2019-2020年高三数学一轮总复习第三章导数及其应用第一节导数的概念与计算课时跟踪检测
- 格式:doc
- 大小:88.50 KB
- 文档页数:11
导数的概念及运算1.了解导数概念的实际背景.2.通过函数图象直观理解导数的几何意义,会求曲线的切线方程. 3.能根据导数的定义,求一些简单函数的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.知识梳理 1.导数的概念(1)平均变化率: 函数y =f (x )从x 0到x 0+Δx 的平均变化率ΔyΔx= f x0+Δx -f x 0Δx.(2)函数y =f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率 li m Δx →0 ΔyΔx 通常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即 f ′(x 0)=li m Δx →0f x 0+Δx -f x 0Δx.(3)函数f (x )的导函数如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,称作f (x )的导函数,记作 y ′或f ′(x ) .2. 导数的几何意义函数y =f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的 切线的斜率 .曲线在点P (x 0,f (x 0))处的切线方程是 y -f (x 0)=f ′(x 0)(x -x 0) . 3.导数的运算(1)基本初等函数的导数公式 ①C ′= 0 (C 为常数); ②(x n)′= nxn -1(n ∈Q );③(sin x )′= cos x ; ④(cos x )′= -sin x ; ⑤(a x)′= a xln a (a >0且a ≠1);⑥(e x )′= e x; ⑦(log a x )′=1x ln a(a >0且a ≠1); ⑧(ln x )′= 1x.(2)导数的运算法则 ①和差的导数[f (x )±g (x )]′= f ′(x )±g ′(x ) . ②积的导数[f (x )·g (x )]′= f ′(x )g (x )+f (x )g ′(x ) . ③商的导数 [f xg x]′= fx g x -f x gxg 2x(g (x )≠0).热身练习1.若f (x )=2x 2图象上一点(1,2)及附近一点(1+Δx,2+Δy ),则Δy Δx 等于(C)A .3+2ΔxB .4+ΔxC .4+2ΔxD .3+ΔxΔy =f (x +Δx )-f (x )=2(1+Δx )2-2=2[2Δx +(Δx )2],所以Δy Δx =4+2Δx .2.设函数f (x )可导,则lim Δx →0 f+Δx -f2Δx等于(C)A .f ′(1) B.2f ′(1) C.12f ′(1) D.f ′(2)因为f (x )可导,所以lim Δx →0f+Δx -f2Δx =12lim Δx →0 f +Δx -fΔx =12f ′(1). 3.下列求导运算中正确的是(B) A .(x +1x )′=1+1x2 B .(lg x )′=1x ln 10C .(ln x )′=xD .(x 2cos x )′=-2x sin x(x +1x )′=1-1x 2,故A 错;(ln x )′=1x,故C 错;(x 2cos x )′=2x cos x -x 2sin x ,D 错.4.(2018·全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为 2x -y -2=0 .因为y ′=2x,y ′| x =1=2,所以切线方程为y -0=2(x -1),即y =2x -2.5.(1)(2016·天津卷)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为 3 .(2)y =xx +1,则y ′x =2= 19.(1)因为f ′(x )=2e x+(2x +1)e x=(2x +3)e x ,所以f ′(0)=3e 0=3. (2)因为y ′=(x x +1)′=x x +-x x +x +2=1x +2,所以y ′x =2=1+2=19.导数的概念利用导数的定义求函数f (x )=1x +2的导数.因为Δy =1x +Δx +2-1x +2=-Δx x +Δx +x +,所以Δy Δx=-1x +Δx +x +,所以f ′(x )=li m Δx →0 ΔyΔx =li m Δx →0[-1x +Δx +x +]=-1x +x +=-1x +2.利用定义求导数的基本步骤: ①求函数的增量:Δy =f (x +Δx )-f (x ); ②求平均变化率:Δy Δx=fx +Δx -f xΔx;③取极限得导数:f ′(x )=li m Δx →0f x +Δx -f xΔx.1.设函数f (x )在x 0处可导,则li m Δx →0 f x 0-Δx -f x 0Δx等于(B)A .f ′(x 0)B .-f ′(x 0)C .f (x 0)D .-f (x 0)li m Δx →0f x 0-Δx -f x 0Δx=-li mΔx →0f [x 0+-Δx-f x 0-Δx=-f ′(x 0).导数的运算求下列函数的导数:(1)y =x 2sin x; (2)y =1+sin x 1-cos x.(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x . (2)y ′=+sin x-cos x -+sin x-cos x-cos x2=cos x-cos x -+sin xx-cos x2=cos x -sin x -1-cos x2.利用导数公式和运算法则求导数,是求导数的基本方法(称为公式法).用公式法求导数的关键是:认清函数式的结构特点,准确运用常用的导数公式.2.(1)(2018·天津卷)已知函数f (x )=e xln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为 e .(2)设y =1+cos x sin x ,则y ′π2= -1 .(1)因为f (x )=e xln x ,所以f ′(x )=e xln x +ex x,所以f ′(1)=e.(2)因为y ′=+cos x x -+cos x xsin 2x=-sin 2x -+cos x os x sin 2x=-1-cos xsin 2x, 所以y ′π2=-1.求切线方程(1)(2017·全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为____________________.(2)若曲线y =x ln x 存在斜率为2的切线,则该切线方程为________________.因为y′=2x-1x2,所以y′|x=1=1,即曲线在点(1,2)处的切线的斜率k=1,所以切线方程为y-2=x-1,即x-y+1=0.(2)因为y′=ln x+1,设切点为P(x0,y0),则y′x=x0=ln x0+1=2,所以x0=e,此时y0=x0ln x0=eln e=e,所以切点为(e,e).故所求切线方程为y-e=2(x-e),即2x-y-e=0.(1)x-y+1=0 (2)2x-y-e=0(1)求切线方程有如下三种类型:①已知切点(x0,y0),求切线方程;②已知切线的斜率k,求切线方程;③求过(x1,y1)的切线方程.其中①是基本类型,类型②和类型③都可转化为类型①进行处理.(2)三种类型的求解方法:类型①,利用y-f(x0)=f′(x0)(x-x0)直接求出切线方程.类型②,设出切点(x0,y0),再由k=f′(x0),再由(x0,y0)既在切线上,又在曲线上求解;类型③,先设出切点(x0,y0),利用k=f′(x0)及已知点(x1,y1)在切线上求解.3.(2018·广州市模拟)已知直线y=kx-2与曲线y=x ln x相切,则实数k的值为(D) A.ln 2 B.1C.1-ln 2 D.1+ln 2本题实质上是求曲线过点(0,-2)的切线问题,因为(0,-2)不是切点,可先设出切点,写出切线方程,再利用切线过(0,-2)得到所求切线方程.设切点为(x0,x0ln x0),因为y′=ln x+1,所以k=ln x0+1,所以切线方程为y-x0ln x0=(ln x0+1)(x-x0),因为切线过点(0,-2),所以-2-x0ln x0=-x0ln x0-x0,所以x0=2,所以k=ln 2+1.1.函数y=f(x)的导数实质上是“增量(改变量)之比的极限”,即f′(x)=li mΔx→0Δy Δx=li mΔx→0f x+Δx-f xΔx.2.关于函数的导数,要熟练掌握基本导数公式和求导的运算法则,一般要遵循先化简再求导的基本原则.3.导数f′(x0)的几何意义是曲线y=f(x)在点M(x0,f(x0))处切线的斜率,其切线方程为y-f(x0)=f′(x0)(x-x0).若设点(x0,y0)是切线l与曲线C的切点,则有如下结论:①f′(x0)是切线l的斜率;②点(x0,y0)在切线l上;③点(x0,y0)在曲线C上.导数在函数中的应用——单调性1.了解函数的单调性与其导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).知识梳理1.函数的单调性与导数的关系设函数y=f(x)在某个区间(a,b)内有导数.如果f′(x)>0,则f(x)在(a,b)上为增函数;如果f′(x)<0,则f(x)在(a,b)上为减函数.2.导数与函数单调性的关系设函数y=f(x)在某个区间(a,b)内可导,且f′(x)在(a,b)的任意子集内都不恒等于0.如果f (x )在区间(a ,b )内单调递增,则在(a ,b )内f ′(x ) ≥ 0恒成立; 如果f (x )在区间(a ,b )内单调递减,则在(a ,b )内f ′(x ) ≤ 0恒成立.热身练习1.“f ′(x )>0在(a ,b )上成立”是“f (x )在(a ,b )上单调递增”的(A) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件f ′(x )>0在(a ,b )上成立⇒f (x )在(a ,b )上单调递增;反之,不一定成立,如y =x 3在(-1,1)上单调递增,但在(-1,1)上f ′(x )=3x 2≥0.2.设f (x )=2x 2-x 3,则f (x )的单调递减区间是(D) A .(0,43) B .(43,+∞)C .(-∞,0)D .(-∞,0)和(43,+∞)f ′(x )=4x -3x 2<0⇒x <0或x >43.3.函数f (x )=(3-x 2)e x的单调递增区间是(D) A .(-∞,0) B .(0,+∞)C .(-∞,-3)和(1,+∞) D.(-3,1)因为f ′(x )=-2x e x+(3-x 2)e x =(-x 2-2x +3)e x ,令f ′(x )>0,得x 2+2x -3<0,解得-3<x <1.所以f (x )的单调递增区间为(-3,1).4.设定义在区间(a ,b )上的函数f (x ),其导函数f ′(x )的图象如右图所示,其中x 1,x 2,x 3,x 4是f ′(x )的零点且x 1<x 2<x 3<x 4.则(1)f (x )的增区间为 (a ,x 1),(x 2,x 4) ; (2)f (x )的减区间为 (x 1,x 2),(x 4,b ) .5.(2019·福建三明期中)函数f (x )=x 3-3bx +1在区间[1,2]上是减函数,则实数b 的取值范围为 [4,+∞) .因为f ′(x )=3x 2-3b ≤0,所以b ≥x 2,要使b ≥x 2在[1,2]上恒成立, 令g (x )=x 2,x ∈[1,2],当x ∈[1,2],1≤g (x )≤4,所以b ≥4.利用导数求函数的单调区间函数f (x )=x 2-2x -4ln x 的单调递增区间是____________.函数f (x )的定义域为(0,+∞). f ′(x )=2x -2-4x =2x 2-2x -4x,由f ′(x )>0,得x 2-x -2>0,解得x >2或x <-1(舍去). 所以f (x )的单调递增区间为(2,+∞).(2,+∞)求可导函数f (x )的单调区间的步骤: ①求函数f (x )的定义域; ②求导数f ′(x );③解不等式f ′(x )>0和f ′(x )<0;④确定函数y =f (x )的单调区间:使f ′(x )>0的x 的取值区间为增区间,使f ′(x )<0的x 的取值区间为减区间.1.(2017·全国卷Ⅱ节选)设函数f (x )=(1-x 2)e x.讨论f (x )的单调性.f ′(x )=(1-2x -x 2)e x.令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.已知函数的单调性求参数的范围(经典真题)若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是A .(-∞,-2]B .(-∞,-1]C .[2,+∞) D.[1,+∞)依题意得f ′(x )=k -1x≥0在(1,+∞)上恒成立,即k ≥1x在(1,+∞)上恒成立.令g (x )=1x,因为x >1,所以0<g (x )<1,所以k ≥1,即k 的取值范围为[1,+∞).D函数f (x )在(a ,b )上单调递增,可转化为f ′(x )≥0在该区间恒成立,从而转化为函数的最值(或值域)问题.2.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是(C)A .[-1,1]B .[-1,13]C .[-13,13]D .[-1,13](方法一)因为f (x )在(-∞,+∞) 单调递增,所以f ′(x )=1-23cos 2x +a cos x ≥0对x ∈(-∞,+∞)恒成立,即f ′(x )=-43cos 2x +a cos x +53≥0对x ∈(-∞,+∞)恒成立,令cos x =t ,-1≤t ≤1,则等价于:g (t )=-43t 2+at +53≥0对t ∈[-1,1]恒成立.等价于⎩⎪⎨⎪⎧g -,g ,即⎩⎪⎨⎪⎧-a +13≥0,a +13≥0,所以-13≤a ≤13.即a 的取值范围为[-13,13].(方法二:特殊值法)取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,因为f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增,排除A ,B ,D.故选C.利用导数求含参数的函数的单调区间已知f (x )=12x 2-a ln x (a ∈R ),求函数f (x )的单调区间.f (x )的定义域为(0,+∞),因为f ′(x )=x -a x =x 2-ax(x >0),当a ≤0时,f ′(x )≥0恒成立,所以函数f (x )的单调递增区间为(0,+∞). 当a >0时,令f ′(x )>0,得x >a . 令f ′(x )<0,得0<x <a .所以函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).综上所述,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).(1)当函数的解析式中含有参数时,如果参数对导函数的符号有影响或导数的零点是否在定义域内不确定时,要对参数进行分类讨论.(2)讨论时,首先要看f ′(x )的符号是否确定,再看f ′(x )的零点与定义域的关系. (3)画出导函数的示意图有助于确定单调性.3.(2017·全国卷Ⅲ节选)已知函数f (x )=ln x +ax 2+(2a +1)x .讨论f (x )的单调性.f (x )的定义域为(0,+∞),f ′(x )=1x+2ax +2a +1=x +ax +x.若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增.若a <0,则当x ∈(0,-12a )时,f ′(x )>0;当x ∈(-12a,+∞)时,f ′(x )<0.故f (x )在(0,-12a )上单调递增,在(-12a,+∞)上单调递减.(1)求f(x)的定义域,并求导数f′(x);(2)解不等式f′(x)>0和f′(x)<0;(3)确定函数y=f(x)的单调区间:使f′(x)>0的x的取值区间为增区间,使f′(x)<0的x的取值区间为减区间.在求单调区间时,要注意如下两点:①要注意函数的定义域;②当求出函数的单调区间(如单调增区间)有多个时,不能把这些区间取并集.2.已知函数在区间上单调,求其中的参数时,要注意单调性与导数的关系的转化.即:(1)如果f(x)在区间[a,b]单调递增⇒f′(x)≥0在x∈[a,b]上恒成立;(2)如果f(x)在区间[a,b]单调递减⇒f′(x)≤0在x∈[a,b]上恒成立.3.处理含参数的单调性问题,实质是转化为含参数的不等式的解法问题,但要注意在函数的定义域内讨论.导数在函数中的应用——极值与最值1.掌握函数极值的定义及可导函数的极值点的必要条件和充分条件(导数在极值点两侧异号).2.会研究一些简单函数的极值.3.会利用导数求一些函数在给定区间上的最值.知识梳理1.函数的极值(1)函数极值的定义:设函数f(x)在点x0附近有定义,如果对x0附近的所有点,都有f(x)<f(x0) ,我们就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所有点,都有f(x)>f(x0) ,我们就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0).极大值与极小值统称为极值.①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.2.函数的最值(1)(最值定理)一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)一般地,求函数f(x)在[a,b]上的最大值与最小值的步骤如下:①求函数f(x)在(a,b)内的极值.②将f(x)的极值和端点的函数值比较,其中最大的一个为最大值;最小的一个为最小值.热身练习1.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点(A)A.1个 B.2个C.3个 D.4个因为f′(x)与x轴有4个交点,即f′(x)=0有4个解,但仅左边第二个交点x=x0满足x<x0时,f′(x)<0;x>x0时,f′(x)>0,其他交点均不符合该条件.2.函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则(C) A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件因为函数f(x)在x=x0处可导,所以若x=x0是f(x)的极值点,则f′(x0)=0,所以q⇒p,故p是q的必要条件;反之,以f (x )=x 3为例,f ′(0)=0,但x =0不是极值点.所以p q . 故p 不是q 的充分条件.3.(2016·四川卷)已知a 为函数f (x )=x 3-12x 的极小值点,则a =(D) A .-4 B .-2 C .4 D .2由题意得f ′(x )=3x 2-12,令f ′(x )=0得x =±2,所以当x <-2或x >2时,f ′(x )>0; 当-2<x <2时,f ′(x )<0,所以f (x )在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数. 所以f (x )在x =2处取得极小值,所以a =2.4.函数f (x )=x 3-3x +1在闭区间[-3,0]上的最大值、最小值分别是(C) A .1,-1 B .1,-17 C .3,-17 D .9,-19令f ′(x )=3x 2-3=0,得x =±1.f (1)=1-3+1=-1,f (-1)=-1+3+1=3, f (-3)=-17,f (0)=1.所以最大值为3,最小值为-17. 5.(2016·北京卷)函数f (x )=xx -1(x ≥2)的最大值为 2 .f ′(x )=x --x x -2=-1x -2,当x ≥2时,f ′(x )<0,所以f (x )在[2,+∞)上是减函数, 故f (x )max =f (2)=22-1=2.求函数的极值、最值求函数f (x )=13x 3-4x +4的极值.因为f ′(x )=x 2-4=(x -2)(x +2), 令f ′(x )=0,得x =±2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以当x =-2时,f (x )有极大值f (-2)=283;当x =2时,f (x )有极小值f (2)=-43.(1)求可导函数f (x )的极值的步骤: ①确定函数的定义域,求导数f ′(x ); ②求方程f ′(x )=0的根;③检查f ′(x )在方程根左、右值的符号;④作出结论:如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.(2)求可导函数f (x )在[a ,b ]上最值的步骤: ①求f (x )在(a ,b )内的极值;②将f (x )各极值与f (a ),f (b )比较,得出f (x )在[a ,b ]上的最值.1.求函数f (x )=13x 3-4x +4在[-3,3]上的最大值与最小值.由例1可知,在[-3,3]上, 当x =-2时,f (x )有极大值f (-2)=283;当x =2时,f (x )有极小值f (2)=-43.又f (-3)=7,f (3)=1,所以f (x )在[-3,3]上的最大值为283,最小值为-43.含参数的函数的极值的讨论已知函数f (x )=x -a ln x (a ∈R ),求函数f (x )的极值.由f ′(x )=1-a x =x -ax(x >0)可知(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; (2)当a >0时,由f ′(x )=0,解得x =a .当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,所以函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =a 处取得极小值a -a ln a ,无极大值.对于解析式中含有参数的函数求极值,有时需要分类讨论后解决问题.讨论的思路主要有:(1)参数是否影响f ′(x )的零点的存在; (2)参数是否影响f ′(x )不同零点的大小; (3)参数是否影响f ′(x )在零点左右的符号. 如果有影响,则要分类讨论.2.(2018·银川高三模拟节选)已知函数f (x )=ax -1-ln x (a ∈R ).讨论函数f (x )在定义域内的极值点的个数.f (x )的定义域为(0,+∞). f ′(x )=a -1x =ax -1x.当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减,所以f (x )在(0,+∞)上没有极值点.当a >0时,由f ′(x )<0得0<x <1a ;由f ′(x )>0得x >1a.所以f (x )在(0,1a )上递减,在(1a,+∞)上递增,所以f (x )在x =1a处有极小值.所以当a ≤0时,f (x )在(0,+∞)上没有极值点, 当a >0时,f (x )在(0,+∞)上有一个极值点.含参数的函数的最值讨论已知函数f (x )=ln x -ax (a >0),求函数f (x )在[1,2]上的最大值.f ′(x )=1x -a =1-axx(x >0),令f ′(x )=0,得x =1a.(1)当1a≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )max =f (1)=-a .(2)当1a ≥2时,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )max =f (2)=ln 2-2a .(3)当1<1a <2,即12<a <1时,函数f (x )在[1,1a ]上是增函数,在[1a ,2]上是减函数.所以f (x )max =f (1a)=-ln a -1.综上可知:当0<a ≤12时,f (x )max =ln 2-2a ;当12<a <1时,f (x )max =-ln a -1; 当a ≥1时,f (x )max =-a .(1)求函数的最值时,要先求函数y =f (x )在(a ,b )内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内使f ′(x )=0的点和区间端点的函数值,最后比较即可.(2)当函数f (x )中含有参数时,需要依据极值点存在的位置与所给区间的关系,对参数进行分类讨论.3.已知函数f (x )=ln x -ax (a >0),求函数f (x )在[1,2]上的最小值.f ′(x )=1x -a =1-axx(x >0),令f ′(x )=0,得x =1a.(1)当1a≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )min =f (2)=ln 2-2a .(2)当1a ≥2时,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )min =f (1)=-a .(3)当1<1a <2,即12<a <1时,函数f (x )在[1,1a ]上是增函数,在[1a ,2]上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,f (x )min =f (1)=-a ;当ln 2≤a <1时,f (x )min =f (2)=ln 2-2a . 综上可知:当0<a <ln 2时,函数f (x )min =-a ; 当a ≥ln 2时,函数f (x )min =ln 2-2a .1.求可导函数f(x)的极值的步骤:(1)确定f(x)的定义域,求导数f′(x);(2)求方程f′(x)=0的根;(3)检查f′(x)在方程根左、右值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.2.求可导函数f(x)在[a,b]上的最大值和最小值可按如下步骤进行:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a),f(b)比较,确定f(x)的最大值和最小值.3.求含参数的极值,首先求定义域;然后令f′(x)=0,解出根,根据根是否在所给区间或定义域内进行参数讨论,并根据左右两边导函数的正负号,从而判断f(x)在这个根处取极值的情况.4.含参数的最值,首先按照极值点是否在所给区间对参数进行讨论,然后比较区间内的极值和端点值的大小.导数的综合应用——导数与不等式1.能够构造函数利用导数证明一些简单的不等式和解某些不等式.2.会将恒成立问题及存在性问题转化为最值问题进行求解.知识梳理1.如果不等式f(x)≥g(x),x∈[a,b]恒成立,则转化为函数φ(x)=f(x)-g(x)在x ∈[a,b]内的最小值≥0.(填“最小值”“最大值”“极小值”或“极大值”) 2.若f′(x)>0,x∈[a,b],且x0∈(a,b)有f(x0)=0,则f(x)>0的x的取值范围为(x0,b) ,f(x)<0的x的取值范围为(a,x0) .3.若f(x)>m在x∈[a,b]上恒成立,则函数f(x)在x∈[a,b]的最小值>m.(填“最小值”“最大值”“极小值”或“极大值”)若f (x )<m 在x ∈[a ,b ]上恒成立,则函数f (x )在x ∈[a ,b ]的 最大值 <m .(填“最小值”“最大值”“极小值”或“极大值”)4.若f (x )>m 在x ∈[a ,b ]有解,则函数f (x )在x ∈[a ,b ]的 最大值 >m .(填“最小值”“最大值”“极小值”或“极大值”)热身练习1.对于∀x ∈[0,+∞),则e x与1+x 的大小关系为(A) A .e x≥1+x B .e x<1+xC .e x=1+x D .e x与1+x 大小关系不确定令f (x )=e x-(1+x ),因为f ′(x )=e x-1,所以对∀x ∈[0,+∞),f ′(x )≥0,故f (x )在[0,+∞)上递增,故f (x )≥f (0)=0, 即e x≥1+x .2.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )>0,则必有(B) A .f (0)+f (2)<2f (1) B .f (0)+f (2)>2f (1) C .f (0)+f (2)=2f (1)D .f (0)+f (2)与2f (1)的大小不确定依题意,当x >1时,f ′(x )>0,f (x )在(1,+∞)上是增函数;当x <1时,f ′(x )<0,f (x )在(-∞,1)上是减函数, 故当x =1时,f (x )取最小值,所以f (0)>f (1),f (2)>f (1),所以f (0)+f (2)>2f (1).3.已知定义在R 上函数f (x )满足f (-x )=-f (x ),且x >0时,f ′(x )<0,则f (x )>0的解集为(A)A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)因为f (x )是定义在R 上的奇函数,所以f (0)=0,又x >0时,f ′(x )<0,所以f (x )在(-∞,+∞)上单调递减,所以f (x )>0的解集为(-∞,0).4.若函数h (x )=2x -k x +k3在[1,+∞)上是增函数,则实数k 的取值范围是 [-2,+∞).因为h′(x)=2+kx2,且h(x)在[1,+∞)上单调递增,所以h′(x)=2+kx2≥0,所以k≥-2x2,要使k≥-2x2在[1,+∞)上恒成立,则只要k≥(-2x2)max,所以k≥-2.5.设f(x)=-x2+a,g(x)=2x.(1)若∀x∈[0,1],f(x)≥g(x),则实数a的取值范围为[3,+∞);(2)若∃x∈[0,1],f(x)≥g(x),则实数a的取值范围为[0,+∞).(1)F(x)=f(x)-g(x)=-x2-2x+a(x∈[0,1]).则[F(x)]min=F(1)=-3+a.因为“若∀x∈[0,1],f(x)≥g(x)”等价于“[F(x)]min≥0,x∈[0,1]”,所以-3+a≥0,解得a≥3.所以实数a的取值范围为[3,+∞).(2)F(x)=f(x)-g(x)=-x2-2x+a(x∈[0,1]).则[F(x)]max=F(0)=a.因为“若∃x∈[0,1],f(x)≥g(x)”等价于“[F(x)]max≥0,x∈[0,1]”,所以a≥0.所以实数a的取值范围为[0,+∞).利用导数解不等式若f(x)的定义域为R,f′(x)>2恒成立,f(-1)=2,则f(x)>2x+4的解集为A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+∞)令g(x)=f(x)-2x-4,因为g′(x)=f′(x)-2>0,所以g(x)在(-∞,+∞)上是增函数,又g(-1)=f(-1)-2×(-1)-4=0,所以f(x)>2x+4⇔g(x)>g(-x>-1.所以f(x)>2x+4的解集为(-1,+∞).B利用导数解不等式的基本方法:(1)构造函数,利用导数研究其单调性;(2)寻找一个特殊的函数值;(3)根据函数的性质(主要是单调性,结合图象)得到不等式的解集.1.(2018·遂宁模拟)已知f(x)为定义在(-∞,0)上的可导函数,2f(x)+xf′(x)>x2恒成立,则不等式(x+2018)2f(x+2018)-4f(-2)>0的解集为(B)A.(-2020,0) B.(-∞,-2020)C.(-2016,0) D.(-∞,-2016)构造函数F(x)=x2f(x),x<0,当x<0时,F′(x)=2xf(x)+x2f′(x)=x[2f(x)+xf′(x)],因为2f(x)+xf′(x)>x2≥0,所以F′(x)≤0,则F(x)在(-∞,0)上递减.又(x+2018)2f(x+2018)-4f(-2)>0可转化为(x+2018)2f(x+2018)>(-2)2f(-2),即F(x+2018)>F(-2),所以x+2018<-2,所以x<-2020.即原不等式的解集为(-∞,-2020).利用导数证明不等式已知函数f(x)=(1+x)e-2x.当x∈[0,1]时,求证:f(x)≤11+x.要证x∈[0,1]时,(1+x)e-2x≤11+x,只需证明e x≥x+1.记k(x)=e x-x-1,则k′(x)=e x-1,当x∈(0,1)时,k′(x)>0,因此,k(x)在[0,1]上是增函数,故k(x)≥k(0)=0,所以f(x)≤11+x,x∈[0,1].(1)证明f(x)>g(x)的步骤:①构造函数F(x)=f(x)-g(x);②研究F(x)的单调性或最值;③证明F (x )min >0.(2)注意:其中构造函数是将不等式问题转化为函数问题.为了利用导数研究函数的性质,常用分析法...将要证明的不等式进行适当变形或化简,然后构造相应的函数.2.(2018·全国卷Ⅰ节选)已知函数f (x )=a e x-ln x -1.证明:当a ≥1e时,f (x )≥0.当a ≥1e 时,f (x )≥exe -ln x -1.设g (x )=e x e -ln x -1,则g ′(x )=e xe -1x .当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e时,f (x )≥0.已知不等式恒成立求参数的范围已知两个函数f (x )=7x 2-28x -c ,g (x )=2x 3+4x 2-40x .若∀x ∈[-3,3],都有f (x )≤g (x )成立,求实数c 的取值范围.f (x )≤g (x ) ⇔7x 2-28x -c ≤2x 3+4x 2-40x ⇔c ≥-2x 3+3x 2+12x , 所以原命题等价于c ≥-2x 3+3x 2+12x 在x ∈[-3,3]上恒成立. 令h (x )=-2x 3+3x 2+12x ,x ∈[-3,3],则c ≥h (x )max . 因为h ′(x )=-6x 2+6x +12=-6(x -2)(x +1),当x 变化时,h ′(x )和h (x )在[-3,3]上的变化情况如下表:单调递减单调递增 单调递减 易得h (x )max =h (-3)=45,故c ≥45.(1)已知不等式恒成立,求参数a 的范围,例如f (x )>g (x )在x ∈D 上恒成立,其主要方法是:①构造函数法:将不等式变形为f (x )-g (x )>0,构造函数F (x )=f (x )-g (x ),转化为F (x )min >0.②分离参数法:将不等式变为a >h (x )或a <h (x )在x ∈D 内恒成立,从而转化为a >h (x )max或a <h (x )min .(2)注意:①恒成立问题常转化为最值问题,要突出转化思想的运用;②“f (x )max ≤g (x )min ”是“f (x )≤g (x )”的一个充分不必要条件,分析不等式恒成立时,要注意不等号两边的式子中是否是有关联的变量,再采取相应的策略.1. 已知两个函数f (x )=7x 2-28x -c ,g (x )=2x 3+4x 2-40x .若∀x 1∈[-3,3],x 2∈[-3,3]都有f (x 1)≤g (x 2)成立,求实数c 的取值范围.此题与例3不同,例3中不等式两边的式子中均有相同的变化的未知量x ,故可先移项,直接进行转化;而此题中不等式两边的式子中的x 1,x 2相互独立,则等价于f (x 1)max ≤g (x 2)min.由∀x 1∈[-3,3],x 2∈[-3,3], 都有f (x 1)≤g (x 2)成立,得f (x 1)max ≤g (x 2)min . 因为f (x )=7x 2-28x -c =7(x -2)2-28-c , 当x 1∈[-3,3]时,f (x 1)max =f (-3)=147-c ;g (x )=2x 3+4x 2-40x ,g ′(x )=6x 2+8x -40=2(3x +10)(x -2),当x 变化时,g ′(x )和g (x )在[-3,3]上的变化情况如下表:单调递减单调递增易得g (x )min =g (2)=-48, 故147-c ≤-48,即c ≥195.1.利用导数证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数F (x )=f (x )-g(x),然后根据函数的单调性,或者函数的最值证明F(x)>0.其中要特别关注如下两点:(1)是直接构造F(x),还是适当变形化简后构造F(x),对解题的繁简有影响;(2)找到F(x)在什么地方可以等于零,往往是解决问题的一个突破口.2.利用导数解不等式的基本方法是构造函数,寻找一个函数的特殊值,通过研究函数的单调性,从而得出不等式的解集.3.处理已知不等式恒成立求参数范围的问题,要突出转化的思想,将其转化为函数的最值问题.已知f(x)>g(x)在x∈D上恒成立,求其中参数a的范围,其主要方法是:①构造函数法:将不等式变形为f(x)-g(x)>0,构造函数F(x)=f(x)-g(x),转化为F(x)min>0.②分离参数法:将不等式变为a>h(x)或a<h(x)在x∈D内恒成立,从而转化为a>h(x)max 或a<h(x)min.导数的综合应用——导数与方程1.能利用导数研究一般函数的单调性、极值与最值,获得对函数的整体认识.2.会利用导数研究一般函数的零点及其分布.知识梳理1.函数零点的有关知识(1)零点的概念:函数的零点是函数图象与x轴交点的横坐标.(2)几个常用结论:①f(x)有零点y=f(x)的图象与x轴有交点方程f(x)=0有实数解.②F(x)=f(x)-g(x)有零点y=f(x)与y=g(x)的图象有交点方程f(x)=g(x)有实数解.③零点存在定理:f (x )在[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在(a ,b )内 至少有一 个零点.2.利用导数研究函数零点的方法(1)研究y =f (x )的图象,利用数形结合的思想求解. (2)研究方程有解的条件,利用函数与方程的思想求解.热身练习1.(2017·浙江卷)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是(D)观察导函数f ′(x )的图象可知,f ′(x )的函数值从左到右依次为小于0,大于0,小于0,大于0,所以对应函数f (x )的增减性从左到右依次为减、增、减、增. 观察选项可知,排除A ,C.如图所示,f ′(x )有3个零点,从左到右依次设为x 1,x 2,x 3,且x 1,x 3是极小值点,x 2是极大值点,且x 2>0,故选项D 正确.2.函数f (x )=13x 3-4x +4的零点个数为(D)A .0B .1C .2D .3因为f ′(x )=x 2-4=(x -2)(x +2),令f ′(x )=0,得x =±2.当x 变化时,f ′(x ),f (x )的变化情况如下表:单调递增单调递减单调递增由此可得到f (x )的大致图象(如下图).由图可知f (x )有3个零点.3.若方程13x 3-4x +4+a =0有3个不同的解,则a 的取值范围为(B)A .(-43,283)B .(-283,43)C .[-43,283]D .[-283,43]13x 3-4x +4+a =0有3个不同的解⇔f (x )=13x 3-4x +4与g (x )=-a 有3个不同的交点.利用第2题图可知,-43<-a <283,即-283<a <43.4.若函数g (x )=13x 3-4x +4+a 的图象与x 轴恰有两个公共点,则a =(B)A.283或-43 B .-283或43C .-283或283D .-43或43g (x )=13x 3-4x +4+a 与x 轴恰有两个公共点⇔方程13x 3-4x +4+a =0有2个不同的解⇔f (x )=13x 3-4x +4与φ(x )=-a 有2个不同的交点.利用第2题图可知,-a =-43或-a =283,所以a =-283或a =43.5.已知函数f (x )=e x-2x +a 有零点,则实数a 的取值范围是(C) A .(-∞,ln 2) B .(ln 2,+∞) C .(-∞,2ln 2-2] D .[2ln 2-2,+∞)(方法一)因为f′(x)=e x-2,令e x-2=0得,e x=2,所以x=ln 2,当x∈(-∞,ln 2)时,f′(x)<0,f(x)单调递减;当x∈(ln 2,+∞)时,f′(x)>0,f(x)单调递增,所以当x=ln 2时,f(x)取最小值f(x)min=2-2ln 2+a.要f(x)有零点,所以a≤2ln 2-2.(方法二)函数f(x)=e x-2x+a有零点,即关于x的方程e x-2x+a=0有实根,即方程a=2x-e x有实根.令g(x)=2x-e x(x∈R),则g′(x)=2-e x.当x<ln 2时,g′(x)>0;当x>ln 2时,g′(x)<0.所以当x=ln 2时,g(x)max=g(ln 2)=2ln 2-2,所以函数g(x)的值域为(-∞,2ln 2-2].所以a的取值范围为(-∞,2ln 2-2].利用导数研究三次函数的零点及其分布已知函数f(x)=x3-12x+a,其中a≥16,则f(x)的零点的个数是A.0或1 B.1或2C.2 D.3(方法一:从函数角度出发,研究f(x)的图象与x轴的交点)因为f′(x)=3x2-12,令f′(x)=3x2-12=0,得x=±2,当x变化时,f′(x),f(x)的变化情况如下表:单调递增单调递减单调递增由此可得到f(x)的大致图象(如图),由a≥16得,a+16>0,a-16≥0,当a=16时,f(x)的图象与x轴有2个交点;当a>16时,f(x)的图象与x轴只有1个交点.所以f(x)的零点个数为1或2.(方法二:从方程角度出发,利用函数与方程的思想)f(x)=x3-12x+a的零点个数⇔方程x3-12x=-a的解的个数⇔g(x)=x3-12x与h(x)=-a的交点个数.画出g(x)=x3-12x与h(x)=-a的图象.由g′(x)=3x2-12=0,得x=±2,当x变化时,g′(x),g(x)的变化情况如下表:单调递增单调递减单调递增所以g(x)的图象如右图所示:因为a≥16,所以y=-a≤-16.由图可知直线y=-a与y=x3-12x的图象有1个或2个交点.B利用导数研究函数的零点的基本思路: (1)研究y =f (x )的图象,利用数形结合的思想求解; (2)研究f (x )=0有解,利用函数与方程的思想求解.1.(经典真题)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围为(B)A .(2,+∞) B.(-∞,-2) C .(1,+∞) D.(-∞,-1)当a =0时,不符合题意.a ≠0时,f ′(x )=3ax 2-6x ,令f ′(x )=0,得x 1=0,x 2=2a.若a >0,由图象知f (x )有负数零点,不符合题意.若a <0,由图象结合f (0)=1>0知,此时必有f (2a )>0,即a ×8a 3-3×4a2+1>0,化简得a 2>4,又a <0,所以a <-2.利用导数研究超越方程的根及其分布已知函数f (x )=x -a e x(a ∈R ),x ∈R .已知函数y =f (x )有两个零点x 1,x 2,且x 1<x 2,求a 的取值范围.由f (x )=x -a e x,可得f ′(x )=1-a e x. 下面分两种情况讨论:(1)a ≤0时,f ′(x )>0在R 上恒成立,可得f (x )在R 上单调递增,不合题意. (2)a >0时,由f ′(x )=0,得x =-ln a . 当x 变化时,f ′(x ),f (x )的变化情况如下表:这时,f (x )的单调递增区间是(-∞,-ln a );单调递减区间是(-ln a ,+∞). 于是,“函数y =f (x )有两个零点”等价于如下条件同时成立: ①f (-ln a )>0;②存在s 1∈(-∞,-ln a ),满足f (s 1)<0; ③存在s 2∈(-ln a ,+∞),满足f (s 2)<0. 由f (-ln a )>0,即-ln a -1>0,解得0<a <e -1,而此时,取s 1=0,满足s 1∈(-∞,-ln a ),且f (s 1)=-a <0;而当x ∈(-ln a ,+∞)时,由于x →+∞时,e x 增长的速度远远大于x 的增长速度,所以一定存在s 2∈(-ln a ,+∞)满足f (s 2)<0.另法:取s 2=2a +ln 2a ,满足s 2∈(-ln a ,+∞),且f (s 2)=(2a -e 2a )+(ln 2a -e 2a)<0.所以a 的取值范围是(0,e -1).函数的零点是导数研究函数的性质的综合应用,要注意如下方面: (1)利用导数研究函数的单调性、极值、最值等性质; (2)数形结合思想方法的应用;(3)函数零点存在定理及根的分布知识的应用.2.(2018·广州模拟节选)已知函数f (x )=a ln x +x 2(a ≠0),若函数f (x )恰有一个零点,求实数a 的取值范围.函数f (x )的定义域为(0,+∞). 因为f (x )=a ln x +x 2,所以f ′(x )=a x +2x =2x 2+ax.①当a >0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增, 取x 0=e -1a ,则f (e -1a )=-1+(e -1a)2<0,(或:因为0<x 0<a 且x 0<1e 时,所以f (x 0) =a ln x 0 +x 20 < a ln x 0+a <a ln 1e +a =0.)因为f (1)=1,所以f (x 0)·f (1)<0,此时函数f (x )有一个零点.②当a <0时,令f ′(x )=0,解得x =-a2. 当0<x <-a 2时,f ′(x )<0,所以f (x )在(0,-a2)上单调递减, 当x >-a2时,f ′(x )>0,所以f (x )在(-a2,+∞)上单调递增. 要使函数f (x )有一个零点, 则f (-a2)=a ln -a 2-a2=0,即a =-2e. 综上所述,若函数f (x )恰有一个零点,则a =-2e 或a >0.利用导数研究两函数图象的交点问题已知函数f (x )=x +a x (a ∈R ),g (x )=ln x .若关于x 的方程g xx 2=f (x )-2e(e 为自然对数的底数)只有一个实数根,求a 的值.由g x x 2=f (x )-2e ,得ln x x 2=x +ax-2e , 化为ln x x=x 2-2e x +a .问题转化为函数h (x )=ln x x与m (x )=x 2-2e x +a 有一个交点时,求a 的值.由h (x )=ln x x ,得h ′(x )=1-ln x x2.令h ′(x )=0,得x =e. 当0<x <e 时,h ′(x )>0;当x >e 时,h ′(x )<0. 所以h (x )在(0,e)上递增,在(e ,+∞)上递减. 所以当x =e 时,函数h (x )取得最大值,其值为h (e)=1e .而函数m (x )=x 2-2e x +a =(x -e)2+a -e 2,当x =e 时,函数m (x )取得最小值,其值为m (e)=a -e 2.所以当a -e 2=1e ,即a =e 2+1e 时,方程g x x 2=f (x )-2e 只有一个实数根.(1)利用f (x )=g (x )的解⇔y =f (x )与y =g (x )的图象交点的横坐标,可将方程的解的问题转化为两函数图象的交点问题,从而可利用数形结合的思想方法进行求解.(2)在具体转化时,要注意对方程f (x )=g (x )尽量进行同解变形,变到两边的函数是熟悉的形式或较简单的形式,以便于对其图象特征进行研究.3.(经典真题)已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点.(1)f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2, 由题意得-2a=-2,所以a =1.(2)证明:由(1)知,f (x )=x 3-3x 2+x +2. 设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题意知1-k >0,当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增,g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4, 则g (x )=h (x )+(1-k )x >h (x ),h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以g (x )>h (x )≥h (2)=0.所以g (x )=0在(0,+∞)没有实根.综上,g (x )=0在R 上有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点.1.利用导数研究函数的零点及其零点分布问题的基本步骤: (1)构造函数,并确定定义域; (2)求导,确定单调区间及极值; (3)作出函数的草图;(4)根据草图直观判断函数的零点的情况或得到零点所满足的条件. 2.处理函数y =f (x )与y =g (x )的图象的交点问题,常用方法有: (1)数形结合,即分别作出两函数的图象,考察交点情况;。
§3.1导数的概念及运算考纲解读2017),y=x,y=,y=x分析解读本部分主要是对导数概念及其运算的考查,以导数的运算公式和运算法则为基础,以导数的几何意义为重点.1.导数的几何意义最常见的是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系、切点的坐标,或以平行、垂直直线的斜率间的关系为载体求字母的取值等.2.导数的运算是每年必考的内容,一般不单独考查,而在考查导数的应用时与单调性、极值与最值结合出题考查.3.本节内容在高考中分值为5分左右,属于容易题.五年高考考点一导数的概念与几何意义1.(2016山东,10,5分)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是( )A.y=sin xB.y=ln xC.y=e xD.y=x3答案 A2.(2014陕西,10,5分)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )A.y=x3-x2-xB.y=x3+x2-3xC.y=x3-xD.y=x3+x2-2x答案 A3.(2017天津,10,5分)已知a∈R,设函数f(x)=ax-ln x的图象在点(1, f(1))处的切线为l,则l在y轴上的截距为.答案 14.(2017课标全国Ⅰ,14,5分)曲线y=x2+在点(1,2)处的切线方程为.答案x-y+1=05.(2016课标全国Ⅲ,16,5分)已知f(x)为偶函数,当x≤0时, f(x)=e-x-1-x,则曲线y=f(x)在点(1,2)处的切线方程是.答案y=2x6.(2015课标Ⅰ,14,5分)已知函数f(x)=ax3+x+1的图象在点(1, f(1))处的切线过点(2,7),则a= .答案 17.(2015课标Ⅱ,16,5分)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a= .答案88.(2014江西,11,5分)若曲线y=xln x上点P处的切线平行于直线2x-y+1=0,则点P的坐标是.答案(e,e)教师用书专用(9—15)9.(2014广东,11,5分)曲线y=-5e x+3在点(0,-2)处的切线方程为.答案5x+y+2=010.(2013江西,11,5分)若曲线y=xα+1(α∈R)在点(1,2)处的切线经过坐标原点,则α= .答案 211.(2013广东,12,5分)若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a= .答案12.(2015山东,20,13分)设函数f(x)=(x+a)ln x,g(x)=.已知曲线y=f(x)在点(1, f(1))处的切线与直线2x-y=0平行.(1)求a的值;(2)是否存在自然数k,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由;(3)设函数m(x)=min{f(x),g(x)}(min{p,q}表示p,q中的较小值),求m(x)的最大值.解析(1)由题意知,曲线y=f(x)在点(1, f(1))处的切线斜率为2,所以f '(1)=2,又f '(x)=ln x++1,所以a=1.(2)k=1时,方程f(x)=g(x)在(1,2)内存在唯一的根.设h(x)=f(x)-g(x)=(x+1)ln x-,当x∈(0,1]时,h(x)<0.又h(2)=3ln 2-=ln 8->1-1=0,所以存在x0∈(1,2),使得h(x0)=0.因为h'(x)=ln x++1+,所以当x∈(1,2)时,h'(x)>1->0,当x∈(2,+∞)时,h'(x)>0,所以当x∈(1,+∞)时,h(x)单调递增.所以k=1时,方程f(x)=g(x)在(k,k+1)内存在唯一的根.(3)由(2)知方程f(x)=g(x)在(1,2)内存在唯一的根x0,且x∈(0,x0)时, f(x)<g(x),x∈(x0,+∞)时, f(x)>g(x),所以m(x)=当x∈(0,x0)时,若x∈(0,1],m(x)≤0;若x∈(1,x0),由m'(x)=ln x++1>0,可知0<m(x)≤m(x0);故m(x)≤m(x0).当x∈(x0,+∞)时,由m'(x)=,可得x∈(x0,2)时,m'(x)>0,m(x)单调递增;x∈(2,+∞)时,m'(x)<0,m(x)单调递减,可知m(x)≤m(2)=,且m(x0)<m(2).综上可得函数m(x)的最大值为.13.(2014山东,20,13分)设函数f(x)=aln x+,其中a为常数.(1)若a=0,求曲线y=f(x)在点(1, f(1))处的切线方程;(2)讨论函数f(x)的单调性.解析(1)由题意知a=0时,f(x)=,x∈(0,+∞),此时f '(x)=,可得f '(1)=,又f(1)=0,所以曲线y=f(x)在(1, f(1))处的切线方程为x-2y-1=0.(2)函数f(x)的定义域为(0,+∞).f '(x)=+=.当a≥0时,f '(x)>0,函数f(x)在(0,+∞)上单调递增,当a<0时,令g(x)=ax2+(2a+2)x+a,Δ=(2a+2)2-4a2=4(2a+1).①当a=-时,Δ=0,f '(x)=≤0,函数f(x)在(0,+∞)上单调递减.②当a<-时,Δ<0,g(x)<0,f '(x)<0,函数f(x)在(0,+∞)上单调递减.③当-<a<0时,Δ>0,设x1,x2(x1<x2)是函数g(x)的两个零点,则x1=,x2=.由于x1==>0,所以x∈(0,x1)时,g(x)<0,f '(x)<0,函数f(x)单调递减,x∈(x1,x2)时,g(x)>0,f '(x)>0,函数f(x)单调递增,x∈(x2,+∞)时,g(x)<0,f '(x)<0,函数f(x)单调递减.综上可得:当a≥0时,函数f(x)在(0,+∞)上单调递增;当a≤-时,函数f(x)在(0,+∞)上单调递减;当-<a<0时,f(x)在,上单调递减,在上单调递增.14.(2014北京,20,13分)已知函数f(x)=2x3-3x.(1)求f(x)在区间[-2,1]上的最大值;(2)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;(3)问过点A(-1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论)解析(1)由f(x)=2x3-3x得f '(x)=6x2-3.令f '(x)=0,得x=-或x=.因为f(-2)=-10, f=, f=-, f(1)=-1,所以f(x)在区间[-2,1]上的最大值为f=.(2)设过点P(1,t)的直线与曲线y=f(x)相切于点(x0,y0),则y0=2-3x0,且切线斜率为k=6-3,所以切线方程为y-y0=(6-3)(x-x0),因此t-y0=(6-3)(1-x0).整理得4-6+t+3=0.设g(x)=4x3-6x2+t+3,则“过点P(1,t)存在3条直线与曲线y=f(x)相切”等价于“g(x)有3个不同零点”.g'(x)=12x2-12x=12x(x-1).g(x)与g'(x)的变化情况如下表:所以,g(0)=t+3是g(x)的极大值,g(1)=t+1是g(x)的极小值.当g(0)=t+3≤0,即t≤-3时,此时g(x)在区间(-∞,1]和(1,+∞)上分别至多有1个零点,所以g(x)至多有2个零点. 当g(1)=t+1≥0,即t≥-1时,此时g(x)在区间(-∞,0)和[0,+∞)上分别至多有1个零点,所以g(x)至多有2个零点. 当g(0)>0且g(1)<0,即-3<t<-1时,因为g(-1)=t-7<0,g(2)=t+11>0,所以g(x)分别在区间[-1,0),[0,1)和[1,2)上恰有1个零点.由于g(x)在区间(-∞,0)和(1,+∞)上单调,所以g(x)分别在区间(-∞,0)和[1,+∞)上恰有1个零点. 综上可知,当过点P(1,t)存在3条直线与曲线y=f(x)相切时,t的取值范围是(-3,-1).(3)过点A(-1,2)存在3条直线与曲线y=f(x)相切;过点B(2,10)存在2条直线与曲线y=f(x)相切;过点C(0,2)存在1条直线与曲线y=f(x)相切.15.(2013北京,18,13分)已知函数f(x)=x2+xsin x+cos x.(1)若曲线y=f(x)在点(a, f(a))处与直线y=b相切,求a与b的值;(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.解析由f(x)=x2+xsin x+cos x,得f '(x)=x(2+cos x).(1)因为曲线y=f(x)在点(a,f(a))处与直线y=b相切,所以f '(a)=a(2+cos a)=0,b=f(a).解得a=0,b=f(0)=1.(2)令f '(x)=0,得x=0.f(x)与f '(x)的情况如下:所以函数f(x)在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,所以f(0)=1是f(x)的最小值.当b≤1时,曲线y=f(x)与直线y=b最多只有一个交点;当b>1时,f(-2b)=f(2b)≥4b2-2b-1>4b-2b-1>b,f(0)=1<b,所以存在x1∈(-2b,0),x2∈(0,2b),使得f(x1)=f(x2)=b.由于函数f(x)在区间(-∞,0)和(0,+∞)上均单调,所以当b>1时曲线y=f(x)与直线y=b有且仅有两个不同交点. 综上可知,如果曲线y=f(x)与直线y=b有两个不同交点,那么b的取值范围是(1,+∞).考点二导数的运算1.(2016天津,10,5分)已知函数f(x)=(2x+1)e x, f '(x)为f(x)的导函数,则f '(0)的值为.答案 32.(2015天津,11,5分)已知函数f(x)=axln x,x∈(0,+∞),其中a为实数, f '(x)为f(x)的导函数.若f '(1)=3,则a的值为.答案 3三年模拟A组2016—2018年模拟·基础题组考点一导数的概念与几何意义1.(2018广东佛山一中期中考试,11)已知f(x)=(x+a)e x的图象在x=-1与x=1处的切线互相垂直,则a=( )A.-1B.0C.1D.2答案 A2.(2017四川名校一模,6)已知函数f(x)的图象如图, f '(x)是f(x)的导函数,则下列数值排序正确的是( )A.0<f '(2)<f '(3)<f(3)-f(2)B.0<f '(3)<f '(2)<f(3)-f(2)C.0<f '(3)<f(3)-f(2)<f '(2)D.0<f(3)-f(2)<f '(2)<f '(3)答案 C3.(2017湖北百所重点高中联考,4)已知函数f(x+1)=,则曲线y=f(x)在点(1, f(1))处的切线的斜率为( )A.1B.-1C.2D.-2答案 A4.(2018福建六校联考,13)曲线y=e x-e在A(1,0)处的切线方程是.答案y=ex-e5.(2018河北“名校联盟”高三教学质量监测,16)设函数y=f(x)在其图象上任意一点(x0,y0)处的切线方程为y-y0=(3-6x0)(x-x0),且f(3)=0,则不等式≥0的解集为.答案(-∞,0)∪(0,1]∪(3,+∞)6.(2017湖南衡阳八中期中,14)曲线f(x)=xe x在点(1,f(1))处的切线的斜率是.答案2e7.(2017广东韶关六校联考,14)已知函数f(x)=ln x-ax2,且曲线f(x)在点(2,f(2))处的切线的斜率是-,则a= .答案8.(2016北京东城期中,16)若过曲线f(x)=xln x上的点P的切线斜率为2,则点P的坐标为.答案(e,e)9.(人教A选1—1,三,2,B1,变式)已知函数f(x)=,g(x)=aln x,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,则a= ,切线方程为.答案;x-2ey+e2=0考点二导数的运算10.(2018福建福安一中测试,6)已知f(x)=e-x+ex的导函数为f '(x),则f '(1)=( )A.e-B.e+C.1+D.0答案 A11.(2018福建福州八县联考,11)已知函数f(x)的导函数是f '(x),且满足f(x)=2xf '(1)+ln,则f(1)=( )A.-eB.2C.-2D.e答案 B12.(2017山西名校联考,3)若函数f(x)的导函数的图象关于y轴对称,则f(x)的解析式可能为( )A.f(x)=3cos xB.f(x)=x3+x2C.f(x)=1+sin 2xD.f(x)=e x+x答案 C13.(2016河北衡水中学二调,10)若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2的最小距离为( )A.1B.C.D.答案 BB组2016—2018年模拟·提升题组(满分:55分时间:50分钟)一、选择题(每小题5分,共15分)1.(2018福建福州八县联考,9)函数f(x)=4x3-6x2+a的极大值为6,那么f(a-5)的值是( )A.6B.5C.4D.3答案 C2.(2017河南郑州、平顶山、濮阳二模,10)设函数f(0)(x)=sin x,定义f(1)(x)=f '[f(0)(x)], f(2)(x)=f '[f(1)(x)],……, f(n)(x)=f '[f(n-1)(x)],则f(1)(15°)+f(2)(15°)+f(3)(15°)+…+f(2 017)(15°)的值是( )A. B. C.0 D.1答案 A3.(2016江西赣中南五校2月第一次联考,11)已知函数f n(x)=x n+1,n∈N的图象与直线x=1交于点P,若图象在点P 处的切线与x轴交点的横坐标为x n,则log2 013x1+log2 013x2+…+log2 013x2 012的值为( )A.-1B.1-log2 0132 012C.-log2 0132 012D.1答案 A二、填空题(每小题5分,共10分)4.(2017山西名校联考,16)设函数f(x)=且f '(-1)=f '(1),则当x>0时,f(x)的导函数f '(x)的极小值为.答案 25.(2017天津红桥期中联考,16)若曲线f(x)=ax5+ln x存在垂直于y轴的切线,则实数a的取值范围是.答案(-∞,0)三、解答题(每小题10分,共30分)6.(2018广东惠州一调,21)设函数f(x)=.(1)求曲线y=f(x)在点(e,f(e))处的切线方程;(2)当x≥1时,不等式f(x)-≥恒成立,求a的取值范围.解析(1)根据题意可得,f(e)=,f '(x)=,所以f '(e)==-,所以曲线在点(e,f(e))处的切线方程为y-=-(x-e),即x+e2y-3e=0.(2)根据题意可得,f(x)--=≥0在x≥1时恒成立,令g(x)=ln x-a(x2-1)(x≥1),所以g'(x)=-2ax,当a≤0时,g'(x)>0,所以函数y=g(x)在[1,+∞)上单调递增,所以g(x)≥g(1)=0,所以不等式f(x)-≥成立,故a≤0符合题意;当a>0时,令-2ax=0,解得x=(舍负),令=1,解得a=,①当0<a<时,>1,所以在上,g'(x)>0,在上,g'(x)<0,所以函数y=g(x)在上单调递增,在上单调递减,g=ln-a=-ln a-+a,令h(a)=-ln a-+a,则h'(a)=-++1=,易知h'(a)>0恒成立,又0<a<, 所以h(a)<h=-ln-2+=ln 2-<0,所以存在g<0,所以0<a<不符合题意;②当a≥时,≤1,g'(x)<0在(1,+∞)上恒成立,所以函数y=g(x)在[1,+∞)上单调递减,所以g(x)≤g(1)=0,显然a≥不符合题意.综上所述,a的取值范围为{a|a≤0}.7.(2017皖南八校12月联考,21)已知函数f(x)=e x-ax2-2ax-1.(1)当a=1时,求曲线y=f(x)在点(-1,f(-1))处的切线方程;(2)当x>0时,f(x)>0恒成立,求a的取值范围.解析(1)当a=1时,f(x)=e x-x2-2x-1,f(-1)=,所以切点坐标为,f '(x)=e x-2x-2,所以f '(-1)=,故曲线y=f(x)在点(-1,f(-1))处的切线方程为y-=[x-(-1)],即y=x+.(2)对f(x)=e x-ax2-2ax-1求导得f '(x)=e x-2ax-2a,令g(x)=f '(x)=e x-2ax-2a(x>0),则g'(x)=e x-2a(x>0).①当2a≤1,即a≤时,g'(x)=e x-2a>1-2a≥0,所以g(x)=f '(x)=e x-2ax-2a在(0,+∞)上为增函数,所以g(x)>g(0)=1-2a≥0,则f(x)在(0,+∞)上为增函数,所以f(x)>f(0)=1-0-0-1=0,故a≤时符合题意.②当2a>1,即a>时,令g'(x)=e x-2a=0,得x=ln 2a>0,当x变化时,g'(x),g(x)的变化情况如下表,当x∈(0,ln 2a)时,g(x)<g(0)=1-2a<0,即f '(x)<0.所以f(x)在(0,ln 2a)上为减函数,所以f(x)<f(0)=0,与条件矛盾,故舍去.综上,a的取值范围是.8.(2017河南新乡第一次调研,20)已知函数f(x)=e x-x2+2ax.(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若f(x)在R上单调递增,求实数a的取值范围.解析(1)当a=1时,f(x)=e x-x2+2x,f '(x)=e x-2x+2,∴f '(1)=e,f(1)=e+1,∴所求切线方程为y-(e+1)=e(x-1),即ex-y+1=0.(2)f '(x)=e x-2x+2a,∵f(x)在R上单调递增,∴f '(x)≥0在R上恒成立,∴a≥x-在R上恒成立.令g(x)=x-,则g'(x)=1-,令g'(x)=0,得x=ln 2,∵在(-∞,ln 2)上,g'(x)>0,在(ln 2,+∞)上,g'(x)<0,∴g(x)在(-∞,ln 2)上单调递增,在(ln 2,+∞)上单调递减,∴g(x)max=g(ln 2)=ln 2-1,∴a≥ln 2-1,∴实数a的取值范围为[ln 2-1,+∞).C组2016—2018年模拟·方法题组方法1 求函数的导数的方法1.(2018河南许昌、平顶山联考,3)已知f(x)是偶函数,在(-∞,0)上满足xf '(x)>0恒成立,则下列不等式成立的是( )A.f(-3)<f(4)<f(-5)B.f(4)<f(-3)<f(-5)C.f(-5)<f(-3)<f(4)D.f(4)<f(-5)<f(-3)答案 A2.(2017辽宁大连期中联考,6)已知函数f(x)=x2 008,则f '=( )A.0B.1C.2 006D.2 007答案 B方法2 利用导数的几何意义求曲线的切线方程3.(2018河南天一大联考,10)已知f(x)是定义在R上的单调函数,满足f[f(x)-e x]=1,则曲线y=f(x)在(0,f(0))处的切线方程为( )A.y=x+1B.y=x-1C.y=-x+1D.y=-x-1答案 A4.(2016辽宁实验中学分校期中,20)已知函数f(x)=x3-x2+bx+a(a,b∈R),其导函数f '(x)的图象过原点.(1)当a=1时,求函数f(x)的图象在x=3处的切线方程;(2)若存在x<0,使得f '(x)=-9,求a的最大值;解析(1)f '(x)=x2-(a+1)x+b,由题意得f '(0)=0,故b=0.所以f '(x)=x(x-a-1).当a=1时,f(x)=x3-x2+1,f '(x)=x(x-2),故f(3)=1,f '(3)=3.故函数f(x)的图象在x=3处的切线方程为y-1=3(x-3),即3x-y-8=0.(2)由f '(x)=-9,得x(x-a-1)=-9.当x<0时,-a-1=-x-=(-x)+≥2=6,所以a≤-7.当且仅当x=-3时,a=-7,故a的最大值为-7.。
专题3.1导数的概念及运算【考试要求】1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道导数是关于瞬时变化率的数学表达,体会导数的内涵与思想;2.体会极限思想;3.通过函数图象直观理解导数的几何意义;4.能根据导数定义求函数y =c ,y =x ,y =x 2,y =x 3,y =1x,y =x 的导数;5.能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能求简单的复合函数(限于形如f (ax +b ))的导数;6.会使用导数公式表. 【知识梳理】1.函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ∆→f (x 0+Δx )-f (x 0)Δx =0lim x ∆→ ΔyΔx为函数y =f (x )在x=x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0limx ∆→Δy Δx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx .(2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). 2.函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx称为函数y =f (x )在开区间内的导函数.3.导数公式表4.导数的运算法则若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′. 【微点提醒】1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.2.⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2.3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (4)曲线的切线与曲线不一定只有一个公共点.( ) 【答案】 (1)× (2)× (3)× (4)√ 【解析】(1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错. (3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错.【教材衍化】2.(选修2-2P19B2改编)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A.-9 B.-3 C.9 D.15【答案】 C【解析】 因为y =x 3+11,所以y ′=3x 2,所以y ′|x =1=3,所以曲线y =x 3+11在点P (1,12)处的切线方程为y -12=3(x -1).令x =0,得y =9.3.(选修2-2P3例题改编)在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =________ m/s ,加速度a =______ m/s 2. 【答案】 -9.8t +6.5 -9.8【解析】 v =h ′(t )=-9.8t +6.5,a =v ′(t )=-9.8. 【真题体验】4.(2019·青岛质检)已知函数f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A.e 2B.1C.ln 2D.e【答案】 B【解析】 f ′(x )=2 018+ln x +x ×1x=2 019+ln x .由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1.5.(2018·天津卷)已知函数f (x )=e xln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为________. 【答案】 e【解析】 由题意得f ′(x )=e x ln x +e x·1x,则f ′(1)=e.6.(2017·全国Ⅰ卷)曲线y =x 2+1x在点(1,2)处的切线方程为________.【答案】 y =x +1【解析】 设y =f (x ),则f ′(x )=2x -1x2,所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1. 【考点聚焦】 考点一 导数的运算角度1 根据求导法则求函数的导数【例1-1】 分别求下列函数的导数: (1)y =e xln x ;(2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)f (x )=ln 1+2x . 【答案】见解析【解析】(1)y ′=(e x)′ln x +e x(ln x )′=e xln x +exx=e x ⎝ ⎛⎭⎪⎫ln x +1x .(2)因为y =x 3+1+1x 2,所以y ′=3x 2-2x3.(3)因为y =ln 1+2x =12ln ()1+2x ,所以y ′=12·11+2x ·(1+2x )′=11+2x .角度2 抽象函数的导数计算【例1-2】 (2019·天津河西区调研)已知函数f (x )的导函数是f ′(x ),且满足f (x )=2xf ′(1)+ln 1x,则f (1)=( ) A.-e B.2C.-2D.e【答案】 B【解析】 由已知得f ′(x )=2f ′(1)-1x,令x =1得f ′(1)=2f ′(1)-1,解得f ′(1)=1,则f (1)=2f ′(1)=2. 【规律方法】1.求函数的导数要准确地把函数分割成基本初等函数的和、差、积、商,再利用运算法则求导.2.复合函数求导,应由外到内逐层求导,必要时要进行换元.3.抽象函数求导,恰当赋值是关键,然后活用方程思想求解. 【训练1】 (1)若y =x -cos x 2sin x2,则y ′=________.(2)已知f (x )=x 2+2xf ′(1),则f ′(0)=________. 【答案】 (1)1-12cos x (2)-4【解析】 (1)因为y =x -12sin x ,所以y ′=⎝ ⎛⎭⎪⎫x -12sin x ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .(2)∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2. ∴f ′(x )=2x -4,∴f ′(0)=-4. 考点二 导数的几何意义 角度1 求切线方程【例2-1】 (2018·全国Ⅰ卷)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( ) A.y =-2x B.y =-x C.y =2xD.y =x【答案】 D【解析】 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以a -1=0,则a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .角度2 求切点坐标【例2-2】 (1)(2019·聊城月考)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A.3B.2C.1D.12(2)设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.【答案】 (1)A (2)(1,1)【解析】 (1)设切点的横坐标为x 0(x 0>0), ∵曲线y =x 24-3ln x 的一条切线的斜率为12,∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意),即切点的横坐标为3. (2)∵函数y =e x 的导函数为y ′=e x,∴曲线y =e x在点(0,1)处的切线的斜率k 1=e 0=1.设P (x 0,y 0)(x 0>0),∵函数y =1x 的导函数为y ′=-1x 2,∴曲线y =1x (x >0)在点P 处的切线的斜率k 2=-1x 20,由题意知k 1k 2=-1,即1·⎝⎛⎭⎪⎫-1x20=-1,解得x 20=1,又x 0>0,∴x 0=1.又∵点P 在曲线y =1x(x >0)上,∴y 0=1,故点P 的坐标为(1,1).角度3 求参数的值或取值范围【例2-3】 (1)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A.(-∞,2] B.(-∞,2) C.(2,+∞)D.(0,+∞)(2)(2019·河南六市联考)已知曲线f (x )=x +a x+b (x ≠0)在点(1,f (1))处的切线方程为y =2x +5,则a -b =________. 【答案】 (1)B (2)-8【解析】 (1)由题意知f ′(x )=2在(0,+∞)上有解. ∴f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x.因为x >0,所以2-1x<2,所以a 的取值范围是(-∞,2).(2)f ′(x )=1-ax2,∴f ′(1)=1-a ,又f (1)=1+a +b ,∴曲线在(1,f (1))处的切线方程为y -(1+a +b )=(1-a )(x -1),即y =(1-a )x +2a +b ,根据题意有⎩⎪⎨⎪⎧1-a =2,2a +b =5,解得⎩⎪⎨⎪⎧a =-1,b =7,∴a -b =-1-7=-8.【规律方法】1.求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.2.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】 (1)(2019·东莞二调)设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( )A.(0,0)B.(1,-1)C.(-1,1)D.(1,-1)或(-1,1)(2)(2018·全国Ⅱ卷)曲线y =2ln(x +1)在点(0,0)处的切线方程为________________. 【答案】 (1)D (2)y =2x【解析】 (1)由f (x )=x 3+ax 2,得f ′(x )=3x 2+2ax .根据题意可得f ′(x 0)=-1,f (x 0)=-x 0,可列方程组⎩⎪⎨⎪⎧x 30+ax 20=-x 0, ①3x 20+2ax 0=-1, ②解得⎩⎪⎨⎪⎧x 0=1,a =-2或⎩⎪⎨⎪⎧x 0=-1,a =2. 当x 0=1时,f (x 0)=-1, 当x 0=-1时,f (x 0)=1.∴点P 的坐标为(1,-1)或(-1,1). (2)由题意得y ′=2x +1.在点(0,0)处切线斜率k =y ′|x =0=2.∴曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x . 【反思与感悟】1.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.对于复合函数求导,关键在于分清复合关系,适当选取中间变量,然后“由外及内”逐层求导.2.求曲线的切线方程要注意分清已知点是否是切点.若已知点是切点,则可通过点斜式直接写方程,若已知点不是切点,则需设出切点.3.处理与切线有关的参数问题时,一般利用曲线、切线、切点的三个关系列方程求解. 【易错防范】1.求导常见易错点:①公式(x n )′=nx n -1与(a x )′=a xln a 相互混淆;②公式中“+”“-”号记混,如出现如下错误:⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )+f (x )g ′(x )[g (x )]2,(cos x )′=sin x ;③复合函数求导分不清内、外层函数.2.求切线方程时,把“过点切线”问题误认为“在点切线”问题. 【分层训练】【基础巩固题组】(建议用时:35分钟) 一、选择题1.下列求导数的运算中错误的是( ) A.(3x )′=3xln 3 B.(x 2ln x )′=2x ln x +x C.⎝⎛⎭⎪⎫cos x x ′=x sin x -cos x x 2D.(sin x ·cos x )′=cos 2x 【答案】 C 【解析】 因为⎝⎛⎭⎪⎫cos x x ′=-x sin x -cos x x 2,C 项错误.2.(2019·日照质检)已知f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( ) A.e 2B.eC.ln 22D.ln 2【答案】 B【解析】f (x )的定义域为(0,+∞),f ′(x )=ln x +1,由f ′(x 0)=2,即ln x 0+1=2,解得x 0=e. 3.函数y =x 3的图象在原点处的切线方程为( ) A.y =x B.x =0 C.y =0D.不存在【答案】 C【解析】 函数y =x 3的导数为y ′=3x 2,则在原点处的切线斜率为0,所以在原点处的切线方程为y -0=0(x -0),即y =0.4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-3t 2+8t ,那么速度为零的时刻是( )A.1秒末B.1秒末和2秒末C.4秒末D.2秒末和4秒末【答案】 D【解析】 s ′(t )=t 2-6t +8,由导数的定义知v =s ′(t ), 令s ′(t )=0,得t =2或4,即2秒末和4秒末的速度为零.5.(2019·南阳一模)函数f (x )=x -g (x )的图象在点x =2处的切线方程是y =-x -1,则g (2)+g ′(2)=( ) A.7 B.4 C.0 D.-4【答案】 A【解析】 ∵f (x )=x -g (x ),∴f ′(x )=1-g ′(x ),又由题意知f (2)=-3,f ′(2)=-1, ∴g (2)+g ′(2)=2-f (2)+1-f ′(2)=7.6.已知e 为自然对数的底数,曲线y =a e x+x 在点(1,a e +1)处的切线与直线2e x -y -1=0平行,则实数a =( )A.e -1eB.2e -1eC.e -12eD.2e -12e【答案】 B【解析】 ∵y ′=a e x+1,∴在点(1,a e +1)处的切线的斜率为y ′|x =1=a e +1,又切线与直线2e x -y -1=0平行,∴a e +1=2e ,解得a =2e -1e.7.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是( )【答案】 D【解析】 由y =f ′(x )的图象知,y =f ′(x )在(0,+∞)上是单调递减的,说明函数y =f (x )的切线的斜率在(0,+∞)上也是单调递减的,故可排除A ,C ;又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故可排除B.故选D.8.(2019·广州调研)已知直线y =kx -2与曲线y =x ln x 相切,则实数k 的值为( ) A.ln 2 B.1 C.1-ln 2D.1+ln 2【答案】 D【解析】 由y =x ln x 得y ′=ln x +1,设切点为(x 0,y 0),则k =ln x 0+1,∵切点(x 0,y 0)(x 0>0)既在曲线y =x ln x 上又在直线y =kx -2上,∴⎩⎪⎨⎪⎧y 0=kx 0-2,y 0=x 0ln x 0,∴kx 0-2=x 0ln x 0,∴k =ln x 0+2x 0,则ln x 0+2x 0=ln x 0+1,∴x 0=2,∴k =ln 2+1. 二、填空题9.已知曲线f (x )=2x 2+1在点M (x 0,f (x 0))处的瞬时变化率为-8,则点M 的坐标为________. 【答案】 (-2,9)【解析】 由题意得f ′(x )=4x ,令4x 0=-8,则x 0=-2, ∴f (x 0)=9,∴点M 的坐标是(-2,9).10.(2017·天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________. 【答案】 1【解析】 f (1)=a ,切点为(1,a ).f ′(x )=a -1x,则切线的斜率为f ′(1)=a -1,切线方程为:y -a =(a -1)(x -1),令x =0得出y =1,故l 在y 轴上的截距为1.11.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)=________. 【答案】 -94【解析】 因为f (x )=x 2+3xf ′(2)+ln x , 所以f ′(x )=2x +3f ′(2)+1x,所以f ′(2)=4+3f ′(2)+12=3f ′(2)+92,所以f ′(2)=-94.12.已知函数y =f (x )的图象在点(2,f (2))处的切线方程为y =2x -1,则曲线g (x )=x 2+f (x )在点(2,g (2))处的切线方程为________________. 【答案】 6x -y -5=0【解析】 由题意,知f (2)=2×2-1=3,∴g (2)=4+3=7, ∵g ′(x )=2x +f ′(x ),f ′(2)=2,∴g ′(2)=2×2+2=6,∴曲线g (x )=x 2+f (x )在点(2,g (2))处的切线方程为y -7=6(x -2),即6x -y -5=0.【能力提升题组】(建议用时:15分钟)13.(2019·深圳二模)设函数f (x )=x +1x+b ,若曲线y =f (x )在点(a ,f (a ))处的切线经过坐标原点,则ab=( ) A.1 B.0C.-1D.-2【答案】 D【解析】 由题意可得,f (a )=a +1a +b ,f ′(x )=1-1x 2,所以f ′(a )=1-1a 2,故切线方程是y -a -1a-b=⎝ ⎛⎭⎪⎫1-1a 2(x -a ),将(0,0)代入得-a -1a -b =⎝ ⎛⎭⎪⎫1-1a 2(-a ),故b =-2a,故ab =-2. 14.已知函数f (x )=|x 3+ax +b |(a ,b ∈R ),若对任意的x 1,x 2∈[0,1],f (x 1)-f (x 2)≤2|x 1-x 2|恒成立,则实数a 的取值范围是________.【答案】 [-2,-1]【解析】 当x 1=x 2时,f (x 1)-f (x 2)≤2|x 1-x 2|恒成立;当x 1≠x 2时,由f (x 1)-f (x 2)≤2|x 1-x 2|得f (x 1)-f (x 2)|x 1-x 2|≤2,故函数f (x )在[0,1]上的导函数f ′(x )满足|f ′(x )|≤2,函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,其中[0,1]上的值域为[a ,a +3],则有⎩⎪⎨⎪⎧|a |≤2,|a +3|≤2,解得-2≤a ≤-1.综上所述,实数a 的取值范围为[-2,-1]. 15.函数g (x )=ln x 图象上一点P 到直线y =x 的最短距离为________.【答案】 22【解析】 设点(x 0,ln x 0)是曲线g (x )=ln x 的切线中与直线y =x 平行的直线的切点,因为g ′(x )=(ln x )′=1x ,则1=1x 0,∴x 0=1,则切点坐标为(1,0), ∴最短距离为(1,0)到直线y =x 的距离, 即为|1-0|1+1=22. 16.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 【答案】 [2,+∞)【解析】 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞), ∴f ′(x )=x -a +1x. ∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x-a =0有解, ∴a =x +1x≥2(当且仅当x =1时取等号). 【新高考创新预测】17.(新定义题型)定义1:若函数f (x )在区间D 上可导,即f ′(x )存在,且导函数f ′(x )在区间D 上也可导,则称函数f (x )在区间D 上存在二阶导数,记作f ″(x )=[f ′(x )]′.定义2:若函数f (x )在区间D 上的二阶导数恒为正,即f ″(x )>0恒成立,则称函数f (x )在区间D 上为凹函数.已知函数f (x )=x 3-32x 2+1在区间D 上为凹函数,则x 的取值范围是________. 【答案】 ⎝ ⎛⎭⎪⎫12,+∞ 【解析】 因为f (x )=x 3-32x 2+1,因为f ′(x )=3x 2-3x ,f ″(x )=6x -3,令f ″(x )>0,解得x >12,故x 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.。
导数的概念及其意义、导数的运算考试要求 1.了解导数的概念、掌握基本初等函数的导数.2.通过函数图象,理解导数的几何意义.3.能够用导数公式和导数的运算法则求简单函数的导数,能求简单的复合函数(形如f (ax +b ))的导数.知识梳理 1.导数的概念(1)函数y =f (x )在x =x 0处的导数记作f ′(x 0)或0'|x x y .f ′(x 0)=lim Δx →0Δy Δx =lim Δx →0 fx 0+Δx -f x 0Δx.(2)函数y =f (x )的导函数f ′(x )=lim Δx →0f x +Δx -f xΔx.2.导数的几何意义函数y =f (x )在x =x 0处的导数的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,相应的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q ,且α≠0)f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln_a f (x )=e xf ′(x )=e x f (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x4.导数的运算法则若f ′(x ),g ′(x )存在,则有 [f (x )±g (x )]′=f ′(x )±g ′(x );[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎢⎡⎦⎥⎤f x g x ′=f ′x g x -f x g ′x [g x ]2(g (x )≠0); [cf (x )]′=cf ′(x ). 5.复合函数的定义及其导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 常用结论1.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条. (2)过点处的切线,该点不一定是切点,切线至少有一条. 2.⎣⎢⎡⎦⎥⎤1f x ′=-f ′x [f x ]2(f (x )≠0).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( × ) (2)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (3)f ′(x 0)=[f (x 0)]′.( × )(4)若f (x )=sin (-x ),则f ′(x )=cos (-x ).( × ) 教材改编题1.函数f (x )=e x+1x在x =1处的切线方程为________.答案 y =(e -1)x +2 解析 f ′(x )=e x-1x2,∴f ′(1)=e -1, 又f (1)=e +1,∴切点为(1,e +1),切线斜率k =f ′(1)=e -1, 即切线方程为y -(e +1)=(e -1)(x -1), 即y =(e -1)x +2.2.已知函数f (x )=x ln x +ax 2+2,若f ′(e)=0,则a =________. 答案 -1e解析 f ′(x )=1+ln x +2ax , ∴f ′(e)=2a e +2=0,∴a =-1e.3.若f (x )=ln(1-x )+e 1-x,则f ′(x )=________.答案1x -1-e 1-x题型一 导数的运算例1 (1)(多选)(2022·济南质检)下列求导运算正确的是( ) A.⎝⎛⎭⎪⎫1ln x ′=-1x ln 2xB .(x 2e x)′=2x +e xC.⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2x -π3′=-sin ⎝ ⎛⎭⎪⎫2x -π3D.⎝ ⎛⎭⎪⎫x -1x ′=1+1x2答案 AD解析 ⎝ ⎛⎭⎪⎫1ln x ′=-1ln 2x ·(ln x )′=-1x ln 2x ,故A 正确;(x 2e x)′=(x 2+2x )e x,故B 错误;⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2x -π3′=-2sin ⎝ ⎛⎭⎪⎫2x -π3,故C 错误;⎝ ⎛⎭⎪⎫x -1x ′=1+1x 2,故D 正确. (2)函数f (x )的导函数为f ′(x ),若f (x )=x 2+f ′⎝ ⎛⎭⎪⎫π3sin x ,则f⎝ ⎛⎭⎪⎫π6=________.答案 π236+2π3解析 f ′(x )=2x +f ′⎝ ⎛⎭⎪⎫π3cos x , ∴f ′⎝ ⎛⎭⎪⎫π3=2π3+12f ′⎝ ⎛⎭⎪⎫π3, ∴f ′⎝ ⎛⎭⎪⎫π3=4π3,∴f ⎝ ⎛⎭⎪⎫π6=π236+2π3.教师备选1.函数y =sin2x -cos2x 的导数y ′等于( )A .22cos ⎝ ⎛⎭⎪⎫2x -π4B .cos2x +sin xC .cos2x -sin2xD .22cos ⎝ ⎛⎭⎪⎫2x +π4 答案 A解析 y ′=2cos2x +2sin2x =22cos ⎝ ⎛⎭⎪⎫2x -π4. 2.(2022·济南模拟)已知函数f ′(x )=e x sin x +e xcos x ,则f (2021)-f (0)等于( ) A .e 2021cos2021 B .e2021sin2021C.e 2 D .e答案 B解析 因为f ′(x )=e x sin x +e xcos x , 所以f (x )=e xsin x +k (k 为常数), 所以f (2021)-f (0)=e2021sin2021.思维升华 (1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解. (3)复合函数求导,应由外到内逐层求导,必要时要进行换元.跟踪训练1 (1)若函数f (x ),g (x )满足f (x )+xg (x )=x 2-1,且f (1)=1,则f ′(1)+g ′(1)等于( ) A .1B .2C .3D .4 答案 C解析 当x =1时,f (1)+g (1)=0, ∵f (1)=1,得g (1)=-1,原式两边求导,得f ′(x )+g (x )+xg ′(x )=2x , 当x =1时,f ′(1)+g (1)+g ′(1)=2, 得f ′(1)+g ′(1)=2-g (1)=2-(-1)=3.(2)已知函数f (x )=ln(2x -3)+ax e -x,若f ′(2)=1,则a =________. 答案 e 2解析 f ′(x )=12x -3·(2x -3)′+a e -x +ax ·(e -x )′=22x -3+a e -x -ax e -x,∴f ′(2)=2+a e -2-2a e -2=2-a e -2=1, 则a =e 2.题型二 导数的几何意义 命题点1 求切线方程例2 (1)(2021·全国甲卷)曲线y =2x -1x +2在点(-1,-3)处的切线方程为__________.答案 5x -y +2=0 解析 y ′=⎝⎛⎭⎪⎫2x -1x +2′=2x +2-2x -1x +22=5x +22,所以y ′|x =-1=5-1+22=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为__________. 答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=1+ln x 0x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 命题点2 求参数的值(范围)例3 (1)(2022·青岛模拟)直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2),则2a +b 等于( )A .4B .3C .2D .1 答案 A解析 ∵直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2), 将P (1,2)代入y =kx +1, 可得k +1=2,解得k =1, ∵f (x )=a ln x +b ,∴f ′(x )=a x, 由f ′(1)=a1=1,解得a =1,可得f (x )=ln x +b , ∵P (1,2)在曲线f (x )=ln x +b 上, ∴f (1)=ln1+b =2,解得b =2,故2a +b =2+2=4.(2)(2022·广州模拟)过定点P (1,e)作曲线y =a e x(a >0)的切线,恰有2条,则实数a 的取值范围是________. 答案 (1,+∞)解析 由y ′=a e x,若切点为(x 0,0e x a ),则切线方程的斜率k =0'|x x y =0e x a >0, ∴切线方程为y =0e x a (x -x 0+1), 又P (1,e)在切线上, ∴0e x a (2-x 0)=e ,即ea=0e x (2-x 0)有两个不同的解,令φ(x )=e x(2-x ), ∴φ′(x )=(1-x )e x,当x ∈(-∞,1)时,φ′(x )>0; 当x ∈(1,+∞)时,φ′(x )<0,∴φ(x )在(-∞,1)上单调递增,在(1,+∞)上单调递减, ∴φ(x )max =φ(1)=e , 又x →-∞时,φ(x )→0;x →+∞时,φ(x )→-∞,∴0<ea<e ,解得a >1,即实数a 的取值范围是(1,+∞). 教师备选1.已知曲线f (x )=x 3-x +3在点P 处的切线与直线x +2y -1=0垂直,则P 点的坐标为( ) A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)答案 C解析 设切点P (x 0,y 0),f ′(x )=3x 2-1,又直线x +2y -1=0的斜率为-12,∴f ′(x 0)=3x 20-1=2, ∴x 20=1, ∴x 0=±1,又切点P (x 0,y 0)在y =f (x )上, ∴y 0=x 30-x 0+3, ∴当x 0=1时,y 0=3; 当x 0=-1时,y 0=3. ∴切点P 为(1,3)或(-1,3).2.(2022·哈尔滨模拟)已知M 是曲线y =ln x +12x 2+(1-a )x 上的任一点,若曲线在M 点处的切线的倾斜角均是不小于π4的锐角,则实数a 的取值范围是( ) A .[2,+∞) B .[4,+∞) C .(-∞,2] D .(-∞,4]答案 C解析 因为y =ln x +12x 2+(1-a )x ,所以y ′=1x +x +1-a ,因为曲线在M 点处的切线的倾斜角均是不小于π4的锐角,所以y ′≥tanπ4=1对于任意的x >0恒成立, 即1x+x +1-a ≥1对任意x >0恒成立,所以x +1x ≥a ,又x +1x≥2,当且仅当x =1x,即x =1时,等号成立,故a ≤2,所以a 的取值范围是(-∞,2].思维升华 (1)处理与切线有关的参数问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上. (2)注意区分“在点P 处的切线”与“过点P 处的切线”. 跟踪训练2(1)(2022·南平模拟)若直线y =x +m 与曲线y =e x -2n相切,则( )A .m +n 为定值 B.12m +n 为定值 C .m +12n 为定值D .m +13n 为定值答案 B解析 设直线y =x +m 与曲线y =e x -2n切于点(x 0,02e x n -),因为y ′=ex -2n,所以02e x n -=1,所以x 0=2n ,所以切点为(2n ,1), 代入直线方程得1=2n +m , 即12m +n =12. (2)若函数f (x )=ln x +2x 2-ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是______. 答案 [2,+∞)解析 直线2x -y =0的斜率k =2,又曲线f (x )上存在与直线2x -y =0平行的切线, ∴f ′(x )=1x+4x -a =2在(0,+∞)内有解,则a =4x +1x-2,x >0.又4x +1x≥24x ·1x=4,当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞). 题型三 两曲线的公切线例4 (1)(2022·邯郸模拟)已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于( ) A .0B .-1C .3D .-1或3 答案 D解析 由f (x )=x ln x 求导得f ′(x )=1+ln x ,则f ′(1)=1+ln1=1,于是得函数f (x )在点A (1,0)处的切线l 的方程为y =x -1, 因为直线l与g (x )的图象也相切,则方程组⎩⎪⎨⎪⎧y =x -1,g x =x 2+ax ,有唯一解,即关于x 的一元二次方程x 2+(a -1)x +1=0有两个相等的实数根, 因此Δ=(a -1)2-4=0,解得a =-1或a =3, 所以a =-1或a =3.(2)(2022·韶关模拟)若曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x存在公共切线,则a 的取值范围为________.答案 ⎣⎢⎡⎭⎪⎫e 24,+∞解析 由y =ax 2(a >0),得y ′=2ax ,由y =e x ,得y ′=e x,曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x存在公共切线, 设公切线与曲线C 1切于点(x 1,ax 21), 与曲线C 2切于点(x 2,2e x ),则2ax 1=222121e e ,x x ax x x -=-可得2x 2=x 1+2,∴a =1121e2x x +, 记f (x )=12e2x x+, 则f ′(x )=122e(2)4x x x +-,当x ∈(0,2)时,f ′(x )<0,f (x )单调递减; 当x ∈(2,+∞)时,f ′(x )>0,f (x )单调递增. ∴当x =2时,f (x )min =e24.∴a 的取值范围是⎣⎢⎡⎭⎪⎫e 24,+∞. 延伸探究 在本例(2)中,把“存在公共切线”改为“存在两条公共切线”,则a 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫e 24,+∞解析 由本例(2)知,∵两曲线C 1与C 2存在两条公共切线,∴a =1121e2x x +有两个不同的解. ∵函数f (x )=12e2x x+在(0,2)上单调递减, 在(2,+∞)上单调递增,且f (x )min =f (2)=e24,又x →0时,f (x )→+∞,x →+∞时,f (x )→+∞,∴a >e 24.教师备选1.若f (x )=ln x 与g (x )=x 2+ax 两个函数的图象有一条与直线y =x 平行的公共切线,则a 等于( )A .1B .2C .3D .3或-1 答案 D解析 设在函数f (x )=ln x 处的切点为(x ,y ),根据导数的几何意义得到k =1x=1,解得x =1,故切点为(1,0),可求出切线方程为y =x -1,此切线和g (x )=x 2+ax 也相切, 故x 2+ax =x -1,化简得到x 2+(a -1)x +1=0,只需要满足Δ=(a -1)2-4=0,解得a =-1或a =3. 2.已知曲线y =e x在点(x 1,1e x )处的切线与曲线y =ln x 在点(x 2,ln x 2)处的切线相同,则(x 1+1)(x 2-1)等于( ) A .-1B .-2C .1D .2 答案 B解析 已知曲线y =e x在点(x 1,1e x )处的切线方程为y -1e x =1e x (x -x 1),即1111e e e ,x x x y x x =-+曲线y =ln x 在点(x 2,ln x 2)处的切线方程为y -ln x 2=1x 2(x -x 2),即y =1x 2x -1+ln x 2,由题意得1112121e ,e e 1ln ,x x x x x x ⎧=⎪⎨⎪-=-+⎩ 得x 2=11ex , 1e x -1e x x 1=-1+ln x 2=-1+11lnex =-1-x 1, 则1e x =x 1+1x 1-1.又x 2=11e x , 所以x 2=x 1-1x 1+1, 所以x 2-1=x 1-1x 1+1-1=-2x 1+1, 所以(x 1+1)(x 2-1)=-2.思维升华 公切线问题,应根据两个函数在切点处的斜率相等,且切点既在切线上又在曲线上,列出有关切点横坐标的方程组,通过解方程组求解.或者分别求出两函数的切线,利用两切线重合列方程组求解.跟踪训练3 (1)(2022·青岛模拟)已知定义在区间(0,+∞)上的函数f (x )=-2x 2+m ,g (x )=-3ln x -x ,若以上两函数的图象有公共点,且在公共点处切线相同,则m 的值为( ) A .2B .5C .1D .0 答案 C解析 根据题意,设两曲线y =f (x )与y =g (x )的公共点为(a ,b ),其中a >0, 由f (x )=-2x 2+m ,可得f ′(x )=-4x ,则切线的斜率为k =f ′(a )=-4a , 由g (x )=-3ln x -x ,可得g ′(x )=-3x -1,则切线的斜率为k =g ′(a )=-3a-1,因为两函数的图象有公共点,且在公共点处切线相同,所以-4a =-3a-1,解得a =1或a =-34(舍去),又由g (1)=-1,即公共点的坐标为(1,-1), 将点(1,-1)代入f (x )=-2x 2+m , 可得m =1.(2)已知f (x )=e x(e 为自然对数的底数),g (x )=ln x +2,直线l 是f (x )与g (x )的公切线,则直线l 的方程为____________________. 答案 y =e x 或y =x +1解析 设直线l 与f (x )=e x的切点为(x 1,y 1), 则y 1=1e x ,f ′(x )=e x,∴f ′(x 1)=1e x , ∴切点为(x 1,1e x ), 切线斜率k =1e x ,∴切线方程为y -1e x =1e x (x -x 1), 即y =1e x ·x -x 11e x +1e x ,①同理设直线l 与g (x )=ln x +2的切点为(x 2,y 2), ∴y 2=ln x 2+2,g ′(x )=1x,∴g ′(x 2)=1x 2,切点为(x 2,ln x 2+2),切线斜率k =1x 2,∴切线方程为y -(ln x 2+2)=1x 2(x -x 2),即y =1x 2·x +ln x 2+1,②由题意知,①与②相同,∴111121221e e ,e e ln 1,x x x x x x x x -⎧=⎪⎨⎪-+==+⇒⎩③④ 把③代入④有111e e x x x -+=-x 1+1, 即(1-x 1)(1e x -1)=0, 解得x 1=1或x 1=0,当x 1=1时,切线方程为y =e x ; 当x 1=0时,切线方程为y =x +1, 综上,直线l 的方程为y =e x 或y =x +1.课时精练1.(2022·营口模拟)下列函数的求导正确的是( ) A .(x -2)′=-2xB .(x cos x )′=cos x -x sin xC .(ln10)′=110D .(e 2x )′=2e x答案 B解析 (x -2)′=-2x -3,∴A 错; (x cos x )′=cos x -x sin x ,∴B 对; (ln10)′=0,∴C 错; (e 2x)′=2e 2x ,∴D 错.2.(2022·黑龙江哈师大附中月考)曲线y =2cos x +sin x 在(π,-2)处的切线方程为( ) A .x -y +π-2=0 B .x -y -π+2=0 C .x +y +π-2=0 D .x +y -π+2=0答案 D解析 y ′=-2sin x +cos x ,当x =π时,k =-2sinπ+cosπ=-1,所以在点(π,-2)处的切线方程,由点斜式可得y +2=-1×(x -π),化简可得x +y -π+2=0.3.(2022·长治模拟)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C .2D .4 答案 B解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1,∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0. 4.已知点A 是函数f (x )=x 2-ln x +2图象上的点,点B 是直线y =x 上的点,则|AB |的最小值为( ) A. 2 B .2 C.433D.163答案 A解析 当与直线y =x 平行的直线与f (x )的图象相切时,切点到直线y =x 的距离为|AB |的最小值.f ′(x )=2x -1x=1,解得x =1或x =-12(舍去),又f (1)=3,所以切点C (1,3)到直线y =x 的距离即为|AB |的最小值,即|AB |min =|1-3|12+12= 2.5.设曲线f (x )=a e x+b 和曲线g (x )=cos πx2+c 在它们的公共点M (0,2)处有相同的切线,则b +c -a 的值为( ) A .0B .πC.-2D .3 答案 D解析 ∵f ′(x )=a e x,g ′(x )=-π2sin πx 2,∴f ′(0)=a ,g ′(0)=0,∴a =0, 又M (0,2)为f (x )与g (x )的公共点, ∴f (0)=b =2,g (0)=1+c =2,解得c =1, ∴b +c -a =2+1-0=3.6.(2022·邢台模拟)设点P 是函数f (x )=2e x-f ′(0)x +f ′(1)图象上的任意一点,点P 处切线的倾斜角为α,则角α的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,3π4B.⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫3π4,πC.⎝⎛⎭⎪⎫π2,3π4D.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π 答案 B解析 ∵f (x )=2e x-f ′(0)x +f ′(1), ∴f ′(x )=2e x-f ′(0),∴f ′(0)=2-f ′(0),f ′(0)=1, ∴f (x )=2e x-x +f ′(1), ∴f ′(x )=2e x -1>-1.∵点P 是曲线上的任意一点,点P 处切线的倾斜角为α, ∴tan α>-1. ∵α∈[0,π),∴α∈⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫3π4,π.7.(多选)已知函数f (x )的图象如图,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .f ′(3)>f ′(2)B .f ′(3)<f ′(2)C .f (3)-f (2)>f ′(3)D .f (3)-f (2)<f ′(2) 答案 BCD解析 f ′(x 0)的几何意义是f (x )在x =x 0处的切线的斜率.由图知f ′(2)>f ′(3)>0, 故A 错误,B 正确.设A (2,f (2)),B (3,f (3)), 则f (3)-f (2)=f 3-f 23-2=k AB ,由图知f ′(3)<k AB <f ′(2),即f ′(3)<f (3)-f (2)<f ′(2),故C ,D 正确.8.(多选)(2022·重庆沙坪坝区模拟)若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=[f ′(x )]′.若f ″(x )<0在D上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎪⎫0,3π4上是凸函数的是( )A .f (x )=-x 3+3x +4 B .f (x )=ln x +2x C .f (x )=sin x +cos x D .f (x )=x e x答案 ABC解析 对A ,f (x )=-x 3+3x +4,f ′(x )=-3x 2+3, f ″(x )=-6x ,当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )<0,故A 为凸函数;对B ,f (x )=ln x +2x ,f ′(x )=1x+2,f ″(x )=-1x2,当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )<0,故B 为凸函数;对C ,f (x )=sin x +cos x ,f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x =-2sin ⎝⎛⎭⎪⎫x +π4,当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )<0,故C 为凸函数;对D ,f (x )=x e x,f ′(x )=(x +1)e x,f ″(x )=(x +2)e x ,当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )>0,故D 不是凸函数.9.(2022·马鞍山模拟)若曲线f (x )=x cos x 在x =π处的切线与直线ax -y +1=0平行,则实数a =________. 答案 -1解析 因为f (x )=x cos x , 所以f ′(x )=cos x -x sin x ,f ′(π)=cosπ-π·sinπ=-1,因为函数在x =π处的切线与直线ax -y +1=0平行,所以a =f ′(π)=-1. 10.已知函数f (x )=1ax -1+e xcos x ,若f ′(0)=-1,则a =________. 答案 2 解析 f ′(x )=-ax -1′ax -12+e x cos x -e xsin x =-a ax -12+e xcos x -e xsin x ,∴f ′(0)=-a +1=-1,则a =2.11.(2022·宁波镇海中学质检)我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设f (x )=2e x,则f ′(x )=________,其在点(0,1)处的切线方程为________.答案 22e xx y =1 解析 ∵f (x )=2e x,故f ′(x )=(x 2)′2e x=22e x x ,则f ′(0)=0.故曲线y =f (x )在点(0,1)处的切线方程为y =1.12.已知函数f (x )=x 3-ax 2+⎝ ⎛⎭⎪⎫23a +1x (a ∈R ),若曲线y =f (x )存在两条垂直于y 轴的切线,则a 的取值范围为____________________. 答案 (-∞,-1)∪(3,+∞)解析 因为f (x )=x 3-ax 2+⎝ ⎛⎭⎪⎫23a +1x (a ∈R ),所以f ′(x )=3x 2-2ax +23a +1,因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2-2ax +23a +1=0有两个不等的实根,则Δ=4a 2-12⎝ ⎛⎭⎪⎫23a +1>0,即a 2-2a -3>0,解得a >3或a <-1,所以a 的取值范围是(-∞,-1)∪(3,+∞).13.拉格朗日中值定理又称拉氏定理,是微积分学中的基本定理之一,它反映了函数在闭区间上的整体平均变化率与区间某点的局部变化率的关系,其具体内容如下:若f (x )在[a ,b ]上满足以下条件:①在[a ,b ]上图象连续,②在(a ,b )内导数存在,则在(a ,b )内至少存在一点c ,使得f (b )-f (a )=f ′(c )(b -a )(f ′(x )为f (x )的导函数).则函数f (x )=x e x -1在[0,1]上这样的c 点的个数为( ) A .1B .2C .3D .4 答案 A解析 函数f (x )=x e x -1,则f ′(x )=(x +1)ex -1,由题意可知,存在点c ∈[0,1], 使得f ′(c )=f 1-f 01-0=1,即(1+c )e c -1=1,所以ec -1=11+c ,c ∈[0,1],作出函数y =e c -1和y =11+c的图象,如图所示,由图象可知,函数y =e c -1和y =11+c的图象只有一个交点, 所以ec -1=11+c,c ∈[0,1]只有一个解,即函数f (x )=x e x -1在[0,1]上c 点的个数为1. 14.(2021·新高考全国Ⅰ)若过点(a ,b )可以作曲线y =e x的两条切线,则( ) A .e b<a B .e a<b C .0<a <e bD .0<b <e a答案 D解析 方法一 设切点(x 0,y 0),y 0>0, 则切线方程为y -b =0e x (x -a ),由⎩⎨⎧y 0-b =0e x x 0-a ,y 0=0e x ,得0e x (1-x 0+a )=b ,则由题意知关于x 0的方程0e x (1-x 0+a )=b 有两个不同的解. 设f (x )=e x(1-x +a ),则f ′(x )=e x (1-x +a )-e x =-e x(x -a ), 由f ′(x )=0得x =a ,所以当x <a 时,f ′(x )>0,f (x )单调递增, 当x >a 时,f ′(x )<0,f (x )单调递减, 所以f (x )max =f (a )=e a(1-a +a )=e a, 当x <a 时,a -x >0,所以f (x )>0,当x →-∞时,f (x )→0, 当x →+∞时,f (x )→-∞,函数f (x )=e x(1-x +a )的大致图象如图所示,因为f (x )的图象与直线y =b 有两个交点,所以0<b <e a.方法二 (用图估算法)过点(a ,b )可以作曲线y =e x的两条切线,则点(a ,b )在曲线y =e x的下方且在x 轴的上方, 得0<b <e a.15.若曲线y =14sin2x +32cos 2x 在A (x 1,y 1),B (x 2,y 2)两点处的切线互相垂直,则|x 1-x 2|的最小值为( ) A.π3B.π2C.2π3D .π 答案 B解析 ∵y =14sin2x +32cos 2x=14sin2x +32×1+cos2x2 =12sin ⎝⎛⎭⎪⎫2x +π3+34, ∴y ′=cos ⎝⎛⎭⎪⎫2x +π3,∴曲线的切线斜率在[-1,1]范围内, 又曲线在两点处的切线互相垂直,故在A (x 1,y 1),B (x 2,y 2)两点处的切线斜率必须一个是1,一个是-1. 不妨设在A 点处切线的斜率为1, 则有2x 1+π3=2k 1π(k 1∈Z ),2x 2+π3=2k 2π+π(k 2∈Z ),则可得x 1-x 2=(k 1-k 2)π-π2=k π-π2(k ∈Z ),∴|x 1-x 2|min =π2.16.(2022·南昌模拟)已知曲线C 1:y =ex +m,C 2:y =x 2,若恰好存在两条直线l 1,l 2与C 1,C 2都相切,则实数m 的取值范围是____________.答案 (-∞,2ln2-2)解析 由题意知,l 1,l 2的斜率存在,设直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,设l 1与C 1,C 2的切点坐标分别为(x 1,y 1),(x 2,y 2),则⎩⎨⎧k 1=1e x m +=2x 2k 1>0,k 1x 1+b 1=1e x m+,k 1x 2+b 1=x 22,可得⎩⎪⎨⎪⎧x 1=ln k 1-m ,x 2=k 12,k 1x 2-x 1=x 22-1ex m+,故k 1⎝ ⎛⎭⎪⎫k 12-ln k 1+m =k 214-k 1,整理得m =ln k 1-k 14-1,同理可得,当直线l 2:y =k 2x +b 2与C 1,C 2都相切时, 有m =ln k 2-k 24-1,综上所述,只需m =ln k -k4-1(k >0)有两解,令f (k )=ln k -k4-1,则f ′(k )=1k -14=4-k4k ,故当f ′(k )>0时,0<k <4, 当f ′(k )<0时,k >4,所以f (k )在(0,4)上单调递增,在(4,+∞)上单调递减,21 故f (k )max =f (4)=ln4-44-1=2ln2-2, 所以只需满足m <2ln2-2即可.。
第三章导数及其应用知识点最新考纲变化率与导数、导数的计算了解导数的概念与实际背景,理解导数的几何意义.会用基本初等函数的导数公式表和导数运算法则求函数的导数,并能求简单的复合函数的导数(限于形如f(ax+b)的导数).导数在研究函数中的应用了解函数单调性和导数的关系,能用导数求函数的单调区间.理解函数极值的概念及函数在某点取到极值的条件,会用导数求函数的极大(小)值,会求闭区间上函数的最大(小)值.1.导数的概念(1)函数y=f(x)在x=x0处的导数称函数y=f(x)在x=x0处的瞬时变化率lim Δx→0f(x0+Δx)-f(x0)Δx=limΔx→0ΔyΔx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x -x0).(3)函数f(x)的导函数称函数f′(x)=limΔx→0f(x+Δx)-f(x)Δx为f(x)的导函数.2.基本初等函数的导数公式原函数导函数f(x)=c(c为常数) f′(x)=0f(x)=x n(n∈Q*)f′(x)=nx n-1(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.[疑误辨析]判断正误(正确的打“√”,错误的打“×”) (1)f ′(x 0)与[f (x 0)]′表示的意义相同.( ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( ) 答案:(1)× (2)× (3)√ (4)× (5)× [教材衍化]1.(选修2-2P65A 组T2(1)改编)函数y =x cos x -sin x 的导数为( ) A .x sin x B .-x sin x C .x cos xD .-x cos x解析:选B.y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sinx .2.(选修2-2P18A 组T6改编)曲线y =1-2x +2在点(-1,-1)处的切线方程为________.解析:因为y ′=2(x +2)2,所以y ′|x =-1=2.故所求切线方程为2x -y +1=0. 答案:2x -y +1=03.(选修2-2P7例2改编)有一机器人的运动方程为s =t 2+3t(t 是时间,s 是位移),则该机器人在t =2时的瞬时速度为________.解析:因为s =t 2+3t ,所以s ′=2t -3t2,所以s ′|t =2=4-34=134.答案:134[易错纠偏](1)求导时不能掌握复合函数的求导法则致误; (2)不会用方程法解导数求值.1.已知函数f (x )=sin ⎝⎛⎭⎪⎫2x +π3,则f ′(x )=________. 解析:f ′(x )=[sin ⎝ ⎛⎭⎪⎫2x +π3]′=cos ⎝ ⎛⎭⎪⎫2x +π3·⎝ ⎛⎭⎪⎫2x +π3′=2cos ⎝ ⎛⎭⎪⎫2x +π3. 答案:2cos ⎝⎛⎭⎪⎫2x +π32.设函数f (x )的导数为f ′(x ),且f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,则f ′⎝ ⎛⎭⎪⎫π4=________.解析:因为f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,所以f ′(x )=f ′⎝ ⎛⎭⎪⎫π2cos x -sin x , 所以f ′⎝ ⎛⎭⎪⎫π2=f ′⎝ ⎛⎭⎪⎫π2cos π2-sin π2,即f ′⎝ ⎛⎭⎪⎫π2=-1,所以f (x )=-sin x +cos x ,f ′(x )=-cos x -sin x .故f ′⎝ ⎛⎭⎪⎫π4=-cos π4-sin π4=- 2. 答案:- 2导数的计算求下列函数的导数:(1)y =(3x 2-4x )(2x +1);(2)y =x 2sin x ; (3)y =3x e x -2x+e ;(4)y =ln(2x -5).【解】 (1)因为y =(3x 2-4x )(2x +1)=6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x ,所以y ′=18x 2-10x -4.(2)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (3)y ′=(3x e x )′-(2x )′+e ′=(3x )′e x +3x (e x )′-(2x)′ =3x e x ln 3+3x e x -2x ln 2=(ln 3+1)·(3e)x -2xln 2. (4)令u =2x -5,y =ln u ,则y ′=(ln u )′u ′=12x -5·2=22x -5.[提醒] 求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.1.已知f (x )=x (2 017+ln x ),若f ′(x 0)=2 018,则x 0=( ) A .e 2B .1C .ln 2D .e解析:选B.因为f (x )=x (2 017+ln x ), 所以f ′(x )=2 017+ln x +1=2 018+ln x , 又f ′(x 0)=2 018, 所以2 018+ln x 0=2 018, 所以x 0=1.2.求下列函数的导数: (1)y =x n e x;(2)y =cos x sin x ;(3)y =e xln x ;(4)y =(1+sin x )2. 解:(1)y ′=nxn -1e x+x n e x =xn -1e x(n +x ).(2)y ′=-sin 2x -cos 2x sin 2x =-1sin 2x .(3)y ′=e x ln x +e x·1x=e x ⎝ ⎛⎭⎪⎫1x +ln x .(4)y ′=2(1+sin x )·(1+sin x )′ =2(1+sin x )·cos x .导数的几何意义(高频考点)导数的几何意义是每年高考的必考内容,考查题型既有选择题也有填空题,也常出现在解答题的第(1)问中,属中低档题.主要命题角度有:(1)求切线方程;(2)已知切线方程(或斜率)求切点坐标; (3)已知切线方程(或斜率)求参数值. 角度一 求切线方程(1)曲线y =x 2+1x在点(1,2)处的切线方程为____________________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为________.【解析】 (1)因为y ′=2x -1x2,所以在点(1,2)处的切线方程的斜率为y ′|x =1=2×1-112=1, 所以切线方程为y -2=x -1,即y =x +1. (2)因为点(0,-1)不在曲线f (x )=x ln x 上, 所以设切点为(x 0,y 0). 又因为f ′(x )=1+ln x ,所以⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.所以切点为(1,0),所以f ′(1)=1+ln 1=1. 所以直线l 的方程为y =x -1. 【答案】 (1)y =x +1 (2)y =x -1 角度二 已知切线方程(或斜率)求切点坐标若曲线y =e-x上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.【解析】 设P (x 0,y 0),因为y =e -x, 所以y ′=-e -x,所以点P 处的切线斜率为k =-e -x 0=-2, 所以-x 0=ln 2,所以x 0=-ln 2, 所以y 0=eln 2=2,所以点P 的坐标为(-ln 2,2). 【答案】 (-ln 2,2)角度三 已知切线方程(或斜率)求参数值(1)(2020·宁波调研)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值等于( )A .2B .-1C .1D .-2(2)(2020·绍兴调研)若直线y =ax 是曲线y =2ln x +1的一条切线,则实数a =________.【解析】 (1)依题意知,y ′=3x 2+a ,则⎩⎪⎨⎪⎧13+a +b =3,3×12+a =k ,k +1=3,由此解得⎩⎪⎨⎪⎧a =-1,b =3,k =2,所以2a +b =1,选C.(2)依题意,设直线y =ax 与曲线y =2ln x +1的切点的横坐标为x 0,则有y ′|x =x 0=2x 0,于是有⎩⎪⎨⎪⎧a =2x 0ax 0=2ln x 0+1,解得x 0=e ,a =2x 0=2e -12.【答案】 (1)C (2)2e -12(1)求曲线切线方程的步骤①求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率;②由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0). (2)求曲线的切线方程需注意两点①当曲线y =f (x )在点P (x 0,f (x 0))处的切线垂直于x 轴(此时导数不存在)时,切线方程为x =x 0;②当切点坐标不知道时,应首先设出切点坐标,再求解.1.(2020·杭州七校联考)曲线y =e 12x 在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A.92e 2B .4e 2C .2e 2D .e 2解析:选D.因为y ′=12e 12x ,所以k =12e 12×4=12e 2,所以切线方程为y -e 2=12e 2(x -4),令x =0,得y =-e 2,令y =0,得x =2,所以所求面积为S =12×2×|-e 2|=e 2.2.已知函数f (x )=(x 2+ax -1)e x(其中e 是自然对数的底数,a ∈R ),若f (x )在(0,f (0))处的切线与直线x +y -1=0垂直,则a =________.解析:f ′(x )=(x 2+ax -1)′e x +(x 2+ax -1)(e x )′=(2x +a )e x +(x 2+ax -1)e x =[x 2+(a +2)x +(a -1)]e x,故f ′(0)=[02+(a +2)×0+(a -1)]e 0=a -1.因为f (x )在(0,f (0))处的切线与直线x +y -1=0垂直,故f ′(0)=1,即a -1=1,解得a =2.答案:23.(2020·台州高三月考)已知曲线f (x )=xn +1(n ∈N *)与直线x =1交于点P ,设曲线y=f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 018x 1+log 2 018x 2+…+log 2 018x 2 017的值为________.解析:f ′(x )=(n +1)x n,k =f ′(1)=n +1,点P (1,1)处的切线方程为y -1=(n +1)(x -1),令y =0,得x =1-1n +1=n n +1,即x n =nn +1. 所以x 1·x 2·…·x 2 017=12×23×34×…×2 0162 017×2 0172 018=12 018.则log 2 018x 1+log 2 018x 2+…+log 2 018x 2 017=log 2 018(x 1·x 2·…·x 2 017)=log 2 01812 018=-1.答案:-1两条曲线的公切线若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.【解析】 设y =kx +b 与y =ln x +2和y =ln(x +1)的切点分别为(x 1,ln x 1+2)和(x 2,ln(x 2+1)).则切线分别为y -ln x 1-2=1x 1(x -x 1),y -ln(x 2+1)=1x 2+1(x -x 2),化简得y =1x 1x+ln x 1+1,y =1x 2+1x -x 2x 2+1+ln(x 2+1), 依题意⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=-x2x 2+1+ln (x 2+1),解得x 1=12,从而b =ln x 1+1=1-ln 2.【答案】 1-ln 2求两条曲线的公切线的方法(1)利用其中一曲线在某点处的切线与另一条曲线相切,列出关系式求解. (2)利用公切线得出关系式.设公切线l 在y =f (x )上的切点P 1(x 1,y 1),在y =g (x )上的切点P 2(x 2,y 2),则f ′(x 1)=g ′(x 2)=f (x 1)-g (x 2)x 1-x 2.1.已知函数f (x )=x 2-4x +4,g (x )=x -1,则f (x )和g (x )的公切线的条数为( ) A .三条 B .二条 C .一条D .0条解析:选A.设公切线与f (x )和g (x )分别相切于点(m ,f (m )),(n ,g (n )),f ′(x )=2x-4,g ′(x )=-x -2,g ′(n )=f ′(m )=g (n )-f (m )n -m ,解得m =-n -22+2,代入化简得8n 3-8n 2+1=0,构造函数f (x )=8x 3-8x 2+1,f ′(x )=8x (3x -2),原函数在(-∞,0)上单调递增,在⎝ ⎛⎭⎪⎫0,23上单调递减,在⎝ ⎛⎭⎪⎫23,+∞上单调递增,极大值f (0)>0,极小值f ⎝ ⎛⎭⎪⎫23<0,故函数和x 轴有3个交点,方程8n 3-8n 2+1=0有三个解,故切线有3条.故选A.2.曲线f (x )=e x 在x =0处的切线与曲线g (x )=ax 2-a (a ≠0)相切,则过切点且与该切线垂直的直线方程为__________.解析:曲线f (x )在x =0处的切线方程为y =x +1. 设其与曲线g (x )=ax 2-a 相切于点(x 0,ax 20-a ). 则g ′(x 0)=2ax 0=1,且ax 20-a =x 0+1. 解得x 0=-1,a =-12,切点坐标为(-1,0).所以过切点且与该切线垂直的直线方程为y =-1·(x +1),即x +y +1=0.答案:x +y +1=0[基础题组练]1.函数y =x 2cos x 在x =1处的导数是( ) A .0 B .2cos 1-sin 1 C .cos 1-sin 1D .1解析:选B.因为y ′=(x 2cos x )′=(x 2)′cos x +x 2·(cos x )′=2x cos x -x 2sin x ,所以y ′|x =1=2cos 1-sin 1.2.(2020·衢州高三月考)已知t 为实数,f (x )=(x 2-4)(x -t )且f ′(-1)=0,则t 等于( )A .0B .-1 C.12D .2解析:选C.依题意得,f ′(x )=2x (x -t )+(x 2-4)=3x 2-2tx -4,所以f ′(-1)=3+2t -4=0,即t =12.3.(2020·温州模拟)已知函数f (x )=x 2+2x 的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))(x 1<x 2<0)处的切线互相垂直,则x 2-x 1的最小值为( )A.12 B .1C.32D .2解析:选B.因为x 1<x 2<0,f (x )=x 2+2x , 所以f ′(x )=2x +2,所以函数f (x )在点A ,B 处的切线的斜率分别为f ′(x 1),f ′(x 2), 因为函数f (x )的图象在点A ,B 处的切线互相垂直, 所以f ′(x 1)f ′(x 2)=-1. 所以(2x 1+2)(2x 2+2)=-1, 所以2x 1+2<0,2x 2+2>0,所以x 2-x 1=12[-(2x 1+2)+(2x 2+2)]≥-(2x 1+2)(2x 2+2)=1,当且仅当-(2x 1+2)=2x 2+2=1,即x 1=-32,x 2=-12时等号成立.所以x 2-x 1的最小值为1.故选B.4.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 018)=6,则f ′(-2 018)=( ) A .-6 B .-8 C .6D .8解析:选D.因为f ′(x )=4ax 3-b sin x +7. 所以f ′(-x )=4a (-x )3-b sin(-x )+7 =-4ax 3+b sin x +7. 所以f ′(x )+f ′(-x )=14. 又f ′(2 018)=6,所以f ′(-2 018)=14-6=8,故选D.5.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B.由题图可得曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.6.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为( ) A .1 B. 2 C.22D. 3解析:选B.因为定义域为(0,+∞),令y ′=2x -1x=1,解得x =1,则在P (1,1)处的切线方程为x -y =0,所以两平行线间的距离为d =22= 2.7.已知f (x )=ln x x 2+1,g (x )=(1+sin x )2,若F (x )=f (x )+g (x ),则F (x )的导函数为________.解析:因为f ′(x )=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x (x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2, g ′(x )=2(1+sin x )(1+sin x )′=2cos x +sin 2x ,所以F ′(x )=f ′(x )+g ′(x )=x 2+1-2x 2ln x x (x 2+1)2+2cos x +sin 2x .答案:x 2+1-2x 2ln x x (x 2+1)2+2cos x +sin 2x8.(2020·绍兴市柯桥区高三模拟)已知曲线y =14x 2-3ln x 的一条切线的斜率为-12,则切点的横坐标为________.解析:设切点为(m ,n )(m >0),y =14x 2-3ln x 的导数为y ′=12x -3x ,可得切线的斜率为12m -3m =-12,解方程可得,m =2. 答案:29.(2020·金华十校高考模拟)函数f (x )的定义域为R ,f (-2)=2 018,若对任意的x ∈R ,都有f ′(x )<2x 成立,则不等式f (x )<x 2+2 014的解集为________.解析:构造函数g (x )=f (x )-x 2-2 014,则g ′(x )=f ′(x )-2x <0,所以函数g (x )在定义域上为减函数,且g (-2)=f (-2)-22-2 014=2 018-4-2 014=0,由f (x )<x2+2 014有f (x )-x 2-2 014<0,即g (x )<0=g (-2),所以x >-2,不等式f (x )<x 2+2 014的解集为(-2,+∞).答案:(-2,+∞)10.如图,已知y =f (x )是可导函数,直线l 是曲线y =f (x )在x =4处的切线,令g (x )=f (x )x,则g ′(4)=________. 解析:g ′(x )=⎣⎢⎡⎦⎥⎤f (x )x ′=xf ′(x )-f (x )x 2.由题图可知,直线l 经过点P (0,3)和Q (4,5), 故k 1=5-34-0=12.由导数的几何意义可得f ′(4)=12,因为Q (4,5)在曲线y =f (x )上,故f (4)=5. 故g ′(4)=4×f ′(4)-f (4)42=4×12-542=-316. 答案:-31611.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解:(1)可判定点(2,-6)在曲线y =f (x )上. 因为f ′(x )=(x 3+x -16)′=3x 2+1.所以f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. 所以切线的方程为y =13(x -2)+(-6), 即y =13x -32.(2)因为切线与直线y =-14x +3垂直,所以切线的斜率k =4. 设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,所以x 0=±1.所以⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18, 即切点坐标为(1,-14)或(-1,-18),切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.12.已知函数f (x )=ax +bx(x ≠0)在x =2处的切线方程为3x -4y +4=0. (1)求a ,b 的值;(2)求证:曲线上任一点P 处的切线l 与直线l 1:y =x ,直线l 2:x =0围成的三角形的面积为定值.解:(1)由f (x )=ax +b x ,得f ′(x )=a -b x2(x ≠0). 由题意得⎩⎪⎨⎪⎧f ′(2)=34,3×2-4f (2)+4=0.即⎩⎪⎨⎪⎧a -b 4=34,5-2⎝ ⎛⎭⎪⎫2a +b 2=0.解得a =1,b =1.(2)证明:由(1)知f (x )=x +1x,设曲线的切点为P ⎝ ⎛⎭⎪⎫x 0,x 0+1x 0,f ′(x 0)=1-1x 20,曲线在P 处的切线方程为y -⎝⎛⎭⎪⎫x 0+1x 0=⎝ ⎛⎭⎪⎫1-1x 20(x -x 0).即y =⎝⎛⎭⎪⎫1-1x20x +2x 0.当x =0时,y =2x 0.即切线l 与l 2:x =0的交点坐标为A ⎝⎛⎭⎪⎫0,2x 0.由⎩⎪⎨⎪⎧y =⎝ ⎛⎭⎪⎫1-1x 20x +2x 0,y =x ,得⎩⎪⎨⎪⎧x =2x 0,y =2x 0,即l 与l 1:y =x 的交点坐标为B (2x 0,2x 0).又l 1与l 2的交点为O (0,0),则所求的三角形的面积为S =12·|2x 0|·⎪⎪⎪⎪⎪⎪2x 0=2.即切线l 与l 1,l 2围成的三角形的面积为定值.[综合题组练]1.若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,+∞ B .[-12,+∞)C .(0,+∞)D .[0,+∞)解析:选D.f ′(x )=1x +2ax =2ax 2+1x(x >0),根据题意有f ′(x )≥0(x >0)恒成立,所以2ax 2+1≥0(x >0)恒成立,即2a ≥-1x2(x >0)恒成立,所以a ≥0,故实数a 的取值范围为[0,+∞).故选D.2.(2020·金华十校联考)已知函数y =x 2的图象在点(x 0,x 20)处的切线为l ,若l 也与函数y =ln x ,x ∈(0,1)的图象相切,则x 0必满足( )A .0<x 0<12B.12<x 0<1 C.22<x 0< 2 D.2<x 0< 3解析:选D.令f (x )=x 2,f ′(x )=2x ,f (x 0)=x 20,所以直线l 的方程为y =2x 0(x -x 0)+x 20=2x 0x -x 20,因为l 也与函数y =ln x (x ∈(0,1))的图象相切,令切点坐标为(x 1,ln x 1),y ′=1x ,所以l 的方程为y =1x 1x +ln x 1-1,这样有⎩⎪⎨⎪⎧2x 0=1x 1,1-ln x 1=x 20,所以1+ln(2x 0)=x 20,x 0∈(1,+∞),令g (x )=x 2-ln(2x )-1,x ∈(1,+∞),所以该函数的零点就是x 0,又因为g ′(x )=2x -1x =2x 2-1x,所以g (x )在(1,+∞)上单调递增,又g (1)=-ln 2<0,g (2)=1-ln 22<0,g (3)=2-ln 23>0,从而2<x 0<3,选D.3.(2020·宁波四中高三月考)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″ (x )=(f ′(x ))′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎪⎫0,π2上是凸函数的是________(把你认为正确的序号都填上).①f (x )=sin x +cos x ; ②f (x )=ln x -2x ; ③f (x )=-x 3+2x -1;④f (x )=x e x.解析:①中,f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x =-2sin ⎝⎛⎭⎪⎫x +π4<0在区间⎝ ⎛⎭⎪⎫0,π2上恒成立;②中,f ′(x )=1x -2(x >0),f ″(x )=-1x 2<0在区间⎝⎛⎭⎪⎫0,π2上恒成立;③中,f ′(x )=-3x 2+2,f ″(x )=-6x 在区间⎝ ⎛⎭⎪⎫0,π2上恒小于0.④中,f ′(x )=e x +x e x ,f ″(x )=2e x +x e x =e x(x +2)>0在区间⎝⎛⎭⎪⎫0,π2上恒成立,故④中函数不是凸函数.故①②③为凸函数.答案:①②③4.(2020·浙江省十校联合体期末检测)已知函数f (x )=a e x+x 2,g (x )=cos (πx )+bx ,直线l 与曲线y =f (x )切于点(0,f (0)),且与曲线y =g (x )切于点(1,g (1)),则a +b=________,直线l 的方程为________.解析:f ′(x )=a e x+2x ,g ′(x )=-πsin (πx )+b ,f (0)=a ,g (1)=cos π+b =b -1, f ′(0)=a ,g ′(1)=b ,由题意可得f ′(0)=g ′(1),则a =b , 又f ′(0)=b -1-a1-0=a ,即a =b =-1,则a +b =-2; 所以直线l 的方程为x +y +1=0. 答案:-2 x +y +1=05.设有抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标.解:(1)由题意得,y ′=-2x +92.设点P 的坐标为(x 1,y 1),则y 1=kx 1,①y 1=-x 21+92x 1-4,②-2x 1+92=k ,③联立①②③得,x 1=2,x 2=-2(舍去).所以k =12.(2)过P 点作切线的垂线,其方程为y =-2x +5.④将④代入抛物线方程得,x 2-132x +9=0.设Q 点的坐标为(x 2,y 2),则2x 2=9, 所以x 2=92,y 2=-4.所以Q 点的坐标为⎝ ⎛⎭⎪⎫92,-4. 6.(2020·绍兴一中月考)已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.解:(1)由已知得f ′(x )=3ax 2+6x -6a , 因为f ′(-1)=0,所以3a -6-6a =0,所以a =-2.(2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线,则设切点为(x 0,3x 20+6x 0+12).因为g ′(x 0)=6x 0+6,所以切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0), 将(0,9)代入切线方程,解得x 0=±1. 当x 0=-1时,切线方程为y =9; 当x 0=1时,切线方程为y =12x +9. 由(1)知f (x )=-2x 3+3x 2+12x -11, ①由f ′(x )=0得-6x 2+6x +12=0, 解得x =-1或x =2.在x =-1处,y =f (x )的切线方程为y =-18; 在x =2处,y =f (x )的切线方程为y =9, 所以y =f (x )与y =g (x )的公切线是y =9. ②由f ′(x )=12得-6x 2+6x +12=12, 解得x =0或x =1.在x =0处,y =f (x )的切线方程为y =12x -11; 在x =1处,y =f (x )的切线方程为y =12x -10,所以y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。
2019-2020年高三数学一轮总复习第三章导数及其应用第一节导数的概念与计算课时跟踪检测一抓基础,多练小题做到眼疾手快1.函数f (x )=(x +2a )(x -a )2的导数为________. 解析:∵f (x )=(x +2a )(x -a )2=x 3-3a 2x +2a 3, ∴f ′(x )=3(x 2-a 2). 答案:3(x 2-a 2)2.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=________.解析:由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x.∴f ′(1)=2f ′(1)+1,则f ′(1)=-1. 答案:-13.(xx·徐州一中检测)曲线y =f (x )=x (x -1)(x -2)·…·(x -6)在原点处的切线方程为________.解析:y ′=(x -1)(x -2)·…·(x -6)+x [(x -1)·(x -2)·…·(x -6)]′,所以f ′(0)=(-1)×(-2)×(-3)×(-4)×(-5)×(-6)+0=720.故切线方程为y =720x .答案:y =720x4.(xx·全国卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析:∵f ′(x )=3ax 2+1, ∴f ′(1)=3a +1. 又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1). ∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1. 答案:15.已知曲线y =x 3+x -2在点P 0处的切线l 与直线4x -y -1=0平行,且点P 0在第三象限,则点P 0的坐标为________.解析:设P 0(x 0,y 0).由y =x 3+x -2,得y ′=3x 2+1. 由已知,得3x 20+1=4,解得x 0=±1. 当x 0=1时,y 0=0; 当x 0=-1时,y 0=-4.又点P 0在第三象限,∴切点P 0的坐标为(-1,-4). 答案:(-1,-4)二保高考,全练题型做到高考达标1.某物体做直线运动,其运动规律是s =t 2+3t(t 的单位:s ,s 的单位:m),则它在第4 s 末的瞬时速度为________ m/s.解析:∵s ′=2t -3t 2,∴在第4 s 末的瞬时速度v =s ′| t =4=8-316=12516 m/s.答案:125162.(xx·苏州二模)已知函数f (x )=(x 2+2)(ax 2+b ),且f ′(1)=2,则f ′(-1)=________.解析:f (x )=(x 2+2)(ax 2+b )=ax 4+(2a +b )x 2+2b ,f ′(x )=4ax 3+2(2a +b )x 为奇函数,所以f ′(-1)=-f ′(1)=-2.答案:-23.已知f (x )=x (2 015+ln x ),若f ′(x 0)=2 016,则x 0=________.解析:f ′(x )=2 015+ln x +x ·1x=2 016+ln x ,故由f ′(x 0)=2 016得2 016+lnx 0=2 016,则ln x 0=0,解得x 0=1.答案:14.(xx·金陵中学模拟)设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线倾斜角α的取值范围为________.解析:因为y ′=3x 2-3≥-3,故切线斜率k ≥-3,所以切线倾斜角α的取值范围是⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π. 答案:⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π5.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为________.解析:∵f ′(x )=1x,∴直线l 的斜率为k =f ′(1)=1, 又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2. 答案:-26.(xx·太原一模)函数f (x )=x e x的图象在点(1,f (1))处的切线方程是________. 解析: ∵f (x )=x e x, ∴f (1)=e ,f ′(x )=e x+x e x,∴f ′(1)=2e ,∴f (x )的图象在点(1,f (1))处的切线方程为y -e =2e(x -1),即y =2e x -e.答案:y =2e x -e7.(xx·无锡调研)如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x ) 是g (x )的导函数,则g ′(3)=________.解析:由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0. 答案:08.设函数f (x )=(x -a )(x -b )(x -c )(a ,b ,c 是两两不等的常数),则a fa+b fb+c fc=________.解析:∵f (x )=x 3-(a +b +c )x 2+(ab +bc +ca )x -abc , ∴f ′(x )=3x 2-2(a +b +c )x +ab +bc +ca ,f ′(a )=(a -b )(a -c ), f ′(b )=(b -a )(b -c ), f ′(c )=(c -a )(c -b ).∴a fa +b f b+c fc=aa -ba -c+bb -a b -c+c c -ac -b=a b -c -b a -c +c a -ba -b a -c b -c=0.答案:09.求下列函数的导数. (1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3).解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′=tan x +x ·⎝ ⎛⎭⎪⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x=tan x +xcos 2x.(2)y ′=(x +1)′[(x +2)(x +3)]+(x +1)[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11.10.已知曲线y =f (x )=x 2a-1(a >0)在x =1处的切线为l ,求l 与两坐标轴所围成的三角形的面积的最小值.解:因为f (1)=1a-1,所以切点为⎝⎛⎭⎪⎫1,1a-1.由已知,得f ′(x )=2x a ,切线斜率k =f ′(1)=2a,所以切线l 的方程为y -⎝ ⎛⎭⎪⎫1a-1=2a(x -1),即2x -ay -a -1=0. 令y =0,得x =a +12;令x =0,得y =-a +1a. 所以l 与两坐标轴所围成的三角形的面积S =12×a +12×a +1a =14⎝ ⎛⎭⎪⎫a +1a +12≥14×2a ×1a +12=1,当且仅当a =1a,即a =1时取等号,所以S min =1.故l 与两坐标轴所围成的三角形的面积的最小值为1. 三上台阶,自主选做志在冲刺名校1.已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为________.解析:设切点坐标为(t ,t 3-at +a ).由题意知,f ′(x )=3x 2-a ,切线的斜率k =y ′|x =t=3t 2-a ①,所以切线方程为y -(t 3-at +a )=(3t 2-a )(x -t ) ②.将点A (1,0)代入②式得-(t 3-at +a )=(3t 2-a )(1-t ),解得t =0或t =32.分别将t =0和t =32代入①式,得k =-a 和k =274-a ,由题意得它们互为相反数,故a =278.答案:2782.(xx·无锡一中检测)已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,则f ⎝ ⎛⎭⎪⎫π4的值为________. 解析:∵f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,∴f ′(x )=-f ′⎝ ⎛⎭⎪⎫π4sin x +cos x , ∴f ′⎝ ⎛⎭⎪⎫π4=-f ′⎝ ⎛⎭⎪⎫π4×22+22,∴f ′⎝ ⎛⎭⎪⎫π4=2-1.故f ⎝ ⎛⎭⎪⎫π4=(2-1)×22+22=1. 答案:13.(xx·苏北四市调研)设函数f (x )=ax -bx,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任意一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解:(1)f ′(x )=a +b x2.∵点(2,f (2))在切线7x -4y -12=0上, ∴f (2)=2×7-124=12.又曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0,∴⎩⎪⎨⎪⎧f =74,f=12⇒⎩⎪⎨⎪⎧a +b 4=74,2a -b 2=12⇒⎩⎪⎨⎪⎧a =1,b =3.∴f (x )的解析式为f (x )=x -3x.(2)设⎝⎛⎭⎪⎫x 0,x 0-3x为曲线y =f (x )上任意一点,则切线的斜率k =1+3x 20,切线方程为y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),令x =0,得y =-6x 0.由⎩⎪⎨⎪⎧y -⎝⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20x -x 0,y =x ,得⎩⎪⎨⎪⎧x =2x 0,y =2x 0.∴曲线y =f (x )上任意一点处的切线与直线x =0和直线y =x 所围成的三角形的面积S =12|2x 0|⎪⎪⎪⎪⎪⎪-6x 0=6,为定值.2019-2020年高三数学一轮总复习第三章导数及其应用第一节导数的概念与计算课时跟踪检测理一抓基础,多练小题做到眼疾手快1.函数f (x )=(x +2a )(x -a )2的导数为________. 解析:∵f (x )=(x +2a )(x -a )2=x 3-3a 2x +2a 3, ∴f ′(x )=3(x 2-a 2). 答案:3(x 2-a 2)2.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=________.解析:由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x.∴f ′(1)=2f ′(1)+1,则f ′(1)=-1. 答案:-13.(xx·徐州一中检测)曲线y =f (x )=x (x -1)(x -2)·…·(x -6)在原点处的切线方程为________.解析:y ′=(x -1)(x -2)·…·(x -6)+x [(x -1)·(x -2)·…·(x -6)]′,所以f ′(0)=(-1)×(-2)×(-3)×(-4)×(-5)×(-6)+0=720.故切线方程为y =720x .答案:y =720x4.(xx·全国卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析:∵f ′(x )=3ax 2+1, ∴f ′(1)=3a +1. 又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1). ∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1. 答案:15.已知曲线y =x 3+x -2在点P 0处的切线l 与直线4x -y -1=0平行,且点P 0在第三象限,则点P 0的坐标为________.解析:设P 0(x 0,y 0).由y =x 3+x -2,得y ′=3x 2+1. 由已知,得3x 20+1=4,解得x 0=±1. 当x 0=1时,y 0=0; 当x 0=-1时,y 0=-4.又点P 0在第三象限,∴切点P 0的坐标为(-1,-4). 答案:(-1,-4)二保高考,全练题型做到高考达标1.某物体做直线运动,其运动规律是s =t 2+3t(t 的单位:s ,s 的单位:m),则它在第4 s 末的瞬时速度为________ m/s.解析:∵s ′=2t -3t 2,∴在第4 s 末的瞬时速度v =s ′| t =4=8-316=12516 m/s.答案:125162.(xx·苏州二模)已知函数f (x )=(x 2+2)(ax 2+b ),且f ′(1)=2,则f ′(-1)=________.解析:f (x )=(x 2+2)(ax 2+b )=ax 4+(2a +b )x 2+2b ,f ′(x )=4ax 3+2(2a +b )x 为奇函数,所以f ′(-1)=-f ′(1)=-2.答案:-23.已知f (x )=x (2 015+ln x ),若f ′(x 0)=2 016,则x 0=________.解析:f ′(x )=2 015+ln x +x ·1x=2 016+ln x ,故由f ′(x 0)=2 016得2 016+lnx 0=2 016,则ln x 0=0,解得x 0=1.答案:14.(xx·金陵中学模拟)设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线倾斜角α的取值范围为________.解析:因为y ′=3x 2-3≥-3,故切线斜率k ≥-3,所以切线倾斜角α的取值范围是⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π. 答案:⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π5.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为________.解析:∵f ′(x )=1x,∴直线l 的斜率为k =f ′(1)=1, 又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2. 答案:-26.(xx·太原一模)函数f (x )=x e x的图象在点(1,f (1))处的切线方程是________. 解析: ∵f (x )=x e x, ∴f (1)=e ,f ′(x )=e x+x e x,∴f ′(1)=2e ,∴f (x )的图象在点(1,f (1))处的切线方程为y -e =2e(x -1),即y =2e x -e.答案:y =2e x -e7.(xx·无锡调研)如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x ) 是g (x )的导函数,则g ′(3)=________.解析:由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0. 答案:08.设函数f (x )=(x -a )(x -b )(x -c )(a ,b ,c 是两两不等的常数),则a fa+b fb+c fc=________.解析:∵f (x )=x 3-(a +b +c )x 2+(ab +bc +ca )x -abc , ∴f ′(x )=3x 2-2(a +b +c )x +ab +bc +ca ,f ′(a )=(a -b )(a -c ), f ′(b )=(b -a )(b -c ), f ′(c )=(c -a )(c -b ).∴a fa +b f b+c fc=aa -ba -c+bb -a b -c+c c -ac -b=a b -c -b a -c +c a -ba -b a -c b -c=0.答案:09.求下列函数的导数. (1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3).解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′=tan x +x ·⎝ ⎛⎭⎪⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x=tan x +xcos 2x.(2)y ′=(x +1)′[(x +2)(x +3)]+(x +1)[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11.10.已知曲线y =f (x )=x 2a-1(a >0)在x =1处的切线为l ,求l 与两坐标轴所围成的三角形的面积的最小值.解:因为f (1)=1a-1,所以切点为⎝⎛⎭⎪⎫1,1a-1.由已知,得f ′(x )=2x a ,切线斜率k =f ′(1)=2a,所以切线l 的方程为y -⎝ ⎛⎭⎪⎫1a-1=2a(x -1),即2x -ay -a -1=0. 令y =0,得x =a +12;令x =0,得y =-a +1a. 所以l 与两坐标轴所围成的三角形的面积S =12×a +12×a +1a =14⎝ ⎛⎭⎪⎫a +1a +12≥14×2a ×1a +12=1,当且仅当a =1a,即a =1时取等号,所以S min =1.故l 与两坐标轴所围成的三角形的面积的最小值为1. 三上台阶,自主选做志在冲刺名校1.已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为________.解析:设切点坐标为(t ,t 3-at +a ).由题意知,f ′(x )=3x 2-a ,切线的斜率k =y ′|x =t=3t 2-a ①,所以切线方程为y -(t 3-at +a )=(3t 2-a )(x -t ) ②.将点A (1,0)代入②式得-(t 3-at +a )=(3t 2-a )(1-t ),解得t =0或t =32.分别将t =0和t =32代入①式,得k =-a 和k =274-a ,由题意得它们互为相反数,故a =278.答案:2782.(xx·无锡一中检测)已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,则f ⎝ ⎛⎭⎪⎫π4的值为________. 解析:∵f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,∴f ′(x )=-f ′⎝ ⎛⎭⎪⎫π4sin x +cos x , ∴f ′⎝ ⎛⎭⎪⎫π4=-f ′⎝ ⎛⎭⎪⎫π4×22+22,∴f ′⎝ ⎛⎭⎪⎫π4=2-1.故f ⎝ ⎛⎭⎪⎫π4=(2-1)×22+22=1. 答案:13.(xx·苏北四市调研)设函数f (x )=ax -bx,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任意一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解:(1)f ′(x )=a +b x 2.∵点(2,f (2))在切线7x -4y -12=0上,∴f (2)=2×7-124=12. 又曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0, ∴⎩⎪⎨⎪⎧ f=74,f =12⇒⎩⎪⎨⎪⎧ a +b 4=74,2a -b 2=12⇒⎩⎪⎨⎪⎧ a =1,b =3. ∴f (x )的解析式为f (x )=x -3x . (2)设⎝ ⎛⎭⎪⎫x 0,x 0-3x 0为曲线y =f (x )上任意一点, 则切线的斜率k =1+3x 20,切线方程为y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0), 令x =0,得y =-6x 0. 由⎩⎪⎨⎪⎧ y -⎝⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20x -x 0,y =x ,得⎩⎪⎨⎪⎧ x =2x 0,y =2x 0.∴曲线y =f (x )上任意一点处的切线与直线x =0和直线y =x 所围成的三角形的面积S =12|2x 0|⎪⎪⎪⎪⎪⎪-6x 0=6,为定值.。