频率求相应组频率,解决本题的关键是正确理解频率的意义,明白在一个实验中频解析:2【分析】根据一个事件频率总和等于1即可求出【详解】=---=解:第四组的频率10.10.30.40.2【点睛】本题考查了在一个实验过程中,通过其它组频率求相应组频率,解决本题的关键是正确理解频率的意义,明白在一个实验中频率总和为1.14.>【分析】根据反比例函数的图象与性质即可解答.【详解】解:的图象当时,y 随x 的增大而减小,∵,故,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数 解析:>【分析】根据反比例函数的图象与性质即可解答.【详解】 解:6y x =的图象当0x <时,y 随x 的增大而减小, ∵4-<-2,故12y y >,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数的图象与性质. 15.10【分析】根据图象找出气温差距最大的一天,然后计算温差即可.【详解】由图可得气温差距最大的一天为5月28日,温差为:25-15=10,故答案为:10.【点睛】本题考查了有理数减法的解析:10【分析】根据图象找出气温差距最大的一天,然后计算温差即可.【详解】由图可得气温差距最大的一天为5月28日,温差为:25-15=10,故答案为:10.【点睛】本题考查了有理数减法的实际应用,根据图象找出温差最大的一天是解题关键.16.【分析】先过点O作BG的平行线,过点O′作AB的平行线,两平行线交于点H,构造直角三角形,再根据正方形的性质得出OH和O′H的长,再利用勾股定理即可求解.【详解】过点O作BG的平行线,过点O解析:5【分析】先过点O作BG的平行线,过点O′作AB的平行线,两平行线交于点H,构造直角三角形,再根据正方形的性质得出OH和O′H的长,再利用勾股定理即可求解.【详解】过点O作BG的平行线,过点O′作AB的平行线,两平行线交于点H,如图:∵AB长为3,CE长为1,点O和点O′为正方形中心,∴OH=12×(3+1)=2,O′H=12×(3-1)=12×2=1,∴在直角三角形OHO′中:222+15【点睛】本题考查了正方形的性质和勾股定理,作出直角三角形是解题关键.17.4【分析】设D的坐标是,则B的坐标是,根据D在反比例函数图象上,即可求得ab的值,从而求得k的值.【详解】设D的坐标是,则B的坐标是,∵∴,∵D 在上,∴.故答案是:4.【点睛】解析:4【分析】设D 的坐标是()a b ,,则B 的坐标是()2a b ,,根据D 在反比例函数图象上,即可求得ab 的值,从而求得k 的值.【详解】设D 的坐标是()a b ,,则B 的坐标是()2a b ,, ∵OABC 8S =矩形∴28ab =,∵D 在k y x=上, ∴1842k ab ==⨯=. 故答案是:4.【点睛】本题主要考查的是反比例函数k 的几何意义,掌握反比例函数系数k 的几何意义是解题的关键.18.扇形【分析】反映各个部分占整体的百分比,因此选择扇形统计图比较合适.【详解】解:要反映空气中各成分所占的百分比,因此用扇形统计图比较合适, 故答案为:扇形.【点睛】本题考查统计图的选择,解析:扇形【分析】反映各个部分占整体的百分比,因此选择扇形统计图比较合适.【详解】解:要反映空气中各成分所占的百分比,因此用扇形统计图比较合适,故答案为:扇形.【点睛】本题考查统计图的选择,扇形统计图可以反映各个部分占整体的百分比.19.6【分析】由菱形的性质可得AB=BC ,再由∠ABC=60°得△ABC 为等边三角形即可求得答案.【详解】根据菱形的性质可得AB=BC=6,∵∠ABC=60°,则△ABC 为等边三角形,解析:6【分析】由菱形的性质可得AB=BC ,再由∠ABC=60°得△ABC 为等边三角形即可求得答案.【详解】根据菱形的性质可得AB=BC=6,∵∠ABC=60°,则△ABC 为等边三角形,则AC=AB=6,故答案为:6.【点睛】本题考查了菱形的性质,等边三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.20.且【分析】根据二次项系数非零结合根的判别式△,即可得出关于的一元一次不等式,解之即可得出结论.【详解】解:关于的一元二次方程有实数根,且△,解得:且,故答案为:且.【点睛】本题考查解析:4k ≤且0k ≠【分析】根据二次项系数非零结合根的判别式△0,即可得出关于k 的一元一次不等式,解之即可得出结论.【详解】 解:关于x 的一元二次方程2410kx x ++=有实数根,0k ∴≠且△2440k =-≥,解得:4k ≤且0k ≠,故答案为:4k ≤且0k ≠.【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△0时,方程有实数根”是解题的关键. 三、解答题21.(1)10°;(2)135DFA α∠=︒-;(3)∠BEA =∠FEA ,理由见解析【分析】(1)根据正方形的性质和三角形的内角和解答即可;(2)根据正方形的性质和三角形内角和解答即可;(3)延长CB 至I ,使BI =DF ,根据全等三角形的判定和性质解答即可.【详解】解:(1)∵四边形ABCD 是正方形,∴∠EBA =∠BAD =90°,∴∠EAB =90°﹣∠BAE =90°﹣55°=35°,∴∠HAD =∠BAD ﹣∠EAF ﹣∠EAB =90°﹣45°﹣35°=10°;(2)∵四边形ABCD 是正方形,∴∠EBA =∠BAD =∠ADF =90°,∴∠EAB =90°﹣∠BAE =90°﹣α,∴∠DAF =∠BAD ﹣∠EAF ﹣∠EAB =()90459045αα︒-︒-︒--︒=,∴∠DFA =90°﹣∠DAF =()9045α︒--︒=135°﹣α;(3)∠BEA =∠FEA ,理由如下:延长CB 至I ,使BI =DF ,连接AI .∵四边形ABCD 是正方形,∴AD =AB ,∠ADF =∠ABC =90°,∴∠ABI =90°,又∵BI =DF ,∴△DAF ≌△BAI (SAS ),∴AF =AI ,∠DAF =∠BAI ,∴∠EAI =∠BAI +∠BAE =∠DAF +∠BAE =45°=∠EAF ,又∵AE 是△EAI 与△EAF 的公共边,∴△EAI ≌△EAF (SAS ),∴∠BEA =∠FEA .【点睛】本题主要考查正方形的性质、三角形外角性质及全等三角形,关键是根据正方形的性质及外角和性质得到角之间的关系,然后求解.22.(1)见解析;(2)152【分析】(1)由矩形的性质得到AB ∥CD ,再根据平行线的性质得到∠DFO=∠BEO 再证明△DOF ≌△BOE ,根据全等三角形的性质得到DF=BE ,从而得到四边形BEDF 是平行四边形;(2)先证明四边形BEDF 是菱形,再得到DE=BE ,EF ⊥BD ,OE=OF ,设AE=x ,则DE=BE=8-x 根据勾股定理求解即可.【详解】(1)证明:∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠DFO =∠BEO .在△DOF 和△BOE 中 DFO BEO DOF BOE OD OB ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△DOF ≌△BOE(AAS ).∴DF =BE .又∵DF ∥BE ,∴四边形BEDF 是平行四边形.(2)解:∵DE =DF ,四边形BEDF 是平行四边形,∴四边形BEDF 是菱形.∴DE =BE ,EF ⊥BD ,OE =OF .设AE =x ,则DE =BE =8-x ,在Rt △ADE 中,根据勾股定理,有AE 2+AD 2=DE 2,∴x 2+62=(8-x)2.解得x =74. ∴DE =8-74=254.在Rt △ABD 中,根据勾股定理,有AB 2+AD 2=BD 2,∴BD=10.∴OD =12BD =5. 在Rt △DOE 中,根据勾股定理,有DE 2-OD 2=OE 2,∴OE=154. ∴EF =2OE =152. 【点睛】 考查了菱形的判定和性质、矩形的性质、平行四边形的判定和性质、全等三角形的判定和性质和勾股定理,解题关键是熟练掌握矩形的性质.23.(1)见解析;(2)2AC AB =时,四边形EGCF 是矩形,理由见解析.【分析】(1)由平行四边形的性质得出AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,由平行线的性质得出∠ABE=∠CDF ,证出BE=DF ,由SAS 证明△ABE ≌△CDF 即可;(2)证出AB=OA ,由等腰三角形的性质得出AG ⊥OB ,∠OEG=90°,同理:CF ⊥OD ,得出EG ∥CF ,由三角形中位线定理得出OE ∥CG ,EF ∥CG ,得出四边形EGCF 是平行四边形,即可得出结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,∴∠ABE=∠CDF ,∵点E ,F 分别为OB ,OD 的中点,∴BE=12OB ,DF=12OD , ∴BE=DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴≅(2)当AC=2AB 时,四边形EGCF 是矩形;理由如下:∵AC=2OA ,AC=2AB ,∴AB=OA ,∵E 是OB 的中点,∴AG ⊥OB ,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点睛】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题.24.(1)(3,2),12y x=;(2)H(16,11);(3)4415,证明见解析.【分析】(1)先根据A的坐标为(3,3),正方形ABCD的边长为1求出C点的坐标,利用待定系数法即可求出直线ON的解析式.(2)点E在直线OM上,设点E的坐标为(e,e),由题意F(e,e﹣3),G(e+5,e﹣3),由点G在直线ON上,可得e﹣3=12(e+5),解得e=11即可解决问题.(3)如图,连接EG,延长EF交x轴于J,延长HG交x轴于k.设E(a,a),EF=3m,FG=5m,则G(a+5m,a﹣3m),由点G在直线y=12x上,可得a﹣3m=12(a+5m),推出a=11m,推出E(11m,11m),H(16m,11m),F(11m,8m),G (16m,8m)J(11m,0),K(16m,0),求出S1,S2即可解决问题.【详解】解:(1)∵A的坐标为(3,3),∴直线OM的解析式为y=x,∵正方形ABCD的边长为1,∴B(3,2),∴C(4,2)设直线ON的解析式为y=kx(k≠0),把C的坐标代入得,2=4k,解得k=12,∴直线ON的解析式为:y=12 x;故答案是:(3,2),12y x =;(2)∵EF=3,EF:FG=3:5.∴FG =5,设矩形EFGH 的宽为3a ,则长为5a ,∵点E 在直线OM 上,设点E 的坐标为(e ,e ),∴F (e ,e ﹣3),G (e +5,e ﹣3),∵点G 在直线ON 上,∴e ﹣3=12(e +5), 解得e =11,∴H (16,11).(3)s 1:s 2的值是一个常数,理由如下:如图,连接EG ,延长EF 交x 轴于J ,延长HG 交x 轴于k .设E (a ,a ),EF =3m ,FG =5m ,则G (a +5m ,a ﹣3m ),∵点G 在直线y =12x 上, ∴a ﹣3m =12(a +5m ), ∴a =11m ,∴E (11m ,11m ),H (16m ,11m ),F (11m ,8m ),G (16m ,8m )J (11m ,0),K (16m ,0),∴S △OEG =S △OEJ +S 梯形EJKG ﹣S △OKG =12×11m ×11m +12(8m +11m )•5m •12﹣12×16m ×8m =44m 2,S 矩形EFGH =EF •FG =15m 2,∴12S S =224415m m =4415. ∴s 1:s 2的值是一个常数,这个常数是4415. 【点晴】本题是一次函数的综合题,考查待定系数法,一次函数的性质,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.25.(1)50,16,8;(2)补全图形见解析;(3)扇形统计图中扇形B 的圆心角度数为115.2°;(4)每月零花钱的数额x 在30≤x <90范围的人数大约为720人.【解析】分析:(1)根据C组的频数是20,对应的百分比是40%,据此求得调查的总人数,然后求得a的值,m的值;(2)根据a的值补全频数分布直方图;(3)利用360°乘以对应的比例即可求解;(4)利用总人数1000乘以对应的比例即可求解.详解:(1)调查的总人数是20÷40%=50(人),则a=50﹣4﹣20﹣8﹣2=16,A组所占的百分比是450=8%,则m=8.故答案为50,16,8;(2)补全频数分布直方图如图:(3)扇形统计图中扇形B的圆心角度数是360°×1650=115.2°;(4)每月零花钱的数额x在30≤x<90范围的人数是1000×162050=720(人).答:每月零花钱的数额x在30≤x<90范围的人数大约为720人.点睛:本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题的关键,扇形统计图直接反映部分占总体的百分比大小.26.-1【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:(x+2)2-4=x2-4,解得:x=-1,经检验x=-1是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.27.(1)见解析(2)(3,4)【分析】(1)根据网格结构找出点A、C绕点B顺时针旋转90°后的对应点A1、C1的位置,然后顺次连接即可;(2)根据旋转的性质,确定出旋转中心即可.【详解】解:(1)三角形的旋转可以分开看作每条边的旋转,分别找到对应的点,连接即可,故△A 1BC 1如图所示;(2)连接'AA 并作其垂直平分线,连接'CC 并作其垂直平分线,交点即为旋转中心.如图所示,旋转中心为(3,4),故答案为(3,4).【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构以及旋转的性质,准确找出对应点的位置是解题的关键.28.2316【分析】类比阅读材料给出的方法,分类探讨得出函数的最小值即可.【详解】解:将原等式转化成关于x 的方程,得:2(3)(21)(2)0y x y x y -+-+-=①,若3y =,代入①得15x =-, ∵15x ≠-, ∴3y ≠,因此①必为一元二次方程.∵3a y =-,21b y =-,2c y =+,∴224(21)4(3)(2)0b ac y y y ∆=-=----≥, 解得:2316y ≥且3y ≠. ∴y 的最小值为2316. 【点睛】 本题考查了根的判别式的运用,把函数转化为关于x 的方程,根据系数的取值范围,结合根的判别式,分类探讨得出答案即可.。
2017-2018学年八年级(下)期中数学试卷一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.在代数式、、、a中,分式的个数有()A.2个B.3个C.4个D.5个3.下列根式中,最简二次根式是()A.B.C.D.4.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量5.对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣1)B.图象位于第二、四象限C.当x<0时,y随x增大而增大D.图象是中心对称图形6.已知点(﹣1,y1)、(2,y2)、(π,y3)在双曲线上,则下列关系式正确的是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y27.如图所示,有一张一个角为60°的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是()A.邻边不等的矩形B.等腰梯形C.有一个角是锐角的菱形D.正方形8.已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,则点E的坐标为()A.(5,8)B.(5,10)C.(4,8)D.(3,10)二、填空题9.当x=时,分式的值为零.10.在,,,中与是同类二次根式的是.11.若关于x的方程产生增根,则m=.12.若x、y满足|x﹣4|+=0,则①x+y=;②以x、y的值为二边长的直角三角形的第三边长为.13.已知双曲线与直线y=x﹣相交于点P(a,b),则.14.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若OM=3,AD=8,则BO=.15.一次函数y=kx+b与反比例函数的图象交于A、B两点(如图),则0<<kx+b的解集是.16.在四边形ABCD中,(1)AB∥CD,(2)AD∥BC,(3)AB=CD,(4)AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是.17.如图,正方形ABCD中,CD=5,BE=CF,且DG2+GE2=28,则AE的长.18.如图,由25个点构成的5×5的正方形点阵中,横纵方向相邻的两点之间的距离都是1个单位.定义:由点阵中四个点为顶点的平行四边形叫阵点平行四边形.图中以A,B为顶点,面积为2的阵点平行四边形的个数为个.三、解答题19.2014年全国两会民生话题成为社会焦点.合肥市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了合肥市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m=,n=.扇形统计图中E组所占的百分比为%;(2)合肥市人口现有750万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?20.计算或化简:(1)+(﹣1)0(2)12÷(2)×(a>0,b>0)21.化简求值:,其中a=﹣3.22.解方程:.23.已知如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.24.如图,点B(3,3)在双曲线y=(x>0)上,点D在双曲线y=﹣(x<0)上,点A和点C 分别在x轴,y轴的正半轴上,且点A,B,C,D构成的四边形为正方形.(1)求k的值;(2)求点A的坐标.25.某超市规定:凡一次购买大米180kg以上可以按原价打折出售,购买180kg(包括180kg)以下只能按原价出售.小明家到超市买大米,原计划买的大米,只能按原价付款,需要500元;若多买40kg,则按打折价格付款,恰巧需要也是500元.(1)求小明家原计划购买大米数量x(千克)的范围;(2)若按原价购买4kg与打折价购买5kg的款相同,那么原计划小明家购买多少大米?26.如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM=,AP=.(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC=.八年级(下)期中数学试卷参考答案与试题解析一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是轴对称图形,也是中心对称图形,故B正确;C、是中心对称图形,但不是轴对称图形,故C错误;D、是轴对称图形,但不是中心对称图形,故D错误.故选:B.【点评】本题主要考查的是轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的特点是解题的关键.2.在代数式、、、a中,分式的个数有()A.2个B.3个C.4个D.5个【考点】分式的定义.【分析】根据分母中含有字母的式子是分式,可得答案.【解答】解:、a是分式,故选:A.【点评】本题考查了分式的定义,分母中含有字母的式子是分式,注意π是常数不是字母,是整式.3.下列根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、该二次根式符合最简二次根式的定义.故本选项正确;B、因为该二次根式的被开方数中含有能开的尽方的因数.故本选项错误;C、因为该二次根式的被开方数中含有分母,所以它不是最简二次根式.故本选项错误;D、因为该二次根式的被开方数中含有分母,所以它不是最简二次根式.故本选项错误.故选A【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.4.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量【考点】总体、个体、样本、样本容量.【分析】根据总体、个体、样本、样本容量的定义对各选项判断即可.【解答】解:A、1000名考生的数学成绩是样本,故A选项错误;B、4万名考生的数学成绩是总体,故B选项错误;C、每位考生的数学成绩是个体,故C选项正确;D、1000是样本容量,故D选项错误;故选:C.【点评】本题考查了总体、个体、样本和样本容量的知识,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.5.对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣1)B.图象位于第二、四象限C.当x<0时,y随x增大而增大D.图象是中心对称图形【考点】反比例函数的性质.【分析】根据反比例函数的性质对四个选项进行逐一分析即可.【解答】解:A、∵1×(﹣1)=﹣1≠1,∴点(1,﹣1)不在反比例函数y=的图象上,故本选项错误;B、∵k=1>0,∴反比例函数y=的图象在一、三象限,故本选项错误;C、∵k=1>0,∴此函数在每一象限内y随x的增大而减小,故本选项错误;D、∵函数y=是反比例函数,∴此函数的图象是中心对称图形,故本选项正确.故选:D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的性质是解答此题的关键,即反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.6.已知点(﹣1,y1)、(2,y2)、(π,y3)在双曲线上,则下列关系式正确的是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2【考点】反比例函数图象上点的坐标特征;反比例函数的性质.【分析】根据题意,可得这个反比例函数图象所在的象限及每个象限的增减性,比较三个点的纵横坐标,分析可得三点纵坐标的大小,即可得答案.【解答】解:根据题意,在双曲线上,有﹣(k2+1)<0;故这个反比例函数在二、四象限,且在每个象限都是增函数;则y1>0,y2<y3<0;故有y1>y3>y2.故选B.【点评】本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,同学们应重点掌握.7.如图所示,有一张一个角为60°的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是()A.邻边不等的矩形B.等腰梯形C.有一个角是锐角的菱形D.正方形【考点】三角形中位线定理.【分析】可画出图形,令相等的线段重合,拼出可能出现的图形,然后再根据已知三角形的性质,对拼成的图形进行具体的判定.【解答】解:如图:此三角形可拼成如图三种形状,(1)为矩形,∵有一个角为60°,则另一个角为30°,∴此矩形为邻边不等的矩形;(2)为菱形,有两个角为60°;(3)为等腰梯形.故选:D.【点评】这是一道生活联系实际的问题,不仅要用到三角形中位线的性质、菱形、等腰梯形、矩形的性质,还锻炼了学生的动手能力.解答此类题目时应先画出图形,再根据已知条件判断各边的关系.8.已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,则点E的坐标为()A.(5,8)B.(5,10)C.(4,8)D.(3,10)【考点】反比例函数图象上点的坐标特征;菱形的性质.【专题】计算题;反比例函数及其应用.【分析】过点C作CF⊥x轴于点F,由OB•AC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D点可求出D点坐标,用待定系数法可求出双曲线y=(x>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标即可.【解答】解:过点C作CF⊥x轴于点F,∵OB•AC=160,A点的坐标为(10,0),∴OA•CF=OB•AC=×160=80,菱形OABC的边长为10,∴CF===8,在Rt△OCF中,∵OC=10,CF=8,∴OF===6,∴C(6,8),∵点D时线段AC的中点,∴D点坐标为(,),即(8,4),∵双曲线y=(x>0)经过D点,∴4=,即k=32,∴双曲线的解析式为:y=(x>0),∵CF=8,∴直线CB的解析式为y=8,∴,解得:,∴E点坐标为(4,8).【点评】此题考查了反比例函数图象上点的坐标特征,菱形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键.二、填空题9.当x=2时,分式的值为零.【考点】分式的值为零的条件.【专题】计算题.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:由分子x2﹣4=0⇒x=±2;而x=2时,分母x+2=2+2=4≠0,x=﹣2时分母x+2=0,分式没有意义.所以x=2.故答案为:2.【点评】要注意分母的值一定不能为0,分母的值是0时分式没有意义.10.在,,,中与是同类二次根式的是,.【考点】同类二次根式.【分析】根据同类二次根式的定义解答即可.【解答】解:=2,被开方数是2,与不是同类二次根式.=2,被开方数是3,与是同类二次根式.=3,被开方数是3,与是同类二次根式.=3,被开方数是2,与不是同类二次根式.综上所述,与是同类二次根式的是:,.故答案是:,.【点评】此题主要考查了同类二次根式的定义,即化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.11.若关于x的方程产生增根,则m=2.【考点】分式方程的增根.【专题】计算题.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x﹣1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x﹣1),得x+2=m+1∵原方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.【点评】增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.12.若x 、y 满足|x ﹣4|+=0,则①x+y= 7 ;②以x 、y 的值为二边长的直角三角形的第三边长为 5或.【考点】非负数的性质:算术平方根;非负数的性质:绝对值;勾股定理.【分析】①根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解; ②分较长的边4是直角边和斜边两种情况,利用勾股定理列式计算即可得解. 【解答】解:①由题意得,x ﹣4=0,y ﹣3=0, 解得x=4,y=3, 所以,x+y=4+3=7;②若4是直角边,则第三边==5,若4是斜边,则第三边==,所以,第三边长为5或.故答案为:①7;②5或.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,勾股定理,易错点在于②要分情况讨论.13.已知双曲线与直线y=x ﹣相交于点P (a ,b ),则﹣2.【考点】反比例函数与一次函数的交点问题. 【专题】计算题.【分析】由两函数图象交于P 点,将P 坐标分别代入两函数解析式,得到ab 与a ﹣b 的值,将所求式子通分并利用同分母分式的减法法则计算,把ab 与a ﹣b 的值代入即可求出值.【解答】解:∵双曲线与直线y=x ﹣相交于点P (a ,b ),∴b=,b=a ﹣2,∴ab=1,a ﹣b=2,则﹣===﹣2.故答案为:﹣2【点评】此题考查了反比例函数与一次函数的交点问题,利用了待定系数法,熟练掌握待定系数法是解本题的关键.14.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若OM=3,AD=8,则BO=5.【考点】矩形的性质.【分析】已知OM是△ADC的中位线,再结合已知条件则DC的长可求出,所以利用勾股定理可求出AC的长,由直角三角形斜边上中线的性质则BO的长即可求出.【解答】解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴OM是△ADC的中位线,∴OM=3,∴DC=6,∵AD=8,∴AC==10,∴BO=AC=5,故答案为:5.【点评】本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC的长.15.一次函数y=kx+b与反比例函数的图象交于A、B两点(如图),则0<<kx+b的解集是x<﹣1.【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】结合函数图象,直接可得0<<kx+b的解集.【解答】解:由图象可知,只有x<﹣1时,y=kx+b的图象在y=的图象的上方,且函数值都大于0,即0<<kx+b.所以0<<kx+b的解集是:x<﹣1.故填:x<﹣1.【点评】解决此类问题的关键是认真观察图形,根据函数图象的特点直接确定不等式的解集.16.在四边形ABCD中,(1)AB∥CD,(2)AD∥BC,(3)AB=CD,(4)AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是.【考点】列表法与树状图法;平行四边形的判定.【专题】计算题.【分析】列表得出所有等可能的情况数,找出能判定四边形ABCD是平行四边形的情况数,即可求出所求的概率.【解答】解:列表如下:所有等可能的情况有12种,其中能判定出四边形ABCD为平行四边形的情况有8种,分别为(2,1);(3,1);(1,2);(4,2);(1,3);(4,3);(2,4);(3,4),则P==.故答案为:【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.如图,正方形ABCD中,CD=5,BE=CF,且DG2+GE2=28,则AE的长.【考点】正方形的性质;全等三角形的判定与性质;勾股定理.【分析】连接DE,由正方形的性质得出AB=BC=CD=DA=5,∠A=∠BCD=∠B=90°,由SAS证明△BCE≌△CDF,得出对应角相等∠BEC=∠CFD,再由角的互余关系证出△DGE是直角三角形,由勾股定理求出DE2,AE2,即可得出AE的长.【解答】解:连接DE,如图所示:∵四边形ABCD是正方形,∴AB=BC=CD=DA=5,∠A=∠BCD=∠B=90°,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠BEC=∠CFD,∵∠BEC+∠BCE=90°,∴∠CFD+∠BCE=90°,∴∠DGE=∠CGF=90°,∴DE2=DG2+GE2=28,∴AE2=DE2﹣AD2=28﹣25=3,∴AE=;故答案为:.【点评】本题考查了正方形的性质、全等三角形的判定与性质、直角三角形的判定、勾股定理;熟练掌握正方形的性质,并能进行推理计算是解决问题的关键.18.如图,由25个点构成的5×5的正方形点阵中,横纵方向相邻的两点之间的距离都是1个单位.定义:由点阵中四个点为顶点的平行四边形叫阵点平行四边形.图中以A,B为顶点,面积为2的阵点平行四边形的个数为9个.【考点】平行四边形的判定.【分析】根据平行四边形的判定,两组对边边必须平行,可以得出上下各两个平行四边形符合要求,以及特殊四边形矩形与正方形即可得出答案.【解答】解:如图所示:∵矩形AD4C1B,平行四边形ACDB,平行四边形AC1D1B,上下完全一样的各有3个,还有正方形ACBC3,还有两个以AB为对角线的平行四边形AD4BD2,平行四边形C2AC1B.∴一共有9个面积为2的阵点平行四边形.故答案为:9.【点评】此题主要考查了平行四边形的性质,以及正方形与矩形的有关知识,找出特殊正方形,是解决问题的关键.三、解答题19.2014年全国两会民生话题成为社会焦点.合肥市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了合肥市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m=40,n=100.扇形统计图中E组所占的百分比为15%;(2)合肥市人口现有750万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?【考点】频数(率)分布表;用样本估计总体;扇形统计图;概率公式.【分析】(1)求得总人数,然后根据百分比的定义即可求得;(2)利用总人数100万,乘以所对应的比例即可求解;(3)利用频率的计算公式即可求解.【解答】解:(1)总人数是:80÷20%=400(人),则m=400×10%=40(人),C组的频数n=400﹣80﹣40﹣120﹣60=100,E组所占的百分比是:×100%=15%;(2)750×=225(万人);(3)随机抽查一人,则此人关注C 组话题的概率是=.故答案为40,100,15,.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力,以及列举法求概率.20.计算或化简:(1)+(﹣1)0(2)12÷(2)×(a >0,b >0)【考点】二次根式的混合运算;零指数幂. 【专题】计算题.【分析】(1)根据零指数幂的意义和二次根式的性质计算; (2)根据二次根式的乘除法则运算.【解答】解:(1)原式=3+1+﹣1=4;(2)原式=12××× =8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.21.化简求值:,其中a=﹣3.【考点】分式的化简求值. 【专题】计算题.【分析】先把原式化为式÷的形式,然后约分,化为最简后,把a 的值代入即可解得.【解答】解:原式=÷=×=×=,把a=﹣3代入原式得:===.故答案为.【点评】本题考查了分式的化简求值,解题的关键是通过约分,把原式化为最简,再代入数值计算,计算时一定要细心才行,不然很容易算错数.22.解方程:.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:1﹣2x=2x﹣4﹣3,移项合并得:4x=8,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.已知如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.【考点】菱形的性质;矩形的判定.【分析】(1)先判断出四边形AODE是平行四边形,再根据菱形的对角线互相垂直可得AC⊥BD,然后根据有一个角是直角的平行四边形是矩形证明;(2)根据两直线平行,同旁内角互补求出∠ABC=60°,判断出△ABC是等边三角形,然后根据等边三角形的性质求出OA、OB,然后得到OD,再根据矩形的面积公式列式计算即可得解.【解答】(1)证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵在菱形ABCD中,AC⊥BD,∴平行四边形AODE是菱形,故,四边形AODE是矩形;(2)解:∵∠BCD=120°,AB∥CD,∴∠ABC=180°﹣120°=60°,∵AB=BC,∴△ABC是等边三角形,∴OA=×6=3,OB=×6=3,∵四边形ABCD是菱形,∴OD=OB=3,∴四边形AODE的面积=OA•OD=3×3=9.【点评】本题考查了菱形的性质,矩形的判定,平行四边形的判定,主要利用了有一个角是直角的平行四边形是矩形,熟练掌握矩形,菱形与平行四边形的关系是解题的关键.24.如图,点B(3,3)在双曲线y=(x>0)上,点D在双曲线y=﹣(x<0)上,点A和点C 分别在x轴,y轴的正半轴上,且点A,B,C,D构成的四边形为正方形.(1)求k的值;(2)求点A的坐标.【考点】正方形的性质;反比例函数图象上点的坐标特征;全等三角形的判定与性质.【专题】综合题.【分析】(1)把B的坐标代入求出即可;(2)设MD=a,OM=b,求出ab=4,过D作DM⊥x轴于M,过B作BN⊥x轴于N,证△ADM≌△BAN,推出BN=AM=3,MD=AN=a,求出a=b,求出a的值即可.【解答】解:(1)∵点B(3,3)在双曲线y=上,∴k=3×3=9;(2)∵B(3,3),∴BN=ON=3,设MD=a,OM=b,∵D在双曲线y=﹣(x<0)上,∴ab=4,过D作DM⊥x轴于M,过B作BN⊥x轴于N,则∠DMA=∠ANB=90°,∵四边形ABCD是正方形,∴∠DAB=90°,AD=AB,∴∠MDA+∠DAM=90°,∠DAM+∠BAN=90°,∴∠ADM=∠BAN,在△ADM和△BAN中,,∴△ADM≌△BAN(AAS),∴BN=AM=3,DM=AN=a,∴0A=3﹣a,即AM=b+3﹣a=3,a=b,∵ab=4,∴a=b=2,∴OA=3﹣2=1,即点A的坐标是(1,0).【点评】本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的性质和判定的应用,主要考查学生运用性质进行推理和计算的能力,题目比较好,难度适中.25.某超市规定:凡一次购买大米180kg以上可以按原价打折出售,购买180kg(包括180kg)以下只能按原价出售.小明家到超市买大米,原计划买的大米,只能按原价付款,需要500元;若多买40kg,则按打折价格付款,恰巧需要也是500元.(1)求小明家原计划购买大米数量x(千克)的范围;(2)若按原价购买4kg与打折价购买5kg的款相同,那么原计划小明家购买多少大米?【考点】分式方程的应用.【专题】应用题.【分析】(1)小明家买的大米没有打折,所以一定没有超过180kg,再添40千克就能打折了,那么一定超过了140千克;(2)关键描述语是:原价购买4kg与打折价购买5kg的款相同,相对应的等量关系为:原价千克数:打折千克数=4:5.【解答】解:(1)由题意可得不等式140<x≤180,即小明家原计划购买大米的数量范围是140<x≤180;(2)设小明家原来准备买大米x千克,根据题意,由对应成比例得解之得x=160.经检验:x=160是原方程的解,∴x=160,答:小明家原计划购买大米是160千克.法二:(2)设小明家原来准备买大米x千克,原价为元;折扣价为元.据题意列方程为:,解之得:x=160.经检验x=160是方程的解.答:小明家原来准备买160千克大米.【点评】本题需多读题,读懂题意,耐心加以分析.不够打折的条件,说明少于180千克,再加40千克就够打折,以180为标准,说明超过了140千克.等量关系需先找到关键描述语.26.如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM=8﹣2t,AP=2+t.(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC=8.【考点】四边形综合题.【分析】(1)由DM=2t,根据AM=AD﹣DM即可求出AM=8﹣2t;先证明四边形CNPD为矩形,得出DP=CN=6﹣t,则AP=AD﹣DP=2+t;(2)根据四边形ANCP为平行四边形时,可得6﹣t=8﹣(6﹣t),解方程即可;(3))①由NP⊥AD,QP=PK,可得当PM=PA时有四边形AQMK为菱形,列出方程6﹣t﹣2t=8﹣(6﹣t),求解即可,②要使四边形AQMK为正方形,由∠ADC=90°,可得∠CAD=45°,所以四边形AQMK为正方形,则CD=AD,由AD=8,可得CD=8,利用勾股定理求得AC即可.【解答】解:(1)如图1.∵DM=2t,∴AM=AD﹣DM=8﹣2t.∵在直角梯形ABCD中,AD∥BC,∠ADC=90°,NP⊥AD于点P,∴四边形CNPD为矩形,∴DP=CN=BC﹣BN=6﹣t,∴AP=AD﹣DP=8﹣(6﹣t)=2+t;故答案为:8﹣2t,2+t.(2)∵四边形ANCP为平行四边形时,CN=AP,∴6﹣t=8﹣(6﹣t),解得t=2,(3)①存在时刻t=1,使四边形AQMK为菱形.理由如下:∵NP⊥AD,QP=PK,∴当PM=PA时有四边形AQMK为菱形,∴6﹣t﹣2t=8﹣(6﹣t),解得t=1,②要使四边形AQMK为正方形.∵∠ADC=90°,∴∠CAD=45°.∴四边形AQMK为正方形,则CD=AD,∵AD=8,∴CD=8,∴AC=8.故答案为:8.【点评】本题是四边形综合题,其中涉及到直角梯形的性质,矩形的判定与性质,等腰直角三角形的性质,轴对称的性质,等腰三角形的性质,正方形的性质等知识,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.。
2017-2018学年度第二学期期中测试卷八 年 级 数 学 2018年4月(满分:100分 考试时间:100分钟)一、选择题(每题2分,共20分)1.下列电视台的台标,是中心对称图形的是A .B .C .D .2.对于反比例函数xy 2=,下列说法不正确的是 A .点(21)--,在它的图像上B .它的图像在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小3.为了解我市老年人的健康状况,下列抽样调查最合理的是A.在公园调查部分老年人的健康状况B.在医院调查部分老年人的健康状况C.利用户籍网调查部分老年人的健康状况D.在周围邻居中调查部分老年人的健康状况 4.下列性质中,菱形具有而矩形不一定具有的是A.对角线互相平分B.对角线互相垂直C.对边平行且相等D.对角线相等 5.在反比例函数2ky x-=的图像上有两点11(,)A x y 、22(,)B x y 。
若120x x <<,12y y >,则k 取值范围是A. k>0B.2k >C.k<0D.2k <6.有三个事件,事件A :若a 、b 是实数,则+a b b a +=;事件B :打开电视正在播广告;事件C :同时掷两枚质地均匀地标有数字1-6的骰子,向上一面的点数之和是为13.这三个事件的概率分别记为()()()P A P B P C 、、,则()()()P A P B P C 、、的大小关系正确的是 A .()()()P C P A P B <<B .()()()P B P C P A << C .()()()P C P B P A <<D .()()()P B P A P C << 7.一次函数y ax b =+与反比例函数a by x-=,其中0,,ab a b <为常数,它们在同一坐标系中的图像可以是8.如图,在ABC ∆中,BF 平分ABC ∠,AF BF ⊥于点F ,D 为AB 的中点,连接DF 延长交AC 于点E .若AB=6,BC=10,则线段EF 的长为A. 1B.2C.2.5D. 3 9.如图,菱形ABCD 中,AB=4,120A ∠=︒,点P 、Q 、K 分别为线段BC 、CD 、BD 上的任意一点,则PK QK +的最小值为A.4B.D.10.如图,在平面直角坐标系中,点(1,4)P 、(,)Q m n 在函数的图象上,当1m >时,过点P 分别作x 轴、y 轴的垂线,垂足为点A 、B ,过点Q 分别作x 轴、y 轴的垂线,垂足为点C 、D . QD 交PA 于点E ,随着m 的增大,四边形ACQE 的面积 A.减小 B.增大 C.先减小后增大 D.先增大后减小 二、填空题(每题3分,共24分) 11.反比例函数ky x=的图像经过点(1,6)和(,3)m -,则m =. 12.为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复后发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为个.13.如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF DC =, 若∠ADF=240,则∠EDC= °.14.已知直线y =kx(k>0)与双曲线y =3x交于A(x 1,y 1)、B(x 2,y 2)两点,则x 1y 2+x 2y 1的值为_______. 15.已知菱形的周长为16cm ,两邻角的比是1:3,则菱形的面积是_______16.有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④圆;⑤菱形.将卡片背面朝上洗匀,从中抽取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.17.如图,一次函数y kx b =+图象与反比例函数my x=的图象都经过点(2,6)A -和点(4,)B n .则不等式k y x=mkx b x+≤的解集为. 18.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE 、BF ,将BCF ∆沿BF 对折,得到BPF ∆,延长FP 交BA 的延长线于点Q .给出下列结论:①AE BF =;②AE BF ⊥;③BQF ∆是等边三角形;④若正方形ABCD 的边长为3,则线段AQ 的长为34其中,正确的结论有.(把你认为正确的结论的序号都填上) 三、解答题19.(本题7分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有_______人,并补全条形统计图;(2)在扇形统计图中___,___m n ==,表示区域C 的圆心角为____度;(3)全校学生中喜欢篮球的人数大约有多少?20.(本题7分)已知如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,DE∥AC,AE∥BD. (1)求证:四边形AODE 是矩形;(2)若AB=12,∠BCD=120°,求四边形AODE 的面积.21.(本题6分)如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =(k >0,x >0)的图象上,点D 的坐标为(4,3).(1)求k 的值;(2)若将菱形ABCD 沿x 轴正方向平移,当菱形的顶点D 落在函数y = (k >0,x >0)的图象上时,求菱形ABCD 沿x 轴正方向平移的距离.22.(本题7分)环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y (mg/L)与时间x (天)的变化规律如图所示,其中线段AB 表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y 与时间x 成反比例关系. (1)求整改过程中硫化物的浓度y 与时间x 的函数表达式; (2)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1. 0 mg/L?为什么?23.(本题7分)如图,已知一次函数y kx b =+的图像与反比例函数my x=的图像交于点 (4,)A n 和点1(,3)3B n +,与y 轴交于点C .(1)求反比例函数和一次函数的表达式.(2)若在x 轴上有一点D ,其横坐标是1,连接AD 、CD , 求ACD ∆的面积.24.(本题满分7分)己知:如图,在四边形ABCD 中,3AB CD=,//ABCD ,//CE DA ,//DF CB .(1)求证:四边形CDEF 是平行四边形; (2)填空:①当四边形ABCD 必须满足条件时,四边形CDEF 是矩形; ②当四边形ABCD 必须满足条件时,四边形CDEF 是菱形.25.(本题7分)如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,顶点B 的坐标为(4,2).点M 是边BC 上的一个动点(不与B 、C 重合),反比例函数ky x=(0,0)k x >>的图象经过点M 且与边AB 交于点N ,连接MN . (1)当点M 是边BC 的中点时.①求反比例函数的表达式; ②求OMN ∆的面积;(2)在点M 的运动过程中,试证明:MBNB是一个定值.26.(本题8分)如图1,正方形ABCD 顶点A 、B 在函数y=kx(k ﹥0)的图像上,点C 、D 分别在x 轴、y 轴的正半轴上,当k 的值改变时,正方形ABCD 的大小也随之改变. (1)若点A 的横坐标为5,求点D 的纵坐标;(2)如图2,当k =2时,分别求出正方形A′B′C′D′的顶点A′、B′两点的坐标;(3)当变化的正方形ABCD 与(2)中的正方形A′B′C′D′有重叠部分时,求k 的取值范围.初二数学答案1-10. ACCBB CCBDB 11.-2 12.20 13.57 14.-6 1516.5317.-2≦x<0或x>4 18. ④ 19. (1)100 (2)30 10 144 (3)800 20. (1)略 (2)36321. (1)32 (2)320 22. (1)y=-2x+10 y=x12(2)能23. (1)y=x 4 y=-43x+4 (2) 62124. (1)略 (2) AD=BC AD ⊥BC 25. (1)y=x4 3 (2 ) 2 26. (1)5 (2) 621。
扬州市梅岭中学2017--2018学年第二学期第一次质量检测初二年级 数学学科(时间:120分钟;)一、选择题(每题3分,共计24分)1、下列调查中,适宜采用全面调查(普查)方式的是A .为了了解生产的一批炮弹的杀伤半径B .了解《人们的名义》反腐剧的收视率C .调查梅岭中学某班学生喜欢上数学课的情况D .调查某类烟花爆竹燃放的安全情况2、在,,,,,1+x1中,分式的个数有 A .5个 B .4个 C .3个 D .2个3、在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .将△ACB 绕点C 旋转50°得到△A′C′B′,这两个三角形全等D .阴天就一定会下雨4、将分式yx xy 中的x ,y 的值同时扩大为原来的3倍,则分式的值A .扩大6倍B .扩大9倍C .不变D .扩大3倍5、 分别向如图所示的四个区域随机掷一枚石子,石子落在阴影部分可能性最小的是A. B .C .D .6、如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为A.(0,1)B.(1,﹣1)C.(0,﹣1)D.(1,0)7、李老师开车去20km远的县城开会,若按原计划速度行驶,则会迟到10分钟,在保证安全驾驶的前提下,如果将速度每小时加快10km,则正好到达,如果设原来的行驶速度为xkm/h,那么可列分式方程为A.﹣=10 B.﹣=10C.﹣=D.﹣=8、如图,已知平行四边形OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为A.4 B.5 C.6 D.7二、填空题(每小题3分,共计30分)9、“I am a good student.”这句话的所有字母中,字母“a”出现的频率是10、如果分式的值为零,那么x等于11、已知=,则=.12、某校随机抽查了八年级的30名女生,测试了1分钟仰卧起坐的次数,并绘制成如图的频数分布直方图(每组含前一个边界,不含后一个边界),则次数不低于42个的有人。
苏 教 版 八 年 级 下 学 期期 中 测 试 卷一、选择题:(每题3分,共24分)1. 下面的图形中,既是轴对称图形又是中心对称图形的是( ) A. B. C. D.2. 为了了解我市2018年中考数学学科各分数段成绩分布情况,从中抽取500名考生的中考数学成绩进行统计分析.在这个问题中,样本容量是 ( )A. 500B. 被抽取的500名考生C. 被抽取的500名考生的中考数学成绩D. 我市2018年中考数学成绩3. 某市决定从桂花、菊花、月季花中随机选取一种作为市花,选到月季花的概率是( )A. 13B. 12C. 1D. 04. 在下列性质中,矩形具有而菱形不一定有的是 ( )A. 对角线互相垂直B. 四个角是直角C. 对角线互相平分D. 四条边相等 5. 已知ABCD 中,∠A+∠C=200°,则∠B 的度数是( )A. 100°B. 160°C. 80°D. 60° 6. 下列关于分式的判断正确的是 ( )A. 无论x 为何值,231x +的值总为正数 B. 无论x 为何值,31x +不可能是整数值 C. 当x =2时,12x x +-的值为零 D. 当x ≠3时3x x -,有意义 7. 把分式2x x 3y -中的x 和y 都扩大2倍,分式的值( ) A. 不变 B. 扩大2倍C. 缩小2倍D. 扩大4倍8. 如图,正方形ABCD 中,AE=AB ,直线DE 交BC 于点F ,则∠BEF=( )A. 50°B. 30°C. 60°D. 45°二、填空题(每空3分,共30分)9. “a是实数,“a>0”这一事件是________ 事件.(填确定或随机)10. 当x= ________ 时,232xx-+的值为零.11. 如图,在四边形ABCD中,AB∥CD,请你添加一个条件,使得四边形ABCD成为平行四边形,你添加的条件是___.12. 矩形两条对角线的夹角为60°,一条对角线与矩形较短边的和为15,则矩形的较短边长为_____________.13. 菱形的两条对角线分别为3cm•和4cm,则菱形的面积为_____cm2;14. 平行四边形ABCD的周长是30,则AB+BC =________15. 在□ABCD中,若添加一个条件(写出一个即可)__________,则四边形ABCD是矩形;16. 当x______时,11x+有意义.17. 分式12ab bc与的最简公分母是________.18. 如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当CEB'△为直角三角形时,BE的长为____三、解答题(66分)19. 计算:(1)2x+3x(2)aa1-+11a-(3)2m3m2-÷229m4-×13m2+20. 先化简,再求值:(31a1a1--+)×2a1a-,其中a=221. 如图,□ABCD中,BE平分∠ABC且交边AD于点E,如果AB=6cm,BC=10cm,试求:⑴□ABCD 的周长;⑵线段DE 的长.22. 如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC 沿x 轴翻折后再沿x 轴向右平移1个单位,在图中画出平移后的△A 1B 1C 1.(2)若△ABC 内有一点P (a,b ),则经过(1)中的两次变换后点P 的坐标变为_____________(3)作出△ABC 关于坐标原点O 成中心对称的△A 2B 2C 2.23. 某校八年级学生全部参加“初二生物地理会考”,从中抽取了部分学生的生物考试成绩,将他们的成绩进行统计后分为A ,B ,C ,D 四等,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题(1)抽取了______名学生成绩;(2)请把条形统计图补充完整;(3)扇形统计图中等级D 所在的扇形的圆心角度数是______;(4)若A ,B ,C 代表合格,该校初二年级有300名学生,求全年级生物合格的学生共约多少人24. 已知:如图,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 相交于点O ,BO =DO.求证:四边形ABCD 是平行四边形.25. 已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是_____________ ,(证明你的结论. )(2)当四边形ABCD的对角线满足__________条件时,四边形EFGH是矩形(不用证明)26. 已知,如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P 在边BC上以每秒1个单位长的速度由点C向点B运动.(1)当t为何值时,四边形PODB是平行四边形?(2)△OPD为等腰三角形时,写出点P的坐标(请直接写出答案,不必写过程).答案与解析一、选择题:(每题3分,共24分)1. 下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念逐一进行判断即可.【详解】A、不是轴对称图形,是中心对称图形.故选项错误;B、是轴对称图形,也是中心对称图形.故选项正确;C、不是轴对称图形,是中心对称图形.故选项错误;D、不是轴对称图形,也不是中心对称图形.故选项错误,故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2. 为了了解我市2018年中考数学学科各分数段成绩分布情况,从中抽取500名考生的中考数学成绩进行统计分析.在这个问题中,样本容量是()A. 500B. 被抽取的500名考生C. 被抽取的500名考生的中考数学成绩D. 我市2018年中考数学成绩【答案】A【解析】【分析】根据样本容量是指样本中个体的数目进行求解即可.【详解】为了了解我市2018年中考数学学科各分数段成绩分布情况,从中抽取500名考生的中考数学成绩进行统计分析.在这个问题中,样本容量是500,故选A.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3. 某市决定从桂花、菊花、月季花中随机选取一种作为市花,选到月季花的概率是( )A. 13B.12C. 1D. 0【答案】A【解析】【分析】共有3种花,选到月季花占其中的一种,利用概率公式进行求解即可. 【详解】所有机会均等的可能共有3种,而选到月季花的机会有1种,因此选到月季花的概率是13,故选A.【点睛】本题考查了简单的概率计算,用到的知识点为:概率=所求情况数与总情况数之比.4. 在下列性质中,矩形具有而菱形不一定有的是( )A. 对角线互相垂直B. 四个角是直角C. 对角线互相平分D. 四条边相等【答案】B【解析】【分析】由矩形的性质和菱形的性质,容易得出结论.【详解】矩形的性质有:四个角都是直角;对角线互相平分且相等;菱形的性质有:四条边相等;对角线互相垂直平分;矩形具有而菱形不一定有的是:四个角都是直角,故选B.【点睛】本题考查了矩形的性质、菱形的性质;熟练掌握矩形的性质和菱形的性质,并能进行推理论证是解决问题的关键.5. 已知ABCD中,∠A+∠C=200°,则∠B的度数是()A. 100°B. 160°C. 80°D. 60°【答案】C【解析】试题分析:∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC.∵∠A+∠C=200°,∴∠A=100°.∴∠B=180°﹣∠A=80°.故选C .6. 下列关于分式的判断正确的是 ( )A. 无论x 为何值,231x +的值总为正数 B. 无论x 为何值,31x +不可能是整数值 C. 当x =2时,12x x +-的值为零 D. 当x ≠3时3x x-,有意义 【答案】A【解析】【分析】 根据分式有意义的条件、分式值为0的条件、分式值是正负等逐一进行分析即可得.【详解】A 、分母中x 2+1≥1,因而23x 1+的值总为正数,故A 选项正确; B 、当x+1=1或-1时,3x 1+的值是整数,故B 选项错误; C 、当x=2时,分母x-2=0,分式无意义,故C 选项错误;D 、当x=0时,分母x=0,分式无意义,故D 选项错误,故选A .【点睛】本题考查了分式的值为零的条件,分式的定义,分式有意义的条件,注意分式的值是正数的条件是分子、分母同号,值是负数的条件是分子、分母异号.7. 把分式2x x 3y-中的x 和y 都扩大2倍,分式的值( ) A . 不变 B. 扩大2倍 C. 缩小2倍 D. 扩大4倍【答案】A【解析】【分析】 把分式2x x 3y-中的x 和y 都扩大2倍,分别用2x 和2y 去代换原分式中的x 和y ,利用分式的基本性质化简即可. 【详解】把分式2x x 3y -中的x 和y 都扩大2倍,得 ()22222232233x x x x y x y x y⨯⨯==-⨯--,即分式的值不变,故选A.【点睛】本题考查了分式的基本性质,根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项.8. 如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A. 50°B. 30°C. 60°D. 45°【答案】D【解析】【分析】先设∠BAE=x°,根据正方形性质推出AB=AE=AD,∠BAD=90°,根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数,根据平角定义求出即可.【详解】设∠BAE=x°,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵AE=AB,∴AB=AE=AD,∴∠ABE=∠AEB=12(180°-∠BAE)=90°-12x°,∠DAE=90°-x°,∠AED=∠ADE=12(180°-∠DAE)=12[180°-(90°-x°)]=45°+12x°,∴∠BEF=180°-∠AEB-∠AED=180°-(90°-12x°)-(45°+12x°)=45°,故选D.【点睛】本题考查了三角形的内角和定理的运用,等腰三角形的性质的运用,正方形性质的应用,解此题的关键是如何把已知角和未知角结合起来.二、填空题(每空3分,共30分)9. “a是实数,“a>0”这一事件是________事件.(填确定或随机)【答案】随机根据必然事件、不可能事件、随机事件的概念可正确解答.【详解】因为a是实数,所以a可能为正数,也可能为负数,还有可能是0,所以a>0这一事件是随机事件,故答案为随机.【点睛】本题考查了随机事件,用到的知识点为:确定事件指在一定条件下一定发生(或一定不发生)的事件,随机事件是指在一定条件下可能发生也可能不发生的事件.10. 当x= ________ 时,232xx-+的值为零.【答案】2【解析】【分析】根据分式值为0的条件进行求解即可.【详解】由题意:x-2=0时,x23x2-+的值为零,解得:x=2,故答案为2.【点睛】本题考查了分式值为0的条件,熟练掌握是解题的关键.11. 如图,在四边形ABCD中,AB∥CD,请你添加一个条件,使得四边形ABCD成为平行四边形,你添加的条件是___.【答案】AB=DC(答案不唯一)【解析】试题分析:∵在四边形ABCD中,AB∥CD,∴根据一组对边平行且相等的四边形是平行四边形的判定,可添加的条件是:AB=DC(答案不唯一).还可添加的条件AD∥BC或∠A=∠C或∠B=∠D或∠A+∠B=180°或∠C+∠D=180°等.12. 矩形两条对角线的夹角为60°,一条对角线与矩形较短边的和为15,则矩形的较短边长为_____________.【答案】5根据矩形ABCD,得到OA=OC,OB=OD,AC=BD,推出OA=OB,根据等边三角形的判定得出△OAB是等边三角形,即可求出AB长.【详解】∵矩形ABCD,∴AC=2OA,BD=2OB,AC=BD,∴OA=OB,∵∠AOB=60°,∴△OAB是等边三角形,∴AB=OB=OA,又∵AC+AB=15,∴AB=OB=OA=13×15=5,故答案为5.【点睛】本题主要考查对矩形的性质,等边三角形的性质和判定等知识点的理解和掌握,能根据性质得到等边三角形OAB是解此题的关键.13. 菱形的两条对角线分别为3cm•和4cm,则菱形的面积为_____cm2;【答案】6【解析】解:根据菱形的面积等于两对角线乘积的一半得,菱形的面积为3×4÷2=6cm2.故答案为6.14. 平行四边形ABCD的周长是30,则AB+BC =________【答案】15【解析】【分析】根据平行四边形的两组对边分别相等及已知条件即可求解.【详解】∵▱ABCD∴AB=CD,AD=BC∵平行四边形ABCD 的周长为30 ,∴AB+BC=15,故答案为15.【点睛】本题考查了平行四变形的性质,熟练掌握平行四边形的两组对边分别相等是解本题的关键. 15. 在□ABCD 中,若添加一个条件(写出一个即可)__________,则四边形ABCD 是矩形;【答案】一个角等于90度或者对角线相等【解析】【分析】根据有一个角是直角的平行四边形是矩形或对角线相等的平行四边形是矩形进行求解即可.【详解】∵四边形ABCD 是平行四边形,∠A=90°,∴平行四边形ABCD 是矩形,或:∵四边形ABCD 是平行四边形,AC=BD ,∴平行四边形ABCD 是矩形,故答案为一个角等于90度或者对角线相等.【点睛】本题考查了矩形的判定,熟练掌握矩形的定义以及矩形的判定方法是解题的关键.16. 当x______时,11x +有意义. 【答案】1x ≠-【解析】【分析】根据分式有意义的条件即可求解.【详解】依题意得10x +≠,解得1x ≠-【点睛】此题主要考查分式的性质,解题的关键是熟知分式的分母不为零.17. 分式12ab bc与的最简公分母是________. 【答案】abc【解析】【分析】根据确定最简公分母的方法求出最简公分母即可.【详解】分式12ab bc与的最简公分母是abc,故答案为abc.【点睛】本题考查了最简公分母,确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.18. 如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当CEB'△为直角三角形时,BE的长为____【答案】3或32.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得3x2 =,∴BE=32;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为32或3.故答案为:32或3.三、解答题(66分)19. 计算:(1)2x+3x(2)aa1-+11a-(3)2m3m2-÷229m4-×13m2+【答案】(1)5x(2)1(3)m【解析】【分析】(1)根据同分母分式加减法的运算法则进行求解即可;(2)先通分,然后根据同分母分式加减法的运算法则进行求解即可;(3)根据分式乘除法的法则按运算顺序进行计算即可.【详解】(1)2x + 3x =235x x +=; (2)a a 1- +11a -=11111a a a a a --=---=1; (3)2m 3m 2-÷229m 4-×13m 2+=()()32322132232m m m m m +--+=m. 【点睛】本题考查了分式的加减法,分式的乘除混合运算,熟练掌握各自的运算法则是解题的关键.20. 先化简,再求值:(31a 1a 1--+)×2a 1a-,其中a=2 【答案】2a 4a+,4 【解析】【分析】 括号内先通分进行分式的加减运算,然后进行分式的乘法运算进行化简,最后把数值代入化简后的结果进行计算即可.【详解】原式=()()()()()()()311111111a a a a a a a a a ⎡⎤++---⎢⎥-+-+⎣⎦=()()()()1133111a a a a a a a -++-+-+ =2a 4a+, 当a=2时,原式=2242⨯+=4.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算法则是解题的关键.21. 如图,□ABCD 中,BE 平分∠ABC 且交边AD 于点E ,如果AB=6cm ,BC=10cm ,试求:⑴□ABCD 的周长;⑵线段DE 的长.【答案】⑴周长=32cm ;⑵DE=4cm【解析】【分析】 (1)已知平行四边形的两邻边,根据平行四边形的性质,对边相等,即可求出平行四边形ABCD 的周长;(2)由平行四边形的性质及角平分线的定义可得出AB=AE ,进而利用题中数据即可求解.【详解】(1)∵四边形ABCD 是平行四边形,AB=6cm ,BC=10cm ,∴平行四边形ABCD 的周长=2(AB+BC)=2×16=32(cm);(2)在平行四边形ABCD 中,∵AD ∥BC ,∴∠AEB=∠CBE ,∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∴∠ABE=∠AEB ,∴AB=AE ,又∵AB=6cm ,AD=BC=10cm ,∴DE=AD-AE=10-6=4cm .【点睛】本题考查了平行四边形的性质:①边:平行四边形的对边相等;②角:平行四边形的对角相等;③对角线:平行四边形的对角线互相平分.22. 如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题: (1)将△ABC 沿x 轴翻折后再沿x 轴向右平移1个单位,在图中画出平移后的△A 1B 1C 1. (2)若△ABC 内有一点P (a,b ),则经过(1)中的两次变换后点P 的坐标变为_____________ (3)作出△ABC 关于坐标原点O 成中心对称的△A 2B 2C 2.【答案】(1)见解析;(2)(a+1,-b);(3)见解析.【解析】【分析】(1)根据网格结构找出点A 、B 、C 关于x 轴对称并向右平移1个单位后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据轴对称和平移的性质写出点P的对应点的坐标即可;(3)根据网格结构找出点A、B、C关于原点O成中心对称的点A2、B2、C2的位置,然后顺次连接即可;【详解】(1)如图所示;(2)沿x轴翻折后点(a,b)坐标变为(a,-b),再沿x轴向右平移1个单位后则变为(a+1,-b),故答案为(a+1,-b);(3)如图所示.【点睛】本题考查了利用轴对称变换作图,利用平移变换作图,利用中心对称作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.23. 某校八年级学生全部参加“初二生物地理会考”,从中抽取了部分学生的生物考试成绩,将他们的成绩进行统计后分为A,B,C,D四等,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题(1)抽取了______名学生成绩;(2)请把条形统计图补充完整;(3)扇形统计图中等级D所在的扇形的圆心角度数是______;(4)若A,B,C代表合格,该校初二年级有300名学生,求全年级生物合格学生共约多少人【答案】(1)50(2)见解析(3)36(4)270【解析】【分析】(1)根据B等级的人数以及所占的百分比即可求得抽取的学生数;(2)求出D等级的人数补全条形统计图即可;(3)用D等级所占的比例乘以360度即可得;(4)用300乘以A、B、C三个等级所占的比例的和即可得.【详解】(1)根据题意得:23÷46%=50(名),则抽取了50名学生成绩,故答案为50;(2)D等级的学生有50-(10+23+12)=5(名),补全图形,如图所示:(3)根据题意得:550×360°=36°,故答案为36°;(4)根据题意得:300×10231250++=270(人),则全年级生物合格的学生共约270人.【点睛】本题考查了条形统计图,扇形统计图,以及用样本估计总体的应用,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,弄清题中的数据是解本题的关键.24. 已知:如图,四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO=DO.求证:四边形ABCD是平行四边形.【答案】证明见解析【解析】【分析】先根据AB∥CD可知∠ABO=∠CDO,再由BO=DO,∠AOB=∠DOC即可得出△ABO≌△CDO,故可得出AB=CD ,进而可得出结论.【详解】∵AB ∥CD ,∴∠ABO=∠CDO ,在△ABO 与△CDO 中,ABO CDO BO DOAOB COD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABO ≌△CDO(ASA),∴AB=CD ,又∵AB//CD ,∴四边形ABCD 是平行四边形.【点睛】本题考查的是平行四边形的判定、全等三角形的判定与性质,熟知平行四边形的判定定理是解此题的关键.25. 已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形).(1)四边形EFGH 的形状是 _____________ ,(证明你的结论. )(2)当四边形ABCD 的对角线满足 __________条件时,四边形EFGH 是矩形(不用证明)【答案】(1)平行四边形;证明见解析(2)AC ⊥BD【解析】【分析】(1)连接BD ,根据三角形的中位线定理得到EH ∥BD ,EH=12BD ,FG ∥BD ,FG=12BD ,推出,EH ∥FG ,EH=FG ,根据一组对边平行且相等的四边形是平行四边形得出四边形EFGH 是平行四边形;(2)根据有一个角是直角的平行四边形是矩形,可知当四边形ABCD 的对角线满足AC ⊥BD 的条件时,四边形EFGH 是矩形.【详解】(1)四边形EFGH 的形状是平行四边形.理由如下:如图,连结BD ,∵E 、H 分别是AB 、AD 中点,∴EH∥BD,EH=12 BD,同理FG∥BD,FG=12 BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形;(2)当四边形ABCD的对角线满足互相垂直的条件时,四边形EFGH是矩形.理由如下:如图,连结AC、BD,∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,∵AC⊥BD,∴EH⊥HG,又∵四边形EFGH是平行四边形,∴平行四边形EFGH是矩形,故答案为AC⊥BD.【点睛】本题考查了中点四边形,涉及了三角形中位线定理,平行四边形的判定,矩形的判定等,熟练掌握相关知识是解题的关键.26. 已知,如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P 在边BC上以每秒1个单位长的速度由点C向点B运动.(1)当t为何值时,四边形PODB是平行四边形?(2)△OPD为等腰三角形时,写出点P的坐标(请直接写出答案,不必写过程).【答案】(1)t=5(2)(2,4)(2.5,4)(3,4)(8,4)【解析】【分析】(1)根据平行四边形的性质就可以知道PB=5,可以求出PC=5,从而可以求出t的值;(2)当P1O=OD=5或P2O=P2D或P3D=OD=5或P4D=OD=5时分别作P2E⊥OA于E,DF⊥BC于F,P4G⊥OA 于G,利用勾股定理得到P1C,OE,P3F,DG的值,就可以求出P的坐标.【详解】由题意可知OD =5,PC=t,(1)∵四边形PODB是平行四边形,∴PB=OD=5,∴PC=5,∴t=5;(2)当P1O=OD=5时,由勾股定理可以求得P1C=3,P2O=P2D时,作P2E⊥OA,∴OE=ED=2.5;当P3D=OD=5时,作DF⊥BC,由勾股定理,得P3F=3,∴P3C=2;当P4D=OD=5时,作P4G⊥OA,由勾股定理,得DG=3,∴OG=8,∴P1(2,4),P2(2.5,4),P3(3,4),P4(8,4).【点睛】本题考查了矩形的性质,坐标与图形的性质,等腰三角形的性质,平行四边形的判定及性质,勾股定理的运用等,熟练掌握相关知识是解题的关键.注意分类讨论思想和数形结合思想的运用.。
江苏省仪征市2017-2018学年八年级数学下学期期中试题(考试时间120分钟,满分150分)一、选择题(本大题共8小题,每小题3分,共24分) 1.下列各式a 5,n 2m ,12p ,a b +1,a +b3中分式有( ▲ ) A .2个 B .3个 C .4个 D .5个2. 下列二次根式中属于最简二次根式的是( ▲ )A.B.C.D.3. 下列调查中,适合用普查的是( ▲ )A.了解我省初中学生的家庭作业时间B.了解“嫦娥三号”卫星零部件的状况C.华为公司一批某型号手机电池的使用寿命D.了解某市居民对废电池的处理情况 4. 下列事件是确定事件的是( ▲ )A.射击运动员只射击1次,就命中靶心B.任意一个三角形,它的内角和等于180°C.抛一枚质地均匀的正方体骰子,朝上一面的点数为6D.打开电视,正在播放新闻 5. 如果把分式中的和都扩大3倍,那么分式的值( ▲ )A .不变B .扩大3倍C .缩小3倍D .扩大9倍 6. 如图,在中,平分,于点,为的中点,连接延长交于点.若,,则线段的长为( ▲ )A. 2B. 3C. 4D. 57. 如图,在菱形纸片中,,折叠菱形纸片,使点落在(为中点)所在直线上的点处,得到经过点的折痕,则的大小为( ▲ )A.B.C.D.8. 如图,在□ABCD 中,点E 为AB 的中点,F 为BC 上任意一点,把△BEF 沿直线EF 翻折,点B 的对应点B ′落在对角线AC 上,则与∠FEB 一定相等的角(不含∠FEB )有( ▲) A .2个 B .3个 C .4个D .5个F EDCBAB ′(第6题)(第7题)(第8题)二、填空题(本大题共10小题,每小题3分,共30分) 9. 当x=▲时,分式的值是0.10. 在函数中,自变量x 的取值范围是▲. 11. 分式的最简公分母是▲.12. 若m 是的小数部分,则的值是▲.13. 若最简二次根式与是同类二次根式,则a=▲.14. 在一个不透明的口袋中装有1个红球和若干个白球,它们除颜色外其他相同.通过多次摸球试验后发现,摸到红球的频率稳定在0. 25附近,则口袋中白球可能有▲个.15. 一组数据共有50个,分成四组后其中前三组的频率分别是0.10、0.24、0.36,则第四组数据的个数为▲.16. 已知菱形的周长为40 cm ,一条对角线长为16 cm ,则此菱形的面积是▲cm 2. 17. 已知, t =, 则=▲ .18. 如图,在矩形ABCD 中,AD=6,点P 是直线AD上一动点,若满足△PBC 是等腰三角形的点P 有且 只有3个,则AB 的长为▲ .三、解答题(共96分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上) 19.( 满分8分)计算:(1)(2)20. ( 满分8分)若x ,y 为实数,且y <++2,试化简:。
学校___________ 编号________ 班级_________ 姓名______________ 学号________ …………………………………………密……………………………………………封…………………………………………线……………………………………………2017-2018学年第二学期八年级期中数学试卷三含答案考试范围:苏科版《数学》八年级下册第九、十、十一章内容;考试时间:120分钟;考试题型:选择题、填空题、解答题;考试分值:130分。
一、选择题(本大题共有10小题,每小题3分,共30分) 1.下列函数中,反比例函数是 ( ▲ ) A .25y x=B .25y x =-1 C .245y x =D .25y x =-2.下面对□ABCD 的判断,正确的是 ( ▲ ) A .若AB ⊥BC ,则□ABCD 是菱形;B .若AC ⊥BD ,则□ABCD 是正方形;C .若AC =BD ,则□ABCD 是矩形 ; D .若AB =AD ,则□ABCD 是正方形. 3.对于反比例函数xy 2=,下列说法不正确的是( ▲ ) A .点(21)--,在它的图像上B .它的图像在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小4.分式x--11可变形为( ▲ ) A .11--x B .x +-11 C .x +11 D .11-x 5.若代数式13x +在实数范围内有意义,则实数x 的取值范围是( ▲ )A. 3x =-B. 3x ≠-C. 3x <-D. 3x >-6.下列各点中,在双曲线上12y x=的点是( ▲ ) A .(4,-3) B. (3,-4) C. (-4,3) D.(-3,-4) 7.已知点123(1,),(2,),(3,)A y B y C y -都在反比例函数2y x=-的图像上,则( ) A. 123y y y <<; B. 132y y y >>; C. 123y y y >>; D. 231y y y >> 8.己知,一次函数1y ax b =+与反比例函数2ky x=的图像如图所示,当12y y <时,x 的取值范围是( ▲ )A.2x <; B.5x >; C.25x <<; D.02x <<或5x >第7题第9题9.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( ▲ )A .(3,1)B .(3,)C .(3,)D .(3,2)10.如图所示,在Rt AOB ∆中,90,23AOB OB OA ∠=︒=,点A 在反比例函数2y x=的图象上,若点B 在反比例函数ky x=的图象上,则k 的值为( ▲ ) A .3 ; B. -3; C. 94-; D. 92-。
江苏省扬州市梅岭中学2017-2018学年八年级数学下学期期中试题一、细心选一选:(每题3分,共24分)1.为了解我市八年级10000名学生的身高,从中抽取了500名学生,对其身高进行统计分析,以下说法正确的是( )A .10000名学生是总体B .本次调查采用的是普查C .样本容量是500名学生D .每个学生的身高是个体2.下列分式约分正确的是( )A. B. C. D. 3.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB =CD ,AD =BC ;③AO = CO ,BO =DO ;④AB ∥CD ,AD =BC .其中一定能判定这个四边形是平行四边形的条件有 ( )A .1组B .2组C .3组D .4组4. 如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF=EC ,DE=4cm .矩形ABCD 的周长为32cm ,则AE 的长是( )A .5 cmB .6cmC .7cmD .8cm5. 分式 (、均为正数),字母的值都扩大为原来的2倍,则分式的值 ( )A. 扩大为原来的2倍B. 缩小为原来的C. 不变D. 缩小为原来的6. 甲、乙两人同时从地出发至地,如果甲的速度保持不变,而乙先用 的速度到达中点,再用的速度到达地,则下列结论中正确的是 ( )A. 甲、乙同时到达地B. 甲先到达地C. 乙先到达地D. 无法确定7. 如图,在四边形ABCD 中,AD=BC ,E ,F ,G 分别是AB ,CD ,AC 的中点,若∠DAC=20°,∠ACB=66°,则∠FEG 等于( )A. 47°B. 46°C. 11.5°D. 23°8.如图,正方形ABCD 中,AD=5,点E 、F 是正方形ABCD 内的两点,且AE=FC=4,BE=DF=3,则以EF 为直径的圆的面积为( )A .πB .πC .πD .π632x x x =0x y x y +=+21x y x xy x +=+222142xy x y =a b ab+(第4题) (第7题) (第8题)二、耐心填一填:(每空3分,共30分)9. 一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有 个红球.10.当x = 时,分式xx --112的值等于0. 11.若菱形的周长为16,两邻角度数之比为1:2,则菱形的面积为 . 12.已知函数3)2(--=m x m y 是反比例函数,那么m = .13. 在□ABCD 中,若添加一个条件: ,则四边形ABCD 是矩形.(写出1个即可)14.若关于x 的分式方程3222m x x+=--的解为正数,则m 的取值范围是 . 15.如图,在Rt △ABC 中,∠B=90°,AC=10,BC=8,点D 在线段BC 上一动点,以AC 为对角线的平行四边形ADCE 中,则DE 的最小值是 .16. 如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连结AE ,如果∠ADB =30°,则∠E = 度.17.对于正数x ,规定1()1f x x =+.例如11(4)145f ==+,114()14514f ==+,则11(2014)(2013)...(2)(1)()...()22014f f f f f f +++++= . 18. 如图,在正方形OABC 中,点B 的坐标是(4,4),点E 、F 分别在边BC 、BA 上,OE=2.若∠EOF=45°,则F 点的坐标是 .。
2017---2018学年第二学期期中考试(试题卷)初二数学(考试时间120分钟,满分120分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列图形中,不是中心对称图形是( ▲)2. 下列有四种说法中,正确的说法是(▲)①了解某一天出入无锡市的人口流量用普查方式最容易;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是确定事件;③“打开电视机,正在播放少儿节目”是随机事件;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.A .①②③B .①②④C .①③④D .②③④3.矩形具有而一般平行四边形不具有的特点是(▲)A .对角相等 B.对边相等C.对角线相等D.对角线互相平分4如果把分式中的m 和n 都扩大3倍,那么分式的值( ▲ )A .不变B .扩大3倍C .缩小3倍D .扩大9倍5. 分式:①223a a ++,②22a b a b --,③412()a ab -,④12x -中,最简分式个数为(▲) A .1个 B .2个 C .3个 D .4个6. 为了早日实现“绿色无锡,花园之城”的目标,无锡对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x 米,则所列方程正确的是 ( ▲ )A .B .C .D . 7.如图,在□ABCD 中,AB =3cm ,BC =5cm ,对角线AC ,BD 相交于点O ,则OA 的取值范围是(▲)A .1cm <OA <4cmB .2cm <OA <8cmC .2cm <OA <5cmD .3cm <OA <8cm40004000210x x -=+40004000210x x -=+40004000210x x -=-40004000210x x -=-第7题 第9题 第10题8. 对于反比例函数y =2x,下列说法不正确的是(▲) A .点(-2,-1)在它的图象上 B .它的图象在第一、三象限C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小9. 如图,将矩形ABCD 绕点C 顺时针旋转90°得到矩形FGCE ,点M 、N 分别是BD 、GE的中点,若BC=14,CE=2,则MN 的长 ( ▲ )A .7B .8C .9D .1010.如图,在正方形ABCD 中,E 为AD 的中点,DF ⊥CE 于M ,交AC 于点N ,交AB 于点F ,连接EN 、BM .有如下结论:①△ADF ≌△DCE ;②MN =FN ;③DE =EN ;④S △ADN :S 四边形CNFB =2:5;⑤BM =AB .其中正确结论的个数为( ▲ )A .5个B .4个C .3个D .2个二、填空题(本大题共有8个空格,每个空格2分,共16分.)11.当 x= ▲时,分式x 2-1x -1的值为0. 12.□ABCD 中,∠A+ ∠C=100゜,则∠B=__▲______.13.一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有▲个数.14.在菱形ABCD 中,边长为5,对角线AC =6.则菱形的面积为___▲__.15.已知反比例函数的图象经过点(m ,2)和(-2,3),则m 的值为 ▲ .16.若关于x 的分式方程xx x m 2132=--+无解,则m 的值为 ▲ . 17.如图,△ABC 中,∠C =900, AC=4, BC=8,以AB 为边向外作正方形ABDE ,若此正方形中心为点O ,则点C 和点O 之间的距离为__▲__.18.在平面直角坐标系中,已知平行四边形ABCD 的点A (0,-2)、点B (m ,m +1),点C(6,2),则对角线BD 的最小值是 ▲ .三、解答题(本大题共9小题.共74分.)19.(本题满分8分)计算:(1)2422m m m +--(2)()x x x x x x -+∙+÷++-21212422 20.(本题满分8分)解方程: (1)1223-=+x x (2) 21.(本题满分6分)如图,在直角坐标系中,A (0,4),C (3,0).(1)①画出线段AC 关于y 轴对称线段AB ;②将线段CA 绕点C 顺时针旋转一个角,得到对应线段CD 使得AD ∥x 轴,请画出线段CD ;(2)若直线y=kx 平分(1)中四边形ABCD 的面积,请直接写出实数k 的值.12112-=--x xx 第17题22.(本题满分8分)学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C 级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A 级和B 级)?23.(本题满分8分)如图,点E 、F 分别是□ABCD 边AB 、CD 延长线上一点,且BE =DF ,连EF 、AC 交于点O .求证:AC 、EF 互相平分.24.(本题满分8分)把一张矩形纸片ABCD 按如图方式折叠,使顶点B 和D 重合,点A 到点A ’,折痕为EF .(1)连接BE ,求证:四边形BFDE 是菱形;(2)若AB =8cm ,BC =16cm ,求线段DF 的长.25. (本题满分10分)如图,反比例函数xm y =1与一次函数b kx y +=2的图像交于两点A (n ,-1)、B (1,2). (1)求反比例函数与一次函数的关系式;(2)连接OA 、OB, 求△AOB 的面积;(3)在反比例函数的图象上找点P ,使△POB 为等腰三角形,这样的P 点有_____个?B A DC E F O 第24题第23题 第22题 第21题26.(本题满分10分)如图矩形OACB,以O 为原点建立平面直角坐标系,点C 坐标为(6,3).动点E 、F 分别从点B 、A 同时出发,点E 以1 cm/s 的速度沿边BO 向点O 移动,点F 以1 cm/s 的速度沿边AC 向点C 移动,点F 移动到点C 时,两点同时停止移动.以EF 为边在EF 的上方作正方形EFGD ,设点F 出发ts 时,正方形EFGH 的面积为s .(1 )t=___正方形EFGD 的面积s 为最小;s 最小值=___;正方形EFGD 的面积s 最大=_____.(2) t=1 时求D 点的坐标.(3) t=1 时点Q 是线段EF 上的一个动点(可与E 、F 重合),试探索在平面直角坐标系内找一点N ,使得以O 、Q 、E 、N 为顶点的四边形是菱形?若不存在,请说明理由,若存在,请求出N 的坐标.27.(本题满分8分)如图甲,将矩形ABCD 放在平面直角坐标系中,点D 的坐标为(3,2),以y 轴上一点P 为中心,a 为边长作正方形EFGH ,点E 和点G 都在y 轴上。
2017-2018学年度第二学期八年级期中考试数学试卷(满分:150分;时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1. 下列调查中,适合用普查方式的是A.了解瘦西湖风景区中鸟的种类B.了解扬州电视台《关注》栏目的收视率C.了解学生对“扬农”牌牛奶的喜爱情况 D .航天飞机发射前的安全检查 2.下列几何图形中,既是轴对称图形,又是中心对称图形的是 A .等腰三角形 B .正三角形 C .平行四边形 D .正方形 3.下列式子①x 2 ②5y x + ③a -21 ④1-πx中,分式的个数有 A.1 B.2 C.3 D.44.矩形具有而菱形不具有的性质是A .两组对边分别平行B .对角线相等C .对角线互相平分D .两组对角分别相等5.分式242x x -+的值为0,则A .x=-2B .x=±2C .x=2D .x=06. 某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x 米,则可得方程153000103000=--xx ,根据此情景,题中用“…”表示的缺失的条件应补为A .每天比原计划多铺设10米,结果延期15天才完成B .每天比原计划少铺设10米,结果延期15天才完成C .每天比原计划多铺设10米,结果提前15天才完成D .每天比原计划少铺设10米,结果提前15天才完成 7. 如图,在菱形ABCD 中,AB =8,点E 、F 分别在AB 、AD 上,且AE =AF ,过点E 作EG ∥AD 交CD 于点G ,过点F 作FH ∥AB 交BC 于点H ,EG 与FH 交于点O ,当四边形AEOF 与四边形CGOH 的周长之差为12时,AE 的值为A.6.5B.6C.5.5D.58.如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为 A .①②B .②③C .①③D .①②③(第7题) (第8题)二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卷相应位置上)9.在平行四边形ABCD 中, ∠A=110°, 则∠D= .10.某校为了解该校500名初二学生的期中数学考试成绩,从中抽查了100名学生的数学成绩.在这次调查中,样本容量是 .11.在一个不透明的布袋中装有2个白球和1个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是 .12. 当x 时,分式22+-x x 有意义. 13. 已知0654≠==ab c ,则a c b +的值为 .14. 若关于x 的分式方程112=--x ax 的解为正数,那么字母a 的取值范围是 . 15. 如图,点E 、F 、G 、H 分别是任意四边形ABCD 中AD 、BD 、BC 、CA 的中点,当四边形ABCD 的边至少满足 条件时,四边形EFGH 是菱形.16. 如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为 .17 .如图,菱形ABCD 和菱形ECGF 的面积分别为2和3,∠A=120°,求图中阴影部分的面积是 .18. 如图,P 是矩形ABCD 内的任意一点,连接PA 、PB 、PC 、PD ,得到△PAB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论:①S 1+S 2=S 3+S 4 ② S 2+S 4= S 1+ S 3 ③若S 3=2 S 1,则S 4=2 S 2 ④若S 1= S 2,则P 点在矩形的对角线上其中正确的结论的序号是_________________ .(第15题) (第16题) (第17题) (第18题)三、解答下列各题(本大题共10小题,共96分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(6分))211(342--⋅--a a a20.解方程:(6分)48122-=--x x x . 21.(本题8分)先化简,4)222(2-÷+--x xx x x x ,再选择一个你喜欢的x 代入求值.22.(本题 8分) 如图,在方格纸中,△ABC 的三个顶点及H G F E D 、、、、、五个点分别位于小正方形的顶点上.(1) 画出△ABC 绕点B 顺时针方向旋转90°后的图形.(2)先从H G F E 、、、四个点中任意取两个不同的点,再和D 点构成三角形,求所得三角形与△ABC 面积相等的概率是 .23.(本题 10分) 某学校开展课外体育活动,决定开设A :篮球、B :乒乓球、C :踢毽子、D :跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为 ,其所在扇形统计图中对应的圆心角度数是 度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?A D CB M NPQ24.(本题 10分) 已知A =﹣ (1)化简A ;(2)当x 满足不等式组⎩⎨⎧<-≥-0301x x ,且x 为整数时,求A 的值.25.(本题 12分) 如图,在矩形ABCD 中,M 、N 分别是AD 、BC 的中点,P 、Q 分别是BM 、DN 的中点.(1)求证:△MBA ≌△NDC ; (2)求证四边形MPNQ 是菱形.26.(本题12分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元够进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元。
江苏省扬州市梅岭中学2017-2018学年八年级数学下学期期中试题一、细心选一选:(每题3分,共24分)1.为了解我市八年级10000名学生的身高,从中抽取了500名学生,对其身高进行统计分析,以下说法正确的是()A.10000名学生是总体B.本次调查采用的是普查C.样本容量是500名学生D.每个学生的身高是个体2.下列分式约分正确的是()61x y x yxA. B. C. D.xx32x y x2xy x2xy124x y223.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有( )A.1组B.2组C.3组D.4组4. 如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm.矩形ABCD的周长为32cm,则AE的长是()A.5 cm B.6cm C.7cm D.8cma b5. 分式( 、均为正数),字母的值都扩大为原来的2倍,则分式的值( )abA. 扩大为原来的2倍B. 缩小为原来的C. 不变D. 缩小为原来的6.甲、乙两人同时从地出发至地,如果甲的速度保持不变,而乙先用的速度到达中点,再用的速度到达地,则下列结论中正确的是( )A. 甲、乙同时到达地B. 甲先到达地C. 乙先到达地D. 无法确定7. 如图,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点,若∠DAC=20°,∠ACB=66°,则∠FEG等于()A. 47°B. 46°C. 11.5°D. 23°8.如图,正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=4,BE=DF=3,则以EF为直径的圆的面积为()A.πB.πC.πD.π1(第 15题) (第 16题) (第 18题)三、耐心做一做:(共 96分)19.(每题 4分,共 8分)a 4 1 2 (1)计算 (1 ) a 3 a 2(2)解方程 x1 41x 1 x 1220.(8分)先化简,再求值: 5 x 3 x 2x 2 3x6x2,其中 x 满足 x 2 3x10 .21.(8分)已知△ABC 的顶点 A 、B 、C 在网格格点上,按要求在网格中画图.C(1)△ABC 绕点 O 逆时针旋转 90°得到△A 1B 1C 1;O(2)画△A 1B 1C 1关于点 O 的中心对称图形△A 2B 2C 2.BA22. (8分)某公司的一批某品牌衬衣的质量抽检结果如下:(1)请结合表格数据直接写出这批衬衣中任抽 1件是次品的概率.(2)如果销售这批衬衣 600件,至少要准备多少件正品衬衣供买到次品的顾客退换?323.(10分)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA 的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.24.(10分) 某商家预测一种电子产品能畅销市场,就用12000元购进了一批这种电子产品,上市后果然供不应求,商家又用了26400元购进了第二批这种电子产品,所购数量是第一批购进量的2倍,但每件进价贵了10元。
扬州市梅岭中学八年级数学期中试卷一 •选择题(每题 3分,共24分) 1.下列命题中,真命题的个数是 () ①对角线互相平分的四边形是平行四边形•②两组对角分别相等的四边形是平行四边形•③一组对边平行,另一组对边相等的四边形是平行四边形 A.3个 B.2 个 C.1 个D.0个2.如果把分式中的a 和b 都缩小2倍,则分式的值(a+bA.缩小4倍B .缩小2倍C .不变D .扩大2倍3•函数y 二二1的图象 上有两点A (x 「yj 、B (X 2, y ?)且禺x」CF L 第1芒题图 CF 分别是/ ABC 和/BCD 的平分线,BE CF 分别与AD 相交于点E 、F ,:::X2,下列结论正确的是(A. y 1 :::y2B. y 1 .y 2C.如D.如与讨2之间的大小关系不能确定 4.若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是A.梯形B. 矩形C. 菱形 正方形 5.在同一直角坐标平面内,如果直线 y =ki x 与双曲线D. k 2y没有交点,那么 Xk 1和k 2的关系一定是( ) (A ) k 1、k 2 异号6.在物理并联电路里, (B) k 1、k 2 同号(C) k 1 >0,支路电阻 k 2 <0 (D )R 、R 2与总电阻R 之间的关系式为k 2>°R Ri R 2,若 E R1,用 Rk i <0,R 表示R ?正确的是( R 2=B .已知丄+—=3,则分式x y A. 7.A.) R=:! I : C .皆」RR1':的值为() D .不能确定9.当x10.如图,点P 在反比例函数时,分式一有意义.x 2-ly=":的图象上,且 PD 丄x 轴于点 。
.若厶POD 勺面积为3,则k 的值第10题图,在口 ABCD 中, BEF ERC_第11题图 '是11.如AB=6, BC=10,贝U EF=I 」112.反比例函数 y ( m-2) x 2m+1的函数值为一时,自变量x 的值是 ____________ 。
江苏省扬州市梅岭中学2017-2018学年八年级数学下学期期中试题一、细心选一选:(每题3分,共24分)1.为了解我市八年级10000名学生的身高,从中抽取了500名学生,对其身高进行统计分析,以下说法正确的是() A .10000名学生是总体B .本次调查采用的是普查C .样本容量是500名学生D .每个学生的身高是个体 2.下列分式约分正确的是()A. B. C. D.3.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB =CD ,AD =BC ;③AO = CO ,BO =DO ;④AB ∥CD ,AD =BC .其中一定能判定这个四边形是平行四边形的条件有 ( )A .1组B .2组C .3组D .4组4. 如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF=EC ,DE=4cm .矩形ABCD 的周长为32cm ,则AE 的长是( )A .5 cmB .6cmC .7cmD .8cm5.分式 (、均为正数),字母的值都扩大为原来的2倍,则分式的值 ( ) A. 扩大为原来的2倍 B. 缩小为原来的C. 不变 D. 缩小为原来的6. 甲、乙两人同时从地出发至地,如果甲的速度保持不变,而乙先用的速度到达中点,再用的速度到达地,则下列结论中正确的是 ( )A. 甲、乙同时到达地B. 甲先到达地C. 乙先到达地D. 无法确定7. 如图,在四边形ABCD 中,AD=BC ,E ,F ,G 分别是AB ,CD ,AC 的中点,若∠DAC=20°,∠ACB=66°,则∠FEG 等于( )A. 47°B. 46°C. 11.5°D. 23°8.如图,正方形ABCD 中,AD=5,点E 、F 是正方形ABCD 内的两点,且AE=FC=4,BE=DF=3,则以EF 为直径的圆的面积为( )A .πB .πC .πD .π632x x x =0x y x y +=+21x y x xy x +=+222142xy x y =a b ab+(第4题)(第7题)(第8题)二、耐心填一填:(每空3分,共30分)9. 一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有个红球.10.当x =时,分式xx --112的值等于0.11.若菱形的周长为16,两邻角度数之比为1:2,则菱形的面积为. 12.已知函数3)2(--=m xm y 是反比例函数,那么m =.13. 在□ABCD 中,若添加一个条件:,则四边形ABCD 是矩形.(写出1个即可) 14.若关于x 的分式方程3222mx x+=--的解为正数,则m 的取值范围是. 15.如图,在Rt △ABC 中,∠B=90°,AC=10,BC=8,点D 在线段BC 上一动点,以AC 为对角线的平行四边形ADCE 中,则DE 的最小值是.16. 如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连结AE ,如果∠ADB =30°,则∠E =度. 17.对于正数x ,规定1()1f x x =+.例如11(4)145f ==+,114()14514f ==+,则11(2014)(2013)...(2)(1)()...()22014f f f f f f +++++=.18. 如图,在正方形OABC 中,点B 的坐标是(4,4),点E 、F 分别在边BC 、BA 上,OE=2.若∠EOF=45°,则F 点的坐标是.(第15题)(第16题)(第18题) 三、耐心做一做:(共96分) 19.(每题4分,共8分)(1)计算)211(342--⋅--a a a (2)解方程214111x x x +-=--20.(8分)先化简,再求值:2532236x x x x x-⎛⎫+-÷ ⎪--⎝⎭,其中x 满足2310x x +-=.21.(8分)已知△ABC 的顶点A 、B 、C按要求在网格中画图.(1)△ABC 绕点O 逆时针旋转90°得到△A 1B 1C 1; (2)画△A 1B 1C 1关于点O 的中心对称图形△A 2B 2C 2.22. (8分)某公司的一批某品牌衬衣的质量抽检结果如下:(1)请结合表格数据直接写出这批衬衣中任抽1件是次品的概率.(2)如果销售这批衬衣600件,至少要准备多少件正品衬衣供买到次品的顾客退换?23.(10分)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.24.(10分) 某商家预测一种电子产品能畅销市场,就用12000元购进了一批这种电子产品,上市后果然供不应求,商家又用了26400元购进了第二批这种电子产品,所购数量是第一批购进量的2倍,但每件进价贵了10元。
(1)该商家购进的第一批电子产品是多少件?(2)求两批电子产品销售完获得的总利润是多少元?25.(10分)甲、乙两人两次同时在同一家粮店购买粮食(假设两次购买粮食的单价不相同),甲每次购买粮食100千克,乙每次购买粮食用去100元.(1)假设、分别表示两次购买粮食时的单价(单位:元/千克),试用含、的代数式表示:甲两次购买粮食共需付款_________元,乙两次共购买_________千克粮食;若甲两次购买粮食的平均单价为每千克Q1元,乙两次购买粮食的平均单价为每千克Q2元,则Q1= _________,Q2 =_________.(2)若谁两次购买粮食的平均单价低,谁购买粮食的方式就较合算.请你判断甲、乙两人购买粮食的方式哪一个较合算,并说明理由.26.(10分) 阅读下面的解题过程:已知21 +13x x ,求24+1xx的值.解:由21 +13x x =,知x≠0,所以213xx+=,即13xx+=,所以4222221111()2327 xx x xx x x x+=+=+-⋅=-=,所以24+1xx的值为17说明:该题的解法叫做“倒数法”请你利用“倒数法”解下面题目:已知:24 22xx x =--.求(1)2xx-的值;(2)24264xx x-+的值.27、(12分)如图1,已知点E,F,G,H分别是四边形ABCD各边AB,BC,CD,DA的中点,若连接BD根据三角形中位线定理容易证明四边形EFGH是平行四边形:(1)如图2,将图1中的点C移动至与点E重合的位置,F,G,H仍是BC,CD,DA的中点,求证:四边形CFGH是平行四边形;(2)如图3,在边长为1的小正方形组成的5×5网格中,点A,C,B都在格点上,在格点上画出点D,使点C与BC,CD,DA的中点F,G,H组成正方形CFGH;(3)在(2)条件下求出正方形CFGH的边长.28. (12分)如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC 交NP于点Q,连接MQ.设运动时间为t秒.(1)AM=,AP=.(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC=.八数期中考试参考答案一、选择题B二、填空题9. 6 10. -1 11. 12. -2 13. ∠A=90°(答案不唯一)14. m<7且m≠3 15. 6 16. 15 17. 2013.5 18.三、解答题19. (1) a+2 (2)x=1增根无解······(每小题4分)20. 原式=···(5分)当时,上式=3 ·····(3分)21. 略(每小题4分)22.(1)P(抽到次品)=0.06.·····(3分)(2)根据(1)的结论:P(抽到次品)=0.06,则600×0.06=36(件).答:准备36件正品衬衣供顾客调换.·····(5分)23.证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;·····(5分)(2)∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.·····(5分)24.(1)设第一批电子产品x件,则第二批电子产品为2x件.根据题意得:·····(4分)解得;x=120.答;该商家购进的第一批电子产品是120件.·····(3分)(2)12000÷120=100,100+10=110.两批电子产品全部售完后的利润=120×(150-100)+240×(150-110)=15600元.答:电子产品全部售完后的利润是15600元.·····(3分)25.解:(1)甲两次购买粮食共要付粮款为(100x+100y)元,乙两次共购买的粮食为()公斤;甲两次购粮的平均单价为每公斤Q1==元,乙两次购粮的平均单价为每公斤Q2=200÷[]=元;·····(4分)(2)Q1﹣Q2=﹣=,·····(3分)∴Q1﹣Q2 >0∴Q1>Q2·····(3分)26.·····(4分)·····(6分)27.:(1)证明:如图2,连接BD,∵C,H是AB,DA的中点,∴CH是△ABD的中位线,∴CH∥BD,CH=BD,同理FG∥BD,FG=BD,∴CH∥FG,CH=FG,∴四边形C FGH是平行四边形;·····(4分)(2)如图3所示,·····(4分)(3)解:如图3,∵BD=,∴FG=BD=,∴正方形CFGH的边长是.·····(4分)28. :(1)如图1.∵DM=2t,∴AM=AD-DM=8-2t.∵在直角梯形ABCD中,AD∥BC,∠ADC=90°,NP⊥AD于点P,∴四边形CNPD为矩形,∴DP=CN=BC-BN=6-t,∴AP=AD-DP=8-(6-t)=2+t;故答案为:8-2t,2+t.·····(2分)(2)∵四边形ANCP为平行四边形时,CN=AP,∴6-t=8-(6-t),解得t=2,·····(3分)(3)①存在时刻t=1,使四边形AQMK为菱形.理由如下:∵NP⊥AD,QP=PK,∴当PM=PA时有四边形AQMK为菱形,∴6-t-2t=8-(6-t),解得t=1,·····(4分)②要使四边形AQMK为正方形.∵∠ADC=90°,∴∠CAD=45°.∴四边形AQMK为正方形,则CD=AD,∵AD=8,∴CD=8,∴AC=8·····(3分)。