第10周初二(上)期中数学模拟试卷
- 格式:pdf
- 大小:178.96 KB
- 文档页数:6
八年级(上)期中数学模拟试卷一、选择题(每题3分,共30分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,62.下列图案中,不是轴对称图形的是()A.B.C.D.3.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,1)4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)5.平面内点A(﹣1,2)和点B(﹣1,6)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=﹣16.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC7.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA8.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE9.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角10.如图,点A、B、C、D、E、F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.360°C.540°D.720°二、填空题(每题3分,共24分)11.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=度.12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是.13.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是cm.15.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是.16.已知点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),则a+b=.17.如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.18.图是平面镜里看到背向墙壁的电子钟示数,这时的实际时间应该是.三、解答题(共46分)19.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.20.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.21.如图,已知E是∠AOB的平分线上的一点,EC⊥OA,ED⊥OB,垂足分别是C,D.求证:OE垂直平分CD.22.已知:如图,AC=AB,∠1=∠2,∠3=∠4.求证:AE=AD.23.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,试问:DE和DF相等吗?说明理由.24.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.25.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.参考答案与试题解析一、选择题(每题3分,共30分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,6【考点】三角形三边关系.【分析】三角形的三条边必须满足:任意两边之和>第三边,任意两边之差<第三边.【解答】解:A中,3+3>3,能构成三角形;B中,3+3=6,不能构成三角形;C中,3+2=5,不能构成三角形;D中,3+2<6,不能构成三角形.故选A.【点评】本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和<最大的数就可以.2.下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点P(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)【考点】多边形的对角线.【分析】可根据n边形从一个顶点引出的对角线与边的关系:n﹣3,可分成(n﹣2)个三角形直接判断.【解答】解:从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是(n﹣2).故选C.【点评】多边形有n条边,则经过多边形的一个顶点的所有对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.5.平面内点A(﹣1,2)和点B(﹣1,6)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=﹣1【考点】坐标与图形变化-对称.【分析】观察两坐标的特点,发现横坐标相同,所以对称轴为平行与x轴的直线,即y=纵坐标的平均数.【解答】解:∵点A(﹣1,2)和点B(﹣1,6)对称,∴AB平行与y轴,所以对称轴是直线y=(6+2)=4.故选C.【点评】本题主要考查了坐标与图形变化﹣﹣对称特;解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标或利用对应点的坐标求得对称轴.6.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC【考点】全等三角形的判定.【分析】本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.【解答】解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;故选:C.【点评】本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.7.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.8.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【考点】全等三角形的性质.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.9.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角【考点】全等三角形的应用.【分析】由已知可以得到∠ABC=∠BDE,又CD=BC,∠ACB=∠DCE,由此根据角边角即可判定△EDC≌△ABC.【解答】解:∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故选B.【点评】本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.10.如图,点A、B、C、D、E、F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.360°C.540°D.720°【考点】三角形内角和定理.【分析】先根据三角形外角的性质得出∠A+∠B=∠1,∠E+∠F=∠2,∠C+∠D=∠3,再根据三角形的外角和是360°进行解答.【解答】解:∵∠1是△ABG的外角,∴∠1=∠A+∠B,∵∠2是△EFH的外角,∴∠2=∠E+∠F,∵∠3是△CDI的外角,∴∠3=∠C+∠D,∵∠1、∠3、∠3是△GIH的外角,∴∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故选B.【点评】本题考查的是三角形外角的性质及三角形的外角和,熟知三角形的外角和是360度是解答此题的关键.二、填空题(每题3分,共24分)11.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=270度.【考点】三角形内角和定理;多边形内角与外角.【专题】应用题.【分析】根据三角形的内角和与平角定义可求解.【解答】解:如图,根据题意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°﹣(∠3+∠4)=360°﹣90°=270°.【点评】本题主要考查了三角形的内角和定理和内角与外角之间的关系.要会熟练运用内角和定理求角的度数.12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是19cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【解答】解:当3cm是腰时,3+3<8,不符合三角形三边关系,故舍去;当8cm是腰时,周长=8+8+3=19cm.故它的周长为19cm.故答案为:19cm.【点评】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【考点】全等三角形的判定与性质.【分析】求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△EAC中,∴△BAD≌△EAC(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△EAC.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是3cm.【考点】角平分线的性质.【分析】求D点到线段AB的距离,由于D在∠BAC的平分线上,只要求出D到AC的距离CD即可,由已知可用BC减去BD可得答案.【解答】解:CD=BC﹣BD,=8cm﹣5cm=3cm,∵∠C=90°,∴D到AC的距离为CD=3cm,∵AD平分∠CAB,∴D点到线段AB的距离为3cm.故答案为:3.【点评】本题考查了角平分线的性质;知道并利用CD是D点到线段AB的距离是正确解答本题的关键.15.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是31.5.【考点】角平分线的性质.【分析】连接OA,作OE⊥AC,OF⊥AB,垂足分别为E、F,将△ABC的面积分为:S△ABC=S△OBC+S△OAC+S△OAB,而三个小三角形的高OD=OE=OF,它们的底边和就是△ABC的周长,可计算△ABC的面积.【解答】解:作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OD=OE=OF,∴S△ABC=S△OBC+S△OAC+S△OAB=×OD×BC+×OE×AC+×OF×AB=×OD×(BC+AC+AB)=×3×21=31.5.故填31.5.【点评】此题主要考查角平分线的性质;利用三角形的三条角平分线交于一点,将三角形面积分为三个小三角形面积求和,发现并利用三个小三角形等高是正确解答本题的关键.16.已知点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),则a+b=6.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a与b的值.【解答】解:∵点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),∴a=2,b=4,∴a+b=2+4=6,故答案为:6.【点评】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.17.如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为108度.【考点】翻折变换(折叠问题).【分析】连接OB、OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BAO,再求出∠OBC,然后判断出点O是△ABC的外心,根据三角形外心的性质可得OB=OC,再根据等边对等角求出∠OCB=∠OBC,根据翻折的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得解.【解答】解:如图,连接OB、OC,∵∠BAC=54°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×54°=27°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣54°)=63°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=27°,∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°,∵AO为∠BAC的平分线,AB=AC,∴△AOB≌△AOC(SAS),∴OB=OC,∴点O在BC的垂直平分线上,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴∠OCB=∠OBC=36°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=36°,在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.故答案为:108.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.18.图是平面镜里看到背向墙壁的电子钟示数,这时的实际时间应该是20:51.【考点】镜面对称.【分析】注意镜面对称的特点,并结合实际求解.【解答】解:根据镜面对称的性质,因此12:05的真实图象应该是20:51.故答案为20:51.【点评】解决此类问题要注意所学知识与实际情况的结合.三、解答题(共46分)19.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】可通过证△ABF≌△DCE,来得出∠A=∠D的结论.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)∴∠A=∠D.【点评】此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.20.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.【考点】作图—复杂作图.【分析】(1)延长BC,作AD⊥BC于D;作BC的中点E,连接AE即可;(2)可根据三角形的内角和定理求∠BAC=20°,由外角性质求∠CAD=40°,那可得∠BAD=60°.【解答】解:(1)如图:(2)∵∠B=30°,∠ACB=130°,∴∠BAC=180°﹣30°﹣130°=20°,∵∠ACB=∠D+∠CAD,AD⊥BC,∴∠CAD=130°﹣90°=40°,∴∠BAD=20°+40°=60°.【点评】此题是计算与作图相结合的探索.考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.21.如图,已知E是∠AOB的平分线上的一点,EC⊥OA,ED⊥OB,垂足分别是C,D.求证:OE垂直平分CD.【考点】角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.【专题】证明题.【分析】先根据E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA得出△ODE≌△OCE,可得出OD=OC,DE=CE,OE=OE,可得出△DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD 的垂直平分线.【解答】证明:∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴DE=CE,OE=OE,在Rt△ODE与Rt△OCE中,,∴Rt△ODE≌Rt△OCE(HL),∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.22.已知:如图,AC=AB,∠1=∠2,∠3=∠4.求证:AE=AD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据∠1=∠2求出∠EAC=∠DAB,根据ASA推出△EAC≌△DAB即可.【解答】证明:∵∠1=∠2,∴∠1+∠BAC=∠2+∠BAC,∴∠EAC=∠DAB,在△EAC和△DAB中,,∴△EAC≌△DAB(ASA),∴AE=AD.【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.全等三角形的对应边相等,对应角相等.23.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,试问:DE和DF相等吗?说明理由.【考点】全等三角形的判定与性质.【专题】常规题型.【分析】连接AD,易证△ACD≌△ABD,根据全等三角形对应角相等的性质可得∠EAD=∠FAD,再根据∠AED=∠AFD,AD=AD,即可证明△ADE≌△ADF,根据全等三角形对应边相等的性质可得DE=DF.【解答】证明:连接AD,在△ACD和△ABD中,,∴ACD≌△ABD(SSS),∵DE⊥AE,DF⊥AF,∴∠AED=∠AFD=90°,∴在△ADE和△ADF中,,∴△ADE≌△ADF,∴DE=DF.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角、对应边相等的性质.24.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【考点】全等三角形的判定.【专题】证明题.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.25.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据全等三角形的判定定理AAS推知:△ADC≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD﹣DE.【解答】(1)证明:如图,∵AD⊥CE,∠ACB=90°,∴∠ADC=∠ACB=90°,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,,∴△ADC≌△CEB(AAS);(2)由(1)知,△ADC≌△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE﹣DE,∴BE=AD﹣DE=5﹣3=2(cm),即BE的长度是2cm.【点评】本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.。
重庆市育才中学2023-2024学年八年级上学期数学期中模拟一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中轴对称图形是()A.B.C.D.2.(4分)下列运算正确的是()A.(a2b3)2=a4b6B.3ab﹣2ab=1C.(﹣a)3•a=a4D.(a+b)2=a2+b23.(4分)已知三角形的两边长分别为6cm和14cm,则下列长度能作为第三边的是()A.12cm B.7cm C.6cm D.25cm4.(4分)若△ABC≌△DEF,则根据图中提供的信息,可得出x的值为()A.30 B.27 C.35 D.405.(4分)若一个多边形的内角和是它的外角和的3倍,则该多边形的边数为()A.6 B.7 C.8 D.96.(4分)如图1,从边长为a的大正方形纸片中挖去一个边长为b的小正方形纸片后,将其沿实线裁成两个相同的直角梯形,然后拼成一个等腰梯形(如图2),则通过计算图形阴影部分的面积,可以验证成立的公式是()A.(a﹣b)2=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)7.(4分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交边AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.120 B.60 C.45 D.308.(4分)下列说法中正确的是()A.全等三角形一定关于某条直线对称B.等腰三角形两腰上的中线相等C.三角形两边垂直平分线的交点到三角形三边距离相等D.有两个角相等的等腰三角形是等边三角形9.(4分)如图,弹性小球从点P(0,3)出发,沿如图所示方向运动,每当小球碰到长方形OABC的边时反弹,反弹时反射角等于入射角.小球第1次碰到长方形的边时的点为P1,第2次碰到长方形的边时的点为P2…第n 次碰到长方形的边时的点为P n,则点P3的坐标是(8,3),点P2020的坐标是()A.(8,3)B.(7,4)C.(5,0)D.(3,0)10.(4分)已知a,b,c,d均为常数,e,f均为非零常数,若有两个整式A=5x3﹣6x2+10=a(x﹣1)3+b(x﹣1)2+c(x﹣1)+d,B=x2+ex+f.下列结论中,正确的有()①当A+B为关于x的三次三项式时,则f=﹣10;②当多项式A•B乘积不含x4时,则e=6;③a+b+c=17;④当B能被x﹣2整除时,2e+f=﹣4;⑤若x=2m或m﹣2时,无论e和f取何值,B值总相等,则m=﹣2.A.①②④B.①③④C.③④⑤D.①③④⑤二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知a n=2,a m=5,则a n+2m=.12.(4分)已知点A(m,﹣3)与点B(﹣4,n)关于x轴对称,则m+n的值为.13.(4分)若等腰三角形的周长为26cm,一边长12cm,则腰长为cm.14.(4分)若+|2a﹣b+1|=0,则(b﹣a)2021=.15.(4分)如图,在等腰△ABC中,AB=AC,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,若∠CEF=50°,则∠ABC的度数是.16.(4分)已知∠AOB=30°,点P在∠AOB的内部,OP=4,OA上有一点M,OB上有一点N,当△MNP的周长取最小值时,△MNP的周长为.17.(4分)如图,在△ABC中,AB=AC,D是AB上一点,点E在AC的延长线上,且BD=CE,连接DE交BC 于F,过点D作DG⊥AE,垂足为G,连接FG.若FG=,∠E=30°,则GE=.18.(4分)如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC,E是AB上一点,且AE=AD,连接DE,过E 作EF⊥BD,垂足为F,延长EF交BC于点G.现给出以下结论:①EF=FG;②CD=DE;③∠BEG=∠BDC;④∠DEF=45°.其中正确的是.(写出所有正确结论的序号)三.解答题(共8小题,满分78分)19.(10分)计算:(1)(﹣2016)0+()﹣2+(﹣3)3;(2)4x4•x2﹣(﹣2x2)3﹣3x8÷4x2.20.(8分)如图,点C在线段AB上,AD∥BE,AC=BE,AD=BC,DE交AB于点G.(1)尺规作图:过点A作线段DE的垂线交DE于点F.(基本作图,保留作图痕迹,不写作法,不下结论)(2)求证:DF=FG(请补全证明过程).证明:∵AD∥BE,∴∠DAC=.在△ACD和△BEC中,∴△ACD≌△BEC(SAS).∴∠ADC=∠BCE,CD=,∴∠CDE=∠CED.∴∠ADC+∠CDE=∠BCE+∠CED,∴∠ADG=∠AGD,∴.∵AF⊥,∴DF=FG.21.(10分)已知与(y+1)2互为相反数,求(﹣2x)2﹣5x(﹣x+3y)﹣(3x+y)(3x﹣y)的值.22.(10分)已知:A(0,1),B(2,0),C(4,3).(1)请你在如图的平面直角坐标系中描出上述各点,画出△ABC;(2)请你画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1的各点坐标;(3)求△A1B1C1的面积.23.(10分)如图,△ABC是等边三角形,点D、E分别是BC、CA的延长线上的点,且CD=AE,DA的延长线交BE于点F.(1)求证:AD=BE;(2)求∠BFD的度数.24.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AD∥CG;(2)AF=AD.25.(10分)现有长与宽分别为a、b的小长方形若干个,用两个这样的小长方形拼成如图1的图形,用四个相同的小长方形拼成图2的图形,请认真观察图形,解答下列问题:(1)根据图中条件,请写出图1和图2所验证的关于a、b的关系式:(用含a、b的代数式表示出来);图1表示:;图2表示:;根据上面的解题思路与方法,解决下列问题:(2)若x+y=8,x2+y2=40,求xy的值;(3)请直接写出下列问题答案:①若2m+3n=5,mn=1,则2m﹣3n=;②若(4﹣m)(5﹣m)=6,则(4﹣m)2+(5﹣m)2=.(4)如图3,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设AB=7,两正方形的面积和S1+S2=16,求图中阴影部分面积.26.(10分)在△ABC中,CD⊥AB于点D,∠B=2∠ACD.(1)如图1,求证:△ABC是等腰三角形.(2)如图2,点E是边AB上一点,F是BC延长线上一点,连接CE、AF,若CE=AF,求证:AE=2AD+CF.(3)如图3,在(2)的条件下,过A作AC的垂线交CE的延长线于点H,点K是CE上一点,连接KA并延长至点G,使GA=AK,连接HG.若∠G=2∠GHA,∠F﹣∠B=∠CAF,GK=12,求HK的长.重庆市育才中学2023-2024学年八年级上学期数学期中模拟(答案)一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中轴对称图形是()A.B.C.D.【答案】C2.(4分)下列运算正确的是()A.(a2b3)2=a4b6B.3ab﹣2ab=1C.(﹣a)3•a=a4D.(a+b)2=a2+b2【答案】A3.(4分)已知三角形的两边长分别为6cm和14cm,则下列长度能作为第三边的是()A.12cm B.7cm C.6cm D.25cm【答案】A4.(4分)若△ABC≌△DEF,则根据图中提供的信息,可得出x的值为()A.30 B.27 C.35 D.40【答案】A5.(4分)若一个多边形的内角和是它的外角和的3倍,则该多边形的边数为()A.6 B.7 C.8 D.9【答案】C6.(4分)如图1,从边长为a的大正方形纸片中挖去一个边长为b的小正方形纸片后,将其沿实线裁成两个相同的直角梯形,然后拼成一个等腰梯形(如图2),则通过计算图形阴影部分的面积,可以验证成立的公式是()A.(a﹣b)2=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)【答案】D7.(4分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交边AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.120 B.60 C.45 D.30【答案】D8.(4分)下列说法中正确的是()A.全等三角形一定关于某条直线对称B.等腰三角形两腰上的中线相等C.三角形两边垂直平分线的交点到三角形三边距离相等D.有两个角相等的等腰三角形是等边三角形【答案】B9.(4分)如图,弹性小球从点P(0,3)出发,沿如图所示方向运动,每当小球碰到长方形OABC的边时反弹,反弹时反射角等于入射角.小球第1次碰到长方形的边时的点为P1,第2次碰到长方形的边时的点为P2…第n 次碰到长方形的边时的点为P n,则点P3的坐标是(8,3),点P2020的坐标是()A.(8,3)B.(7,4)C.(5,0)D.(3,0)【答案】C10.(4分)已知a,b,c,d均为常数,e,f均为非零常数,若有两个整式A=5x3﹣6x2+10=a(x﹣1)3+b(x﹣1)2+c(x﹣1)+d,B=x2+ex+f.下列结论中,正确的有()①当A+B为关于x的三次三项式时,则f=﹣10;②当多项式A•B乘积不含x4时,则e=6;③a+b+c=17;④当B能被x﹣2整除时,2e+f=﹣4;⑤若x=2m或m﹣2时,无论e和f取何值,B值总相等,则m=﹣2.A.①②④B.①③④C.③④⑤D.①③④⑤【答案】D二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知a n=2,a m=5,则a n+2m=50.【答案】50.12.(4分)已知点A(m,﹣3)与点B(﹣4,n)关于x轴对称,则m+n的值为﹣1.【答案】见试题解答内容13.(4分)若等腰三角形的周长为26cm,一边长12cm,则腰长为12或7cm.【答案】见试题解答内容14.(4分)若+|2a﹣b+1|=0,则(b﹣a)2021=﹣1.【答案】﹣1.15.(4分)如图,在等腰△ABC中,AB=AC,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,若∠CEF=50°,则∠ABC的度数是65°.【答案】65°.16.(4分)已知∠AOB=30°,点P在∠AOB的内部,OP=4,OA上有一点M,OB上有一点N,当△MNP的周长取最小值时,△MNP的周长为4.【答案】4.17.(4分)如图,在△ABC中,AB=AC,D是AB上一点,点E在AC的延长线上,且BD=CE,连接DE交BC 于F,过点D作DG⊥AE,垂足为G,连接FG.若FG=,∠E=30°,则GE=.【答案】见试题解答内容18.(4分)如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC,E是AB上一点,且AE=AD,连接DE,过E 作EF⊥BD,垂足为F,延长EF交BC于点G.现给出以下结论:①EF=FG;②CD=DE;③∠BEG=∠BDC;④∠DEF=45°.其中正确的是①③④.(写出所有正确结论的序号)【答案】①③④三.解答题(共8小题,满分78分)19.(10分)计算:(1)(﹣2016)0+()﹣2+(﹣3)3;(2)4x4•x2﹣(﹣2x2)3﹣3x8÷4x2.【答案】(1)﹣22;(2)﹣x6.20.(8分)如图,点C在线段AB上,AD∥BE,AC=BE,AD=BC,DE交AB于点G.(1)尺规作图:过点A作线段DE的垂线交DE于点F.(基本作图,保留作图痕迹,不写作法,不下结论)(2)求证:DF=FG(请补全证明过程).证明:∵AD∥BE,∴∠DAC=∠CBE.在△ACD和△BEC中,∴△ACD≌△BEC(SAS).∴∠ADC=∠BCE,CD=DC=EC,∴∠CDE=∠CED.∴∠ADC+∠CDE=∠BCE+∠CED,∴∠ADG=∠AGD,∴AD=AG.∵AF⊥DG,∴DF=FG.【答案】(1)作图见解答过程;(2)∠CBE,DC=EC,AD=AG,DG.21.(10分)已知与(y+1)2互为相反数,求(﹣2x)2﹣5x(﹣x+3y)﹣(3x+y)(3x﹣y)的值.【答案】y2﹣15xy,原式=31.22.(10分)已知:A(0,1),B(2,0),C(4,3).(1)请你在如图的平面直角坐标系中描出上述各点,画出△ABC;(2)请你画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1的各点坐标;(3)求△A1B1C1的面积.【答案】(1)图形见解答;(2)图形见解答;A1(0,1),B1(﹣2,0),C1(﹣4,3);(3)4.23.(10分)如图,△ABC是等边三角形,点D、E分别是BC、CA的延长线上的点,且CD=AE,DA的延长线交BE于点F.(1)求证:AD=BE;(2)求∠BFD的度数.【答案】∠BFD的度数60°24.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AD∥CG;(2)AF=AD.【答案】(2)△ACF≌△CBG(ASA),∴AF=CG,∴AF=AD.25.(10分)现有长与宽分别为a、b的小长方形若干个,用两个这样的小长方形拼成如图1的图形,用四个相同的小长方形拼成图2的图形,请认真观察图形,解答下列问题:(1)根据图中条件,请写出图1和图2所验证的关于a、b的关系式:(用含a、b的代数式表示出来);图1表示:(a+b)2=a2+b2+2ab;图2表示:(a+b)2=(a﹣b)2+4ab;根据上面的解题思路与方法,解决下列问题:(2)若x+y=8,x2+y2=40,求xy的值;(3)请直接写出下列问题答案:①若2m+3n=5,mn=1,则2m﹣3n=±1;②若(4﹣m)(5﹣m)=6,则(4﹣m)2+(5﹣m)2=13.(4)如图3,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设AB=7,两正方形的面积和S1+S2=16,求图中阴影部分面积.【答案】(1)(a+b)2=a2+b2+2ab;(a+b)2=(a﹣b)2+4ab.(2)12.(3)①±1;②13.(4).26.(10分)在△ABC中,CD⊥AB于点D,∠B=2∠ACD.(1)如图1,求证:△ABC是等腰三角形.(2)如图2,点E是边AB上一点,F是BC延长线上一点,连接CE、AF,若CE=AF,求证:AE=2AD+CF.(3)如图3,在(2)的条件下,过A作AC的垂线交CE的延长线于点H,点K是CE上一点,连接KA并延长至点G,使GA=AK,连接HG.若∠G=2∠GHA,∠F﹣∠B=∠CAF,GK=12,求HK的长.【答案】(3).。
北师大版八年级上册数学《期中》模拟考试(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)6.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且BG=CG ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG ;②∠EAG=45°;③CE=2DE ;④AG ∥CF ;⑤S △FGC =725.其中正确结论的个数是( )A .2个B .3个C .4个D .5个7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 9.如图,小明从A 点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A 点时,一共走的路程是( )A .100米B .110米C .120米D .200米10.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.函数2y x =-x 的取值范围是________.2.分解因式2242xy xy x ++=___________。
2024-2025八年级上册期中模拟试卷一、填空题(本题满分30分,每小题3分)1. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A. B. C. D. 2. 已知长为a ,b ,c 的三条线段首尾顺次相接组成一个三角形.若7a =,9b =,则c 的取值范围是( )A. 2>cB. 16c <C. 216c ≤≤D. 216c << 3. 如图,ACE △≌DBF ,若11cm AD =,5cm =BC ,则AB 长为( )A 6cm B. 7cm C. 4cm D. 3cm4. 下列命题:①经过一点有且只有一条直线;②线段垂直平分线上的点到这条线段两端的距离相等;③有两边及其一角对应相等的两个三角形全等;④等腰三角形底边上的高线和中线重合.其中是真命题的有( )A. 1个B. 2个C. 3个D. 4个5. 如图,四边形ABCD 是轴对称图形,BD 所在的直线是它的对称轴, 1.6 cm AB =, 2.3 cm CD =,则四边形ABCD 的周长为( )A. 3.9cmB. 7.8cmC. 4cmD. 4.6cm 6. 如图,CD ,CE ,CF 分别是ABC 的高、角平分线、中线,则下列各式中错误的是( ).A 2AB BF = B. 12ACE ACB ∠=∠ C. AE BE = D. CD BE ⊥7. 如图90B C ∠=∠=°,AD AE =,添加下列条件后不能..使ABD ECA △≌△的是( )A. 2AD BD =B. BD AC =C. =90DAE ∠°D. AB EC = 8. 一个正多边形的边长是3,从一个顶点可以引出4条对角线,则这个正多边形的周长是( )A. 12B. 15C. 18D. 21 9. 如图,在ABC 中,AB AC =,AB 的垂直平分线交AC 于点P ,若10cm AB =,6cm BC =,则PBC △的周长等于( )A. 16cmB. 12cmC. 8cmD. 20cm 10. 如图,在ABC 中,BD 为AC 边上的中线,已知8BC =,5AB =,BCD △的周长为20,则ABD △的周长为( )A. 17B. 23C. 25D. 28 11. 四盏灯笼的位置如图.已知A ,B ,C ,D 的坐标分别是()1,1−−,()1,1-,()2,1−,()3.2,1−,平移y 轴右侧的一盏灯笼,使得y 轴两侧的灯笼对称,则平移的方法可以是( ).A. 将B 向左平移4.2个单位B. 将C 向左平移4个单位C. 将D 向左平移5.2个单位D. 将C 向左平移4.2个单位12. 如图,在ABC ∆中,90A ∠=°,4AB =,3AC =,点O 为AB 的中点,点M 为ABC 内一动点且2OM =,点N 为OM 的中点,当BN CM +最小时,则ACM ∠的度数为( )A 15° B. 30° C. 45° D. 60°二.填空题(本题满分24分,每小题3分)13. 正五边形每个内角的度数为______.14. 若等腰三角形一个内角为36°,则这个等腰三角形顶角的度数为_____________. 15. 点P (1,-2)关于y 轴的对称点的坐标是_________.16. 过12边形的一个顶点可以画对角线的条数是____.17. 如图,点D 在BC 上,AB AC CD ==,AD BD =,则BAC ∠=_____.18. 如图,在ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN ,分别交边AB BC ,于点D 和E ,连接CD .若90BCA ∠=°,8AB =,则CD 的长为_______.三. 解答题(本大题满分62分).的19. 如图,B D BC DC ∠=∠=,.求证:AB AD =.20. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.21. 如图,ABC 中,16cm AC =,DE 为AB 的垂直平分线,交AC 于点E ,BCE 的周长为26cm ,求BC 的长.22. 如图所示,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=°,求ACE ∠的度数.23. 在 ABC 中,CD ⊥AB 于D ,CE 是∠ACB 的平分线,∠A =20°,∠B =60°.求∠BCD 和∠ECD 的度数.24. ABC 在平面直角坐标系中位置如图所示.(1)将ABC 先向下平移4个单位长度,再向右平移3个单位长度,画出平移后的111A B C △,并写出顶点1A ,1B ,1C 的坐标;(2)计算111A B C △的面积.25. 如图(1) ABC 和 DEC 都是等腰直角三角形,其中∠ACB =∠DCE =90°,BC =AC ,EC =DC ,点E 在 ABC 内部,直线AD 与BE 交于点F ,线段AF 、BF 、CF 之间存在怎么样的数量关系?(1)先将问题特殊化如图2,当点D 、F 重合时,直接写出线段AF 、BF 、CF 之间的数量关系式: ;(2)再探究一般情况如图1,当点D 、F 不重合时,证明(1)中的结论仍然成立. (3)如图3,若 ABC 和 DEC 都是含30°的直角三角形,若∠ACB =∠DCE =90°,∠BAC =∠EDC =30°,点E 在 ABC 内部,直线AD 、BE 交于点F ,直接写出一个等式,表示线段AF 、BF 、CF 之间的数量关系.的26. 在平面直角坐标系中,点A 在x 轴正半轴上,点B 在y 轴正半轴上,∠ABC =90°,且AB BC =.(1)如图(1),(5,0)A ,(0,2)B ,点C 在第三象限,请直接写出点C 的坐标; (2)如图(2),BC 与x 轴交于点D ,AC 与y 轴交于点E ,若点D 为BC 的中点,求证:ADB CDE ∠=∠;(3)如图(3),(,0)A a ,M 在AC 延长线上,过点(,)M m a −作MN x ⊥轴于点N ,探究线段BM ,AN ,OB 之间的关系,并证明你的结论.。
2023-2024学年江苏省南京市八年级(上)期中数学模拟试卷一、选择题:本题共7小题,每小题2分,共14分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列体育运动项目图标中,是轴对称图形的是()A. B. C. D.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,73.如图,,,添加下列哪一个条件可以推证≌()A.B.C.D.4.一个等腰三角形的顶角等于,则这个等腰三角形的底角度数是()A. B. C. D.5.如图,,,则下列判断正确的是()A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分6.如图,中,BF、CF分别平分和,过点F作交AB于点D,交AC于点E,那么下列结论:①;②为等腰三角形;③的周长等于的周长;④其中正确的是()A.①②B.①③C.①②④D.①②③④7.如图,AD是的中线,E,F分别是AD和AD延长线上的点,且,连接BF,CE,下列说法:①和的面积相等;②;③;④其中,正确的说法有()A.1个B.2个C.3个D.4个二、填空题:本题共9小题,每小题2分,共18分。
8.如图,是的一个外角,若,,则______.9.已知≌,的周长为24cm,若,,______10.如图,,,请你添加一个条件______只填一个即可,使≌11.如图,在中,CD是斜边AB上的中线,若,则______.12.已知等腰三角形的一个外角是,则它的底角度数为______度.13.如图,在中,,线段AB的垂直平分线交AC于点N,的周长是12cm,则BC的长为______14.如图,在中,,以顶点A为圆心,适当长为半径画弧,分别交边AC,AB于点M、N,再分别以M,N为圆心,大于长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若,,则的面积为______.15.已知如图等腰,,,于点D,点P是BA延长线上一点,点O是线段AD上一点,,下面的结论:①;②;③是等边三角形.其中正确的是______填序号16.如图,透明的圆柱形容器容器厚度忽略不计的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是______三、解答题:本题共10小题,共68分。
一、选择题(每题3分,共30分)1. 下列各数中,正数是()。
A. -5B. 0C. 3.14D. -2.52. 下列图形中,具有轴对称性的是()。
A. 等腰三角形B. 长方形C. 平行四边形D. 梯形3. 一个长方形的长是6厘米,宽是4厘米,它的周长是()厘米。
A. 16B. 18C. 20D. 224. 下列各数中,负整数是()。
A. -3B. 0C. 1.5D. -0.55. 下列各式中,正确的有()个。
A. 3x = 9,则x = 3B. 2a + 5 = 15,则a = 5C. 4b - 8 = 0,则b = 2D. 5c + 10 = 0,则c = -26. 下列各式中,表示圆的周长的是()。
A. 2πrB. πdC. πr^2D. 2r + 2πr7. 下列各数中,绝对值最大的是()。
A. -5B. -3C. 0D. 28. 下列各图形中,是中心对称图形的是()。
A. 等腰三角形B. 正方形C. 平行四边形D. 矩形9. 下列各数中,是质数的是()。
A. 9B. 11C. 15D. 1610. 下列各式中,正确的是()。
A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^2二、填空题(每题3分,共30分)1. 0.3的倒数是__________。
2. -2的相反数是__________。
3. 2a - 3b + 4a =__________。
4. 3.5的平方根是__________。
5. 圆的直径是10厘米,它的半径是__________厘米。
6. 下列各数中,是偶数的是__________。
7. 下列各数中,是正数的是__________。
8. 下列各图形中,是轴对称图形的是__________。
9. 下列各数中,是质数的是__________。
【典型题】初二数学上期中模拟试卷(附答案)一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个2.已知一个等腰三角形一内角的度数为80o ,则这个等腰三角形顶角的度数为( ) A .100o B .80o C .50o 或80o D .20o 或80o3.下列分式中,最简分式是( )A .B .C .D .4.如图,已知△ABC 中,∠ABC=45°,F 是高AD 和BE 的交点,CD=4,则线段DF 的长度为( )A .22B .4C .32D .42 5.已知x 2+mx+25是完全平方式,则m 的值为( )A .10B .±10C .20D .±20 6.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △P AB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和P A +PB 的最小值为( )A .29B .34C .52D .417.如图,在ABC ∆中,4AB =,3AC =,30BAC ∠=︒,将ABC ∆绕点A 按逆时针旋转60︒得到11AB C ∆,连接1BC ,则1BC 的长为( )A .3B .4C .5D .68.已知x+y=5,xy=6,则x 2+y 2的值是( )A .1B .13C .17D .259.如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b10.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .1411.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18m 2,求原正方形空地的边长.设原正方形的空地的边长为xm ,则可列方程为( )A .(x+1)(x+2)=18B .x 2﹣3x+16=0C .(x ﹣1)(x ﹣2)=18D .x 2+3x+16=0 12.若x 2+mxy+4y 2是完全平方式,则常数m 的值为( )A .4B .﹣4C .±4D .以上结果都不对 二、填空题13.若(42)(3)x m x -+的乘积中不含x 的一次项,则常数m =_________.14.当m=________时,方程233x m x x =---会产生增根. 15.若a+b=17,ab=60,则a-b 的值是__________. 16.已知关于x 的方程2x a x 2-+=1的解是负值,则a 的取值范围是______. 17.点P (-2, 3)关于x 轴对称的点的坐标为_________18.如图所示,AB ∥CD ,∠ABE=66°,∠D=54°,则∠E 的度数为_____度.19.若实数,满足,则______.20.化简的结果是_______.三、解答题21.水蜜桃是无锡市阳山的特色水果,水蜜桃一上市,水果店的老板用2000元购进一批水密桃,很快售完;老板又用3300元购进第二批水蜜桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批水蜜桃每件进价是多少元?(2)老板以每件65元的价格销售第二批水蜜桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批水密桃的销售利润不少于288元,剩余的仙桃每件售价最多打几折?(利润=售价-进价)22.某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元.(1)该商家购进的第一批衬衫是多少件;(2)若两批衬衫都按每件150元的价格销售,则两批衬衫全部售完后的利润是多少元.23.某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用50天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前18天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?24.材料阅读:若一个整数能表示成a2+b2(a、b是正整数)的形式,则称这个数为“完美数”.例如:因为13=32+22,所以13是“完美数”;再如:因为a2+2ab+2b2=(a+b)2+b2(a、b是正整数),所以a2+2ab+2b2也是“完美数”.(1)请你写出一个大于20小于30的“完美数”,并判断53是否为“完美数”;(2)试判断(x2+9y2)·(4y2+x2)(x、y是正整数)是否为“完美数”,并说明理由.25.解方程:(1)2332 x x=-(2)31144xx x ++=--.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:A选项既是轴对称图形,也是中心对称图形;B选项中该图形是轴对称图形不是中心对称图形;C选项中既是中心对称图形又是轴对称图形;D选项中是中心对称图形又是轴对称图形.故选B.考点: 1.轴对称图形;2.中心对称图形.2.D解析:D【解析】【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.【详解】()1若等腰三角形一个底角为80o,顶角为180808020o o o o--=;()2等腰三角形的顶角为80o.因此这个等腰三角形的顶角的度数为20o或80o.故选D.【点睛】.解答此类题目的关键是要注意分类讨本题考查等腰三角形的性质及三角形的内角和定理论,不要漏解.3.A解析:A【解析】【分析】根据最简分式的定义:分子和分母中不含公分母的分式,叫做最简分式,对四个选项中的分式一一判断即可得出答案.【详解】解:A.,分式的分子与分母不含公因式,是最简分式;B.,分式的分子与分母含公因式2,不是最简分式;C. ,分式的分子与分母含公因式x-2,不是最简分式;D. ,分式的分子与分母含公因式a,不是最简分式,故选A.【点睛】本题考查了最简分式的概念.对每个分式的分子和分母分别进行因式分解是解题的关键. 4.B解析:B【解析】【分析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.5.B解析:B【解析】【分析】根据完全平方式的特点求解:a2±2ab+b2.【详解】∵x2+mx+25是完全平方式,故选B .【点睛】本题考查了完全平方公式:a 2±2ab +b 2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x 和1的平方,那么中间项为加上或减去x 和1的乘积的2倍.6.D解析:D【解析】解:设△ABP 中AB 边上的高是h .∵S △P AB =13S 矩形ABCD ,∴12 AB •h =13AB •AD ,∴h =23AD =2,∴动点P 在与AB 平行且与AB 的距离是2的直线l 上,如图,作A 关于直线l 的对称点E ,连接AE ,连接BE ,则BE 就是所求的最短距离.在Rt △ABE 中,∵AB =5,AE =2+2=4,∴BE =22AB AE + =2254+=41,即P A +PB的最小值为41.故选D .7.C解析:C 【解析】【分析】由旋转性质得∠CAC 1=600,AC=AC 1=3,在Rt ⊿ABC 1中,BC 122221435AB AC +=+=.【详解】因为ABC ∆绕点A 按逆时针旋转60︒得到11AB C ∆,所以∠CAC 1=600,AC=AC 1=3所以∠BAC 1=∠BAC+∠CAC 1=300+600=900,所以,在Rt ⊿ABC 1中,BC 122221435AB AC +=+=故选:C【点睛】考核知识点:旋转性质,勾股定理.运用旋转性质是关键.8.B解析:B【分析】将x+y=5两边平方,利用完全平方公式化简,把xy的值代入计算,即可求出所求式子的值.【详解】解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.9.A解析:A【解析】【分析】4张边长为a的正方形卡片的面积为4a2,4张边长分别为a、b的矩形卡片的面积为4ab,1张边长为b的正方形卡片面积为b2,9张卡片拼成一个正方形的总面积=4a2+4ab+b2=(2a+b)2,所以该正方形的边长为:2a+b.【详解】设拼成后大正方形的边长为x,∴4a2+4ab+b2=x2,∴(2a+b)2=x2,∴该正方形的边长为:2a+b.故选A.【点睛】本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长.10.A解析:A【解析】【分析】利用乘法的意义得到4•2n=2,则2•2n=1,根据同底数幂的乘法得到21+n=1,然后根据零指数幂的意义得到1+n=0,从而解关于n的方程即可.【详解】∵2n+2n+2n+2n=2,∴4×2n=2,∴2×2n=1,∴21+n=1,∴1+n=0,∴n=﹣1,故选A.【点睛】本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即a m •a n =a m+n (m ,n 是正整数).11.C解析:C【解析】【分析】【详解】试题分析:可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式列方程可得()()-1-2x x =18.故选C .考点:由实际问题抽象出一元二次方程.12.C解析:C【解析】∵(x±2y )2=x 2±4xy+4y 2, ∴在x 2+mxy+4y 2中,±4xy=mxy ,∴m=±4. 故选C .二、填空题13.6【解析】【分析】直接利用多项式乘法去括号进而得出一次项系数为0求解即可【详解】∵的乘积中不含的一次项∴=中∴故答案为:6【点睛】本题主要考查了多项式乘多项式解答本题的关键在于正确去括号并计算解析:6【解析】【分析】直接利用多项式乘法去括号,进而得出一次项系数为0,求解即可.【详解】∵(42)(3)x m x -+的乘积中不含x 的一次项,∴(42)(3)x m x -+=24(122)6x m x m +--中1220m -=∴6m =故答案为:6.【点睛】本题主要考查了多项式乘多项式,解答本题的关键在于正确去括号并计算. 14.3【解析】【分析】根据分式性质分式方程增根的条件进行求解【详解】∵∴2(x -3)-x=m 求得x=-m∵x -3=0即x=3时原方程有增根∴-m=3m=-3故答案为-3【点睛】主要考察的是分式性质分式方解析:3【解析】【分析】根据分式性质、分式方程增根的条件进行求解.【详解】 ∵233x m x x ,=--- ∴233x m x x ,-=--- 2(x-3)-x=m,求得x=-m ,∵ x-3=0 即 x=3 时,原方程有增根∴-m=3m=-3故答案为-3.【点睛】主要考察的是分式性质、分式方程有增根的条件的知识点.15.±7【解析】∵∴∴故答案为:±7点睛:本题解题的关键是清楚:与的关系是:解析:±7【解析】∵1760a b ab +==,,∴222()()41724049a b a b ab -=+-=-=,∴7a b -=±.故答案为:±7.点睛:本题解题的关键是清楚:2()a b -与2()a b +的关系是:22()()4a b a b ab -=+-. 16.a <-2且a≠-4【解析】【分析】表示出分式方程的解由分式方程的解为负值确定出a 的范围即可【详解】解:方程=1去分母得:2x-a=x+2解得:x=a+2由分式方程的解为负值得到a+2<0且a+2≠-解析:a <-2且a ≠-4【解析】【分析】表示出分式方程的解,由分式方程的解为负值,确定出a 的范围即可.【详解】 解:方程22x a x -+=1, 去分母得:2x-a=x+2,解得:x=a+2,由分式方程的解为负值,得到a+2<0,且a+2≠-2,解得:a<-2且a≠-4,故答案为:a<-2且a≠-4【点睛】此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.易错点是容易忽略x+2≠0这一条件.17.(-2-3)【解析】【分析】利用平面内两点关于x轴对称时:横坐标不变纵坐标互为相反数进行求解【详解】解:点P(-23)则点P关于x轴对称的点的坐标为(-2-3)故答案为:(-2-3)【点睛】本题考查解析:(-2,-3)【解析】【分析】利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,进行求解.【详解】解:点P(-2, 3),则点P关于x轴对称的点的坐标为(-2,-3)故答案为:(-2,-3).【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.18.12°【解析】试题分析:利用三角形的外角与内角的关系及平行线的性质可直接解答解:∵AB∥CD∴∠BFC=∠ABE=66°在△EFD中利用三角形外角等于不相邻的两个内角的和得到∠E=∠BFC﹣∠D=1解析:12°【解析】试题分析:利用三角形的外角与内角的关系及平行线的性质可直接解答.解:∵AB∥CD,∴∠BFC=∠ABE=66°,在△EFD中利用三角形外角等于不相邻的两个内角的和,得到∠E=∠BFC﹣∠D=12°.19.5【解析】【分析】根据非负数的性质列式求出mn的值然后代入代数式进行计算即可得解【详解】解:根据题意得:m-2=0n-2018=0∴m=2n=2018∴m-1+n0=12+1=32;故答案为:32【解析:5【解析】【分析】根据非负数的性质列式求出m,n的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得:,∴∴;故答案为:.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,解题的关键是利用非负性正确求值.20.2x-3【解析】【分析】先通分把异分母分式化为同分母分式然后再相加减【详解】12x2-9+2x+3=12x+3x-3+2x-3x+3x-3=12+2(x-3)x+3x-3=2x+3x+3x-3=2x 解析:【解析】【分析】先通分,把异分母分式化为同分母分式,然后再相加减.【详解】+====,故答案为:.【点睛】本题考查了分式的加减运算.解决本题首先应通分,最后要注意将结果化为最简分式.三、解答题21.(1)50;(2)6折.【解析】【分析】(1)根据题意设第一批水蜜桃每件进价是x元,利用第二批水密桃进价建立方程求解即可;(2)根据题意设剩余的仙桃每件售价最多打m折,并建立不等式,求出其解集即可得出剩余的仙桃每件售价最多打几折.【详解】解:(1)设第一批水蜜桃每件进价是x 元,则有:20003(5)33002x x ⨯⨯+=,解得50x =, 所以第一批水蜜桃每件进价是50元.(2)由(1)得出第二批水密桃的进价为:55元,数量为:33006055=件, 设剩余的仙桃每件售价最多打m 折,则有: 6580606065(180)3300288m ⨯⨯+⨯⨯--≥%%,解得0.6m ≥,即最多打6折.【点睛】本题考查分式方程的实际应用以及不等式的实际应用,理解题意并根据题意建立方程和不等式是解题的关键.22.(1) 120件;(2) 15600元.【解析】【分析】(1)设第一批衬衫x 件,则第二批衬衫为2x 件,接下来依据第二批衬衫每件进价贵了10元列方程求解即可;(2)先求得每一批衬衫的数量和进价,然后再求得两批衬衫的每一件衬衫的利润,最后根据利润=每件的利润×件数求解即可.【详解】解:(1)设第一批衬衫x 件,则第二批衬衫为2x 件.根据题意得:1200026400102x x=-. 解得;x=120.答;该商家购进的第一批衬衫是120件.(2)12000÷120=100,100+10=110. 两批衬衫全部售完后的利润=120×(150﹣100)+240×(150﹣110)=15600元. 答:两批衬衫全部售完后的利润是15600元.23.(1)75天;(2)30天【解析】【分析】(1)设二号施工队单独施工需要x 天,根据一号施工队完成的工作量+二号施工队完成的工作量=总工程(单位1),即可得出关于x 的分式方程,解之经检验后即可得出结论; (2)根据工作时间=工作总量÷工作效率,即可求出结论.【详解】解:(1)设二号施工队单独施工需要x 天,根据题意得501850518150x---+= 解得:x =75经检验,x =75是原方程的解答:由二号施工队单独施工,完成整个工期需要75天.(2)设此项工程一号、二号施工队同时进场施工,完成整个工程需要y 天,根据题意得 111+=y 5075⎛⎫÷ ⎪⎝⎭, 解得y=30(天)经检验y=30是原方程的根,∴此项工程一号、二号施工队同时进场施工,完成整个工程需要30天.【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.24.(1)25,53是完美数; (2)是,理由见解析.【解析】【分析】(1)根据“完美数”的定义判断即可;(2)根据多项式的乘法法则计算出结果后,根据“完美数”的定义判断即可.【详解】(1)25=4²+3²,∵53=49+4=7²+2²,∴53是“完美数”;(2)(x²+9y²)⋅(4y²+x²)是“完美数”,(x²+9y²)⋅(4y²+x²)=4x 2y²+364y +4x +9x²y²=13x²y²+364y +4x =(6y²+x²) ²+x²y²,∴(x²+9y²)⋅(4y²+x²)是“完美数”. 【点睛】本题考查了因式分解的应用,正确的理解新概念“完美数”是解题的关键.25.(1)9x =- (2)0x =【解析】【分析】(1)先去分母,再移项和合并同类项,最后检验即可.(2)先去分母,再移项和合并同类项,最后检验即可.【详解】(1)2332x x=- 439x x =-9x =-经检验,9x =-是方程的根.(2)31144x x x++=-- 341x x ++-=-x=20x=x=是方程的根.经检验,0【点睛】本题考查了解分式方程的问题,掌握解分式方程的方法是解题的关键.。
北师大版八年级(上)期中数学复习模拟试题一、选择题(本大题共10小题,共30分.在每小题列出的选项中,选出符合题目的一项)1.(3分)下列实数是无理数的是()A.B.C.D.20222.(3分)在平面直角坐标系中,点A(2,﹣3)位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列计算正确的是()A.B.C.D.4.(3分)如图:三个正方形和一个直角三角形,图形A的面积是()A.225B.144C.81D.无法确定5.(3分)已知点A(2,a)关于x轴的对称点为点B(b,﹣3),则a+b的值为()A.5B.1C.﹣1D.﹣﹣56.(3分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.149.159.149.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁7.(3分)如图,一棵大树在离地面6米高的B处断裂,树顶A落在离树底部C的8米处,则大树断裂之前的高度为()A.10米B.16米C.15米D.14米8.(3分)为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是()成绩/分84889296100人数/人249105A.92分,96分B.94分,96分C.96分,96分D.96分,100分9.(3分)下列四个命题:①=±4,②实数与数轴上的点是一一对应的;③△ABC的三条边分别为a,b,c,若a2+b=c2,则∠C=90°;④平面内点A(1,2)与点B(﹣1,2)关于y轴对称.其中假命题有()个.A.1B.2C.3D.410.(3分)如图,在平面直角坐标系中,点A(3,0),点B(0,2),连接AB,将线段AB 绕点A顺时针旋转90°得到线段AC,连接OC,则线段OC的长度为()A.4B.C.6D.二、填空题(本大题共5小题,共15分)11.(3分)的立方根是.12.(3分)如果,那么a b=.13.(3分)中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,﹣2),“马”位于点(4,﹣2),则“兵”位于点.14.(3分)小明参加“建团百年,我为团旗添光彩”主题演讲比赛,其演讲形象、内容、效果三项分别是9分、8分、8分.若将三项得分依次按3:4:3的比例确定最终成绩,则小明的最终比赛成绩为分.15.(3分)云顶滑雪公园是北京2022年冬奥会7个雪上竞赛场馆中唯一利用现有雪场改造而成的,如图左右两幅图分别是公园内云顶滑雪场U型池的实景图和示意图,该场地可以看作是从一个长方体中挖去了半个圆柱而成,它的横截面图中半圆的半径为m,其边缘AB=CD=24m,点E在CD上,CE=4m,一名滑雪爱好者从点A滑到点E,他滑行的最短路线长为m.三、解答题(本大题共7小题,共55分。
2022-2023学年初中八年级上数学期中试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:100 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 函数自变量的取值范围是( )A.B.C.D.2. 如图,已知棋子“车”的坐标为,棋子“马”的坐标为,则棋子“炮”的坐标为( )A.B.C.D.3. 下列四个图形都是轴对称图形,其中对称轴一共有三条的是( )A.y =13x +2−−−−−√x x >−23x ≤−23x ≥−23x <−23(−2,3)(1,3)(3,2)(3,1)(2,2)(−2,2)B. C. D.4. 下列等式成立的是( )A.B.C.D.5. 已知点,且,则点在( )A.第一象限B.第二象限C.第三象限D.第四象限6. 下列说法正确的是( )A.的平方根等于的立方根B.,和的立方根都等于它本身C.的平方根等于D.的平方根是7. 将直线=沿轴向上平移个单位的到,则与的距离为( )3+4=72–√2–√×=3–√2–√5–√÷=23–√16–√3–√2=618−−√2–√P(x,y)|x −2|+|y +4|=0P 11−11016−−√±4(−)142−14:y L 12x −2y 4L 2L 1L 2–√A.B.C.D.8. 一次函数的图象经过( )A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限9. 如图,有一张矩形纸片,,,点是上一点,将纸片沿折叠,点,分别落在点,处,点在上,则线段的长为( )A.B.C.D.10. 某同学网购一种图书,每册定价元,另加书价的作为快递运费.若购书册,则需付款(元)与的函数解析式为( )A.B.C.D.5–√525–√535–√545–√5y =3x +6ABCD AB =8cm BC =10cm E CD AE B C B ′C ′D B ′C ′DE 3cm4cm5cm6cm205%x y x y =20x +1y =21xy =19xy =20x −1卷II (非选择题)二、 填空题 (本题共计 1 小题 ,共计5分 )11. (5分) 如图,钝角三角形的面积是,最长边=,平分,点,分别是,上的动点,则的最小值为________三、 解答题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )12. 计算:;;;. 13. 已知当,都是实数.且满足时,称为“开心点”.判断点,是否为“开心点”,并说明理由;若点是“开心点”,请判断点在第几象限?并说明理由.14. 如图,在的正方形网格中,已知四边形是轴对称图形.画出四边形的对称轴;画出四边形关于直线成轴对称的四边形.15. 如图是一块地,已知 ,,,且.△ABC 15AB 10BD ∠ABC M N BD BC CM +MN (1)−(2+3)(3−2)−×2(−1)2–√22–√2–√34−−√6–√(2)−+−|1−|()13–√−1(π−3.14)00.75−−−−√3–√(3)(+−)÷13−−√12−−√27−−√3–√(4)−+3a −1327a 3−−−−√a 23a −−√a 3−−√a 4108a −−−−√m n 2m =8+n P (m −1,)n +22(1)A(5,3)B(4,10)(2)M(a,2a −1)M 8×12ABCD (1)ABCD EF (2)ABCD HG A 1B 1C 1D 1AD =4m CD =3m,AB =13m BC =12m CD ⊥AD求的长(连接).证明:是直角三角形.求这块地四边形的面积.16. 已知直线,当为何值时(1)与轴相交于(2)与轴相交于(3)图象经过一、三、四象限? 17. 周末小丽从家出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,请结合图形完成下列问题:小丽从家到公园共用________分钟;公园离小丽家的距离为________米;小丽在便利店时间为________分钟;便利店离小丽家的距离为________米.18.如图,点,,且,满足.求,两点的坐标;如图,点在线段上,,满足,点在轴负半轴上,连接交轴负半轴于点,且 ,求点的坐标;(1)AC AC (2)△ABC (3)ABCD y =(3m −1)x +m −1m y (0,3)x (2,0)(1)(2)(3)(4)1A (0,a)B (b,0)a b |a −4|+=0b +6−−−−√(1)A B (2)1C (m ,n)AB m n n −m =5D y CD x M =S △MBC S △MOD D (3)AB用备用图平移直线,交轴正半轴于点,交轴于点,为直线上的第三象限内的一点,过点作轴于点,若,且,求点的坐标. 19. 已知:是的小数部分,是的小数部分.求,的值;求的平方根.20. 某边防局接到情报,近海处有一可疑船只正向公海方向行驶,边防局迅速派出快艇追赶(如图).图中、分别表示两船相对于海岸的距离(海里)与追赶时间(分)之间的关系.(1)求、的函数解析式;(2)当逃到离海岸海里的公海时,将无法对其进行检查.照此速度,能否在逃入公海前将其拦截?若能,请求出此时离海岸的距离:若不能,请说明理由.(3)AB x E y F P EF P PG ⊥x G =20S △PAB GE =12P a 9+13−−√b 9−13−−√(1)a b (2)4a +4b +5A B 12l 1l 2s t l 1l 2A 12B B A B参考答案与试题解析2022-2023学年初中八年级上数学期中试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】A【考点】函数自变量的取值范围二次根式有意义的条件【解析】根据被开方数是非负数,分母不能为零,可得不等式,根据解不等式,可得答案.【解答】解:由题意得,解得.故选.2.【答案】A【考点】位置的确定【解析】根据已知两点的坐标确定符合条件的平面直角坐标系,然后确定其它点的坐标.【解答】由棋子“车”的坐标为、棋子“马”的坐标为可知,平面直角坐标系的原点为底边正中间的点,以底边为轴,向右为正方向,以左右正中间的线为轴,向上为正方向;根据得出的坐标系可知,棋子“炮”的坐标为.3.【答案】3x +2>0x >−23A (−2,3)(1,3)x y (3,2)C【考点】轴对称的性质轴对称图形【解析】此题暂无解析【解答】此题暂无解答4.【答案】D【考点】二次根式的除法二次根式的乘法二次根式的加法二次根式的性质与化简【解析】根据二次根式的加、乘、除法法则及二次根式的性质逐一判断即可得.【解答】解:,与不是同类二次根式,不能合并,此选项计算错误;,,此选项计算错误;,,此选项计算错误;,,此选项计算正确.故选.5.【答案】D【考点】象限中点的坐标【解析】A 342–√B ×=3–√2–√6–√C ÷=×3–√16–√3–√6–√==318−−√2–√D 2=618−−√2–√D此题暂无解析【解答】解:由题意得,,,解得,,所以,点在第四象限.故选.6.【答案】B【考点】平方根立方根的性质【解析】根据平方根和立方根的运算定义逐项判断即可.【解答】解:,的平方根是,的立方根是,故该项错误;,的立方根是,的立方根是,的立方根是,故该项正确;,,的平方根是,故该项错误;,,的平方根是,故该项错误.故选.7.【答案】D【考点】一次函数图象与几何变换【解析】根据平移的规律得到的解析式为:=,求得=与轴交于,根据全等三角形的性质和勾股定理即可得到结论.【解答】∵将直线=沿轴向上平移个单位的到,∴的解析式为:=,∴=与轴交于,如图,∵=与轴交于,与轴交于,x −2=0y +4=0x =2y =−4P(2,−4)D A 1±111B −1−11100C =416−−√4±2D =(−)142116116±14B L 2y 2x +2:y L 22x +2y (0,2):y L 12x −2y 4L 2L 2y 2x +2:y L 22x +2y (0,2)y 2x +2x B(−1,0)y A(0,2)F(1,0)E(0,−2)=与轴交于,与轴交于,∴=,过作于,反向延长交于,∵,∴,∴==,∵=,∴,∴=,∵=,=,∴,∴,∴,∴与的距离为,8.【答案】A【考点】一次函数图象与系数的关系一次函数的性质【解析】根据一次函数解析式中、,结合一次函数图象与系数的关系即可得出结论.【解答】解:∵在一次函数中:,,∴一次函数的图象经过第一、二、三象限.故选.9.【答案】C【考点】翻折变换(折叠问题)勾股定理【解析】由折叠的性质可得, ,,由勾股定理可求的长,由勾股定理可求解.y 2x −2x F(1,0)y E(0,−2)OB OF O OC ⊥AB C OC EF D AB //EF CD ⊥EF ∠OCB ∠ODF 90∘∠BOC ∠DOF △OBC ≅△OFD OC OD OA 2OB 1AB =5–√OC ==1×25–√25–√5CD =45–√5L 1L 245–√5k =3>0b =6>0y =3x +6k =3>0b =6>0y =3x +6A AB =A =8cm B ′BC ==10cm B ′C ′CE =E C ′D B ′解:∵将纸片沿折叠,的对应边恰好经过点,∴, ,,∴,∴,∵,∴∴.故选.10.【答案】B【考点】根据实际问题列一次函数关系式【解析】根据题意可得购买一册书需要花费元,根据此关系式可得出购书册与需付款(元)与的函数解析式.【解答】解:由题意得:购买一册书需要花费元,故购买册数需花费元.即.故选.二、 填空题 (本题共计 1 小题 ,共计5分 )11.【答案】【考点】轴对称——最短路线问题三角形的面积角平分线的性质【解析】过点作于点,交于点,过点作于,则即为的最小值,再根据三角形的面积公式求出的长,即为的最小值.AE BC B ′C ′D AB =A =8cm B ′BC ==10cm B ′C ′CE =E C ′D ===6(cm)B ′A −D 2B ′A 2−−−−−−−−−−√100−64−−−−−−−√D =−D =4(cm)C ′B ′C ′B ′D =+E 2C ′D 2C ′E 2D =16+E 2(8−DE)2DE =5cm C (20+20×5%)x y x (20+20×5%)x x(20+20×5%)y =x(20+20×5%)=21x B 3C CE ⊥AB E BD M M IMN ⊥BC N CE CM +MN CE CM +MN过点作于点,交于点,过点作于,,:平分于点,于,∴∴根据垂线段最短可知,的长即为的最小值,三角形的面积为,即的最小值为.故答案为.三、 解答题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )12.【答案】解:原式.原式.原式.原式.【考点】零指数幂、负整数指数幂二次根式的混合运算【解析】首先根据二次根式混合运算法则,先进行乘法运算,再进行加减运算即可;根据实数运算法则,首先利用负整数指数幂,零指数幂,二次根式的性质,绝对值化简各数,再进行加减运算即可.C CE ⊥AB E BD M M IMN ⊥BC N ABD ∠ABCME ⊥AB E MN ⊥BC N MN =MECE =CM +ME =CM +MNCE CM +MN ABC 15AB =10×10⋅CE =1512,CE =3CM +MN 33(1)=2−2+1−(9−8)−22–√92−−√=2−2+1−1−32–√2–√=2−52–√(2)=−1+−(−1)3–√3–√23–√=−1+−+13–√3–√23–√=3–√2(3)=(+2−3)÷3–√33–√3–√3–√=−÷233–√3–√=−23(4)=×3a −⋅+3a ×−×6133a −−√a 21a 3a −−√133a −−√a 43a −−√=a −a +a −a 3a −−√3a −−√3a −−√323a −−√=−a 23a −−√(1)(2)(3)先把括号内每一项化简再合并同类二次根式,最后进行除法运算即可;根据二次式加减运算法则,首先化简各二次根式,再合并同类二次根式即可;【解答】解:原式.原式.原式.原式.13.【答案】解:点为“开心点”,理由如下,当时,,得,则,所以,所以是“开心点”;点不是“开心点”,理由如下,当时,,得,则,所以,所以点不是“开心点”.点在第三象限,理由如下:点是“开心点”,所以,,代入有,,所以,故点在第三象限.【考点】(3)(4)(1)=2−2+1−(9−8)−22–√92−−√=2−2+1−1−32–√2–√=2−52–√(2)=−1+−(−1)3–√3–√23–√=−1+−+13–√3–√23–√=3–√2(3)=(+2−3)÷3–√33–√3–√3–√=−÷233–√3–√=−23(4)=×3a −⋅+3a ×−×6133a −−√a 21a 3a −−√133a −−√a 43a −−√=a −a +a −a 3a −−√3a −−√3a −−√323a −−√=−a 23a −−√(1)A (5,3)A (5,3)m −1=5,=3n +22m =6,n =42m =12,8+n =122m =8+n A (5,3)B (4,10)B (4,10)m −1=4,=10n +22m =5,n =182m =10,8+18=262m ≠8+n B (4,10)(2)M M (a,2a −1)m −1=a,=2a −1n +22m =a +1,n =4a −42m =8+n 2a +2=8+4a −4a =−1,2a −1=−3M (−1,−3)M点的坐标象限中点的坐标【解析】(1)根据、点坐标,代入中,求出和的值,然后代入检验等号是否成立即可;(2)直接利用“开心点”的定义得出的值进而得出答案.【解答】解:点为“开心点”,理由如下,当时,,得,则,所以,所以是“开心点”;点不是“开心点”,理由如下,当时,,得,则,所以,所以点不是“开心点”.点在第三象限,理由如下:点是“开心点”,所以,,代入有,,所以,故点在第三象限.14.【答案】解:如图所示,直线即为所求.如图所示,四边形即为所求.【考点】作图-轴对称变换【解析】A B (m −1,)n +22m n 2m =8+n a (1)A (5,3)A (5,3)m −1=5,=3n +22m =6,n =42m =12,8+n =122m =8+n A (5,3)B (4,10)B (4,10)m −1=4,=10n +22m =5,n =182m =10,8+18=262m ≠8+n B (4,10)(2)M M (a,2a −1)m −1=a,=2a −1n +22m =a +1,n =4a −42m =8+n 2a +2=8+4a −4a =−1,2a −1=−3M (−1,−3)M (1)EF (2)A 1B 1C 1D 1此题暂无解析【解答】解:如图所示,直线即为所求.如图所示,四边形即为所求.15.【答案】解:如图所示,连接.∵∴.证明:已知,,,∵,∴是直角三角形.解:,,.【考点】三角形的面积勾股定理的逆定理勾股定理【解析】此题暂无解析【解答】解:如图所示,连接.(1)EF (2)A 1B 1C 1D 1(1)AC CD ⊥AD,AC ===5A +C D 2D 2−−−−−−−−−−√+4232−−−−−−√m (2)AB =13m BC =12m AC =5m +=52122132△ABC (3)S △ACD =4×3×=6()12m 2S △ABC =5×12×=30()12m 2=30−6=24S 四边形ABCD ()m 2(1)AC∵∴.证明:已知,,,∵,∴是直角三角形.解:,,.16.【答案】解:(1)∵直线与轴相交于点,∴,解得;(2)∵直线轴相交于点,∴,解得;(3)∵直线图象经过一、三、四象限,∴,解得:.【考点】一次函数图象与系数的关系【解析】(1)把代入直线解析式,求出的值即可;代入直线解析式,求出的值即可;(3)根据函数的图象的位置列出关于的不等式,求出的取值范围即可.【解答】解:(1)∵直线与轴相交于点,∴,解得;(2)∵直线轴相交于点,∴,解得;(3)∵直线图象经过一、三、四象限,∴,CD ⊥AD,AC ===5A +C D 2D 2−−−−−−−−−−√+4232−−−−−−√m (2)AB =13m BC =12m AC =5m +=52122132△ABC (3)S △ACD =4×3×=6()12m 2S △ABC =5×12×=30()12m 2=30−6=24S 四边形ABCD ()m 2y (0,3)m −1=3m =4x (2,0)2(3m −1)+m −1=0m =37y =(3m −1)x +m −1{3m −1>0m −1<0<m <113(0,3)m (2)(2,0)m m m y (0,3)m −1=3m =4x (2,0)2(3m −1)+m −1=0m =37y =(3m −1)x +m −1{3m −1>0m −1<0m <11解得:.17.【答案】【考点】函数的图象【解析】此题考查了函数图像,观察函数图像,逐一分析四个问题.【解答】解:由题中图象可知,小丽从家到公园共用分钟.故答案为:.由题中图象可知,公园离小丽家的距离为米.故答案为:.由题中图象可知,小丽在便利店时间为(分钟).故答案为:.由题中图象可知,便利店离小丽家的距离为米.故答案为:.18.【答案】解:,,,,,,,,.∵,,,如图,连接,过点作轴于点,轴于点,,<m <11320200051000(1)2020(2)20002000(3)15−10=55(4)10001000(1)∵|a −4|≥0≥0b +6−−−−√|a −4|+=0b +6−−−−√∴|a −4|=0=0b +6−−−−√∴a =4b =−6∴A (0,4)B (−6,0)(2)=S △BCM S △MOD ∴=S △ABO S △ACD ∵=⋅AO ⋅BO =12S △ABO 121CO C CE ⊥y E CF ⊥x F =+S △ABO S △ACO S △BCO 6×n +×4×(−m)=1211即,,而,,.如图,连接,,∵,∴,即,,,,,,∵轴,∴,,,,,,,,.【考点】坐标与图形性质非负数的性质:算术平方根非负数的性质:绝对值三角形的面积×6×n +×4×(−m)=121212∴{n −m =5,3n −2m =12,∴{m =−3,n =2,∴C (−3,2)=⋅CE ⋅AD S △ACD 12=×3×(4+OD)=1212∴OD =4∴D (0,−4)(3)2AE BF ==20S△PAB S △EAB AO ⋅BE =20124×(6+OE)=40∴OE =4∴E (4,0)∵GE =12∴GO =8∴G (−8,0)PG ⊥x ==−8x p x G ∵==20S △ABF S△PBA ∴=⋅BO ⋅AF =×6×(4+OF)=20S ΔABF 1212∴OF =83∴F (0,−)83∵=+S △PGE S 梯形GPFO S △OEF ∴×12×PG =×(+PG)×8+×4×1212831283∴PG =8∴P (−8,−8)【解析】()利用非负数的性质即可解决问题;(2)利用三角形面积求法,由列方程组,求出点坐标,进而由面积求出点坐标;由平行线间距离相等得到,继而求出点坐标,同理求出点坐标,再由求出点坐标,根据求出的长即可求点坐标.【解答】解:,,,,,,,,.∵,,,如图,连接,过点作轴于点,轴于点,,即,,而,,.如图,连接,,∵,1=+S 加加BO S △ACO S 加加C C 4ACD D (3)==20S △PAB S △EAB E F 1GE =12G =+S PPG S 梯形GPFO S △OEF PG P (1)∵|a −4|≥0≥0b +6−−−−√|a −4|+=0b +6−−−−√∴|a −4|=0=0b +6−−−−√∴a =4b =−6∴A (0,4)B (−6,0)(2)=S △BCM S △MOD ∴=S △ABO S △ACD ∵=⋅AO ⋅BO =12S △ABO 121CO C CE ⊥y E CF ⊥x F =+S △ABO S △ACO S △BCO ×6×n +×4×(−m)=121212∴{n −m =5,3n −2m =12,∴{m =−3,n =2,∴C (−3,2)=⋅CE ⋅AD S △ACD 12=×3×(4+OD)=1212∴OD =4∴D (0,−4)(3)2AE BF ==20S △PAB S △EAB O ⋅BE =201∴,即,,,,,,∵轴,∴,,,,,,,,.19.【答案】解:由题意可知:的整数部分为,的整数部分为,∴, .∴ , .原式,,∴的平方根为: .【考点】估算无理数的大小平方根列代数式求值【解析】暂无暂无【解答】解:由题意可知:的整数部分为,的整数部分为,∴, .∴ , .原式,,AO ⋅BE =20124×(6+OE)=40∴OE =4∴E (4,0)∵GE =12∴GO =8∴G (−8,0)PG ⊥x ==−8x p x G ∵==20S △ABF S △PBA ∴=⋅BO ⋅AF =×6×(4+OF)=20S ΔABF 1212∴OF =83∴F (0,−)83∵=+S △PGE S 梯形GPFO S △OEF ∴×12×PG =×(+PG)×8+×4×1212831283∴PG =8∴P (−8,−8)(1)9+13−−√129−13−−√59+=12+a 13−−√9−=5+b 13−−√a =−313−−√b =4−13−−√(2)=4(a +b)+5=4×1+5=99±3(1)9+13−−√129−13−−√59+=12+a 13−−√9−=5+b 13−−√a =−313−−√b =4−13−−√(2)=4(a +b)+5=4×1+5=9∴的平方根为: .20.【答案】设的函数解析式是=,=,得=,即的函数解析式是=,设的函数解析式时=,,得,即的函数解析式是=;,得,∵,∴能追上,答:能在逃入公海前将其拦截,此时离海岸的距离是.【考点】一次函数的应用【解析】此题暂无解析【解答】此题暂无解答9±3l 1s kt 10k 5k 2.5l 1s 8.5t l 2s at +b l 2s 5.2t +5<12B A B A B。
第1页第2页2022-2023学年初二上学期期中考前必刷卷初二数学(考试时间:100分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:北师大版第一章~第四章。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.在3.142、、π、59)A .2个B .3个C .4个D .5个2.下列说法错误的是()A .5是25的算术平方根B .3(4)-的立方根是4-C .无理数都是无限小数D.2536的平方根是563.若函数y =(2m +6)x +m 2﹣9是关于x 的正比例函数,则m 的值为()A .3B.-3C .±3D .04.已知点P 的坐标为(1,24)a a -+,且点P 到两坐标轴距离相等,则a 的值为()A .-5B .-3C .-1或-5D .-1或-35.一次函数31y x =-+的图象过点1(x ,1)y ,1(1x +,2)y ,1(2x +,3)y ,则()A .123y y y <<B .321y y y <<C .213y y y <<D .312y y y <<6.在同一平面直角坐标系中,函数y kx =与12y x k =+的图象大致是()A .B .C .D .7.下面四幅图中,不能证明勾股定理的是()A .B .C .D .8.如图,正方体的棱长为4cm ,A 是正方体的一个顶点,B 是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A 爬到点B 的最短路径是()A .B .C .D .69.甲、乙两车均从A 地开往相距300km 的B 地,如图,反映了甲、乙两车的路程y (单位:)km 之间的关系,下列结论正确的是()A .甲车的速度为75/km hB .甲乙两车同时从A 地出发C .乙车比甲车提前1小时到B 地D .甲车行驶1.5小时追上乙车第3页第4页………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………10.福州以著名的坊巷文化而闻名,美丽的三牧坊宽不足4米,长不到240米,从卫前街进入三牧坊,走不到百米,便能看到一所百年学府——福州一中,它是众多福州人的记忆所在.位于三牧坊内的福州一中的侧门保留了中国古代典型的双开木门结构,如图1、2(图2为图1的平面示意图),从点O 处推开双门,双门间隙CD 的长度为0.08米,点C 和点D 到门槛AB 的距离都为0.28米,则AB的长是()A .1.8米B .2米C .2.2米D .2.4米第Ⅱ卷二、填空题:本题共6小题,每小题3分,共18分。
八年级上册数学期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列哪一个数是质数?A. 21B. 29C. 35D. 393. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的对角线长度为多少cm?A. 5cmB. 6cmC. 7cmD. 9cm4. 若一个等差数列的首项为2,公差为3,则第10项为多少?A. 29B. 30C. 31D. 325. 若一个圆的半径为5cm,则这个圆的面积为多少平方厘米?A. 25πcm²B. 50πcm²C. 75πcm²D. 100πcm²二、判断题(每题1分,共5分)1. 两个等腰三角形的底边相等,则这两个三角形全等。
()2. 任何两个奇数之和都是偶数。
()3. 一个数的平方和它的立方一定相等。
()4. 任何两个负数相乘的结果都是正数。
()5. 若一个数的平方是36,则这个数一定是6。
()三、填空题(每题1分,共5分)1. 若一个等边三角形的边长为6cm,则它的面积是______平方厘米。
2. 若一个等差数列的首项为3,公差为2,则第5项是______。
3. 一个圆的直径是10cm,则这个圆的周长是______厘米。
4. 若一个数的立方是64,则这个数的平方根是______。
5. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的体积是______立方厘米。
四、简答题(每题2分,共10分)1. 简述勾股定理的内容。
2. 什么是等差数列?给出一个等差数列的例子。
3. 简述圆的周长和面积的计算公式。
4. 什么是质数?给出5个质数的例子。
5. 什么是因式分解?给出一个多项式因式分解的例子。
五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长为8cm,腰长为5cm,求这个三角形的周长。
一、选择题(每题3分,共30分)1. 已知等边三角形的边长为6,那么它的面积是()A. 9B. 12C. 18D. 362. 一个长方形的长是12cm,宽是8cm,那么它的周长是()A. 32cmB. 36cmC. 40cmD. 48cm3. 一个圆的半径增加了1cm,那么它的面积增加了()A. 3.14cm²B. 6.28cm²C. 9.42cm²D. 12.56cm²4. 已知直角三角形的两条直角边分别为3cm和4cm,那么它的斜边长是()A. 5cmB. 6cmC. 7cmD. 8cm5. 一个梯形的上底为4cm,下底为10cm,高为6cm,那么它的面积是()A. 24cm²B. 30cm²C. 36cm²D. 42cm²6. 一个正方形的对角线长为10cm,那么它的边长是()A. 5cmB. 6cmC. 7cmD. 8cm7. 已知一个数的平方根是±2,那么这个数是()A. 4B. 9C. 16D. 368. 下列方程中,x的值是-1的是()A. x + 2 = 1B. 2x - 3 = -1C. 3x + 4 = 1D. 4x - 5 = -19. 下列不等式中,正确的是()A. 2 > 3B. 3 < 2C. 2 ≥ 3D. 3 ≤ 210. 下列代数式中,同类项是()A. 2x² + 3yB. 4x² + 5y²C. 2x + 3y²D. 2x² + 3y²二、填空题(每题3分,共30分)11. 一个数的倒数是2,那么这个数是________。
12. 5的平方根是________。
13. 下列分数中,最小的是________。
14. 下列小数中,最大的是________。
15. 已知等腰三角形的底边长为8cm,那么它的腰长是________。
八年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.123.点P(4,5)关于x轴对称点的坐标是()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(5,4)4.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等5.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形6.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180° D.140°7.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若△ODE的周长为10厘米,那么BC的长为()A.8cm B.9cm C.10cm D.11cm8.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①DF=DN;③AE=CN;③△DMN是等腰三角形;④∠BMD=45°,其中正确的结论个数是()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共21分)9.“三角形任意两边之和大于第三边”,得到这个结论的理由是.10.若正n边形的每个内角都等于150°,则n=,其内角和为.11.如图,AD=AB,∠C=∠E,∠CDE=55°,则∠ABE=.12.如图△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为cm.15.在平面直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数为.三、解答题:(本大题共8个小题,满分75分)16.证明三角形内角和定理:三角形的三个内角的和等于180°.17.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.19.C、B、E三点在一直线上,AC⊥CB,DE⊥BE,∠ABD=90°,AB=BD,试证明AC+DE=CE.20.如图,三角形ABC中,AB=AC=2,∠B=15°,求AB边上的高.21.如图,在三角形ABC中,AD为中线,AB=4,AC=2,AD为整数,求AD的长.22.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1,图中画出△A1B1C1,平移后点A 的对应点A1的坐标是.(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是.(3)将△ABC向左平移2个单位,则△ABC扫过的面积为.23.如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD和CE相交于点F,若△ABC不动,将△ADE绕点A任意旋转一个角度.(1)求证:△BAD≌△CAE.(2)如图①,若∠BAC=∠DAE=90°,判断线段BD与CE的关系,并说明理由;(3)如图②,若∠BAC=∠DAE=60°,求∠BFC的度数;(4)如图③,若∠BAC=∠DAE=α,直接写出∠BFC的度数(不需说明理由)参考答案与试题解析一、选择题(每小题3分,共24分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各个选项进行判断即可.【解答】解:A、是轴对称图形,A不合题意;B、不是轴对称图形,B符合题意;C、是轴对称图形,C不合题意;D、是轴对称图形,D不合题意;故选:B.2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【考点】K6:三角形三边关系.【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.3.点P(4,5)关于x轴对称点的坐标是()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(5,4)【考点】P5:关于x轴、y轴对称的点的坐标.【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x 轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:点P(4,5)关于x轴对称点的坐标是:(4,﹣5).故选:C.4.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等【考点】KB:全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理AAS,即能推出两三角形全等,故本选项错误;B、∵△ABC和△A′B′C′是等边三角形,∴AB=BC=AC,A′B′=B′C′=A′C′,∵AB=A′B′,∴AC=A′C′,BC=B′C′,即符合全等三角形的判定定理SSS,即能推出两三角形全等,故本选项错误;C、不符合全等三角形的判定定理,即不能推出两三角形全等,故本选项正确;D、如上图,∵AD、A′D′是三角形的中线,BC=B′C′,∴BD=B′D′,在△ABD和△A′B′D′中,,∴△ABD≌△A′B′D′(SSS),∴∠B=∠B′,在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),故本选项错误;故选C.5.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形【考点】K7:三角形内角和定理.【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【解答】解:设三角形的三个角分别为:a°、b°、c°,则由题意得:,解得:a=90,故这个三角形是直角三角形.故选:B.6.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180° D.140°【考点】K7:三角形内角和定理;L3:多边形内角与外角.【分析】先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.【解答】解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.故选B.7.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若△ODE的周长为10厘米,那么BC的长为()A.8cm B.9cm C.10cm D.11cm【考点】KJ:等腰三角形的判定与性质.【分析】根据角平分线的定义以及平行线的性质,可以证得:∠OBD=∠BOD,则依据等角对等边可以证得OD=BD,同理,OE=EC,即可证得BC=C从而求解.△ODE【解答】解:∵BO是∠ACB的平分线,∴∠ABO=∠OBD,∵OD∥AB,∴∠ABO=∠BOD,∴∠OBD=∠BOD,∴OD=BD,同理,OE=EC,BC=BD+DE+EC=OD+DE+OE=C△ODE=10cm.故选C.8.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①DF=DN;③AE=CN;③△DMN是等腰三角形;④∠BMD=45°,其中正确的结论个数是()A.1个 B.2个 C.3个 D.4个【考点】KD:全等三角形的判定与性质;KF:角平分线的性质;KI:等腰三角形的判定;KW:等腰直角三角形;M6:圆内接四边形的性质.【分析】求出BD=AD,∠DBF=∠DAN,∠BDF=∠ADN,证△DFB≌△DAN,即可判断①,证△ABF≌△CAN,推出CN=AF=AE,即可判断②;根据A、B、D、M四点共圆求出∠ADM=22.5°,即可判断④,根据三角形外角性质求出∠DNM,求出∠MDN=∠DNM,即可判断③.【解答】解:∵∠BAC=90°,AC=AB,AD⊥BC,∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD,∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC=22.5°,∴∠BFD=∠AEB=90°﹣22.5°=67.5°,∴∠AFE=∠BFD=∠AEB=67.5°,∴AF=AE,∵M为EF的中点,∴AM⊥BE,∴∠AMF=∠AME=90°,∴∠DAN=90°﹣67.5°=22.5°=∠MBN,在△FBD和△NAD中∴△FBD≌△NAD,∴DF=DN,∴①正确;在△AFB和△△CNA中∴△AFB≌△CAN,∴AF=CN,∵AF=AE,∴AE=CN,∴②正确;∵∠ADB=∠AMB=90°,∴A、B、D、M四点共圆,∴∠ABM=∠ADM=22.5°,∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,∴④正确;∵∠DNA=∠C+∠CAN=45°+22.5°=67.5°,∴∠MDN=180°﹣45°﹣67.5°=67.5°=∠DNM,∴DM=MN,∴△DMN是等腰三角形,∴③正确;即正确的有4个,故选D.二、填空题(每小题3分,共21分)9.“三角形任意两边之和大于第三边”,得到这个结论的理由是两点之间线段最短.【考点】K6:三角形三边关系.【分析】三角形三边关系定理:三角形两边之和大于第三边,可以运用两点之间线段最短的性质进行判断.【解答】解:“三角形任意两边之和大于第三边”,得到这个结论的理由是:两点之间线段最短.故答案为:两点之间线段最短.10.若正n边形的每个内角都等于150°,则n=12,其内角和为1800°.【考点】L3:多边形内角与外角.【分析】先根据多边形的内角和定理求出n,再根据多边形的内角和求出多边形的内角和即可.【解答】解:∵正n边形的每个内角都等于150°,∴=150°,解得,n=12,其内角和为(12﹣2)×180°=1800°.故答案为:12;1800°.11.如图,AD=AB,∠C=∠E,∠CDE=55°,则∠ABE=125°.【考点】KD:全等三角形的判定与性质.【分析】在△ADC和△ABE中,由∠C=∠E,∠A=∠A和AD=AB证明△ADC≌△ABE,得到∠ADC=∠ABE,由∠CDE=55°,得到∠ADC=125°,即可求出∠ABE的度数.【解答】解:∵在△ADC和△ABE中,,∴△ADC≌△ABE(AAS),∴∠ADC=∠ABE,∵∠CDE=55°,∴∠ADC=125°,∴∠ABE=125°,故答案为125°.12.如图△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是5.【考点】KF:角平分线的性质;KQ:勾股定理.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再利用三角形的面积公式列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=2,∴△ABD的面积=AB•DE=×5×2=5.故答案为:5.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.【考点】KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为8cm.【考点】PA:轴对称﹣最短路线问题;KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=12,解得AD=6cm,∴S△ABC∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8cm.故答案为:8.15.在平面直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数为4.【考点】KI:等腰三角形的判定;D5:坐标与图形性质.【分析】本题应该分情况讨论.以OA为腰或底分别讨论.当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;P是OA的中垂线与x轴的交点,有1个,共有4个.【解答】解:(1)若AO作为腰时,有两种情况,当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;(2)若OA是底边时,P是OA的中垂线与x轴的交点,有1个.以上4个交点没有重合的.故符合条件的点有4个.故填:4.三、解答题:(本大题共8个小题,满分75分)16.证明三角形内角和定理:三角形的三个内角的和等于180°.【考点】K7:三角形内角和定理.【分析】先写出已知、求证,再画图,然后证明.过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.【解答】已知:△ABC,求证:∠BAC+∠B+∠C=180°,证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°.即知三角形内角和等于180°.17.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【考点】KD:全等三角形的判定与性质.【分析】易证BC=EF,即可证明△ABC≌△DEF,可得∠A=∠D.即可解题.【解答】证明:∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.【考点】K7:三角形内角和定理.【分析】根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.∴∠C=∠ABC=2∠A=72°.∵BD⊥AC,∴∠DBC=90°﹣∠C=18°.19.C、B、E三点在一直线上,AC⊥CB,DE⊥BE,∠ABD=90°,AB=BD,试证明AC+DE=CE.【考点】KD:全等三角形的判定与性质.【分析】可证明△ABC≌△DBE,得到AC=BE DE=BC,即可证明AC+DE=CE.【解答】证明:∵∠ABD=90°,AC⊥CB,DE⊥BE,∴∠ABC+∠DBE=∠ABC+∠A,∴∠A=∠DBE;在△ABC与△DBE中,,∴△ABC≌△DBE(AAS),∴AC=BE,BC=DE,∴AC+DE=CE.20.如图,三角形ABC中,AB=AC=2,∠B=15°,求AB边上的高.【考点】KO:含30度角的直角三角形;KH:等腰三角形的性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CAD的度数,然后根据30°角所对的直角边等于斜边的一半求解即可.【解答】解:过点C作BA的垂线,交BA的延长线于点D,解:∵∠B=∠ACB=15°,∴∠CAD=∠B+∠ACB=15°+15°=30°,∵AC=4cm,CD是AB边上的高,∴CD=AC=×2=1.∴AB边上的高是1.21.如图,在三角形ABC中,AD为中线,AB=4,AC=2,AD为整数,求AD的长.【考点】KD:全等三角形的判定与性质;K6:三角形三边关系.【分析】延长AD到E,使AD=DE,连接BE,证△ADC≌△EDB,推出AC=BE=2,在△ABE中,根据三角形三边关系定理得出AB﹣BE<AE<AB+BE,代入求出即可.【解答】解:延长AD到E,使AD=DE,连接BE,∵AD是BC边上的中线,∴BD=CD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=BE=2,在△ABE中,AB﹣BE<AE<AB+BE,∴4﹣2<2AD<4+2,∴1<AD<3,∵AD是整数,∴AD=2,22.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1,图中画出△A1B1C1,平移后点A 的对应点A1的坐标是(3,﹣1).(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是(﹣2,﹣3).(3)将△ABC向左平移2个单位,则△ABC扫过的面积为13.5.【考点】P7:作图﹣轴对称变换;Q4:作图﹣平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称点的性质进而得出对应点位置;(3)利用平移的性质可得△ABC扫过的面积为△A′B′C′+平行四边形A′C′CA的面积.【解答】解:(1)如图所示:△A1B1C1,即为所求,平移后点A的对应点A1的坐标是:(3,﹣1);故答案为:(3,﹣1);(2)如图所示:△A2BC,即为所求,翻折后点A对应点A2坐标是:(﹣2,﹣3);故答案为:(﹣2,﹣3);(3)将△ABC向左平移2个单位,则△ABC扫过的面积为:S△A′B′C′+S平行四边形A′C′CA=×3×5+2×3=13.5.故答案为:13.5.23.如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD和CE相交于点F,若△ABC不动,将△ADE绕点A任意旋转一个角度.(1)求证:△BAD≌△CAE.(2)如图①,若∠BAC=∠DAE=90°,判断线段BD与CE的关系,并说明理由;(3)如图②,若∠BAC=∠DAE=60°,求∠BFC的度数;(4)如图③,若∠BAC=∠DAE=α,直接写出∠BFC的度数(不需说明理由)【考点】KY:三角形综合题.【分析】(1)由等边三角形的性质得出AB=AC,AD=AE,∠BAC=∠EAD,从而得出∠BAD=∠CAE,即可得出△BAD≌△CAE.(2)判定BD与CE的关系,可以根据角的大小来判定.由∠BAC=∠DAE可得∠BAD=∠CAE,进而得△BAD≌△CAE,所以∠CBF+∠BCF=∠ABC+∠ACB.再由∠BAC=∠DAE=90°,所以BD⊥CE.(3)根据①的∠CBF+∠BCF=∠ABC+∠ACB,所以∠BFC=∠BAC,再由∠BAC=∠DAE=60°,所以∠BFC=60°(4)根据②∠BFC=∠BAC,所以∠BFC=α【解答】解:(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE在△BAD与△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS),(2)BD与CE相互垂直,BD=CE.由(1)知,△BAD≌△CAE(SAS),∴∠ABD=∠ACE,BD=CE,∵∠BAC=90°,∴∠CBF+∠BCF=∠ABC+∠ACB=90°,∴∠BFC=90°∴BD⊥CE.(3)由题①得∠CBF+∠BCF=∠ABC+∠ACB,∵∠BAC=∠DAE=60°,∴∠CBF+∠BCF=∠ABC+∠ACB,∴∠BFC=∠BAC∴∠BFC=60°.(4)由题(1)得∠CBF+∠BCF=∠ABC+∠ACB,∵∠BAC=∠DAE=α,∴∠CBF+∠BCF=∠ABC+∠ACB,∴∠BFC=∠BAC∴∠BFC=α.。
第一次阶段检测数学试卷一、填空题(每空2分:共32分)1、32-的绝对值是 :64的平方根是 :2、化简:=-3125 :=-2)5( :4、比较大小: 215- 21:(用“>”或“<”填空)。
5、计算:=-5256 :32512⨯= : 6、如图,64、400分别为所在正方形的面积:则图中字母A 所代表的正方形面积是 。
7、已知甲乙两人从同一地点出发:甲往东走了4km :乙往南走了3km :这时甲乙两人相距 。
8、三角形的三边分别为7:15:24:则这个三角形的最大角为 度。
6、9的平方根是 :64的立方根的平方根为 。
7、若032=++-b a :则2)(b a -= 。
1.6.如图:直角三角形的两直角边长分别是6cm 和8cm :则带阴影的正方形面积是 。
二、选择题1、下列说法正确的是…………………………………………………………………………( )A 31是无理数。
B π是有理数。
C 两个无理数的积仍是无理数。
D 无理数都是无限不循环小数。
17.已知:a 、b 、c 是△ABC 的三边。
①a=4、b =5、c =6:②a =7、b =24、c =25:③a =15、b =20、c =25:④a =3、b =22、c =17。
上述四个三角形中:直角三角形的个数有( )个。
A 1B .2C .3D .4A BCD19.在2 , 5 , 722, 5π--四个数中:无理数的个数是……………………………………( )A 1个B 2个C 3个D 4个 20.下面各组数中:相等的一组是……………………………………………………………( )A -1和-2+(-1)B 255和-C 551-和D ()321255---和4、一直角三角形的斜边长比直角边长大2,另一直角边长为6:则斜边长为( )(A ) 4 (B ) 8 (C ) 10 (D ) 122.小丰妈妈买了一部29英寸(74cm)电视机,下列对29英寸的说法中正确的是( )A. 小丰认为指的是屏幕的长度;B. 小丰的妈妈认为指的是屏幕的宽度;C. 小丰的爸爸认为指的是屏幕的周长;D. 售货员认为指的是屏幕对角线的长度.3.下列各组数中不能作为直角三角形的三边长的是( )A. 1.5,2,3;B. 7,24,25;C. 6,8,10;D. 9,12,15.4.将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是A. 钝角三角形;B. 锐角三角形;C. 直角三角形;D. 6、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 要爬行的最短路程(π取3)是 ( )A.20cm;B.10cm;C.14cm;D.无法确定.三、计算22.188+23.2221492⎪⎪⎭⎫ ⎝⎛-+1、 24.322363--(9分)求下列各式中的x 。
一、选择题1.如图所示,已知ABC 和DCE 均是等边三角形,点B 、C 、E 在同一条直线上,连接AE 、BD 、FG ,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,则下列结论中:①AE BD =; ②AG BF =; ③FG//BE ; ④CF CG =,以上结论正确的有( )A .1个B .2个C .3个D .4个 2.在等腰ABC ∆中,80A ∠=︒,则B 的度数不可能是( )A .80︒B .60︒C .50︒D .20︒ 3.如图,已知AD 为ABC 的高线,AD BC =,以AB 为底边作等腰Rt ABE △,且点E 在ABC 内部,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①EBD DAE ∠=∠;②ADE BCE ≌△△;③BD AF =;④BDE ACE S S =△△,其中正确的结论有( )A .1个B .2个C .3个D .4个4.如图,AEC BED △△≌,点D 在AC 边上,AE 和BD 相交于点O ,若30AED ∠=︒,120∠=︒BEC ,则ADB ∠的度数为( )A .45°B .40°C .35°D .30°5.MAB ∠为锐角,AB a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC x =,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是( )A .x d =或x a ≥B .x a ≥C .x d =D .x d =或x a > 6.如图,在ABC 中,B C ∠=∠,E 、D 、F 分别是AB 、BC 、AC 上的点,且BE CD =,BD CF =,若 104A ∠=︒,则EDF ∠的度数为( )A .24°B .32°C .38°D .52°7.如图,点C ,D 在线段AB 上,AC DB =,AE //BF ,添加以下哪一个条件仍不能判定△AED ≌△BFC ( )A .ED CF =B .AE BF =C .E F ∠=∠D .ED //CF8.如图,已知,CAB DAE ∠=∠,AC AD =.下列五个选项:①AB AE =,②BC ED =,③C D ∠=∠,④B E ∠=∠,⑤12∠=∠,从中任选一个作为已知条件,其中能使ABC AED ≌△△的条件有( )A .2个B .3个C .4个D .5个 9.已知两条线段15cm a =,8cm b =,下列线段能和a ,b 首尾相接组成三角形的是( )A .20cmB .7cmC .5cmD .2cm 10.将一个多边形纸片剪去一个内角后得到一个内角和是外角和4倍的新多边形,则原多边形的边数为( )A .9B .10C .11D .以上均有可能 11.如果一个三角形的两边长分别为4和7,则第三边的长可能是( ) A .3B .4C .11D .12 12.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ).A .a b =B .180a b =+°C .180b a =+︒D .360b a =+︒ 二、填空题13.如图,在ABC 中,90ACB ︒∠=,30B ,6AC =,P 为BC 边的垂直平分线DE 上一个动点,则ACP △周长的最小值为________.14.如图,已知ABC 的周长是8,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC 于D ,且3OD =,ABC 的面积是______.15.如图,AB 与CD 相交于点O ,OC =OD .若要得到△AOC ≌△BOD ,则应添加的条件是__________.(写出一种情况即可)16.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第____块去,这利用了三角形全等中的____原理.17.如图,在△ABC 中,AB =AC ,D 为BC 的中点,∠BAD =20°,且AE =AD ,则∠CDE 的度数是______.18.2016年2月6日凌晨,宝岛高雄发生6.7级地震,得知消息后,中国派出武警部队探测队,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的,A B 两处,用仪器探测生命迹象C ,已知探测线与地面的夹角分别是30︒和60︒(如图),则C ∠的度数是_________.19.如图,在ABC 中,80B ∠=︒,BAC ∠和BCD ∠的平分线交于点E ,则E ∠的度数是______.20.如图中,36B ∠=︒,76C ∠=︒,AD 、AF 分别是ABC 的角平分线和高,DAF ∠=________.三、解答题21.如图,ABC 和ADE 均为等边三角形,连接BD 并延长,交AC 于点F ,连接CD 并延长,交AB 于点G ,连接CE .(1)求证:ABD ACE △≌△;(2)若ADG CED ∠=∠,求证:AG CF =.22.如图,在ABC 中,AB AC =,CD AB ⊥,BE AC ⊥,垂足为D 、E ,BE 、CD 相交于点O .(1)求证:DBC ECB △△≌;(2)求证:OD OE =.23.(1)如图,∠MAB =30°,AB =2cm ,点C 在射线AM 上,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题,请画出图形,并写出你所选取的BC 的长约为 cm (精确到0.lcm ).(2)∠MAB 为锐角,AB =a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC =x ,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是 .24.在ABC 中,AD 是ABC 的高,30B,52C ︒∠=(1)尺规作图:作ABC 的角平分线AE(2)求DAE ∠的大小.25.如图,已知长方形ABCD 中,10cm AD =,6cm DC =,点F 是DC 的中点,点E 从A 点出发在AD 上以每秒1cm 的速度向D 点运动,运动时间设为t 秒.(假定0t 10<<)(1)当5t =秒时,求阴影部分(即三角形BEF )的面积;(2)用含t 的式子表示阴影部分的面积;并求出当三角形EDF 的面积等于3时,阴影部分的面积是多少?(3)过点E 作//EG AB 交BF 于点G ,过点F 作//FH BC 交BE 于点H ,请直接写出在E 点运动过程中,EG 和FH 的数量关系.26.如图,在ABC 中,D 是AB 上一点,E 是AC 上一点,BE 、CD 相交于点F ,62A ∠=︒,35ACD ∠=︒,20ABE ∠=︒.求:(1)BDC ∠的度数;(2)BFD ∠的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学公式)解:(1)∵BDC A ACD ∠=∠+∠( )∴623597BDC ∠=︒+︒=︒(等量代换)(2)∵BFD BDC ABE ∠+∠+∠=______( )∴180BFD BDC ABE ∠=︒-∠-∠(等式的性质)1809720=︒-︒-︒(等量代换)63=︒【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】首先根据等边三角形性质得出BC=AC,CD=CE,∠ACB=∠ECD=60°,即可证明△BCD与△ACE全等、△BCF与△ACG全等以及△DFC与△EGC全等,最后利用全等三角形性质以及等边三角形性质证明即可.【详解】∵△ABC与△CDE为等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,即:∠ACE=∠BCD,在△BCD与△ACE中,∵BC=AC,∠ACE=∠BCD,CD=CE,∴△BCD≌△ACE(SAS),∴AE=BD,即①正确;在△BCF与△ACG中,由①可知∠CBF=∠CAG,又∵AC=BC,∠BCF=∠ACG=60°,∴△BCF≌△ACG(ASA),∴AG=BF,即②正确;在△DFC与△EGC中,∵△BCF≌△ACG,∴CF=CG.即④正确;∵∠GCF =60°,∴△CFG为等边三角形,∴∠CFG=∠FCB=60°,∴FG ∥BE ,即③正确;综上,①②③④都正确.故选:D .【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质以及平行线的判定,解题的关键是正确寻找全等三角形来解决问题,.2.B解析:B【分析】分∠A 是顶角和底角两种情况分类讨论求得∠B 的度数,即可得到答案.【详解】当∠A 是顶角时,则∠B=(180°-∠A)÷2=(180°-80°)÷2=50°,当∠B 是顶角时,则∠A 是底角,∴∠B=180°-80°-80°=20°,当∠C 是顶角时,则∠A 和∠B 都是底角,∴∠B=∠A=80°,综上所述:∠B 的度数为:50°或20°或80°.观察各选项可知∠B 不可能是60°.故选B .【点睛】本题主要考查等腰三角形的性质,掌握分类讨论思想方法,是解题的关键.3.D解析:D【分析】由AD 为△ABC 的高线,可得∠CBE+∠ABE+∠BAD=90°,Rt △ABE 是等腰直角三角形, 可得90ABE BAD DAE ∠+∠+∠=︒,从而可判断①;由等腰Rt ABE △可得AE BE =,结合AD BC =,∠DAE=∠CBE ,可判断②;由△ADE ≌△BCE ,可得,ADE BCE ∠=∠ 再证明∠BDE=∠AFE ,结合EBD DAE ∠=∠,AE BE =, 证明△AEF ≌△BED ,可判断③;由△ADE ≌△BCE ,可得,DE CE = 由△AEF ≌△BED ,,EF DE = 证明,EF CE =从而可判断④.【详解】解:∵AD 为△ABC 的高线,∴∠CBE+∠ABE+∠BAD=90°,∵Rt △ABE 是等腰直角三角形,∴90ABE BAD DAE ∠+∠+∠=︒,∴∠DAE=∠CBE ,即EBD DAE ∠=∠,故①正确;∵Rt △ABE 是以AB 为底等腰直角三角形,∴AE=BE ,在△ADE 和△BCE 中,AE BE DAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BCE (SAS ); 故②正确;△ADE ≌△BCE ,,ADE BCE ∴∠=∠∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,90ADB ADC ∠=∠=︒,∴∠BDE=∠AFE ,在△AEF 和△BED 中,FAE DBE AFE BDE AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BED (AAS ),∴AF BD =; 故③正确;∵△ADE ≌△BCE ,∴,DE CE =△AEF ≌△BED ,,,AEF BED EF DE SS ∴== ,EF CE ∴=∴,AEF ACE SS = ∴ ,BDE ACES S =故④正确; 综上:正确的有①②③④.故选:D .【点睛】本题考查的是三角形的内角和定理,三角形的中线与高的性质,三角形全等的判定与性质,等腰直角三角形的性质,掌握以上知识是解题的关键.4.A解析:A【分析】由△AEC ≌△BED 可知:EC=ED ,∠C=∠BDE ,∠BED=∠AEC ,根据等腰三角形的性质即可知∠C 的度数,从而可求出∠ADB 的度数.【详解】解:∵△AEC ≌△BED ,∴EC=ED ,∠C=∠BDE ,∠BED=∠AEC ,∴∠BEO+∠AED=∠CED+∠AED ,∴∠BEO=∠CED,∵∠AED=30°,∠BEC=120°,∴∠BEO=∠CED=120302︒-︒=45°, 在△EDC 中,∵EC=ED ,∠CED=45°,∴∠C=∠EDC=67.5°,∴∠BDE=∠C=67.5°,∴∠ADB=180°-∠BDE-∠EDC=180°-67.5°-67.5°=45°,故选A .【点睛】本题考查全等三角形的性质,等腰三角形的性质,解题的关键是熟练运用全等三角形的性质. 5.A解析:A【分析】当x =d 时,BC ⊥AM ,C 点唯一;当x ≥a 时,能构成△ABC 的C 点唯一,可确定取值范围.【详解】解:若△ABC 的形状、大小是唯一确定的,则C 点唯一即可,当x =d 时,BC ⊥AM ,C 点唯一;当x >a 时,以B 为圆心,BC 为半径的作弧,与射线AM 只有一个交点,x =a 时,以B 为圆心,BC 为半径的作弧,与射线AM 只有两个交点,一个与A 重合, 所以,当x ≥a 时,能构成△ABC 的C 点唯一,故选为:A .【点睛】本题考查了三角形的画法,根据题意准确作图并且能够分类讨论是解题关键. 6.C解析:C【分析】根据题意可证明BDE CFD ≌,以及求解∠B 的度数,再由三角形的外角性质和全等三角形的性质推出∠EDF=∠B ,从而得出结果.【详解】在BDE 与CFD 中,BE CD B C BD CF =⎧⎪∠=∠⎨⎪=⎩∴()BDE CFD SAS ≌∴∠BED=∠CDF ,又∵∠B+∠BED=∠EDC=∠EDF+∠CDF ,∴∠B=∠EDF ,∵在BAC 中,∠A=104°,∠B=∠C ,∴∠B=(180°-104°)÷2=38°,∴∠EDF=38°,故选:C .【点睛】本题考查全等三角形的判定与性质,三角形的内角和定理与外角性质,熟练证明全等并利用其性质进行推理演算是解题关键.7.A解析:A【分析】欲使△AED ≌△BFC ,已知AC=DB ,AE ∥BF ,可证明全等三角形判定定理AAS 、SAS 、ASA 添加条件,逐一证明即可;【详解】∵ AC=BD ,∴ AD=CE ,∵ AE ∥BF ,∴ ∠A=∠E ,A 、如添加ED=CF ,不能证明△AED ≌△BFC ,故该选项符合题意;B 、如添加AE=BF ,根据SAS ,能证明△AED ≌△BFC ,故该选项不符合题意;C 、如添加∠E=∠F ,利用AAS 即可证明△AED ≌△BFC ,故该选项不符合题意; D 、如添加ED ∥CF ,得出∠EDC=∠FCE ,利用ASA 即可证明△AED ≌△BFC ,故该选项不符合题意;故选:A .【点睛】本题考查了全等三角形的判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理;8.B解析:B【分析】添加条件①可以用“SAS”证明,添加条件③可以用“ASA”证明,添加条件④可以用“AAS”证明.【详解】解:①在ABC 和AED 中,AC AD CAB DAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED SAS ≅△△;②不可以;③在ABC 和AED 中,C D AC ADCAB DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ABC AED ASA ≅;④在ABC 和AED 中,B E CAB DAE AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED AAS ≅;⑤不可以;故选:B .【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的所有判定定理. 9.A解析:A【分析】根据三角形任意两边的和大于第三边,进行分析判断.【详解】A 、15+8=23>20,能组成三角形,符合题意;B 、7+8=15,不能组成三角形,不合题意;C 、5+8=13<15,不能组成三角形,不合题意;D 、2+8=10<15,不能组成三角形,不合题意.故选:A .【点睛】本题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,三角形的两边差小于第三边.但通常不需一一验证,其简便方法是将较短两边之和与较长边比较.10.D解析:D【分析】将一个多边形纸片剪去一个内角可以多三种情况比原多边形边数少1,不变,多1,利用内角和公式求出内角的和与外角关系即可求出.【详解】如图将一个多边形纸片剪去一个内角∠BCF后,多边形的边数和原多边形边数相同为n,()21804360n-⨯︒=⨯︒,n=10,如图将一个多边形纸片剪去一个内角∠BCF后,多边形的边数比原多边形边数少1为n-1,()n--⨯︒=⨯︒,121804360n=11,如图将一个多边形纸片剪去一个内角∠GCF后,多边形的边数比原多边形边数多1为n+1,()n-⨯︒=⨯︒,+121804360n=9,原多边形的边数为9,10,11.故选择:D.本题考查多边形剪去一个角问题,掌握剪去一个角后对多边形的边数分类讨论是解题关键.11.B解析:B【分析】根据三角形的三边关系定理可得7-4<x<7+4,计算出不等式的解集,再确定x的值即可.【详解】设第三边长为x,则7-4<x<7+4,3<x<11,∴A、C、D选项不符合题意.故选:B.【点睛】考查了三角形的三边关系,解题关键是掌握第三边的范围:大于已知的两边的差,而小于两边的和.12.A解析:A【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【详解】∵四边形的内角和等于a,∴a=(4-2)•180°=360°;∵五边形的外角和等于b,∴b=360°,∴a=b.故选:A.【点睛】本题考查了多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.二、填空题13.18【分析】因为BC的垂直平分线为DE所以点C和点B关于直线DE对称所以当点动点P和E重合时则△ACP的周长最小值再结合题目的已知条件求出AB的长即可【详解】解:如图∵P为BC边的垂直平分线DE上一解析:18【分析】因为BC的垂直平分线为DE,所以点C和点B关于直线DE对称,所以当点动点P和E重合时则△ACP的周长最小值,再结合题目的已知条件求出AB的长即可.【详解】∵P为BC边的垂直平分线DE上一个动点,∴点C和点B关于直线DE对称,∴当点动点P和E重合时则△ACP的周长最小值,∵∠ACB=90°,∠B=30°,AC=6,∴AB=2AC=12,∵AP+CP=AP+BP=AB=12,∴△ACP的周长最小值=AC+AB=18,故答案为:18.【点睛】本题考查了轴对称-最短路线的问题以及垂直平分线的性质,正确确定P点的位置是解题的关键,确定点P的位置这类题在课本中有原题,因此加强课本题目的训练至关重要.14.12【分析】连接OA过O作OE⊥AB于EOF⊥AC于F根据角平分线的性质求出OE=OF=OD=3再根据三角形的面积公式求出即可【详解】解:连接OA过O作OE⊥AB于EOF⊥AC于F∵OBOC分别平分解析:12【分析】连接OA,过O作OE⊥AB于E,OF⊥AC于F,根据角平分线的性质求出OE=OF=OD=3,再根据三角形的面积公式求出即可.【详解】解:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB, OC分别平分∠ABC和∠ACB,OD⊥BC,OD=3,∴OE=OD=3,OF=OD=3,∵△ABC的周长是8,∴AB+BC+AC=8,∴△ABC的面积S=S△ABO+S△BCO+S△ACO=12×AB×OE+12×BC×OD+12×AC×OF =12×AB×3+12×BC×3+12×AC×3 =12×3×(AB+BC+AC ) =12×3×8 =12,故答案为:12.【点睛】本题考查了三角形的面积和角平分线的性质,能根据角平分线的性质求出OE=OD=OF=3是解此题的关键.15.OA=OB (答案不唯一)【分析】全等三角形的判定方法有SASASAAASSSS 只要添加一个符合的条件即可【详解】解:OA=OB 理由是:在△AOC 和△BOD 中∴△AOC ≌△BOD (SAS )故答案为:O解析:OA=OB .(答案不唯一)【分析】全等三角形的判定方法有SAS ,ASA ,AAS ,SSS ,只要添加一个符合的条件即可.【详解】解:OA=OB ,理由是:在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ).故答案为:OA=OB .(答案不唯一)【点睛】本题考查了全等三角形的判定的应用,通过做此题培养了学生的发散思维能力和对全等三角形的判定方法的灵活运用能力,题目答案不唯一,是一道比较好的题目.16.ASA 【分析】根据全等三角形的判断方法解答【详解】解:由图可知带第4块去符合角边角可以配一块与原来大小一样的三角形玻璃故答案为:4;ASA【点睛】本题考查了全等三角形的应用是基础题熟记三角形全等的判 解析:ASA【分析】根据全等三角形的判断方法解答.【详解】解:由图可知,带第4块去,符合“角边角”,可以配一块与原来大小一样的三角形玻璃. 故答案为:4;ASA本题考查了全等三角形的应用,是基础题,熟记三角形全等的判定方法是解题的关键.17.10°【分析】设∠B=∠C=x∠CDE=y分别表示出∠DAE构建方程解方程即可求解【详解】解:设∠B=∠C=x∠EDC=y∵AD=AE∴∠ADE=∠AED=x+y∵∠DAE=180°−2(x+y)=解析:10°【分析】设∠B=∠C=x,∠CDE=y,分别表示出∠DAE,构建方程解方程即可求解.【详解】解:设∠B=∠C=x,∠EDC=y,∵AD=AE,∴∠ADE=∠AED=x+y,∵∠DAE=180 °−2(x+y)=180 °−20 °−2x,∴2y=20 °,∴y=10 °,∴∠CDE=10 °.故答案为:10°【点睛】本题主要考查等腰三角形的判定与性质,还涉及三角形内角和等知识点,需要熟练掌握等腰三角形的判定与性质.18.【分析】先由题意得CAB=30°∠ABD=60°再由三角形的外角性质即可得出答案【详解】解:∵探测线与地面的夹角为30°和60°∴∠CAB=30°∠ABD=60°∵∠ABD=∠CAB+∠C∴∠C=6解析:30【分析】先由题意得CAB=30°,∠ABD=60°,再由三角形的外角性质即可得出答案.【详解】解:∵探测线与地面的夹角为30°和60°,∴∠CAB=30°,∠ABD=60°,∵∠ABD=∠CAB+∠C,∴∠C=60°-30°=30°,故答案为:30°.【点睛】本题考查了三角形的外角的性质,对顶角,解题的关键是熟练掌握三角形的外角性质,比19.40°【分析】根据角平分线的性质可得∠EAC=∠BAC ∠ECD=∠BCD 最后根据三角形外角的性质解答即可【详解】解:∵∠BAC 的平分线与∠BCD 的平分线交于点E ∴∠EAC=∠BAC ∠ECD=∠BCD解析:40°【分析】根据角平分线的性质可得∠EAC=12∠BAC,∠ECD=12∠BCD ,最后根据三角形外角的性质解答即可.【详解】解:∵∠BAC 的平分线与∠BCD 的平分线交于点E ,∴∠EAC=12∠BAC ,∠ECD=12∠BCD , ∵∠BCD-∠BAC=∠B=80°, ∴∠ECD-∠EAC=12(∠BCD-∠BAC )=40°, ∵E ∠是△ACE 的外角∴∠E=∠ECD-∠EAC=40°.故答案为40°.【点睛】本题主要考查了三角形内角和定理、角平分线的定义以及三角形的外角的性质等知识点,灵活利用三角形外角的性质是解答本题的关键.20.【分析】根据三角形内角和定理及角平分线的性质求出∠BAD 度数再由三角形内角与外角的性质可求出∠ADF 的度数由AF ⊥BC 可求出∠AFD=90°再由三角形的内角和定理即可解答【详解】∵AF 是的高∴在中∴解析:20︒【分析】根据三角形内角和定理及角平分线的性质求出∠BAD 度数,再由三角形内角与外角的性质可求出∠ADF 的度数,由AF ⊥BC 可求出∠AFD=90°,再由三角形的内角和定理即可解答.【详解】∵AF 是ABC 的高,∴90AFB ∠=︒,在Rt ABF 中,36B ∠=︒,∴90BAF B ∠=︒-∠9036=︒-︒54=︒.又∵在ABC 中,36B ∠=︒,76C ∠=︒,∴18068BAC B C ∠=︒-∠-∠=︒,又∵AD 平分BAC ∠, ∴11683422BAD CAD BAC ∠=∠=∠=⨯=︒, ∴DAF BAF BAD ∠=∠-∠20=︒.故答案为:20︒.【点睛】本题考查了三角形内角和定理、三角形的高线、及三角形的角平分线等知识,难度中等.三、解答题21.(1)证明见详解;(2)证明见详解.【分析】(1)根据等边三角形的性质得,,AB AC AD AE BAC DAE ==∠=∠,CAD ∠为公共角得出BAD CAE ∠=∠,根据SAS 可证全等.(2)根据全等三角形的性质,,ACE ABD ADB AEC ==∠∠∠∠联立题目条件ADG CED ∠=∠可得60BDG AED ==∠∠,根据三角形外角的性质得到AGD BFC ∠=∠证明()AGC BFC AAS ≅,即可证AG CF =.【详解】(1)∵ABC 和ADE 均为等边三角形,∴,,AB AC AD AE BAC DAE ==∠=∠, ∵CAD ∠为公共角,∴BAD CAE ∠=∠∴()ABD ACE SAS ≅△△(2)∵ABD ACE ≅,∴,,ACE ABD ADB AEC ==∠∠∠∠ ∵ADG CED ∠=∠,∴60BDG AED ==∠∠,∴GBD GDB GBD BAF +=+∠∠∠∠,即AGD BFC ∠=∠,在AGC 与BFC △中AGD BFC GAC FCB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AGC BFC AAS ≅∴AG CF =【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,三角形外角的性质等知识点;解题的关键是熟练掌握以上知识点.22.(1)见解析;(2)见解析【分析】(1)由“AAS”即可证明△BDC ≌△CEB ;(2)由△BDC ≌△CEB ,推出BD=CE ,∠BCD=∠CBE ,得到OB=OC ,即可证明结论.【详解】(1)∵CD AB ⊥,BE AC ⊥,∴∠BDC=∠BEC=90︒,∵AB=AC ,∴∠ABC=∠ACB ,在△BDC 和△CEB 中,90BDC BEC ABC ACB BC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△BDC ≌△CEB (AAS );(2)∵△BDC ≌△CEB ,∴CD=BE ,∠BCD=∠CBE ,∴OB=OC ,∴OD=OE .【点睛】本题考查了等腰三角形和全等三角形的判定和性质,关键是利用AAS 证明△BDC ≌△CEB . 23.(1)见解析,1.2;(2)x=d 或x≥a【分析】(1)可以取BC =1.2cm (1cm <BC <2cm ),画出图形即可;(2)当x =d 或x≥a 时,三角形是唯一确定的.【详解】(1)如图,选取的BC 的长约为1.2cm ,故答案是:1.2;(2)若△ABC 的形状、大小是唯一确定的,则x 的取值范围是x =d 或x≥a ,故答案为:x=d 或x≥a .【点睛】本题考查全等三角形的判定,解题的关键是理解题意,掌握“有两边和其中一边的对角分别相等的两个三角形不一定全等”,属于中考常考题型.24.(1)作图见解析;(2)11【分析】(1)以任意长度为半径,点A 为圆心画圆弧,分别交AB 、AC 于点M 、N ;再分别以点M 、N 为圆心,大于2MN 的长度为半径画圆弧并相交于点K ,连接AK ,AK 交BC 于点E ,即可得到答案;(2)结合题意,根据三角形内角和定理,得BAC ∠;再根据角平分线性质得EAC ∠;结合AD 是ABC 的高,根据直角三角形两锐角互余的性质计算得DAC ∠;最后通过DAE EAC DAC ∠=∠-∠的关系计算完成求解.【详解】(1)作图如下:AE 即为ABC 的角平分线;(2)∵30B ,52C ︒∠=∴180180305298BAC B C ∠=-∠-∠=--=∵AE 为BAC ∠的角平分线 ∴492BAC EAC ∠∠== ∵AD 是ABC 的高 ∴90ADC ∠=∴90905238DAC C ∠=-∠=-=∴493811DAE EAC DAC ∠=∠-∠=-=.【点睛】本题考查了角平分线、三角形内角和、直角三角形两锐角互余、三角形高的知识;解题的关键是熟练掌握角平分线、三角形内角和、直角三角形两锐角互余的性质,从而完成求解.25.(1)4522cm ;(2)23302t cm ⎛⎫- ⎪⎝⎭;218cm ;(3)53EG FH = 【分析】(1)由长方形的性质得出10cm BC AD ==,6cm AB DC ==,由5t =得AE=5,DE=10-5=5,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形即可求解;(2)由题意得AE=t ,DE=10-t ,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形表示出阴影部分的面积;由12EDF S DE DF =⋅△求出t 的值,代入计算即可; (3)由长方形ABCD 得AD CD ⊥,根据平行线的性质得EG HF ⊥,根据平行线间的距离相等可得DE ,AE ,DF ,CF 分别等于,,,EGF EGB EHF BHF △△△△的高,由BEF S 的面积即可得出结论.【详解】解:(1)∵长方形ABCD 中,10cm AD =,6cm DC =,∴10cm BC AD ==,6cm AB DC ==,∵点F 是DC 的中点,∴3cm DF CF ==,当5t =秒时,AE=5cm ,DE=10-5=5 cm ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()()1111066510353222⨯-⨯-⨯-⨯ =156015152--- =4522cm ; (2)由题意得AE=t ,DE=10-t , ∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()1111066103310222t t ⨯-⨯-⨯-⨯⨯- =360315152t t ---+ =3302t -, ∴用含t 的式子表示阴影部分的面积为:23302t cm ⎛⎫-⎪⎝⎭; 当三角形EDF 的面积等于3时,12EDF S DE DF =⋅△=()13102t ⨯⨯-=3, 解得:8t =, 8t =时,38=30=182S ⨯-阴影2cm ; (3)∵长方形ABCD ∴AD CD ⊥,//,//AB CD AD BC ,∵//EG AB ,//FH BC ,∴EG HF ⊥,,AD EG CD HF ⊥⊥,∴DE ,AE 分别等于,EGF EGB △△的EG 边上的高,DF ,CF 分别等于,EHF BHF △△的FH 边上的高, ∴11112222BEF S EG DE EG AE HF DF HF CF =⋅+⋅=⋅+⋅△,∴()()1122EG DE AE HF DF CF +=+,即EG AD HF CD ⋅=⋅, ∵10cm AD =,6cm DC =, ∴106EG HF =,即53EG FH =.【点睛】本题是一个动点问题,考查了平行线间的距离,三角形面积的计算,解题的关键是熟练掌握平行线的性质和三角形面积的计算方法.26.(1)三角形的外角性质;(2)180,三角形内角和定理【分析】(1)在△ACD 中,利用三角形的外角性质,三角形的一个外角等于与它不相邻的两个内角的和计算即可;(2)在△BFD 中,利用三角形的内角和定理计算即可.【详解】(1)∵∠BDC=∠A+∠ACD (三角形的外角性质),∴∠BDC=62°+35°=97°(等量代换),故答案为:三角形的外角性质;(2)∵∠BFD+∠BDC+∠ABE=180°(三角形内角和定理),∴∠BFD=180°-∠BDC-∠ABE (等式的性质),=180°-97°-20°(等量代换)=63°;故答案为:180°,三角形内角和定理.【点睛】本题主要考查了三角形的外角性质与三角形的内角和定理,熟记性质与定理是解题的关键.。
八年级上册数学期中考试模拟试卷人教版2024—2025学年秋季考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列图形中是轴对称图形的是()A.B.C.D.2.已知三角形的三边长分别为3,x,7,则x的值可能是()A.3B.5C.10D.113.下列判断错误的是()A.等腰三角形是轴对称图形B.有两条边相等的三角形是等腰三角形C.等腰三角形的两个底角相等D.等腰三角形的角平分线、中线、高互相重合4.下列各图形中,分别画出了△ABC中BC边上的高AD,其中正确的是()A.B.C.D.5.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点确定一点直线B.两点之间线段最短C.同角的余角相等D.三角形具有稳定性6.如图,已知∠C=∠C1=90°,能直接用“HL”判定Rt△ABC≌Rt△A1B1C1的条件是()A.∠C=∠C1,AB=A1B1 B.AB=A1B1,AC=A1C1C.AC=A1C1,BC=B1C1 D.∠B=∠B1,BC=B1C17.如图,△ABC≌△DCB,∠DBC=40°,则∠BOC的度数为()A.100°B.80°C.40°D.140°8.A、B、C为三个小区,A、B、C三个小区的学生人数比为3:7:4,现在要在△ABC所在的平面上建造一个学校P,使得所有学生走的路程和最短,则学校P应该选在()A.点C处B.△ABC三条中线的交点处C.点B处D.∠A和∠B的角平分线的交点处9.如图,△ABC的外角∠DAC和∠FCA的平分线交于点E,∠EAC和∠ECA 的平分线交于点M,若∠B=48°,则∠M的度数为()A.114°B.122°C.123°D.124°10.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有()个.A.5B.6C.7D.8二、填空题(每小题3分,满分18分)11.从n边形的一个顶点出发作对角线,可以把这个n边形分成9个三角形,则n等于.12.点A(a,b)与点B(3,﹣4)关于y轴对称,则a+b的值为.13.某多边形的内角和与外角和相等,这个多边形的边数是.14.等腰三角形的一个角是70°,则等腰三角形的顶角的度数是.15.已知a,b,c为△ABC的三边,化简:3|a+b﹣c|+2|a﹣b﹣c|=.16.如图,点B、C、E三点在同一直线上,且AB=AD,AC=AE,BC=DE,若∠1+∠2+∠3=96°,则∠3的度数为.八年级上册数学期中考试模拟试卷人教版2024—2025学年秋季考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________准考证号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.若学校有一块三角形的绿地,AB=BC=20m,∠A=15°,求绿地△ABC的面积?18.如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.(1)求证:DB=DE;(2)过点D作DF垂直BE,垂足为F,若CF=3,求△ABC的周长.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.(1)若∠B=70°,则∠NMA的度数是;(2)连接MB,若BC=6,△MBC的周长是14.①求△ABC的周长;②若P是直线MN上一个动点,则PB+PC的最小值是.20.已知点C在线段BE上,且△ABC和△DCE都是等边三角形,连接BD,AE,分别交AC,DC于点M,N.(1)求证:△AEC≌△BDC;(2)求证:CM=CN.21.如图,在△ABC中,AB=AC,D是BC上任意一点,过点D分别向AB、AC引垂线,垂足分别为E、F,CG是AB边上的高.(1)当D点在BC什么位置时,DE=DF?并证明;(2)线段DE,DF,CG的长度之间存在怎样的数量关系?并加以证明.22.如图1,在四边形ABCD中,∠A=∠C=90°,AB=CD,将四边形ABCD沿对角线BD翻折,点C落到点F处,BF交AD于点E.(1)求证:EB=ED;(2)如图2,延长BA,DF交于点G,连接GE并延长交BD于点H.求证:∠ADB=∠BGH.23.如图,在△ABC中,AB=AC=3,∠B=50°,点D在线段BC上运动(不与B、C重合),连接AD,作∠ADE=50°,DE交线段AC于E.(1)当∠BDA=105°时,∠BAD=°,∠DEC=°;(2)若DC=AB,求证:△ABD≌△DCE;(3)在点D的运动过程中,是否存在△ADE是等腰三角形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.24.如图,在平面直角坐标系中,已知三点A(0,a)(a>0),B(0,b)(b≤0),C(c,0)(c<0),且(a﹣b)2=c2.(1)试判断线段AB与OC的数量关系,并证明;(2)如图1,当b=0时,连接AC,点P是线段AC上一点,CQ⊥OP于Q,连接AQ.若∠AQP=45°,试探究CQ和OQ之间数量关系;(3)如图2,当b<0时,点D在x轴负半轴上,位于点C的左侧,且CD=OB,连接AD,射线BC交AD于点E.当点B在y轴负半轴上运动时,∠CED的度数是否为定值?如果是,请求出∠CED的度数;如果不是,请说明理由.25.如图,平面直角坐标系中,A(0,a),B(b,0)且a、b满足|a+2b﹣6|+|a﹣2b+2|=0.E为线段上一动点,∠BED=∠OAB,BD⊥EC,垂足在EC的延长线上,试求:(1)判断△OAB的形状,并说明理由;(2)如图1,当点E与点A重合时,探究线段AC与BD的数量关系,并证明你的结论;(3)如图2,当点E在线段AB(不与A、B重合)上运动时,试探究线段EC与BD的数量关系,证明你的结论.。
2024—2025学年北师大版八年级上册数学期中考试模拟试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、中国古代著作《九章算术》在世界数学史上首次正式引入负数,如果盈利70元记作+70元,那么亏本50元记作()A.﹣50元B.﹣70元C.+50元D.+70元2、下列四个数中,最小的数是()A.2B.0C.﹣2D.﹣3、地球静止轨道卫星的静止轨道与地面的高度约为35800千米.将35800用科学记数法表示为()A.3.58×104B.0.358×104C.3.58×105D.0.358×105 4、如果一个数到原点的距离等于3,那么这个数是()A.3B.﹣3C.3或﹣3D.65、下列各单项式中,与﹣2mn2是同类项的是()A.5mn B.﹣3m2n C.n2m D.﹣mn36、下列去括号正确的是()A.a﹣(2b+c)=a﹣2b+c B.3(x﹣y)=3x﹣3yC.﹣(a+b)=﹣a+b D.﹣3(x+6)=﹣3x﹣67、近似数2.0×104精确到哪一位()A.十分位B.千位C.百位D.万位8、如图,在有序号的小正方形中选出一个,它与图中五个有阴影的小正方形组合后,不能构成正方体的表面展开图的是()A.①B.②C.③D.④9、下列各选项中的图形绕虚线旋转一周后,得到的几何体是圆柱的是()A.B.C.D.10、观察下列图形:第1个图形有6根小棍,第2个图形有11根小棍,第3个图形有16根小棍…,则第n(n为正整数)个图形中小棍根数共有()A.5(n﹣1)B.6n C.5n+1D.6n﹣1二、填空题(每小题3分,满分18分)11、比较大小:(用“>或=或<”填空).12、数轴上与﹣1的距离等于3个单位长度的点所表示的数为.13、单项式的系数是14、喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如图所示,这样捏合到第次后可拉出256根面条•15、如果x2﹣2x﹣1=0,那么代数式﹣3x2+6x+10的值是.16、多项式是关于x的二次三项式,则m的值是.2024—2025学年北师大版八年级上册数学期中考试模拟试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算(1);(2).18、由7个相同的棱长为2的小立方块搭成的几何体如图所示.(1)请画出它从三个方向看到的形状图.(2)请计算几何体的表面积.19、已知有理数a,b,c,d,e,且a,b互为倒数,c,d互为相反数,m的绝对值为2,求式子的值.20、先化简,再求值.(1)3x2﹣(2x2+5x﹣1)﹣(3x+1),其中x=10;(2)2x2+4y2+(2y2﹣3x2)﹣2(y2﹣2x2),其中x=﹣1;.21、某检修小组从A地出发,在东西走向的公路上检修路灯线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下(单位:千米).第一次第二次第三次第四次第五次第六次第七次﹣6+8﹣7+5+4﹣5﹣2(1)收工时距A地的距离是多少千米?(2)若每千米耗油0.2升,问这七次共耗油多少升?22、如图所示是一个长方形.(1)根据图中尺寸大小,用含x的代数式表示阴影部分的面积S;(2)若x=3,求S的值.23、已知多项式A=4x2+my﹣12与多项式B=nx2﹣2y+1.(1)当m=1,n=5时,计算A+B的值;(2)如果A与2B的差中不含x和y,求mn的值.24、已知有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.(1)填空:a+b=,=,a5+b5=;(2)若数轴上有一点P表示的数为﹣1,将点P向左移动2022个单位长度,再向右移动2022个单位长度到点Q,求点Q表示的数及P,Q两点间的距离;(3)化简:|a﹣c|﹣2|b+c|+|c|.25、如图,在数轴上点A表示数a,点B表示数b,点C表示数c.b是最小的正整数,且a、c满足|a+3|+(c﹣6)2=0(1)填空:a=b=c=;(2)点B静止不动,点A以每秒1个单位长度的速度在数轴上向左运动,同时点C以每秒3个单位长度的速度在数轴上向右运动.设t秒后,点A与点B 之间的距离表示为AB,点B与点C之间的距离表示为BC.①求BC的长.(用含t的代数式表示)②问|BC﹣3AB|的值是否随着时间t的变化而改变?若改变,请说明理由;若不变,求出其值.。
2012年初二(上)期中数学模拟试卷姓
名
命题人:席忠余
一、选择题
题号12345678910答案
1、的算术平方根是()
A、±4
B、4
C、±2
D、2
2、函数中自变量的取值范围是()
A、 B、 C、 D、
3、下列运算正确的是()
A、a+2a2=3a3
B、(a3)2=a6
C、a3•a2=a6
D、a6÷a2=a3
4、下列各式能用完全平方公式分解因式的是()
A、x2+2xy-y2
B、x2-xy+4y2
C、x2-xy+
D、x2—5xy+10y2
5.点、在直线上,若,则与大小关系是()
A、 B、 C、 D、无法确定
6.如果2(x-2)3=6,则x等于()
A.B.C.或D.以上答案都不对
7.估算的值()
A.在5和6之间B.在6和7之间C.在7和8之间D.在8和9之间8.化简得()
A.B.C.D.
9.图中的三角形是有规律地从里到外逐层排列的。
设y为第n层
(第9题图)
(n为正整数)三角形的个数,则下列函数关系式中正确的是()A.y=4n-4 B.y=4n
C.y=4n+4 D.y=n2
10.父亲节,学校“文苑”专栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还。
”如果用纵轴表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,那么下面与上述诗意大致相吻的图象是()
y
t
t
t
t
y
A
y
B
C
y
D
二、填空题
11、已知,一次函数的图像与正比例函数交于点A,并与y轴交于点,△AOB的面积为6,则。
12.若和都是5的立方根,则a= ,b= .
13.若多项式可分解为(3x+)(3x-),则a=_______,b=__________.(第15题图)
14.如图,已知函数y=2x+b和y=ax-3的图像交于
点P(―2,―5),
则根据图像可得不等式2x+b>ax-3的解集是
.
15.已知,一次函数y=kx+b的图像与正比例函数y=x交于点A,并与y轴交于点B(0,-4),△AOB的面积为6,则kb=。
16.计算:___________
17.已知一次函数的函数值y小于0,则自变量x的取值范围是
__________
18.在,,,,这五个实数中,无理数是_________________.
19.若将直线的图象向下平移1个单位长度后经过点(1,5),则平移后直线的解析式为______________________.
20.已知等腰三角形的周长为40,则它的底边长关于腰长的函数解析式为_____________________,自变量的取值范围是
___________________.
三、解答题
21.①分解因式:6xy2―9x2y―y3②
(3)说明3200-4×3199+10×3198能被7整除.
22.先化简,再求值:(2a+b)(2a-b)+b(2a+b)-4a2b÷b,其中a=-,b =2
23.若,求的平方根。
24.星期天,小明与小刚骑自行车去距家50千米的某地旅游,
60
50
40
30
20
10
0 1 2 3 4
t(时)
S(千米)
(第19题图)
匀速行驶1.5小时的时候,其中一
辆自行车出故障,因此二人在自行车修理点修车,用了
半个小时,然后以原速继续前行,行驶1小时到达目的
地.请在右面的平面直角坐标系中,画出符合他们行驶
的路程S(千米)与行驶时间t(时)之间的函数图象.
25.已知一次函数的图像可以看作是由直线向上平移6个单位
长度得到的,且与两坐标轴围成的三角形面积被一正比例函数分成面积的比
为1:2的两部分,求这个正比例函数的解析式。
26.已知每隔1h有一列速度相同的动车组列车从甲城开往乙城.如图所示,OA是第一列动车组列车离开甲城的路程s(单位在:km)与运行时间t(单位:h)的函数图象,BC是一列从乙城开往甲城的普通快车距甲城的路程s(单位:km)与运行时间t(单位:h)的函数图象.请根据图中信息,解答下列问题:
⑴点B的横坐标0.5的意义是普通快车发车时间比第一列动车组列车发
车时间_______h,点B的纵坐标300的意义是
_______________________;
⑵请你在原图中直接画出第二列动车组列车离开甲城的路程s(单
位:km)与时间t(单位:h)的函数图象;
A
B
C
O
1
2
3
0.5
t/h
300
200
100
⑶若普通快车的速度为100km/h,
①求BC的解析式,并写出自变量t的取值范围;
②求第二列动车组列车出发后多长时间与普通列车
相遇;
③直接写出这列普通列车在行驶途中与迎面而来的相邻
两列动车组列车相遇的间隔时间.
27、如图1,在平面直角坐标系中,A(,0),B(0,),且、满足. (1)求直线AB的解析式;
(2)若点M为直线在第一象限上一点,且△ABM是等腰直角三角形,
求的值.
(3)如图3过点A的直线交轴负半轴于点P,N点的横坐标为-1,过N点
的直线交AP于点M,给出两个结论:①的值是不变;②的值是不变,只有一个结论是正确,请你判断出正确的结论,并加以证明和求出其值。
.
图2图1
图3。