2019-2020年八年级上册数学期中考试试卷及答案
- 格式:doc
- 大小:370.31 KB
- 文档页数:3
2019-2020学年八年级上册期中数学试卷一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡.1.在下列实数中,无理数是()A.πB.C.D.2.下列各式正确的是()A.=±4B.=±4C.±=±4D.=23.下列运算正确的是()A.a12÷a3=a4B.(a3)4=a12C.(﹣2a2)3=8a5D.(a﹣2)2=a2﹣44.若(x﹣1)(x2+mx+n)的积中不含x的二次项和一次项,则m,n的值为()A.m=2,n=1B.m=﹣2,n=1C.m=﹣1,n=1D.m=1,n=15.若2x﹣3y+z﹣2=0,则16x÷82y×4z的值为()A.16B.﹣16C.8D.46.现规定一种运算:a※b=ab+a﹣b,其中a,b为实数,则※等于()A.﹣6B.﹣2C.2D.67.多项式①4x2﹣x;②(x﹣1)2﹣4(x﹣1);③1﹣x2;④﹣4x2﹣1+4x,分解因式后,结果中含有相同因式的是()A.①和②B.③和④C.①和④D.②和③8.如图,△ABC≌△ADE,∠DAC=70°,∠BAE=100°,BC、DE相交于点F,则∠DFB度数是()A.15°B.20°C.25°D.30°9.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB =4,AE=6,则CH的长为()A.1B.2C.3D.410.用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a,b分别表示矩形的长和宽(a>b),则下列关系中不正确的是()A.a+b=12B.a﹣b=2C.ab=35D.a2+b2=84二、填空题(每小题3分,共15分)11.的平方根为.12.若(a+5)2+=0,则a2018•b2019=.13.计算:20132﹣2014×2012=.14.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S=.15.观察下列式子:22﹣1=3;32﹣22=5;42﹣32=7;52﹣42=9…设n为正整数,用含n的等式表示你发现的规律三、解答题.(共75分)16.(10分)计算或解答(1)﹣+|1﹣|﹣(2+)(2)一个数的算术平方根为2m﹣6,它的平方根为±(2﹣m),求这个数.17.(8分)分解因式.(1)4x3y﹣4x2y2+xy3(2)m3(x﹣2)+m(2﹣x)18.(10分)(1)计算:[(ab+1)(ab﹣2)﹣(2ab)2+2]÷(﹣ab)(2)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.19.(9分)已知,a+b=3,ab=﹣2,求下列各式的值:(1)(a﹣1)(b﹣1)(2)a2+b2(3)a﹣b20.(7分)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.21.(10分)(1)化简:(a﹣b)2+(b﹣c)2+(c﹣a)2;(2)利用(1)题的结论,且a=2015x+2016,b=2015x+2017,c=2015x+2018,求a2+b2+c2﹣ab ﹣bc﹣ca的值.22.(10分)如图,已知△ABC中,∠B=∠C,AB=12厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a 厘米的速度由C点向A点运B动设运动时间为t(秒)(0≤t≤4).(1)若点P点Q的运动速度相等经过1秒后,△BPD与△CQP是否全等,请说明理由;(2)若点P点Q的运动速度不相等,当点Q的速度是多少时,能够使△BPD与△CQP全等?23.(11分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC =∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;(填“>”,“<”或“=”);EF,BE,AF三条线段的数量关系是:.②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想并证明.参考答案与试题解析一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡.1.在下列实数中,无理数是()A.πB.C.D.【分析】根据无理数的定义逐个分析.【解答】解:A、π是无限不循环小数,即为无理数;B、是无限循环小数,即为有理数;C、=3,即为有理数;D、=4,即为有理数.故选:A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.下列各式正确的是()A.=±4B.=±4C.±=±4D.=2【分析】根据算术平方根,平方根和立方根的定义逐一计算可得.【解答】解:A.=4,此选项错误;B.=4,此选项错误;C.±=±4,此选项正确;D.≠2,=2,此选项错误;故选:C.【点评】本题主要考查平方根与立方根,解题的关键是掌握平方根和算术平方根及立方根的定义.3.下列运算正确的是()A.a12÷a3=a4B.(a3)4=a12C.(﹣2a2)3=8a5D.(a﹣2)2=a2﹣4【分析】根据同底数幂的除法、幂的乘方与积的乘方及完全平方公式逐一计算可得.【解答】解:A、a12÷a3=a9,此选项错误;B、(a3)4=a12,此选项正确;C、(﹣2a2)3=﹣8a6,此选项错误;D、(a﹣2)2=a2﹣4a+4,此选项错误;故选:B.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的除法、幂的乘方与积的乘方及完全平方公式.4.若(x﹣1)(x2+mx+n)的积中不含x的二次项和一次项,则m,n的值为()A.m=2,n=1B.m=﹣2,n=1C.m=﹣1,n=1D.m=1,n=1【分析】直接利用多项式乘法运算法则去括号,进而得出关于m,n的等式,进而得出答案.【解答】解:∵(x﹣1)(x2+mx+n)的积中不含x的二次项和一次项,∴(x﹣1)(x2+mx+n)=x3+mx2+nx﹣x2﹣mx﹣n=x3+(m﹣1)x2﹣(m﹣n)x﹣n,∴,解得m=1,n=1,故选:D.【点评】此题主要考查了多项式乘以多项式,正确得出含x的二次项和一次项的系数是解题关键.5.若2x﹣3y+z﹣2=0,则16x÷82y×4z的值为()A.16B.﹣16C.8D.4【分析】根据题意求出2x+3y﹣z,根据同底数幂的乘除法法则计算即可.【解答】解:∵2x﹣3y+z﹣2=0,∴2x﹣3y+z=2,则原式=(24)x÷(23)2y×(22)z=24x÷26y×22z=22(2x﹣3y+z)=24=16,故选:A.【点评】本题考查的是同底数幂的除法运算、幂的乘方,掌握同底数幂的除法法则:底数不变,指数相减是解题的关键.6.现规定一种运算:a※b=ab+a﹣b,其中a,b为实数,则※等于()A.﹣6B.﹣2C.2D.6【分析】先计算=4,=﹣2,再依据新定义规定的运算a※b=ab+a﹣b计算可得.【解答】解:※=4※(﹣2)=4×(﹣2)+4﹣(﹣2)=﹣8+4+2=﹣2,故选:B.【点评】此题考查了实数的混合运算,属于新定义题型,弄清题意的新定义与实数的运算顺序和运算法则是解本题的关键.7.多项式①4x2﹣x;②(x﹣1)2﹣4(x﹣1);③1﹣x2;④﹣4x2﹣1+4x,分解因式后,结果中含有相同因式的是()A.①和②B.③和④C.①和④D.②和③【分析】根据提公因式法和完全平方公式把各选项的多项式分解因式,然后再找出结果中含有相同因式的即可.【解答】解:①4x2﹣x=x(4x﹣1);②(x﹣1)2﹣4(x﹣1)=(x﹣1)(x﹣1﹣4)=(x﹣1)(x﹣5);③1﹣x2=(1﹣x)(1+x)=﹣(x﹣1)(x+1);④﹣4x2﹣1+4x=﹣(4x2﹣4x+1)=﹣(2x﹣1)2,∴②和③有相同因式为x﹣1,故选:D.【点评】本题主要考查提公因式分解因式和利用完全平方公式分解因式,熟练掌握公式结构是求解的关键.8.如图,△ABC≌△ADE,∠DAC=70°,∠BAE=100°,BC、DE相交于点F,则∠DFB度数是()A.15°B.20°C.25°D.30°【分析】先根据全等三角形对应角相等求出∠B=∠D,∠BAC=∠DAE,所以∠BAD=∠CAE,然后求出∠BAD的度数,再根据△ABG和△FDG的内角和都等于180°,所以∠DFB=∠BAD.【解答】解:∵△ABC≌△ADE,∴∠B=∠D,∠BAC=∠DAE,又∠BAD=∠BAC﹣∠CAD,∠CAE=∠DAE﹣∠CAD,∴∠BAD=∠CAE,∵∠DAC=70°,∠BAE=100°,∴∠BAD=(∠BAE﹣∠DAC)=(100°﹣70°)=15°,在△ABG和△FDG中,∵∠B=∠D,∠AGB=∠FGD,∴∠DFB=∠BAD=15°.故选:A.【点评】本题主要利用全等三角形对应角相等的性质,解题时注意:全等三角形的对应边相等,对应角相等.9.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB =4,AE=6,则CH的长为()A.1B.2C.3D.4【分析】先利用等角的余角相等得到∠BAD=∠BCE,则可根据“AAS”证明△BCE≌△HAE,则CE=AE=6,然后计算CE﹣HE即可.【解答】解:∵AD⊥BC,CE⊥AB,∴∠BEC=∠ADB=90°,∵∠BAD+∠B=90°,∠BCE+∠B=90°,∴∠BAD=∠BCE,在△BCE和△HAE中,∴△BCE≌△HAE,∴CE=AE=6,∴CH=CE﹣HE=6﹣4=2.故选:B.【点评】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.10.用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a,b分别表示矩形的长和宽(a>b),则下列关系中不正确的是()A.a+b=12B.a﹣b=2C.ab=35D.a2+b2=84【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别列方程,根据4个矩形的面积和等于两个正方形的面积的差列方程.【解答】解:A、根据大正方形的面积求得该正方形的边长是12,则a+b=12,故A选项正确;B、根据小正方形的面积可以求得该正方形的边长是2,则a﹣b=2,故B选项正确;C、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即4ab=144﹣4=140,ab=35,故C选项正确;D、(a+b)2=a2+b2+2ab=144,所以a2+b2=144﹣2×35=144﹣70=74,故D选项错误.故选:D.【点评】此题关键是能够结合图形和图形的面积公式正确分析,运用排除法进行选择.二、填空题(每小题3分,共15分)11.的平方根为±3.【分析】根据平方根的定义即可得出答案.【解答】解:8l的平方根为±3.故答案为:±3.【点评】此题考查了平方根的知识,属于基础题,掌握定义是关键.12.若(a+5)2+=0,则a2018•b2019=15.【分析】直接利用偶次方的性质以及二次根式的性质得出a,b的值,进而利用积的乘方运算法则计算得出答案.【解答】解:∵(a+5)2+=0,∴a+5=0,5b=1,故a=﹣5,b=,则a2018•b2019=(ab)2018×b=1×=.故答案为:.【点评】此题主要考查了非负数的性质以及积的乘方运算,正确掌握相关运算法则是解题关键.13.计算:20132﹣2014×2012=1.【分析】把2014×2012化成(2013+1)×(2013﹣1),根据平方差公式展开,再合并即可.【解答】解:原式=20132﹣(2013+1)×(2013﹣1)=20132﹣20132+12=1,故答案为:1.【点评】本题考查了平方差公式的应用,注意:(a+b)(a﹣b)=a2﹣b2.14.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S=50.【分析】求出∠F=∠AGB=∠EAB=90°,∠FEA=∠BAG,根据AAS证△FEA≌△GAB,推出AG =EF=6,AF=BG=2,同理CG=DH=4,BG=CH=2,求出FH=14,根据阴影部分的面积=S 梯形EFHD ﹣S △EFA ﹣S △ABC ﹣S △DHC 和面积公式代入求出即可.【解答】解:∵AE ⊥AB ,EF ⊥AF ,BG ⊥AG ,∴∠F =∠AGB =∠EAB =90°,∴∠FEA +∠EAF =90°,∠EAF +∠BAG =90°,∴∠FEA =∠BAG ,在△FEA 和△GAB 中∵,∴△FEA ≌△GAB (AAS ),∴AG =EF =6,AF =BG =2,同理CG =DH =4,BG =CH =2,∴FH =2+6+4+2=14,∴梯形EFHD 的面积是×(EF +DH )×FH =×(6+4)×14=70,∴阴影部分的面积是S 梯形EFHD ﹣S △EFA ﹣S △ABC ﹣S △DHC=70﹣×6×2﹣×(6+4)×2﹣×4×2=50.故答案为50.【点评】本题考查了三角形的面积,梯形的面积,全等三角形的性质和判定等知识点,关键是把不规则图形的面积转化成规则图形的面积.15.观察下列式子:22﹣1=3;32﹣22=5;42﹣32=7;52﹣42=9…设n 为正整数,用含n 的等式表示你发现的规律 (n +1)2﹣n 2=2n +1【分析】根据已知等式得出序数加1与序数的平方差等于序数的2倍与1的和,据此可得.【解答】解:∵第1个式子为(1+1)2﹣12=2×1+1,第2个式子为(2+1)2﹣22=2×2+1,第3个式子为(3+1)2﹣32=2×3+1,第4个式子为(4+1)2﹣42=2×4+1,∴第n个式子为(n+1)2﹣n2=2n+1,故答案为:(n+1)2﹣n2=2n+1.【点评】本题主要考查数字的变化类,解题的关键是将已知等式与序数联系起来,得出普遍规律.三、解答题.(共75分)16.(10分)计算或解答(1)﹣+|1﹣|﹣(2+)(2)一个数的算术平方根为2m﹣6,它的平方根为±(2﹣m),求这个数.【分析】(1)首先利用算术平方根以及立方根和绝对值的性质分别化简得出答案;(2)利用算术平方根以及平方根的定义得出m的值进而得出答案.【解答】解:(1)原式=6+3+2﹣1﹣2﹣2=6;(2)由题意得:2m﹣6≥0,∴m≥3,∴m﹣2>0,因此2m﹣6=﹣(2﹣m),∴m=4,所以这个数是(2m﹣6)2=4.【点评】此题主要考查了实数运算,正确把握相关定义是解题关键.17.(8分)分解因式.(1)4x3y﹣4x2y2+xy3(2)m3(x﹣2)+m(2﹣x)【分析】(1)多项式共3项且有公因式,应先提取公因式,再考虑用完全平方公式分解;(2)多项式变形为m3(x﹣2)﹣m(x﹣2),先提取公因式,再考虑用平方差公式分解.【解答】解:(1)原式=xy(4x2﹣4xy+y2)=xy(2x﹣y)2(2)原式=m3(x﹣2)﹣m(x﹣2)=m(x﹣2)(m2﹣1)=m(x﹣2)(m+1)(m﹣1)【点评】本题考查了提公因式法与公式法分解因式,一般来说,多项式若有公因式先提取公因式,再考虑运用公式法分解.18.(10分)(1)计算:[(ab+1)(ab﹣2)﹣(2ab)2+2]÷(﹣ab)(2)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.【分析】(1)先算括号内的乘法,再合并同类项,最后算除法即可;(2)先算乘法,再合并同类项,最后代入求出即可.【解答】解:(1)原式=(a2b2﹣ab﹣2﹣4a2b2+2)÷(﹣ab)=(﹣3a2b2﹣ab)÷(﹣ab)=3ab+1;(2)解:原式=x2+4x+4+4x2﹣1﹣4x2﹣4x=x2+3,当x=﹣2时,原式=(﹣2)2+3=5.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.19.(9分)已知,a+b=3,ab=﹣2,求下列各式的值:(1)(a﹣1)(b﹣1)(2)a2+b2(3)a﹣b【分析】(1)把式子展开,整体代入求出结果;(2)利用完全平方公式,把a2+b2变形为(a+b)2﹣2ab,整体代入求出结果;(3)根据已知和(2)的结果,先求出(a﹣b)2的值,再求它的平方根.【解答】解:(1)原式=ab﹣a﹣b+1=ab﹣(a+b)+1=﹣2﹣3+1=﹣4(2)原式=(a+b)2﹣2ab=9+4=13(3)∵(a﹣b)2=a2+b2﹣2ab=13+4=17∴a﹣b=±.【点评】本题考查了整体代入和完全平方公式的变形.解决本题的关键是利用转化的思想.20.(7分)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF.在Rt△AEB和Rt△CFD中,,∴Rt△AEB≌Rt△CFD(HL),∴∠B=∠D,∴AB∥CD.【点评】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质.21.(10分)(1)化简:(a﹣b)2+(b﹣c)2+(c﹣a)2;(2)利用(1)题的结论,且a=2015x+2016,b=2015x+2017,c=2015x+2018,求a2+b2+c2﹣ab ﹣bc﹣ca的值.【分析】(1)根据整式的混合运算的法则化简后,代入求值即可;(2)原式变形后,利用完全平方公式配方后,将已知等式代入计算即可求出值.【解答】(1)解:原式=a2﹣2ab+b2+b2﹣2bc+c2+c2﹣2ac+c2=2a2+2b2+2c2﹣2ab﹣2ac﹣2bc;(2)解:原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]当a=2015x+2016,b=2015x+2017,c=2015x+2018,∴原式=×[(﹣1)2+(﹣1)2+22]=3.【点评】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键.22.(10分)如图,已知△ABC中,∠B=∠C,AB=12厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a 厘米的速度由C点向A点运B动设运动时间为t(秒)(0≤t≤4).(1)若点P点Q的运动速度相等经过1秒后,△BPD与△CQP是否全等,请说明理由;(2)若点P点Q的运动速度不相等,当点Q的速度是多少时,能够使△BPD与△CQP全等?【分析】(1)依据点P点Q的运动速度相等,经过1秒,运用SAS即可得到△BPD和△CQP全等;(2)依据BP≠CQ,△BPD≌△CQP,可得BP=CP=4,进而得出t=2,a=3,即可得到当点Q 的速度是3厘米/秒时,能够使△BPD与△CQP全等.【解答】解:(1)△BPD和△CQP全等理由:∵t=1秒,∴BP=CQ=2,∴CP=8﹣BP=6,∵AB=12,∴BD=12×=6,∴BD=CP,又∠B=∠C,∴△BPD≌△CQP(SAS);(2)∵BP≠CQ,△BPD≌△CQP,∴BP=CP=4,∴t=2,∴BD=CQ=at=2a=6,∴a=3,∴当点Q的速度是3厘米/秒时,能够使△BPD与△CQP全等.【点评】本题考查了全等三角形的性质和判定,解一元一次方程的应用,能求出△BPD≌△CQP是解此题的关键,注意:全等三角形的对应边相等,对应角相等.23.(11分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC =∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE=CF;(填“>”,“<”或“=”);EF,BE,AF三条线段的数量关系是:EF=|BE﹣AF|.②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠ACB=180°.,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想并证明.【分析】(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF 即可.【解答】解:(1)①如图1中,E点在F点的左侧,∵BE⊥CD,AF⊥CD,∠ACB=90°,∴∠BEC=∠AFC=90°,∴∠BCE+∠ACF=90°,∠CBE+∠BCE=90°,∴∠CBE=∠ACF,在△BCE和△CAF中,,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,当E在F的右侧时,同理可证EF=AF﹣BE,∴EF=|BE﹣AF|;故答案为=,EF=|BE﹣AF|.②∠α+∠ACB=180°时,①中两个结论仍然成立;证明:如图2中,∵∠BEC=∠CFA=∠a,∠α+∠ACB=180°,∴∠CBE=∠ACF,在△BCE和△CAF中,,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,当E在F的右侧时,同理可证EF=AF﹣BE,∴EF=|BE﹣AF|;故答案为∠α+∠ACB=180°.(2)结论:EF=BE+AF.理由:如图3中,∵∠BEC=∠CFA=∠a,∠a=∠BCA,又∵∠EBC+∠BCE+∠BEC=180°,∠BCE+∠ACF+∠ACB=180°,∴∠EBC+∠BCE=∠BCE+∠ACF,∴∠EBC=∠ACF,在△BEC和△CFA中,,∴△BEC≌△CFA(AAS),∴AF=CE,BE=CF,∵EF=CE+CF,∴EF=BE+AF.【点评】本题综合考查三角形综合题、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,注意这类题目图形发生变化,结论基本不变,证明方法完全类似,属于中考常考题型.。
2019-2020学年八年级数学第一学期期中测试题一、精心选择(本大题共10小题,每小题3分,满分30分)1.下列五个黑体汉字中,轴对称图形的有()A.1个B.2个C.3个D.4个2.一个三角形的三边长分别为a,b,c,则a,b,c的值不可能是()A.3,4,5B.5,7,7C.10,6,4.5D.4,5,93.在联合会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中线的交点B.三条角平分线的交点C.三边中垂线的交点D.三边上高的交点4.课本107页,画∠AOB的角平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M,N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS5.在△ABC与△DEF中,给出下列四组条件:(1)AB=DE,AC=DF,BC=EF(2)AB=DE,∠B=∠E,BC=EF(3)∠B=∠E,BC=EF,∠C=∠F(4)AB=DE,∠B=∠E,AC=DF,其中能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组6.设四边形的内角和等于a,六边形的外角和等于b,则a与b的关系是()A.a>b B.a<b C.a=b D.b=a+360°7.如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130°D.140°8.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.29.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米B.110米C.120米D.200米10.如图所示,在△ABC中,∠A=∠B=50°,AK=BN,AM=BK,则∠MKN的度数是()A.50°B.60°C.70°D.100°二、细心填空(本大题共8小题,每小题3分,满分24分)11.空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是.12.点P(1,﹣2)关于y轴对称的点的坐标为.13.在镜子中看到时钟显示的是,,则实际时间是.14.如图,正方形ABCD中,截去∠A,∠C后,∠1,∠2,∠3,∠4的和为.15.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件使得△ABC≌△DEF.16.如图,BP平分∠ABC,CP平分∠ACB,∠A=100°,则∠P=.17.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为.18.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB.一定成立的结论有.(填序号)三、耐心解答(本大题共5小题,满分46分)19.(8分)如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.20.(8分)一个多边形的内角和是它的外角和的6倍,求这个多边形的边数.21.(10分)某零件如图所示,按规定∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC =146°,就断定这个零件不合格,你能说出其中的道理吗?22.(10分)如图,在平面直角坐标系xOy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案)A1B1C1(3)求△ABC的面积.23.(10分)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC.求证:(1)△ABE≌△ACD;(2)DC⊥BE.参考答案与试题解析一、精心选择(本大题共10小题,每小题3分,满分30分)1.下列五个黑体汉字中,轴对称图形的有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,解答即可.【解答】解:轴对称图形的有喜,十、大,故选:C.【点评】本题考查了轴对称的概念,注意轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.一个三角形的三边长分别为a,b,c,则a,b,c的值不可能是()A.3,4,5B.5,7,7C.10,6,4.5D.4,5,9【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【解答】解:A、3+4>5,故正确;B、5+7>7,故正确;C、6+4.5>10,故正确;D、4+5=9,故错误,故选:D.【点评】考查了三角形的三边关系,已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.3.在联合会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中线的交点B.三条角平分线的交点C.三边中垂线的交点D.三边上高的交点【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选:C.【点评】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.4.课本107页,画∠AOB的角平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M,N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS【分析】先证明三角形全等,再利用全等的性质证明角相等.【解答】解:从画法①可知OA=OB,从画法②可知CM=CN,又OC=OC,由SSS可以判断△OMC≌△ONC,∴∠MOC=∠NOC,即射线OC就是∠AOB的角平分线.故选:A.【点评】本题通过画法,找三角形全等的条件,再利用全等三角形的性质,证明角相等.5.在△ABC与△DEF中,给出下列四组条件:(1)AB=DE,AC=DF,BC=EF(2)AB=DE,∠B=∠E,BC=EF(3)∠B=∠E,BC=EF,∠C=∠F(4)AB=DE,∠B=∠E,AC=DF,其中能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【解答】解:(1)由AB=DE,AC=DF,BC=EF,依据“SSS”可判定△ABC≌△DEF;(2)由AB=DE,∠B=∠E,BC=EF,依据“SAS”可判定△ABC≌△DEF;(3)由∠B=∠E,BC=EF,∠C=∠F,依据“ASA”可判定△ABC≌△DEF;(4)由AB=DE,∠B=∠E,AC=DF不能判定△ABC≌△DEF;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.设四边形的内角和等于a,六边形的外角和等于b,则a与b的关系是()A.a>b B.a<b C.a=b D.b=a+360°【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【解答】解:∵四边形的内角和等于a,∴a=(4﹣2)×180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选:C.【点评】本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.7.如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130°D.140°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:由三角形的外角性质的,∠ABD=∠A+∠C=50°+70°=120°.故选:B.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.8.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.2【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选:C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.9.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米B.110米C.120米D.200米【分析】根据题意,小明走过的路程是正多边形,先用360°除以36°求出边数,然后再乘以10m 即可.【解答】解:∵每次小明都是沿直线前进10米后向左转36°,∴他走过的图形是正多边形,边数n=360°÷36°=10,∴他第一次回到出发点A时,一共走了10×10=100米.故选:A.【点评】本题考查了正多边形的边数的求法,根据题意判断出小亮走过的图形是正多边形是解题的关键.10.如图所示,在△ABC中,∠A=∠B=50°,AK=BN,AM=BK,则∠MKN的度数是()A.50°B.60°C.70°D.100°【分析】利用“SAS”证△AMK≌△BKN得∠AMK=∠BKN,根据∠A=50°知∠AMK+∠AKM=130°,从而得∠BKN+∠AKM=130°,据此可得答案.【解答】解:在△AMK和△BKN中,∵,∴△AMK≌△BKN(SAS),∴∠AMK=∠BKN,∵∠A=∠B=50°,∴∠AMK+∠AKM=130°,∴∠BKN+∠AKM=130°,∴∠MKN=50°,故选:A.【点评】本题主要考查全等三角形的判定和性质及三角形内角和定理的运用,利用条件判定△AMK ≌△BKN是解题的关键.二、细心填空(本大题共8小题,每小题3分,满分24分)11.空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是三角形具有稳定性.【分析】钉在墙上的方法是构造三角形支架,因而应用了三角形的稳定性.【解答】解:这种方法应用的数学知识是:三角形的稳定性,故答案为:三角形具有稳定性.【点评】本题主要考查了三角形的稳定性,正确掌握三角形的这一性质是解题的关键.12.点P(1,﹣2)关于y轴对称的点的坐标为(﹣1,﹣2).【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【解答】解:点P(1,﹣2)关于y轴对称的点的坐标为(﹣1,﹣2).故答案为:(﹣1,﹣2).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.13.在镜子中看到时钟显示的是,,则实际时间是16:25:08.【分析】镜子中看到的数字与实际数字是关于镜面成垂直的线对称,注意2在镜子的出现的应是5.【解答】解:实际时间是16:25:08.【点评】关于镜面对称,也可以看成是关于某条垂直的直线对称.14.如图,正方形ABCD中,截去∠A,∠C后,∠1,∠2,∠3,∠4的和为540°.【分析】根据多边形内角和为(n﹣2)×180°,再根据正方形性质即可得出答案.【解答】解:根据多边形内角和为(n﹣2)×180°,∴截得的六边形的和为(6﹣2)×180°=720°,∵∠B=∠C=90°,∴∠1,∠2,∠3,∠4的和为720°﹣180°=540°.故答案为540°.【点评】本题主要考查了多边形内角和公式及正方形性质,难度适中.15.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件∠A=∠D使得△ABC≌△DEF.【分析】根据全等三角形的判定定理填空.【解答】解:添加∠A=∠D.理由如下:∵FB=CE,∴BC=EF.又∵AC∥DF,∴∠ACB=∠DFE.∴在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).故答案是:∠A=∠D.【点评】本题主要考查对全等三角形的判定,平行线的性质等知识点的理解和掌握,熟练地运用全等三角形的判定定理进行证明是解此题的关键,是一个开放型的题目,比较典型.16.如图,BP平分∠ABC,CP平分∠ACB,∠A=100°,则∠P=140°.【分析】由三角形内角和定理可求出∠ABC+∠ACB,利用角平分线可求得其一半,在△BPC中再利用三角形内角和定理可求出∠BPC的度数.【解答】解:∵∠BAC=100°,∴∠ABC+∠ACB=180°﹣100°=80°,∴BP平分∠ABC,CP平分∠ACB,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠PBC+∠PCB=(∠ABC+∠ACB)=40°,∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣40°=140°,故答案为:140°.【点评】本题主要考查三角形内角和定理和角平分线的定义,利用条件求出∠PBC+∠PCB=40°是解题的关键,注意本题运用了整体的思想.17.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为22cm.【分析】根据线段垂直平分线性质求出AD=DC,根据△ABD的周长求出AB+BC=14cm,即可求出答案.【解答】解:∵DE是AC的垂直平分线,AE=4cm,∴AC=2AE=8cm,AD=DC,∵△ABD的周长为14cm,∴AB+AD+BD=14cm,∴AB+AD+BD=AB+DC+BD=AB+BC=14cm,∴△ABC的周长为AB+BC+AC=14cm+8cm=22cm,故答案为:22cm【点评】本题考查了线段垂直平分线性质的应用,能运用性质定理求出AD=DC是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.18.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB.一定成立的结论有①②④.(填序号)【分析】根据题中条件,结合图形及角平分线的性质得到结论,与各选项进行比对,排除错误答案,选出正确的结果.【解答】解:∵AD平分∠BAC∴∠DAC=∠DAE∵∠C=90°,DE⊥AB∴∠C=∠E=90°∵AD=AD∴△DAC≌△DAE∴∠CDA=∠EDA∴①AD平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC∴BE+AC=AB∴④BE+AC=AB正确;∵∠BDE=90°﹣∠B,∠BAC=90°﹣∠B∴∠BDE=∠BAC∴②∠BAC=∠BDE正确.故答案为①②④.【点评】本题考查了角平分线的性质;题目是一道结论开放性题目,考查了同学们利用角平分线的性质解决问题的能力,有利于培养同学们的发散思维能力.三、耐心解答(本大题共5小题,满分46分)19.(8分)如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.【分析】求出AD=BC,根据ASA推出△AED≌△BFC,根据全等三角形的性质得出即可.【解答】证明:∵AC=BD,∴AC+CD=BD+CD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(ASA),∴DE=CF.【点评】本题考查了全等三角形的性质和判定的应用,能求出△AED≌△BFC是解此题的关键,注意:全等三角形的对应边相等.20.(8分)一个多边形的内角和是它的外角和的6倍,求这个多边形的边数.【分析】根据多边形的内角和公式(n﹣2)•180°和外角和定理列出方程,然后求解即可.【解答】解:设这个多边形是n边形,由题意得(n﹣2)×180°=360°×6,解得n=14.答:这个多边形的边数是14.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.21.(10分)某零件如图所示,按规定∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC =146°,就断定这个零件不合格,你能说出其中的道理吗?【分析】延长BD交AC于E,根据三角形的外角的性质求出∠BDC,与测量结果比较,得到答案.【解答】解:延长BD交AC于E,由三角形外角的性质可知,∠DEC=∠A+∠B=90°+32°=122°,∴∠BDC=∠DEC+∠C=122°+21°=143°,而检验员量得∠BDC=146°,故零件不合格,【点评】本题考查的是三角形外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.22.(10分)如图,在平面直角坐标系xOy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案)A1(1,﹣2)B1(3,﹣1)C1(﹣2,1)(3)求△ABC的面积.【分析】(1)分别作出各点关于x轴的对称点,再顺次连接即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)利用矩形的面积减去三个顶点上三角形的面积即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)由图可知,A1(1,﹣2),B1(3,﹣1),C1(﹣2,1).故答案为:(1,﹣2),(3,﹣1),(﹣2,1);=5×3﹣×3×3﹣×2×1﹣×5×2(3)S△ABC=15﹣4.5﹣1﹣5=4.5.【点评】本题考查的是作图﹣轴对称变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.23.(10分)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC.求证:(1)△ABE≌△ACD;(2)DC⊥BE.【分析】(1)此题根据△ABC与△AED均为等腰直角三角形,容易得到全等条件证明△ABE≌△ACD;(2)根据(1)的结论和已知条件可以证明DC⊥BE.【解答】证明:(1)∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE.即∠BAE=∠CAD,在△ABE与△ACD中,∵,∴△ABE≌△ACD.(2)∵△ABE≌△ACD,∴∠ACD=∠ABE=45°.又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°.∴DC⊥BE.【点评】此题是一个实际应用问题,利用全等三角形的性质与判定来解决实际问题,关键是理解题意,得到所需要的已知条件.。
B ′C ′D ′O ′A ′ODC BA(第4题)2019-2020年八年级上册数学期中考试试题及答案一、选择题(每小题3分,共30分)1.已知在△ABC 中,AB=AC ,∠A=56°,则高BD 与BC 的夹角为()A .28°B .34°C .68°D .62°2.在△ABC 中,AB=3,AC=4,延长BC 至D ,使CD =BC ,连接AD ,则AD 的长的取值范围为()A .1<A D <7B .2<A D <14C .2.5<AD <5.5D .5<A D <113.如图,在△ABC 中,∠C=90°,CA=CB ,AD 平分∠CAB 交BC 于D ,D E ⊥AB 于点E ,且AB=6,则△DEB 的周长为()A .4B .6C .8D .104.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A ′O ′B ′=∠AOB 的依据是A .(S .S .S .)B .(S .A .S .)C .(A .S .A .)D .(A .A .S .5.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是()A.∠α=60o ,∠α的补角∠β=120o ,∠β>∠αB.∠α=90o ,∠α的补角∠β=900o ,∠β=∠αC.∠α=100o ,∠α的补角∠β=80o ,∠β<∠αD.两个角互为邻补角(第3题)6.△ABC 与△A ′B ′C ′中,条件①AB= A ′B ′,②BC= B ′C ′,③AC =A ′C ′,④∠A=∠A ′,⑤∠B=∠B ′,⑥∠C=∠C ′,则下列各组条件中不能保证△ABC ≌△A ′B ′C ′的是()A.①②③ B. ①②⑤ C.①③⑤ D.②⑤⑥7.如图,在△ABC 中,AB=AC ,高BD ,CE 交于点O ,AO 交BC 于点F ,则图中共有全等三角形()A .7对B .6对C .5对D .4对8.如图,在△ABC 中,∠C=90°,AC=BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,若△DEB 的周长为10cm ,则斜边AB 的长为()A .8 cmB .10 cmC .12 cmD .20 cm9.如图,△ABC 与△BDE 均为等边三角形,A B <BD ,若△ABC 不动,将△BDE 绕点B 旋转,则在旋转过程中,AE 与CD 的大小关系为()A .AE=CDB .A E >CDC .A E <CDD .无法确定10.已知∠P=80°,过不在∠P 上一点Q 作QM ,QN 分别垂直于∠P 的两边,垂足为M ,N ,则∠Q 的度数等于()A .10°B .80°C .100°D .80°或100°ECDBA。
2019-2020学年新人教版八年级上学期期中考试数学试卷一、选择题(本题共12小题,每小题3分,共36分每小题给出4个选项,有且只有一个答案是正确的,请把该选项的序号填入下面表格中相应题号内)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.已知三角形的两边长分别为3和6,第三边长是奇数,则第三边长可以是()A.1B.3C.5D.93.下列说法中:①形状相同的两个图形是全等形;②对应角相等的两个三角形是全等三角形;③全等三角形的面积相等;④若△ABC≌△DEF,△DEF≌△MNP,则△ABC≌△MNP.其中正确的说法共有()A.0个B.1个C.2个D.3个4.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形5.如图,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形()A.0个B.1个C.2个D.3个6.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE的度数是()A.10°B.12°C.15°D.18°7.如图,AE∥DF,AE=DF.则添加下列条件还不能使△EAC≌△FDB.()A.AB=CD B.CE∥BF C.CE=BF D.∠E=∠F8.如图,△ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分线,则∠BOC的度数为()A.105°B.115°C.125°D.135°9.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处C.3处D.4处10.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=()A.60°B.55°C.50°D.无法计算11.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为()(用含n的代数式表示).A.2n+1B.3n+2C.4n+2D.4n﹣212.点P是等边三角形ABC所在平面上一点,若P在△ABC的三个顶点所组成的△PAB、△PBC、△PAC都是等腰三角形,则这样的点P的个数为()A.1B.4C.7D.10二、填空题(本题共5小题每小题3分,共15分)13.如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α=.14.等腰△ABC的边长分别为6和8,则△ABC的周长为.15.如图,在5×4的方格纸中,每个小正方形边长为1,点O、A、B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有个个.16.如图,∠1+∠2+∠3+∠4+∠5=°.17.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是.三、解答题(本题共7小题共69分)18.如图所示,在△ABC中,已知AD是角平分线,∠B=66°,∠C=54°.(1)求∠ADB的度数;(2)若DE⊥AC于点E,求∠ADE的度数.19.如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.20.如图:AD=BC,AC=BD,求证:△EAB是等腰三角形.21.如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.(1)求证:△ABE≌△CBD;(2)证明:∠1=∠3.22.作图题(不写作法,保留作图痕迹)(1)如图1请利用直尺和圆规作线段AB的中垂线EF;(2)如图2请利用直尺和圆规作∠AOB的角平分线OC;(3)如图3,要在公路MN上修一个车站P,使得P向AB两个地方的距离和最小,请利用直尺和圆规画出P的位置;(4)如图4,已知∠AOB及点C、D两点,请利用直尺和圆规作一点P,使得点P到射线OA、OB的距离相等,且P点到点C、D的距离也相等;(5)如图5,利用网状格画出△ABC关于直线l的对称图形△A'B'C'.23.如图,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE交于点H,连CH.(1)求证:△ACD≌△BCE;(2)求证:CH平分∠AHE;(3)求∠CHE的度数.(用含α的式子表示)24.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E 在AC边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分每小题给出4个选项,有且只有一个答案是正确的,请把该选项的序号填入下面表格中相应题号内)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.已知三角形的两边长分别为3和6,第三边长是奇数,则第三边长可以是()A.1B.3C.5D.9【解答】解:设第三边的长为x,根据三角形的三边关系,得6﹣3<x<6+3,即3<x<9,又∵第三边长是奇数,∴x=5或7.故选:C.3.下列说法中:①形状相同的两个图形是全等形;②对应角相等的两个三角形是全等三角形;③全等三角形的面积相等;④若△ABC≌△DEF,△DEF≌△MNP,则△ABC≌△MNP.其中正确的说法共有()A.0个B.1个C.2个D.3个【解答】解:①形状相同,大小相等的两个图形是全等形,故本小题错误;②三角形全等必须有边的参与,所以对应角相等的两个三角形是全等三角形错误,正确的说法:对应角相等的两个三角形不一定是全等三角形,故本小题错误;③全等三角形能够完全重合,所以面积相等,故本小题正确;④若△ABC≌△DEF,△DEF≌△MNP,则三个三角形都能够完全重合,故△ABC≌△MNP,故本小题正确;综上所述,说法正确的是③④共2个.故选:C.4.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形【解答】解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.5.如图,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形()A.0个B.1个C.2个D.3个【解答】解:∵在△ABC中,∠A=36°,∠C=72°,∴∠ABC=180°﹣∠A﹣∠C=72°=∠C,∴AB=AC,∴△ABC是等腰三角形;∵BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°.∵∠A=∠ABD=36°,∴△ABD是等腰三角形;∵∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形;∴共有3个等腰三角形.故选:D.6.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE的度数是()A.10°B.12°C.15°D.18°【解答】解:∵AD⊥BC,∠C=36°,∴∠CAD=90°﹣36°=54°,∵AE是△ABC的角平分线,∠BAC=128°,∴∠CAE=∠BAC=×128°=64°,∴∠DAE=∠CAE﹣∠CAD=64°﹣54°=10°.故选:A.7.如图,AE∥DF,AE=DF.则添加下列条件还不能使△EAC≌△FDB.()A.AB=CD B.CE∥BF C.CE=BF D.∠E=∠F【解答】解:(A)当AB=CD时,AC=DB,根据SAS可以判定△EAC≌△FDB;(B)当CE∥BF时,∠ECA=∠FBD,根据AAS可以判定△EAC≌△FDB;(C)当CE=BF时,不能判定△EAC≌△FDB;(D)当∠E=∠F时,根据ASA可以判定△EAC≌△FDB;故选:C.8.如图,△ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分线,则∠BOC的度数为()A.105°B.115°C.125°D.135°【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=130°,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°,故选:B.9.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处C.3处D.4处【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.故选:D.10.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=()A.60°B.55°C.50°D.无法计算【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠CAE,在△BAD和△CAE中∴△BAD≌△CAE,∵∠2=30°,∴∠ABD=∠2=30°,∵,∠1=25°,∴∠3=∠ABD+∠1=55°,故选:B.11.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为()(用含n的代数式表示).A.2n+1B.3n+2C.4n+2D.4n﹣2【解答】解:第一个图案正三角形个数为6=2+4;第二个图案正三角形个数为2+4+4=2+2×4;第三个图案正三角形个数为2+2×4+4=2+3×4;…;第n个图案正三角形个数为2+(n﹣1)×4+4=2+4n=4n+2.故选:C.12.点P是等边三角形ABC所在平面上一点,若P在△ABC的三个顶点所组成的△PAB、△PBC、△PAC都是等腰三角形,则这样的点P的个数为()A.1B.4C.7D.10【解答】解:①以A为圆心,AB为半径画弧交BC的垂直平分线于点P1,P2两点;以B 为圆心,AB为半径囝弧交BC的垂直平分线于点P3,这样在AB的垂直平分线上有三点,②同样在AC,BC的垂直平分线上也分别有三点;③还有一点就是AB,BC,AC三条边的垂直平分线的交点;共3+3+3+1=10点.故选:D.二、填空题(本题共5小题每小题3分,共15分)13.如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α=67°.【解答】解:∵两个三角形全等,长度为3的边是对应边,∴长度为3的边对的角是对应角,∴∠α=67°.14.等腰△ABC的边长分别为6和8,则△ABC的周长为22或20.【解答】解:当6为底时,三角形的三边为6,8、8可以构成三角形,周长为6+8+8=22;当8为底时,三角形的三边为8,6、6可以构成三角形,周长为8+6+6=20.则△ABC的周长为22或20.故答案为:22或20.15.如图,在5×4的方格纸中,每个小正方形边长为1,点O、A、B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有个3个.【解答】解:AB=3,设C到AB的距离是a,则×3a=3,解得a=2,则C在到AB的距离是2,且与AB平行是直线上,则在第四象限满足条件的格点有3个.故答案是:3.16.如图,∠1+∠2+∠3+∠4+∠5=540°.【解答】解:连接∠2和∠5,∠3和∠5的顶点,可得三个三角形,根据三角形的内角和定理,∠1+∠2+∠3+∠4+∠5=540°.故答案为540.17.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是50°.【解答】解:连接BO,因为∠BAC=50°,∠BAC的平分线与AB的中垂线交于点O,所以∠OAB=∠ABO=25°,因为等腰△ABC中,AB=AC,∠BAC=50°,所以∠ABC=∠ACB=65°,所以∠OBC=65°﹣25°=40°,因为所以△ABO≌△ACO,所以BO=CO,所以∠OBC=∠OCB=40°,因为点C沿EF折叠后与点O重合,所以EO=EC,∠CEF=∠FEO,所以∠CEF=∠FEO==50°,故答案为:50°.三、解答题(本题共7小题共69分)18.如图所示,在△ABC中,已知AD是角平分线,∠B=66°,∠C=54°.(1)求∠ADB的度数;(2)若DE⊥AC于点E,求∠ADE的度数.【解答】解:(1)∵在△ABC中,∠B=66°,∠C=54°,∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C=60°.∵AD是△ABC的角平分线,∴∠BAD=∠BAC=30°在△ABD中,∠B=66°,∠BAD=30°,∴∠ADB=180°﹣∠B﹣∠BAD=84°.(2)∵∠CAD=∠BAC=30°,又DE⊥AC,∴在Rt△ADE中,∠EAD=30°,∴∠ADE=90°﹣∠EAD=60°.19.如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.【解答】(1)解:△ADC≌△ABE,△CDF≌△EBF;(2)证法一:连接CE,∵Rt△ABC≌Rt△ADE,∴AC=AE.∴∠ACE=∠AEC(等边对等角).又∵Rt△ABC≌Rt△ADE,∴∠ACB=∠AED.∴∠ACE﹣∠ACB=∠AEC﹣∠AED.即∠BCE=∠DEC.∴CF=EF.证法二:∵Rt△ABC≌Rt△ADE,∴AC=AE,AD=AB,∠CAB=∠EAD,∴∠CAB﹣∠DAB=∠EAD﹣∠DAB.即∠CAD=∠EAB.∴△CAD≌△EAB,∴CD=EB,∠ADC=∠ABE.又∵∠ADE=∠ABC,∴∠CDF=∠EBF.又∵∠DFC=∠BFE,∴△CDF≌△EBF(AAS).∴CF=EF.证法三:连接AF,∵Rt△ABC≌Rt△ADE,∴AB=AD.又∵AF=AF,∴Rt△ABF≌Rt△ADF(HL).∴BF=DF.又∵BC=DE,∴BC﹣BF=DE﹣DF.即CF=EF.20.如图:AD=BC,AC=BD,求证:△EAB是等腰三角形.【解答】证明:在△ADB和△BCA中,,∴△ADB≌△BCA(SSS),∴∠DBA=∠CAB,∴AE=BE,∴△EAB是等腰三角形.21.如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.(1)求证:△ABE≌△CBD;(2)证明:∠1=∠3.【解答】证明:(1)∵∠1=∠2,∴∠1+∠CBE=∠2+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);(2)∵△ABE≌△CBD,∴∠A=∠C,∵∠AFB=∠CFE,∴∠1=∠3.22.作图题(不写作法,保留作图痕迹)(1)如图1请利用直尺和圆规作线段AB的中垂线EF;(2)如图2请利用直尺和圆规作∠AOB的角平分线OC;(3)如图3,要在公路MN上修一个车站P,使得P向AB两个地方的距离和最小,请利用直尺和圆规画出P的位置;(4)如图4,已知∠AOB及点C、D两点,请利用直尺和圆规作一点P,使得点P到射线OA、OB的距离相等,且P点到点C、D的距离也相等;(5)如图5,利用网状格画出△ABC关于直线l的对称图形△A'B'C'.【解答】解:(1)如图1,直线EF为所作;(2)如图2,射线OC为所作;(3)如图3,点P为所作;(4)如图4,点P为所作;(5)如图5,△A′B′C′为所作.23.如图,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE交于点H,连CH.(1)求证:△ACD≌△BCE;(2)求证:CH平分∠AHE;(3)求∠CHE的度数.(用含α的式子表示)【解答】(1)证明:∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);(2)证明:过点C作CM⊥AD于M,CN⊥BE于N,∵△ACD≌△BCE,∴∠CAM=∠CBN,在△ACM和△BCN中,,∴△ACM≌△BCN,∴CM=CN,∴CH平分∠AHE;(3)∵△ACD≌△BCE,∴∠CAD=∠CBE,∵∠AMC=∠AMC,∴∠AHB=∠ACB=α,∴∠AHE=180°﹣α,∴∠CHE=∠AHE=90°﹣α.24.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E 在AC边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.【解答】解:(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=,可得2x=,解得:x=36°,则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE时,∵2x+x=30°+30°,∴x=20°;②当AD=DE时,∵30°+30°+2x+x=180°,∴x=40°;综上所述,∠C为20°或40°的角.。
2019-2020学年八年级上学期期中考试数学试卷一.选择题(共10小题)1.计算:=()A.2 B.﹣2 C.D.2.下列分式是最简分式的是()A.B.C.D.3.下列长度的各组线段中可组成三角形的是()A.1,2,3 B.2,5,8 C.6,2,2 D.3,5,34.把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.缩小2倍D.不变5.方程=1的解是()A.无解B.x=﹣1 C.x=0 D.x=16.化简a÷b•的结果是()A.B.a C.ab2D.ab7.如图,已知△ABC是等边三角形,点B、C,D、E在同一直线上,且CG=CD,DF=DE,则∠E=()A.30°B.20°C.15°D.100°8.下列命题的逆命题是真命题的是()A.对顶角相等B.同一三角形内等角对等边C.同角的余角相等D.全等三角形对应角相等9.某公司承担了制作600套校服的任务,原计划每天制作x套,实际上平均每天比原计划多制作了5套,因此提前6天完成任务.根据题意,下列方程正确的是()A.B.C.D.10.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连结CF和DE,若∠A=70°,∠DCF=50°,BC=8.则AB长为()A.4 B.2C.8 D.4二.填空题(共5小题)11.H7N9病毒的直径为30纳米(1纳米10﹣9米),30纳米用科学记数法可表示为米.12.计算(﹣)3的结果是.13.如图,已知AE=BE,DE是AB的垂直平分线,BF=12,CF=3,则AC=.14.已知x﹣=6,求x2+的值为.15.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC =105°,则∠A的度数是.三.解答题(共8小题)16.计算:(2m2n﹣3)2•3m﹣3n4.17.计算:+﹣118.解方程:.19.如图,△ABC中,BD=EC,AB=AC,∠B=∠C,求证:△ABE≌△ACD20.如图,点E在△ABC的外部,点D在BC上,DE交AC于点F,∠1=∠2=∠3,AB=AD.求证:△ABC≌△ADE.21.节能环保的油电混合动力汽车,既可用油做动力行驶,也可用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求汽车行驶中每千米用电费用是多少元?(2)甲、乙两地的距离是多少千米?22.如图,在△ABC中,∠C=90°,PD=PA,(1)尺规作图:作BD的垂直平分线交BC于点E,交BD于点F(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接DE,求证:DE⊥DP.23.如图,在等边△ABC的顶点B、C处各有一只蜗牛,它们同时出发,分别都以每分钟1个单位的速度由C向A和由B向C爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、P处,请问:(1)在爬行过程中,BD和AP始终相等吗?(2)在爬行过程中BD与AP所成的∠DQA有变化吗?若无变化是多少度?参考答案与试题解析一.选择题(共10小题)1.计算:=()A.2 B.﹣2 C.D.【分析】根据负整数指数幂解答即可.【解答】解:=2,故选:A.2.下列分式是最简分式的是()A.B.C.D.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、该分式的分子、分母中含有公因数a,则它不是最简分式.故本选项错误;B、该分式的分子、分母中含有公因数3,则它不是最简分式.故本选项错误;C、该分式符合最简分式的定义.故本选项正确.D、分母为(x+1)(x﹣1),所以该分式的分子、分母中含有公因式(x+1),则它不是最简分式.故本选项错误;故选:C.3.下列长度的各组线段中可组成三角形的是()A.1,2,3 B.2,5,8 C.6,2,2 D.3,5,3【分析】根据三角形的三边满足两边之和大于第三边来进行判断.【解答】解:A、2+1=3,不能构成三角形,故不符合题意;B、2+5=7<8,不能构成三角形,故不符合题意;C、2+2=4<6,不能构成三角形,故不符合题意;D、3+3>5,可以构成三角形,故符合题意;故选:D.4.把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.缩小2倍D.不变【分析】先根据题意列出算式,再根据分式的性质进行化简,即可得出选项.【解答】解:=,即分式的值不变,故选:D.5.方程=1的解是()A.无解B.x=﹣1 C.x=0 D.x=1【分析】移项可得﹣1==0,可得x=0;【解答】解:=1,∴移项可得﹣1==0,∴x=0,经检验x=0是方程的根,∴方程的根是x=0;故选:C.6.化简a÷b•的结果是()A.B.a C.ab2D.ab【分析】分式的乘法法则:分式乘分式,用分子的积作积的分子,分母的积作积的分母.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.【解答】解:a÷b•=a••=,故选:A.7.如图,已知△ABC是等边三角形,点B、C,D、E在同一直线上,且CG=CD,DF=DE,则∠E=()A.30°B.20°C.15°D.100°【分析】由于△ABC是等边三角形,那么∠B=∠1=60°,而CD=CG,那么∠CGD=∠2,而∠1是△CDG的外角,可得∠1=2∠2,同理有∠2=2∠E,等量代换有4∠E=60°,解即可求∠E.【解答】解:如右图所示,∵△ABC是等边三角形,∴∠B=∠1=60°,∵CD=CG,∴∠CGD=∠2,∴∠1=2∠2,同理有∠2=2∠E,∴4∠E=60°,∴∠E=15°.故选:C.8.下列命题的逆命题是真命题的是()A.对顶角相等B.同一三角形内等角对等边C.同角的余角相等D.全等三角形对应角相等【分析】先交换原命题的题设与结论得到四个逆命题,然后判断它们的真假.【解答】解:A、对顶角相等的逆命题是相等的角是对顶角,是假命题;B、同一三角形内等角对等边的逆命题是同一三角形内等边对等角,是真命题;C、同角的余角相等的逆命题是余角相等的角是同角,也可以是等角,是假命题;D、全等三角形对应角相等的逆命题是对应角相等的三角形是全等三角形,是假命题;故选:B.9.某公司承担了制作600套校服的任务,原计划每天制作x套,实际上平均每天比原计划多制作了5套,因此提前6天完成任务.根据题意,下列方程正确的是()A.B.C.D.【分析】设原计划每天制作x套,实际平均每天制作(x+5)套,根据实际提前6天完成任务,列方程即可.【解答】解:设原计划每天制作x套,实际平均每天制作(x+5)套,由题意得,﹣=6.故选:C.10.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连结CF和DE,若∠A=70°,∠DCF=50°,BC=8.则AB长为()A.4 B.2C.8 D.4【分析】根据角平分线的定义得到∠ABD=∠CBD,根据线段垂直平分线的性质得到FB=FC,得到∠FCB=∠CBD,根据三角形内角和定理得到∠BCA=∠A,根据等腰三角形的判定定理解答.【解答】解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵EF是BC的垂直平分线,∴FB=FC,∴∠FCB=∠CBD,∴∠ABD=∠CBD=∠FCB,∠ABD+∠CBD+∠FCB+∠A+∠DCF=180°,解得,∠FCB=20°,∴∠BCA=70°,∴∠BCA=∠A,∴AB=BC=8,故选:C.二.填空题(共5小题)11.H7N9病毒的直径为30纳米(1纳米10﹣9米),30纳米用科学记数法可表示为3×10﹣8米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:30纳米=30×10﹣9米=3×10﹣8米.故答案为:3×10﹣8.12.计算(﹣)3的结果是﹣.【分析】根据分式的乘方法则计算,得到答案.【解答】解:(﹣)3=﹣=﹣,故答案为:﹣.13.如图,已知AE=BE,DE是AB的垂直平分线,BF=12,CF=3,则AC=15 .【分析】利用垂直平分线的性质得出AF=BF,从而求出AC的长.【解答】解:∵DE是AB的垂直平分线,∴AF=BF∴AC=AF+CF=BF+CF=12+3=15.14.已知x﹣=6,求x2+的值为38 .【分析】把x﹣=6两边平方后化简整理解答即可.【解答】解:将x﹣=6两边平方,可得:,解得:,故答案为:38.15.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC =105°,则∠A的度数是85°.【分析】设∠A=∠BDA=x,∠ABD=∠ECD=y,构建方程组即可解决问题.【解答】解:∵BA=BD,∴∠A=∠BDA,设∠A=∠BDA=x,∠ABD=∠ECD=y,则有,解得x=85°,故答案为85°.三.解答题(共8小题)16.计算:(2m2n﹣3)2•3m﹣3n4.【分析】先算乘方,再根据单项式乘单项式的运算法则进行计算即可得出答案.【解答】解:(2m2n﹣3)2•3m﹣3n4=(4m4n﹣6)(3m﹣3n4)=12mn﹣2=.17.计算:+﹣1【分析】先把要求的式子进行变形,再根据分式的加减法则进行计算即可得出答案.【解答】解:+﹣1=﹣﹣1=1﹣1=0.18.解方程:.【分析】去分母,将分式方程转化为整式方程,即可解决问题.【解答】解:∵,∴1440﹣1260=6x,即180=6x,解得:x=30.经检验:x=30是原方程的解.19.如图,△ABC中,BD=EC,AB=AC,∠B=∠C,求证:△ABE≌△ACD【分析】利用SAS证明△ABE和△ACD全等即可.【解答】证明:∵BD=CE,∴BE=CD,在△ABE和△ACD中,∵,∴△ABE≌△ACD(SAS).20.如图,点E在△ABC的外部,点D在BC上,DE交AC于点F,∠1=∠2=∠3,AB=AD.求证:△ABC≌△ADE.【分析】根据角的和差和三角形的内角和得到∠BAC=∠DAE,∠C=∠E,然后根据全等三角形的判定定理即可得到结论.【解答】证明:∵∠1=∠2=∠3,∠AFE=∠CFD,∴∠1+∠DAF=∠2+∠DAF,∠C=180°﹣∠3﹣∠DFC,∠E=180°﹣∠2﹣∠AFE,∴∠BAC=∠DAE,∠C=∠E,在△ABC与△ADE中,,∴△ABC≌△ADE(AAS).21.节能环保的油电混合动力汽车,既可用油做动力行驶,也可用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求汽车行驶中每千米用电费用是多少元?(2)甲、乙两地的距离是多少千米?【分析】(1)直接利用行驶的路程不变得出方程进而得出答案;(2)利用(1)中所求即可得出答案.【解答】解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,根据题意可得:=,解得:x=0.3,经检验得:x=0.3是原方程的解,答:汽车行驶中每千米用电费用是0.3元;(2)甲、乙两地的距离是:30÷0.3=100(千米).22.如图,在△ABC中,∠C=90°,PD=PA,(1)尺规作图:作BD的垂直平分线交BC于点E,交BD于点F(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接DE,求证:DE⊥DP.【分析】(1)利用基本作图作BD的垂直平分线EF;(2)先由PA=PD得到∠A=∠PDA,再根据线段垂直平分线的性质得到EB=ED,则∠B =∠EDB,从而得到∠PDA+∠EDB=90°,从而可判断PD⊥DE.【解答】(1)解:如图,EF为所作;(2)证明:∵PA=PD,∴∠A=∠PDA,∵EF垂直平分BD,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠PDA+∠EDB=90°,∴∠PDE=180°﹣∠PDA﹣∠EDB=90°,∴PD⊥DE.23.如图,在等边△ABC的顶点B、C处各有一只蜗牛,它们同时出发,分别都以每分钟1个单位的速度由C向A和由B向C爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、P处,请问:(1)在爬行过程中,BD和AP始终相等吗?(2)在爬行过程中BD与AP所成的∠DQA有变化吗?若无变化是多少度?【分析】(1)根据等边三角形性质得出∠CAB=∠C=∠ABP=60°,AB=BC,根据SAS 推出△BDC≌△APB即可.(2)根据△BDC≌△APB得出∠CBD=∠BAP,根据三角形外角性质求出∠DQA=∠ABC,即可求出答案.【解答】解:(1)在爬行过程中,BD和AP始终相等,理由是:∵△ABC是等边三角形,∴∠CAB=∠C=∠ABP=60°,AB=BC,在△BDC和△APB中,,∴△BDC≌△APB(SAS),∴BD=AP.(2)蜗牛在爬行过程中BD与AP所成的∠DQA大小无变化,理由:∵△BDC≌△APB,∴∠CBD=∠BAP,∴∠DQA=∠DBA+∠BAP=∠DBA+∠CBD=∠ABC=60°,即蜗牛在爬行过程中BD与AP所成的∠DQA大小无变化,始终是60°.。
2019-2020年初二数学上册期中试卷及答案一、选择题(每题3分,共30分)1、在△ABC 和△DEF 中,AB=DE, ∠B=∠E,如果补充一个条件后不一定能使△ABC ≌△DEF ,则补充的条件是( )A 、BC=EFB 、∠A=∠DC 、AC=DFD 、∠C=∠F 2、下列命题中正确个数为( ) ①全等三角形对应边相等;②三个角对应相等的两个三角形全等; ③三边对应相等的两个三角形全等; ④有两边对应相等的两个三角形全等.A .4个B 、3个C 、2个D 、1个3、已知△ABC ≌△DEF ,∠A=80°,∠E=40°,则∠F 等于 () A 、 80° B 、40° C 、 120° D 、 60°4、已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为( )A 、70°B 、70°或55°C 、40°或55°D 、70°或40°5、如右图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是( )A 、10:05B 、20:01C 、20:10D 、10:026、等腰三角形底边上的高为腰的一半,则它的顶角为( )A 、120°B 、90°C 、100°D 、60°7、点P (1,-2)关于x 轴的对称点是P 1,P 1关于y 轴的对称点坐标是P 2,则P 2的坐标为( )A 、(1,-2)B 、(-1,2)C 、(-1,-2)D 、(-2,-1) 8、已知()22x -,求y x 的值( )A 、-1B 、-2C 、1D 、29、如图,DE 是△ABC 中AC 边上的垂直平分线,如果BC=8cm ,AB=10cm ,则△EBC 的周长为( )A 、16 cmB 、18cmC 、26cmD 、28cm10、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为( )A 、2cm ²B 、4cm ²C 、6cm ²二、填空题(每题4分,共20分) 11、等腰三角形的对称轴有 条. 12、(-0.7)²的平方根是 . 13、若2)(11y x x x +=-+-,则x-y= .14、如图,在△ABC 中,∠C=90°AD 平分∠BAC ,BC=10cm ,BD=6cm ,则点D 到AB 的距离为__ .15、如图,△ABE ≌△ACD ,∠ADB=105°,∠B=60°则∠BAE= .FED CBAEDCBACD第9题图第10题图 第14题图三、作图题(6分)16、如图,A 、B 两村在一条小河的同一侧,要在河边建一水厂向两村供水. (1)若要使自来水厂到两村的距离相等,厂址P 应选在哪个位置? (2)若要使自来水厂到两村的输水管用料最省,厂址Q 应选在哪个位置? 请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.四、求下列x 的值(8分)17、 27x ³=-343 18、 (3x-1)²=(-3)²五、解答题(5分)19、已知5+11的小数部分为a ,5-11的小数部分为b ,求 (a+b)2012的值。
2019-2020学年度八年级上学期期中考试数学试题一、选择题(本大题共10小题,共30.0分)1.已知三角形三边长分别为3,x,13,若x为正整数,则这样的三角形个数是A. 2B. 3C. 5D. 13【答案】C【解析】解:由题意得,,为正整数,,12,13,14,15,这样的三角形有5个,故选:C.根据三角形两边之和大于第三边,两边之差小于第三边列式计算.本题考查的是三角形的三边关系,三角形三边关系定理:三角形两边之和大于第三边.2.一个正多边形的内角和为,那么从一点引对角线的条数是A. 3B. 4C. 5D. 6【答案】B【解析】解:设多边形的边数为n,由题意得,,解得,所以,从一点引对角线的条数.故选:B.设多边形的边数为n,根据多边形的内角和公式列方程求出n,再根据从一点引对角线的条数公式解答.本题考查了多边形内角与外角,多边形的对角线,熟记公式是解题的关键.3.下列说法正确的是A. 形状相同的两个三角形全等B. 面积相等的两个三角形全等C. 完全重合的两个三角形全等D. 所有的等边三角形全等【答案】C【解析】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.此题主要考查了全等图形,关键是掌握全等形的概念.4.下列图形中不是轴对称图形的是A. B. C. D.【答案】A【解析】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.根据轴对称图形的概念对各图形分析判断即可得解.本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如图,已知 ≌ ,下列结论不一定成立的是A.B.C.D.【答案】B【解析】解:≌ ,,,,故A正确;,即,故D正确;在和中,≌ ,,故C正确;故选:B.根据全等三角形的性质可得到、,则可得到,,则可证明 ≌ ,可得,可求得答案.本题主要考查全等三角开的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.6.如图,已知,那么添加下列一个条件后,仍无法判定 ≌ 的是A.B.C.D.【答案】C【解析】解:A、添加,根据SSS,能判定 ≌ ,故A选项不符合题意;B、添加,根据SAS,能判定 ≌ ,故B选项不符合题意;C、添加时,不能判定 ≌ ,故C选项符合题意;D、添加,根据HL,能判定 ≌ ,故D选项不符合题意;故选:C.要判定 ≌ ,已知,AC是公共边,具备了两组边对应相等,故添加、、后可分别根据SSS、SAS、HL能判定 ≌ ,而添加后则不能.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如图,,BP和CP分别平分和,AD过点P,且与AB垂直若,则点P到BC的距离是A. 8B. 6C. 4D. 2【答案】C【解析】解:过点P作于E,,,,和CP分别平分和,,,,,,.故选:C.过点P作于E,根据角平分线上的点到角的两边的距离相等可得,,那么,又,进而求出.本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.8.把一副直角三角板按如图所示的方式摆放在一起,其中,,,,则等于A. B. C. D.【答案】B【解析】解:如图:,,,,.故选:B.根据三角形的外角的性质分别表示出和,计算即可.考查了三角形外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.9.如图,在中,,,则的度数为A. B. C. D.【答案】A【解析】解:中,,,,,,,故选:A.先根据等腰三角形的性质求出的度数,再由平角的定义得出的度数,根据等腰三角形的性质即可得出结论.本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.10.如图所示,在等边中,点D、E分别在边BC、AB上,且,AD与CE交于点F,则的度数为A.B.C.D.【答案】A【解析】解:为等边三角形在和中,,≌又.故选:A.因为为等边三角形,所以,,根据SAS易证 ≌ ,则,再根据三角形内角和定理求得的度数.本题考查了全等三角形的判定、等边三角形性质、三角形内角和定理及外角性质,综合性强,考查学生综合运用数学知识的能力.二、填空题(本大题共8小题,共24.0分)11.中,:::3:5,则______,这个三角形按角分类时,属于______三角形.【答案】100 钝角【解析】解::::3:5,设,则,,根据三角形内角和定理得到:,解得:则是,是,,是,这个三角形按角分类时,属于钝角三角形;故答案为:,钝角.根据:::3:5,可以设,则,,则利用三角形内角和定理即可得到一个关于x的方程,求得三角形的各角,判断出三角形的形状.本题考查了三角形的内角和定理,依据三角形的内角和定理,列一元一次方程求得三角形的各角的度数是关键.12.如图,在中,AD是中线,E是AD的中点,连接BE,CE,若的面积是6,则的面积是______.【答案】3【解析】解:是中线,,是AD的中点,,,.故答案为3.利用三角形的中线将三角形分成面积相等的两部分得到,再利用E 点为中点得到,,然后计算即可.本题考查了三角形的面积:三角形的中线将三角形分成面积相等的两部分.13.已知 ≌ ,若,,则______.【答案】【解析】解:,,≌ ,,故答案为:.根据三角形内角和定理求出,根据全等三角形的性质解答.本题考查的是全等三角形的性质三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.14.已知等腰三角形的其中二边长分别为4,9,则这个等腰三角形的周长为______.【答案】22【解析】解:分为两种情况:当三角形的三边是4,4,9时,,此时不符合三角形的三边关系定理,此时不存在三角形;当三角形的三边是4,9,9时,此时符合三角形的三边关系定理,此时三角形的周长是,故答案为:22.分为两种情况:当三角形的三边是4,4,9时,当三角形的三边是4,9,9时,看看是否符合三角形的三边关系定理,符合时求出即可.本题考查了等腰三角形的性质,三角形三边关系定理的应用,注意:要进行分类讨论,题目比较好,难度适中.15.如图所示,在中,,,,D是斜边AC的中点,P是AB上一动点,则的最小值为______.【答案】10【解析】解:作C关于AB的对称点,连接,,,,,为等边三角形,为与直线AC之间的连接线段,最小值为到AC的距离,故答案为:10.作C关于AB的对称点,连接,易求,则,且为等边三角形,为与直线AC之间的连接线段,其最小值为到AC的距离,所以最小值为10.本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.16.如图,的边AB,AC的垂直平分线相交于点P,连接PB,PC,若,则的度数是______.【答案】【解析】解:,是AB的垂直平分线,,,同理,,,,,故答案为:.根据线段的垂直平分线的性质得到,根据等腰三角形的性质得到,根据三角形内角和定理计算.本题考查的是线段垂直平分线的性质,等腰三角形的性质,三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.如图,在中,点A的坐标为,点B的坐标为,点C的坐标为,点D在第二象限,且与全等,点D的坐标是______.【答案】或【解析】解:当 ≌ 时,和关于y轴对称,点D的坐标是,当≌ 时,的高的高,,,点的坐标是,故答案为:或.分 ≌ , ≌ 两种情况,根据全等三角形的性质,坐标与图形的性质解答.本题考查的是全等三角形的性质,坐标与图形的性质,掌握全等三角形的对应边相等是解题的关键.18.如图,中,,D,E,F分别为边BC,AB,AC上的点,且,,若,,则的度数是______.【答案】【解析】解:,,在和中,≌ ,,,,,,,,由条件可以得出,就可以得出 ≌ ,就可以得出,,由平角的定义就可以得出,,求出,进而可求出的度数.本题考查了等腰三角形的性质的运用,全等三角形的判定及性质的运用,三角形内角和定理的运用,平角的定义的运用,解答时证明三角形全等是关键.三、解答题(本大题共9小题,共66.0分)19.如图,CE是的外角的平分线,且CE交BA的延长线于点E,,,求的度数.【答案】解:,,.是的平分线,..【解析】根据三角形外角性质求出,根据角平分线定义求出,根据三角形外角性质求出即可.本题考查了三角形外角性质,角平分线定义的应用,能灵活运用定理进行推理是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和.20.如图,已知点B、E、C、F在同一条直线上,,且求证:.【答案】证明:,,,.,.在与中,,≌ ,.【解析】证明它们所在的三角形全等即可根据平行线的性质可得,;由可得运用ASA证明与全等.此题考查全等三角形的判定与性质,属基础题证明线段相等,通常证明它们所在的三角形全等.21.如图,直线AB与直线BC相交于点B,点D是直线BC上一点,请按下列要求完成作图尺规作图,不写作法,保留作图痕迹作直线DE,使直线;在直线DE上确定一点P,使点P到B,D两点的距离相等.【答案】解:如图,以D为顶点,DC为边作一个角等于,作出BD中垂线;两直线交点为P,点P即为所求.【解析】作出线段BD的垂直平分线,进而作一个角等于得出两直线的交点即可得出答案.此题主要考查了复杂作图,正确掌握线段垂直平分线和作一个角等于已知角的基本作图是解题关键.22.如图,,BD平分,CA平分求证:.【答案】证明:,,平分,,,,同理可证:,.【解析】根据平行线的性质得到,根据角平分线的定义得到,根据等腰三角形的判定得到,等量代换即可得到结论.本题考查了等腰三角形的判定和性质,平行线的性质,熟练掌握等腰三角形的判定和性质是解题的关键.23.如图,点B,C分别在的两边上,点D是内一点,,,垂足分别为E,F,且,求证:.【答案】证明:连接AD,,,,,在和中,≌ ,,.【解析】根据,,,可知,然后根据SAS 证明 ≌ 即可证明结论.本题主要考查了全等三角形的判定与性质以及角平分线性质,熟练掌握全等三角形的判定方法是解决问题的关键.24.如图,五边形ABCDE的内角都相等,且,,求的度数.【答案】证明:五边形ABCDE的内角都相等,,,,,,,.【解析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出,从而求出度.本题主要考查了正五边形的内角和以及正五边形的有关性质解此题的关键是能够求出,和正五边形的每个内角是108度.25.如图,在中,,AB的垂直平分线DE交AC于D,垂足为E,若,.求的度数;求AC的长度.【答案】解:垂直平分AB,,,;,,,,.【解析】根据线段垂直平分线的性质求出,求出,根据三角形外角的性质求出即可;求出,根据含角的直角三角形的性质求出BD,即可求出AC.本题考查了含角的直角三角形的性质,线段垂直平分线的性质,三角形外角的性质等知识点,能综合运用性质进行推理是解此题的关键.26.如图,,,AD平分,,,垂足分别为D,E.求证:;点G在AB上,若,求证:G是AB的中点.【答案】解:,,,,,在和中,≌ ,,.平分,,,,,,.连接CG.,,,,,,,即G是AB的中点.【解析】由 ≌ ,可得,由AD平分,推出,由,推出,推出,推出,可得;只要证明即可解决问题;本题考查全等三角形的判定和性质、等腰三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.27.如图,,都是等边三角形,BE,CD相交于点P.求证:;求的度数;点F在线段CD上,且,判断线段DF与AP的数量关系,并证明你的结论.【答案】证明:,都是等边三角形,,,,,即,在和中,,≌ ,.≌ ,,,.结论:.证明:,,..,,.是等边三角形,.在和中,≌ ,.【解析】欲证明,只要证明 ≌ 即可;由 ≌ ,推出,再利用三角形的外角的性质即可解决问题;结论:只要证明 ≌ 即可;本题考查全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。
2019-2020学年人教版八年级上学期期中考试数学试卷一、选择题(每小题3分,共30分)1.下列图形中不是轴对称图形的是()2.若下列各组值代表线段的长度,以它们为边不能构成三角形的是()A.3,8,4 B.4,9,6C.15,20,8 D.9,15,83.如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是()A.AC=AD B.B C=BDC.∠C=∠D D.∠ABC=∠ABD4.如图,△ABC中,∠B=∠C,D是BC上一点,DE⊥BC交AC于E,DF⊥AB,垂足为F,若∠AED=160°,则∠EDF等于()A.50°B.60°C.70°D.80°5.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm 6.下列条件中,能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=DEC.∠A=∠D,∠B=∠E,∠C=∠FD.AB=DE,BC=EF,△ABC的周长=△DEF的周长7.如图,AB=AC,BD=EC,AF⊥BC,则图中全等三角形有()A.2对B.3对C.4对D.5对8.如图,平面直角坐标系xOy中,已知定点A(1,0)和B(0,1),若动点C在x轴上运动,则使△ABC为等腰三角形的点C有()个.A.2 B.3C.4D.59.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.其中正确的结论的个数是()A.2个B.3个C.4个D.5个10.如图,△ABC中,∠ACB=75°,D为BC上一点,CE⊥AD于E,且AE=CE,点E在AB的垂直平分线上,若CD=2,则BD的长为()A.2 B.C.D.1二、填空题11.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=_________.12.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于_________.13.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),则B点的坐标是_________.14.锐角△ABC中,∠A=50°,两条高线BD、CE所在直线交于点H,则∠BHC的度数为_________.15.如图,点P关于OA、OB的对称点分别为C、D,连接CD,交OA于M,交OB于N,若PMN的周长=8厘米,则CD为_________厘米.16.如图,△ABC中,AC=8,AB=10,△ABC的面积为30,AD平分∠BAC,F、E分别为AC、AD上两动点,连接CE、EF,则CE+EF的最小值为_________.三、解答题(共72分)17.(8分)如图:线段AB与直线EF不相交,在直线EF上求作一点C,使△ABC周长最短.(不要求写作法,但请保留作图痕迹)18.(8分)如图,点D、E在△ABC的边BC上,AD=AE,BD=CE,求证:AB=AC.19.(8分)已知:如图,AB=AD,AC=AE,∠1=∠2,求证:∠DEB=∠2.20.(8分)已知等腰三角形的周长为24cm,腰长为xcm,底边为ycm,请你用x的式子表示y,并求x的取值范围.21.(8分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)将△ABC沿y轴翻折,则翻折后点A的对应点的坐标是_________.(2)若△DBC与△ABC全等,请画出符合条件的△DBC(点D与点A重合除外),并直接写出点D的坐标.22.(10分)△ABC中,AC=BC,∠ACB=90°,点D在AB上,E在BC上,且AD=BE,BD=AC.(1)如图1,连接DE,求∠BDE的度数;(2)如图2,过E作EF⊥AB于F,若BF=4,求CE的长.23.(10分)已知四边形ABCD中,AD∥BC,AB=AD,∠ABC=2∠C=2α,点E在AD上,点F在DC上.(1)如图1,若α=45°,∠BDC的度数为_________;(2)如图2,当α=45°,∠BEF=90°时,求证:EB=EF;(3)如图3,若α=30°,则当∠BEF=_________时,使得EB=EF成立?(请直接写出结果)24.(12分)如图1,已知线段AC∥y轴,点B在第一象限,且AO平分∠BAC,AB交y 轴与G,连OB、OC.(1)判断△AOG的形状,并予以证明;(2)若点B、C关于y轴对称,求证:AO⊥BO;(3)在(2)的条件下,如图2,点M为OA上一点,且∠ACM=45°,BM交y轴于P,若点B的坐标为(3,1),求点M的坐标.试卷参考答案及分析一试卷分析及参考答案解答题详细答案及评分标准17.作图5分 ,写作法3分 18.省略19.(本题8分)证明:∵ ∠1=∠2 ∴ ∠1+∠BAE =∠2+∠BAE ∴ ∠DAB =∠CAB …… ……2 ′ 在△DAB 和△CAB 中 AD =AB∠DAB =∠CAB AE =AC∴ △DAB ≌ △CAB(SAS) …… ……5 ′∴∠DEA =∠C∵∠DEB+∠AEC+∠DEA =∠2+∠AEC+ ∠C= 180°… ……7 ′ ∴∠DEB =∠2 …… ……8 ′20.(1)242y x =- …… ……3 ′(2)由三角形三边之间的关系可得2x y >即2242x x >-解得6x > ………5 ′ 有因0y >即2420x ->解得12x <…… ……7 ′ ∴x 的范围是612x <<… ……8 21题.(本题8分) (1)(2,3) …… ……2′(2)画图每个1分……5′(-5,3),(-5,-3),(-2,-3)--------8分21.(1)(2,3) …… ……2′(2)画图每个1分……5′(-5,3),(-5,-3),(-2,-3)--------8分22题.(本题10分)解:(1)连CD,易证△BDE≌△ACD,∵∠B=45°,BC=BD,∴∠BCD=67.5°∵∠ACB=90°,∴∠ACD=22.5°=∠BDE.…………5′(2)连CD,由(1)知CD=DE,∴∠DCE=∠DEC=67.5°,∴∠CDE=45°,过D作DM⊥CE于M,∴CM=ME,∠CDM=∠EDM=∠BDE=22.5°,∵EM⊥DM,EF⊥DB,∴EF=EM,易证EF=BF,∴CE=2BF=8.…………10′23题.(本题8分)答案:(1)∠BDC=90°…………2′(2)解法一:连BD,由(1)知∠BDC=90°,作EM//AB交BD于M,易证△EMD为等腰直角△,△EDF≌△EMB故EB=EF 解法二:连BD,作EN∥BD交AB于N,证△ENB≌△FDE.…………7′(3)120°.…………10′24题.(本题12分)解:(1)等腰三角形,证明略.…………3′(2)解法一:设BC交y轴于K,过A作AN⊥y轴于N,易证AN=CK=BK,△ANG≌△BKG,∴AG=BG,又易证AG=OG,故设∠OAG=∠AOG=x,∠GOB=∠GBO=y,∴2x+2y=180°,x+y=90°,∴AO⊥BO.解法二:连BC,∵B、C关于y轴对称,AC//y轴,∴AC⊥BC,易证△COD≌△BOE(HL),∴∠DCO=∠ABO,∴∠BAC+∠BOC=180°,设∠BAO=∠CAO=x,∠OBC=∠OCB=y,∴2x+∠BOC=180°,又2y+∠BOC=180°,∴x=y,故∠OAC=∠OBC,∴∠AOB=∠ACB=90°,∴AO⊥OB.…………7′(3)连BC,则∠ACB=90°,∵∠ACM=45°,∴CM平分∠ACB,又AM平分∠BAC,∴BM平分∠ABC,设∠ABM=∠CBM=z,由(2)可得∠OMB=x+z,∠OBM=y+z=x+z∴∠OMB=∠OBM,∴OM=OB故△OBM为等腰直角△,作MG⊥x轴于G,BH⊥x轴于H,易证△OMG≌△OBH,∴OG=BH=1,MG=OH=3∴M(-1,3).…………12′二、试卷特点分析整套试卷的整体难度不大,选择题1-8与填空题11-15,解答题17-22以考察基础知识与基本技能为主,注重学生对基础知识能力的考查。
2019-2020学年第一学期期中测试八年级数学试题2019年10月(本试卷共25小题,4页,满分100分,附加题20分另计。
考试用时120分钟,不得使用....计算器)一、选择题(本题共10题,每小题2分,满分20分,在每小题给出的四个选项中,只有一项是正确的)1.下列选项中的三条线段长能组成三角形的是(*)A.2,2,6B. 1,2,3C. 4,5,6D. 8,3,22.下列选项中的汽车品牌标志图,不.是轴对称图形的是(*)3.如图,在Rt△ABC中,∠B=90°,D是BC延长线上一点,∠ACD=130°,则∠A等于(*)A.40°B. 50°C. 65°D. 90°4.若一个三角形三个内角度数的比为1:2:3,则其内角度数最大的是(*)A.60°B. 90°C. 120°D. 无法判断5.在平面直角坐标系xoy中,点P(2,1)关于y轴对称的点的坐标是(*)A.(﹣2,0)B.(﹣2,1)C.(﹣2,﹣1)D.(2,﹣1)6. 三角形内部一点到三边的距离相等,则该点是(*)A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点7.已知等腰三角形的一边长为4,另一边长为8,则它的周长是(*)A.12 B.16 C.20 D.16或208.如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=(*)A.80°B.70°C.40°D.20°9.如图,四边形ABCD,∠BDC=108°,若点D在AB、AC的垂直平分线上,则∠B+∠C大小为(*)A.108°B.126°C.120°D.132°10.如图,等腰三角形ABC的底边BC长为4,面积是20,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为(*)A.12B.8C.10D.14二、填空题(本题有6个小题,每小题2分,共12分)11.一个多边形的每一个外角均为30°,那么这个多边形的边数是__*__.12. 已知点A(a,2)和B(-3,b),点A和点B关于x轴对称,则a+b= _*_.13.如图,△AEB≌△DFC,AE⊥CB,DF⊥BC,垂足分别为E、F,且AE=DF,若∠C=28°,则∠A=___*___.14.如图,△ABC 中,AB=AC,CB=CD,AD=DE=EC,,则∠A=_*___.15.如图,点A,B,C在同一直线上,在这条直线同侧作等边△ABD和等边△BCE,连接AE和CD,交点为M,AE交BD于点P,CD交BE于点Q,连接PQ、BM,有4个结论:①CM平分∠BME②△DQB≌△ABP,③∠EAC=30°,④PQ//AC,请将所有正确结论的序号填在横线上___*__.16.如图∠BAC内部一点P,边AB与AC上动点M、N,∠BAC=36°,当△PMN周长最小时,∠MPN=__*__。
2019-2020学年八年级上学期期中测试数学试卷一、选择题:(每小题4分,共60分)1.(4分)的值等于()A.3B.﹣3C.±3D.2.(4分)在﹣,﹣1.414,﹣5,3.212112111,2+,,,中,无理数的个数是()A.1个B.2个C.3个D.4个3.(4分)下列说法中:①+1在3和4之间;②二次根式中x的取值范围是x≥1;③的平方根是3;④﹣=﹣5;⑤=﹣3.正确的有()A.1个B.2个C.3个D.4个4.(4分)下列各式计算正确的是()A.+=B.2+=2C.3﹣=2D.=﹣5.(4分)若+|b+2|=0,则点M(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.(4分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)7.(4分)在平面直角坐标系中,点A关于x轴的对称点是点B,点B关于y轴的对称点是点C,若点C的坐标是(﹣2,3),则点A的坐标为()A.(﹣2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(2,3)8.(4分)若函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.29.(4分)下列关于一次函数y=﹣2x+4的说法错误的是()A.y随x的增大而减小B.直线不经过第三象限C.向下平移三个单位得直线y=﹣2x+1D.与x轴交点坐标为(0,4)10.(4分)已知直线y=﹣0.5x+b与直线y=x相交于(2,m),则b的值为()A.2B.3C.﹣0.5D.﹣211.(4分)甲乙两人同时沿着一条笔直的公路朝同一方向前行,开始时,乙在甲前2千米处,甲、乙两人行走的路程y(千米)与时间x(时)的函数图象如图所示,下列说法正确的是()①乙的速度为4千米/时②经过1小时,甲追上乙;③经过0.5小时,乙行走的路程约为2千米;④经过1.5小时,乙在甲的前面.A.①②③B.①②C.②③D.②12.(4分)两个一次函数y1=ax+b与y2=bx+a,它们在一直角坐标系中的图象可能是()A.B.C.D.13.(4分)如果是二元一次方程组的解,那么a,b的值是()A.B.C.D.14.(4分)如果方程组的解中的x与y互为相反数,那么k的值是()A.1B.﹣1C.D.﹣15.(4分)某商家在一次买卖中,同时卖出两只型号不同的计算器,每只都以60元出售,其中一只盈利25%,另一只亏本25%,则在这次买卖中,该商家的盈亏情况是()A.不亏不赚B.赚了8元C.亏了8元D.赚了15元二、填空题(每小题4分,共24分)16.(4分)﹣2的相反数是,绝对值是,倒数是.17.(4分)点A在直线y=2x﹣4上运动,当线段OA最短时,OA的长度为.18.(4分)已知A(﹣2,1),B(3,4),点P在x轴上,若P A与PB的和最小,则点P 的坐标为.19.(4分)一次函数y=kx+b的图象经过点A(1,﹣2)并且与正比例函数y=2x的图象平行,则k=,b=.20.(4分)定义运算“※”,规定x※y=ax2+by,其中a,b为常数,且1※2=5,2※1=6,则2※3=.21.(4分)已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),规定“把正方形ABCD先关于x轴对称,再向右平移1个单位”为一次交换,如此这样,连续经过2017次变换后,正方形ABCD的顶点D的坐标变为.三、解答题(本大题共7个小题,满分76分)22.(16分)计算:(1)(﹣2)×﹣6(2)(5﹣6+)÷.23.(8分)解下列方程组:(1)(2).24.(8分)观察下列等式(1)=(2)=2(3)=3(4)=4…(1)根据你发现的规律写出第5个等式;(2)根据你发现的规律写出第n个等式;(3)验证(2)等式的正确性.25.(8分)在当地农业技术部门指导下,小明家增加种植菠萝的投资,使今年的菠萝喜获丰收.下面是小明爸爸、妈妈的一段对话.请你用学过的知识帮助小明算出他家今年种植菠萝的投资和收入(收入﹣投资=净赚)26.(8分)小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y(米)关于时间x(分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:(1)小文走了多远才返回家拿书?(2)求线段AB所在直线的函数解析式;(3)当x=8分钟时,求小文与家的距离.27.(8分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A (4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的时,求出这时点M的坐标.28.(9分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B 品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A 品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x 的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?29.(11分)如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D 的上方,设P(1,n).(1)求直线AB的解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.参考答案与试题解析一、选择题:(每小题4分,共60分)1.【解答】解:∵=3,故选:A.2.【解答】解:﹣1.414,﹣5,3.212112111,是有理数,﹣,2+,是无理数,故选:C.3.【解答】解:∵3<<4,∴4<+1<5,故①错误;②二次根式中x的取值范围是x≥1,正确;③=9,9的平方根是±3,故③错误;④=5,故④错误;⑤=3,故⑤错误;正确的有1个,故选:A.4.【解答】解:A、与不是同类项,不能合并,故本选项错误;B、2与不是同类项,不能合并,故本选项错误;C、3﹣=(3﹣1)=2,故本选项正确;D、与不是同类项,不能合并,故本选项错误.故选:C.5.【解答】解:由题意得,a﹣3=0,b+2=0,解得a=3,b=﹣2,所以,点M的坐标为(3,﹣2),点M在第四象限.故选:D.6.【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.7.【解答】解:点A关于x轴的对称点为点B,点B关于y轴的对称点为点C,由点C坐标为(﹣2,3),则点B的坐标为(2,3),故点A的坐标为(2,﹣3).故选:C.8.【解答】解:根据题意得,|m|=1且m﹣1≠0,解得m=±1且m≠1,所以,m=﹣1.故选:B.9.【解答】解:A、由k=﹣2知y随x的增大而减小,此选项正确;B、直线过第一、二、四象限,不过第三象限,此选项正确;C、向下平移三个单位得直线y=﹣2x+1,此选项正确;D、与x轴交点坐标为(2,0),此选项错误;故选:D.10.【解答】解:因为直线y=﹣0.5x+b与直线y=x相交于(2,m),把x=2,y=m代入y=x,可得:m=2,把x=2,y=2代入y=﹣0.5x+b,可得:2=﹣1+b,解得:b=3,故选:B.11.【解答】解:①乙的速度为:(4﹣2)÷1=2千米/时,故①错误;②经过1小时,甲追上乙;故②正确;③根据题意得:乙的解析式为:y=2x+2,当x=0.5时,y=3,即乙行走的路程约为3﹣2=1(千米);故③错误;④由图象得:当x甲=x乙=1.5(h)时,y甲>y乙,即经过1.5小时,乙在甲的后面,故④错误.∴正确的只有②.故选:D.12.【解答】解:A、∵一次函数y1=ax+b的图象经过一三四象限,∴a>0,b<0;由一次函数y2=bx+a图象可知,b<0,a<0,两结论矛盾,故错误;B、∵一次函数y1=ax+b的图象经过一二三象限,∴a>0,b>0;由y2的图象可知,a>0,b<0,两结论相矛盾,故错误;C、∵一次函数y1=ax+b的图象经过一三四象限,∴a>0,b<0;由y2的图象可知,a>0,b<0,两结论不矛盾,故正确;D、∵一次函数y1=ax+b的图象经过一二三象限,∴a>0,b>0;由y2的图象可知,a<0,b<0,两结论相矛盾,故错误.故选:C.13.【解答】解:将x=1,y=2代入方程组得:,①×2﹣②得:3b=3,即b=0,将b=1代入①得:a=1,则.故选:B.14.【解答】解:由题意可知:x+y=0从而可知:解得:∴k=2x+3y=2﹣3=﹣1故选:B.15.【解答】解:设在这次买卖中原价都是x,则可列方程:(1+25%)x=60,解得:x=48,比较可知,第一件赚了12元;第二件可列方程:(1﹣25%)x=60,解得:x=80,比较可知亏了20元,两件相比则一共亏了12﹣20=﹣8元.故选:C.二、填空题(每小题4分,共24分)16.【解答】解:﹣2的相反数是2﹣,绝对值是2﹣,倒数是﹣﹣2,故答案为:2﹣,2﹣,﹣2﹣.17.【解答】解:当线段OA⊥直线y=2x﹣4时,线段OA最短,则直线OA的解析式为:y=﹣x,解得:,∴点A的坐标为(,﹣),∴OA的长度==,故答案为:.18.【解答】解:∵A(﹣2,1),∴点A关于x轴的对称点A′(﹣2,﹣1),设直线A′B的解析式为y=kx+b,∴,解得k=1,b=1,∴直线A′B的解析式为y=x+1,令y=0,解得,x=﹣1,∴P(﹣1,0).故答案为:(﹣1,0).19.【解答】解:∵一次函数y=kx+b的图象与正比例函数y=2x的图象平行,∴k=2,∴y=2x+b,把点A(1,﹣2)代入y=2x+b,得2+b=﹣2,解得b=﹣4;故答案为:2,﹣4.20.【解答】解:根据题意得:,解得:,则2※3=4+6=10.故答案为:1021.【解答】解:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴点D的坐标为(3,3),根据题意得:第1次变换后的点D的对应点的坐标为(3+1,﹣3),即(4,﹣3),第2次变换后的点D的对应点的坐标为:(4+1,3),即(5,3),第3次变换后的点D的对应点的坐标为(5+1,﹣3),即(6,﹣3),第n次变换后的点D的对应点的为:当n为奇数时为(3+n,﹣3),当n为偶数时为(3+n,3),∴连续经过2017次变换后,点D的坐标变为(2020,﹣3).故故答案为:(2020,﹣3).三、解答题(本大题共7个小题,满分76分)22.【解答】解:(1)(﹣2)×﹣6=3﹣6﹣6×=﹣6;(2)(5﹣6+)÷=(20﹣6×3+2)÷=4÷=4.23.【解答】解:(1),由①得:x=y+4③,把③代入②得:4y+16+2y=1,解得:y=﹣,把y=﹣代入③得:x=,则方程组的解为;(2),①×3+②×2得:13x=26,解得:x=2,把x=2代入①得:y=1,则方程组的解为.24.【解答】解:(1)第5个等式为=5;(2)第n个等式为=n;(3)等式左边===n=右边.25.【解答】解:设小明家去年种植菠萝的投资x元,收入y元,则小明家今年种植菠萝的投资(1+10%)x元,收入(1+35%)y元,依题意,得:,解得:,∴(1+10%)x=4400,(1+35%)y=16200.答:小明家今年种植菠萝的投资4400元,收入16200元.26.【解答】解:(1)200米(1分);(2)设直线AB的解析式为:y=kx+b(2分)由图可知:A(5,0),B(10,1000)∴(4分)解得(6分)∴直线AB的解析式为:y=200x﹣1000(7分);(3)当x=8时,y=200×8﹣1000=600(米)即x=8分钟时,小文离家600米.(9分)27.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).28.【解答】解:(1)设A、B两种品牌的计算器的单价分别为x元、y元,根据题意得,,解得.答:A种品牌计算器30元/个,B种品牌计算器32元/个;(2)A品牌:y1=30x•0.8=24x;B品牌:0≤x≤5,y2=32x,x>5时,y2=5×32+32×(x﹣5)×0.7=22.4x+48,所以y1=24x,y2=;(3)当y1=y2时,24x=22.4x+48,解得x=30,购买30个计算器时,两种品牌都一样,购买超过30个计算器时,B品牌更合算,购买不足30个计算器时,A品牌更合算,∵需要购买50个计算器,∴买B种品牌的计算器更合算.29.【解答】解:(1)∵经过A(0,1),∴b=1,∴直线AB的解析式是.当y=0时,,解得x=3,∴点B(3,0).(2)过点A作AM⊥PD,垂足为M,则有AM=1,∵x=1时,=,P 在点D的上方,∴PD=n﹣,由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,∴,∴;(3)当S△ABP=2时,,解得n=2,∴点P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2种情况,如图2∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3种情况,如图3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB和△PEB中,∴△PCB≌△PEB(SAS),∴PC=CB=PE=EB=2,∴C(3,2).∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(3,4)或(5,2)或(3,2).。
2019-2020学年八年级上学期期中考试数学试卷一.选择题(共10小题)1.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.1 cm,2 cm,3.5 cm B.4 cm,5 cm,9 cmC.5 cm,8 cm,15 cm D.6 cm,8 cm,9 cm3.使分式有意义,则x满足条件()A.x>0 B.x≠0 C.x>1 D.x≠14.如图,已知∠BAD=∠CAD,则下列条件中不一定能使△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.AB=AC D.BD=CD5.如图,∠C=90°,AB的垂直平分线交BC于D,连接AD,若∠CAD=20°,则∠B=()A.20°B.30°C.35°D.40°6.计算(x4+1)(x2+1)(x+1)(x﹣1)的结果是()A.x8+1 B.x8﹣1 C.(x+1)8D.(x﹣1)87.已知x2﹣8x+a可以写成一个完全平方式,则a可为()A.4 B.8 C.16 D.﹣168.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为()A.130°B.120°C.110°D.100°10.在平面直角坐标系xOy中,以原点O为圆心,任意长为半径作弧,分别交x轴的负半轴和y轴的正半轴于A点,B点.分别以点A,点B为圆心,AB的长为半径作弧,两弧交于P点.若点P的坐标为(a,b),则()A.a=2b B.2a=b C.a=b D.a=﹣b二.填空题(共6小题)11.如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是.12.化简:(1)=;(2)(﹣a)3(﹣a)4=;(3)=;(4)a5÷a3•a2=.13.当x=时,分式的值为零.14.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.15.若a+b=3,则a2﹣b2+6b=;若2x+5y﹣3=0,则4x•32y=.16.我们知道,672可以写成6×102+7×10+2,对于多项式而言,关于某一字母的多项式都可以按这个字母的降幂排列比如7x+2+6x2可以写成6x2+7x+2.在解决多项式相除的问题时,我们通过对比发现,可以类比多位数的除法,用竖式进行计算,例如:(7x+2+6x2)÷(2x+1),仿照672÷21计算如图,因此:(7x+2+6x2)÷(2x+1)=3x+2.根据阅读材料,(1)试判断:x3﹣x2﹣5x﹣3能否被x+1整除,(请用“能”或“不能”填空)(2)多项式2x5+3x3+5x2﹣2x+10除以x2+1的商式是,余式是.三.解答题(共9小题)17.计算:(Ⅰ);(Ⅱ)(﹣2a)2•b3+12a2b2.18.计算:(Ⅰ)(2x)2﹣4x2÷(x﹣1)0;(Ⅱ)﹣2x2y(3x2﹣2x﹣3).19.如图,AB=AD,∠BAC=∠DAC,∠B=32°,求∠D的度数.20.解方程:﹣1=.21.因式分解:(Ⅰ)m(a﹣3)+2(3﹣a)(Ⅱ)(a﹣2b)2﹣b222.如图,在平面直角坐标系xOy中,△ABC的三个顶点分别落在边长为1的正方形格上,(Ⅰ)分别写出A、B、C三点坐标;(Ⅱ)△DEF可以看作是△ABC经过若干次的图形变化(轴对称、平移)得到的,写出一种由△ABC得到△DEF的过程,并体现在坐标系中.23.先化简,再求值:,请从﹣3,﹣2,﹣1,0中选择一个你喜欢的数作为m的值.24.如图,△ABC是边长为3的等边三角形,P是AB边上的一个动点,由A向B运动(P不与A、B重合),Q是BC延长线上一动点,与点P同时以相同的速度由C向BC延长线方向运动(Q不与C重合),(1)当∠BPQ=90°时,求AP的长;(2)过P作PE⊥AC于点E,连结PQ交AC于D,在点P、Q的运动过程中,线段DE的长是否发生变化?若不变,求出DE的长度;若变化,求出变化范围.25.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,△ABC是等腰锐角三角形,AB=AC(AB>BC),若∠ABC的角平分线BD交AC于点D,且BD是△ABC的一条特异线,则∠BDC=度;(2)如图2,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC的一条特异线;(3)如图3,已知△ABC是特异三角形,且∠A=30°,∠B为钝角,求出所有可能的∠B的度数(如有需要,可在答题卡相应位置另外画图).参考答案与试题解析一.选择题(共10小题)1.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.2.下列长度的三条线段能组成三角形的是()A.1 cm,2 cm,3.5 cm B.4 cm,5 cm,9 cmC.5 cm,8 cm,15 cm D.6 cm,8 cm,9 cm【分析】根据三角形的三边关系对各选项进行逐一判断即可.【解答】解:A、∵1+2=3<3.5,∴不能构成三角形,故本选项错误;B、∵4+5=9,∴不能构成三角形,故本选项错误;C、∵8<15﹣5=10,∴不能构成三角形,故本选项错误;D、∵9﹣6<8<9+6,∴能构成三角形,故本选项正确.故选:D.3.使分式有意义,则x满足条件()A.x>0 B.x≠0 C.x>1 D.x≠1【分析】分式有意义时,分母x﹣1≠0.【解答】解:依题意得:x﹣1≠0.解得x≠1.故选:D.4.如图,已知∠BAD=∠CAD,则下列条件中不一定能使△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.AB=AC D.BD=CD【分析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.【解答】解:A、∵∠BAD=∠CAD,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);B、∵∠BAD=∠CAD,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);C、∵∠BAD=∠CAD,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);D、∵∠BAD=∠CAD,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故选:D.5.如图,∠C=90°,AB的垂直平分线交BC于D,连接AD,若∠CAD=20°,则∠B=()A.20°B.30°C.35°D.40°【分析】由已知条件,根据线段垂直平分线的性质得到线段及角相等,再利用直角三角形两锐角互余得到∠B=(180°﹣∠ADB)÷2答案可得.【解答】解:∵DE垂直平分AB,∴AD=DB∴∠B=∠DAB∵∠C=90°,∠CAD=20°∴∠B=(180°﹣∠C﹣∠CAD)÷2=35°故选:C.6.计算(x4+1)(x2+1)(x+1)(x﹣1)的结果是()A.x8+1 B.x8﹣1 C.(x+1)8D.(x﹣1)8【分析】根据题目的特点多次使用平方差公式即可求出结果.【解答】解:(x4+1)(x2+1)(x+1)(x﹣1),=(x4+1)(x2+1)(x2﹣1),=(x4+1)(x4﹣1),=x8﹣1.故选:B.7.已知x2﹣8x+a可以写成一个完全平方式,则a可为()A.4 B.8 C.16 D.﹣16【分析】根据完全平方式的结构是:a2+2ab+b2和a2﹣2ab+b2两种,据此即可求解.【解答】解:∵x2﹣8x+a可以写成一个完全平方式,∴则a可为:16.故选:C.8.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)【分析】分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.【解答】解:由图1将小正方形一边向两方延长,得到两个梯形的高,两条高的和为a ﹣b,即平行四边形的高为a﹣b,∵两个图中的阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).故选:D.9.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为()A.130°B.120°C.110°D.100°【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=120°,∴∠AA′M+∠A″=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,故选:B.10.在平面直角坐标系xOy中,以原点O为圆心,任意长为半径作弧,分别交x轴的负半轴和y轴的正半轴于A点,B点.分别以点A,点B为圆心,AB的长为半径作弧,两弧交于P点.若点P的坐标为(a,b),则()A.a=2b B.2a=b C.a=b D.a=﹣b【分析】根据作图知OA=OB、PA=PB,据此得OP垂直平分AB,即点P是第二、四象限的平分线,从而得出答案.【解答】解:由“以原点O为圆心,任意长为半径作弧,分别交x轴的负半轴和y轴的正半轴于A点,B点”知OA=OB,即△OAB是以OA、OB为腰的等腰直角三角形,根据“分别以点A,点B为圆心,AB的长为半径作弧,两弧交于P点”知点P在AB的中垂线上,则OP垂直平分AB,即点P是第二、四象限的平分线,若点P的坐标为(a,b),则a=﹣b,故选:D.二.填空题(共6小题)11.如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.【分析】由图可得,固定窗钩BC即,是组成三角形,故可用三角形的稳定性解释.【解答】解:一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.故应填:三角形的稳定性.12.化简:(1)=a8b3;(2)(﹣a)3(﹣a)4=﹣a7;(3)=;(4)a5÷a3•a2=a4.【分析】(1)直接利用积的乘方运算法则计算得出答案;(2)直接利用同底数幂的乘法运算法则计算即可;(3)直接约掉分子与分母中的公因式进而得出答案;(4)直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:(1)=a8b3;(2)(﹣a)3(﹣a)4=﹣a7;(3)=;(4)a5÷a3•a2=a4.故答案为:a8b3;﹣a7;;a4.13.当x= 1 时,分式的值为零.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:x2﹣1=0,解得:x=±1,当x=﹣1时,x+1=0,因而应该舍去.故x=1.故答案是:1.14.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是 5 .【分析】要求△ABD的面积,有AB=5,可为三角形的底,只求出底边上的高即可,利用角的平分线上的点到角的两边的距离相等可知△ABD的高就是CD的长度,所以高是2,则可求得面积.【解答】解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离=CD=2,∴△ABD的面积是5×2÷2=5.故答案为:5.15.若a+b=3,则a2﹣b2+6b=9 ;若2x+5y﹣3=0,则4x•32y=8 .【分析】把a2﹣b2+6b写成(a+b)(a﹣b)+6b=3(a﹣b)+6b=3(a+b),再把a+b=3代入即可求解;4x•32y=22x•25y=22x+5y,再把2x+5y=3代入即可求解.【解答】解:∵a+b=3,∴a2﹣b2+6b=(a+b)(a﹣b)+6b=3(a﹣b)+6b=3(a+b)=3×3=9;∵2x+5y﹣3=0,∴2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8.故答案为:9,8.16.我们知道,672可以写成6×102+7×10+2,对于多项式而言,关于某一字母的多项式都可以按这个字母的降幂排列比如7x+2+6x2可以写成6x2+7x+2.在解决多项式相除的问题时,我们通过对比发现,可以类比多位数的除法,用竖式进行计算,例如:(7x+2+6x2)÷(2x+1),仿照672÷21计算如图,因此:(7x+2+6x2)÷(2x+1)=3x+2.根据阅读材料,(1)试判断:x3﹣x2﹣5x﹣3能否被x+1整除能,(请用“能”或“不能”填空)(2)多项式2x5+3x3+5x2﹣2x+10除以x2+1的商式是2x3+x+5 ,余式是﹣3x+5 .【分析】(1)根据阅读材料进行多项式除以多项式即可求解;(2)根据阅读材料进行多项式除以多项式得商和余式.【解答】解:(1)x3﹣x2﹣5x﹣3能被x+1整除.故答案为:能.(2)多项式2x5+3x3+5x2﹣2x+10除以x2+1的商式是2x3+x+5,余式是﹣3x+5.故答案为:2x3+x+5、﹣3x+5.三.解答题(共9小题)17.计算:(Ⅰ);(Ⅱ)(﹣2a)2•b3+12a2b2.【分析】(I)根据零指数幂的意义以及乘方的运算法则即可求出答案;(II)根据整式的运算法则即可求出答案.【解答】解:(Ⅰ)原式=1﹣()2017×+1=1﹣+1=2﹣=;(Ⅱ)原式=4a2b3+12a2b2.18.计算:(Ⅰ)(2x)2﹣4x2÷(x﹣1)0;(Ⅱ)﹣2x2y(3x2﹣2x﹣3).【分析】(Ⅰ)直接利用积的乘方运算法则以及整式的混合运算法则计算得出答案;(Ⅱ)直接利用单项式乘以多项式计算得出答案.【解答】解:(Ⅰ)(2x)2﹣4x2÷(x﹣1)0=4x2﹣4x2=0;(Ⅱ)﹣2x2y(3x2﹣2x﹣3)=﹣6x4y+4x3y+6x2y.19.如图,AB=AD,∠BAC=∠DAC,∠B=32°,求∠D的度数.【分析】由“SAS”可证△ABC≌△ADC,可得∠B=∠D=32°.【解答】解:∵AB=AD,∠BAC=∠DAC,AC=AC,∴△ABC≌△ADC(SAS)∴∠B=∠D=32°.20.解方程:﹣1=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边乘x(x﹣2),得x2﹣x2+2x=3,解:x=1.5,经检验x=1.5是分式方程的解.21.因式分解:(Ⅰ)m(a﹣3)+2(3﹣a)(Ⅱ)(a﹣2b)2﹣b2【分析】(Ⅰ)原式变形后,提取公因式即可;(Ⅱ)原式利用平方差公式分解即可.【解答】解:(Ⅰ)原式=m(a﹣3)﹣2(a﹣3)=(a﹣3)(m﹣2);(Ⅱ)原式=(a﹣2b+b)(a﹣2b﹣b)=(a﹣b)(a﹣3b).22.如图,在平面直角坐标系xOy中,△ABC的三个顶点分别落在边长为1的正方形格上,(Ⅰ)分别写出A、B、C三点坐标;(Ⅱ)△DEF可以看作是△ABC经过若干次的图形变化(轴对称、平移)得到的,写出一种由△ABC得到△DEF的过程,并体现在坐标系中.【分析】(Ⅰ)由图象可得;(Ⅱ)由轴对称和平移的性质可得.【解答】解:(Ⅰ)由图象可得:点A(0,﹣1),点B(2,﹣1),点C(2,﹣2);(Ⅱ)先将△ABC沿y轴翻折,得到△AB'C',再将△AB'C'向上平移3个单位可得△DEF.23.先化简,再求值:,请从﹣3,﹣2,﹣1,0中选择一个你喜欢的数作为m的值.【分析】根据分式的混合运算法则把原式化简,代入计算即可.【解答】解:原式=•=m(m+2),当m=﹣1时,原式=﹣1.24.如图,△ABC是边长为3的等边三角形,P是AB边上的一个动点,由A向B运动(P不与A、B重合),Q是BC延长线上一动点,与点P同时以相同的速度由C向BC延长线方向运动(Q不与C重合),(1)当∠BPQ=90°时,求AP的长;(2)过P作PE⊥AC于点E,连结PQ交AC于D,在点P、Q的运动过程中,线段DE的长是否发生变化?若不变,求出DE的长度;若变化,求出变化范围.【分析】(1)作PF∥BC交AC于F,由等边三角形的性质就可以得出△APF是等边三角形,△PFD≌△QCD,由直角三角形的性质就可以得出结论;(2)作QF⊥AC,交直线AC的延长线于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=CQ,再根据全等三角形的判定定理得出△APE≌△CQF,再由AE=CF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EC+AE=CE+CF=AC,DE =AC,由等边△ABC的边长为3可得出DE=1.5即可.【解答】解:(1)作PF∥BC交AC于F,如图1所示:∴∠APF=∠B,∠AFP=∠ACB,∠FPD=∠CQD,∠PFD=∠QCD.∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°,AB=BC=AC.∴∠APF=∠AFP=∠A=60°,∴△APF是等边三角形,∴AP=AF=PF.在△PFD和△QCD中,,∴△PFD≌△QCD(ASA),∴FD=CD.∵∠APD=90°,且∠A=60°,∴∠PDA=30°,∴AD=2AP,∴AD=2AF.∵AF+FD=2AF,∴FD=AF.∴AF=FD=CD.∴AF=AC.∵AC=3,AP=AF=1:(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:作QF⊥AC,交直线AC的延长线于点F,连接QE,PF,如图2所示:又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=CQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FCQ=60°,在△APE和△CQF中,∵∠AEP=∠CFQ=90°,∴∠APE=∠CQF,在△APE和△CQF中,,∴△APE≌△CQF(AAS),∴AE=CF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EC+AE=CE+CF=AC,∴DE=AC,又∵AC=3,∴DE=1.5,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.25.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,△ABC是等腰锐角三角形,AB=AC(AB>BC),若∠ABC的角平分线BD交AC于点D,且BD是△ABC的一条特异线,则∠BDC=72 度;(2)如图2,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC的一条特异线;(3)如图3,已知△ABC是特异三角形,且∠A=30°,∠B为钝角,求出所有可能的∠B的度数(如有需要,可在答题卡相应位置另外画图).【分析】(1)由等腰三角形的性质得出∠ABC=∠C=∠BDC=2∠A,设∠A=x,则∠C=∠ABC=∠BDC=2x,在△ABC中,由三角形内角和定理得出方程,解方程即可;(2)只要证明△ABE,△AEC是等腰三角形即可.(3)如图2中,当BD是特异线时,分三种情形讨论,如图3中,当AD是特异线时,AB =BD,AD=DC根据等腰三角形性质即可解决问题,当CD为特异线时,不合题意.【解答】(1)解:∵AB=AC,∴∠ABC=∠C,∵BD平分∠ABC,∴∠ABD=∠CBD=ABC,∵BD是△ABC的一条特异线,∴△ABD和△BCD是等腰三角形,当AD=BD=BC,∴∠A=∠ABD,∠C=∠BDC,∴∠ABC=∠C=∠BDC,∵∠BDC=∠A+∠ABD=2∠A,设∠A=x,则∠C=∠ABC=∠BDC=2x,在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,∴∠BDC=72°,故答案为:72;(2)证明:∵DE是线段AC的垂直平分线,∴EA=EC,即△EAC是等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,即△EAB是等腰三角形,∴AE是△ABC是一条特异线.(3)解:如图3,当BD是特异线时如果AB=BD=DC,则∠ABC=∠ABD+∠DBC=120°=15°=135°,如果AD=AB,DB=DC,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°,如果AD=DB,DC=DB,则ABC=∠ABD+∠DBC=30°+60°=90°(不合题意舍弃),如图4中,当AD是特异线时,AB=BD,AD=DC,则∠ABC=180°﹣20°﹣20°=140°,当CD为特异线时,不合题意.综上所述,符合条件的∠ABC的度数为135°或112.5°或140°.。
A BCF2019-2020年八年级数学上册期中试卷及答案一、选择题(每小题3分,共30分)1、如图,直线DE 截AB ,AC ,其中内错角有( )对。
A 、1 B 、2 C 、3 D 、42、在一个不透明的袋子里放入2个红球,3个白球和5个黄球,每个球 除颜色外都相同,曾老师摇匀后随意地摸出一球,这个球是红球或白 球的概率为( )。
A 、0.2B 、0.3C 、0.5D 、0.8 3、如图a ∥b ,∠1=45°,则∠2=( )。
A 、45°B 、135°C 、150°D 、50° 4、一个四面体有棱( )条。
A 、5B 、6C 、8D 、12 5、下列各图中能折成正方体的是( )。
6、在下面的四个几何体中,它们各自的主视图与左视图可能不相同的是( )。
A B C D7、为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图(如图所示).那么关于该班45名同学一周参加体育锻炼时间......的说法错误..的是( )。
A 、众数是9B 、中位数是9C 、平均数是9D 、锻炼时间不低于9小时的有14人8、如图,在Rt △ABC 中,AB =AC ,AD ⊥BC ,垂足为D .E 、F 分ABCD锻炼时间(小时)21ba AD ECB别是CD 、AD 上的点,且CE =AF .如果∠AED =62º,那么 ∠DBF =( )。
A 、62ºB 、38ºC 、28ºD 、26º9、以下说法:①对顶角相等;②两条平行线中,一条直线上的点到另一条直线的距离叫做这两条平行线之间的距离;③等腰三角形是轴对称图形,顶角平分线是它的对称轴;④角的内部,到角两边距离相等的点,在这个角的平分线上; ⑤直棱柱的相邻两条侧棱互相平行但并不一定相等。
其中正确的个数是( )。
A 、2B 、3C 、4D 、5 10、如图,AA ′,BB ′分别是∠EAB ,∠DBC 的平分线. 若AA ′= BB ′=AB ,则∠BAC 的度数为( )。
2019-2020学年八年级上学期期中考试数学试卷一、选择题(共12小题,每小题3分,共36分)1.(3分)如果一次函数y=kx+b的图象经过一、二、三象限,那么k、b应满足的条件是()A.k>0,且b>0B.k<0,且b<0C.k>0,且b<0D.k<0,且b>02.(3分)下列运算中,错误的有()①=;②=±4;③==﹣2;④=+=.A.1个B.2个C.3个D.4个3.(3分)的平方根是()A.4B.﹣4C.±4D.±24.(3分)已知直线y=﹣x+8与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的函数解析式是()A.y=﹣x+8B.y=﹣x+8C.y=﹣x+3D.y=﹣x+35.(3分)下列函数:①y=﹣2x,②y=﹣3x2+1,③y=x﹣2,其中一次函数的个数有()A.0个B.1个C.2个D.3个6.(3分)已知方程组,那么代数式8x﹣y﹣z的值是()A.6B.7C.8D.97.(3分)已知,则=()A.B.C.1D.8.(3分)已知正比例函数y=(2m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是()A.m<B.m>C.m<0D.m>09.(3分)当a<0,b>0函数y=ax+b与y=bx+a在同一平面直角坐标系中的图象大致是()A.B.C.D.10.(3分)下列实数中,1﹣,,3.14152,,0.,,﹣,0.2727727772…(两个2之间一次多一个7),其中无理数个数是()A.2个B.3个C.4个D.5个11.(3分)对任意非零数m,直线y=mx+2﹣5m,都经过一定点,则定点坐标为()A.(0,2)B.(1,2)C.(5,2)D.(2,﹣2)12.(3分)已知x2++4=4x,则代数式:的值为()A.1.5B.2C.2.5D.3二、填空题(本题共4小题,每小题3分,共12分)13.(3分)若=a+b,其中a是整数,0<b<1,则(4+)(a﹣b)=.14.(3分)已知一次函数的图象经过点P(﹣3,0),且与两坐标轴截得的三角形面积为4,则此一次函数的解析式为.15.(3分)已知1<a<2,则|﹣|=.16.(3分)已知a<1,化简(a﹣1)=.三、解答题(共52分)17.(4分)计算:|1﹣|+﹣(3.14﹣π)0﹣(﹣)﹣1.18.(8分)解方程组:(1)(2)19.(6分)在直角坐标系中,有四个点A(﹣8,3)、B(﹣4,5)、C(0,n)、D(m,0),当四边形ABCD的周长最短时,求的值.20.(6分)如图,两直线l1:y=kx﹣2b+1和l2:y=(1﹣k)x+b﹣1交于x轴上一点A,与y轴分别交于点B、C,若A的横坐标为2,(1)求这两条直线的解析式;(2)求△ABC的面积.21.(8分)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣x+m交折线OAB 于点E.(1)请写出m的取值范围;(2)记△ODE的面积为S,求S与m的函数关系式.22.(8分)甲、乙两人从学校出发,沿相同的线路跑向公园.甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度继续跑向公园.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)之间函数关系的图象,根据题意填空:(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒;(2)乙最早出发时跑步的速度为米/秒,乙在途中等候甲的时间为秒;(3)乙出发秒后与甲第一次相遇.23.(12分)如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,),试用含m的代数式表示△APB的面积,并求当△APB与△ABC面积相等时m的值;(3)是否存在使△QAB是等腰三角形并且在坐标轴上的点Q?若存在,请写出点Q所有可能的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,共36分)1.【解答】解:∵一次函数y=kx+b的图象经过一、二、三象限,∴其图象如图所示,∴直线从左向右逐渐上升,∴k>0,∵直线与y轴的交点在x轴的上方,∴b>0,故选:A.2.【解答】解;①=,故①错误;②=4,故②错误;③负数没有平方根,故③错误;④==,故④错误;故选:D.3.【解答】解:=4,4的平方根是±2.故选:D.4.【解答】解:当x=0时,y=﹣x+8=8,即B(0,8),当y=0时,x=6,即A(6,0),所以AB=AB′=10,即B′(﹣4,′0),设OM=x,则B′M=BM=BO﹣MO=8﹣x,B′O=AB′﹣AO=10﹣6=4∴x2+42=(8﹣x)2x=3∴M(0,3)又A(6,0)直线AM的解析式为y=﹣x+3.故选:C.5.【解答】解:①y=﹣2x是正比例函数,也是一次函数,②y=﹣3x2+1是二次函数,③y=x﹣2是一次函数.故选:C.6.【解答】解:∵3x﹣y﹣2z=1,∴﹣y﹣z=1+z﹣3x,8x﹣y﹣z=1+z﹣3x+8x=5x+z+1,,①+②得:5x+z=6,即8x﹣y﹣z=6+1=7,故选:B.7.【解答】解:解,得,x=3z,y=2z,把x=3z,y=2z代入得,原式==,故选:A.8.【解答】解:∵正比例函数y=(2m﹣1)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时y1>y2时,∴正比例函数y=(2m﹣1)x的图象是y随x的增大而减小,∴2m﹣1<0.解得m<故选:A.9.【解答】解:∵a<0,b>0,∴函数y=ax+b的图象经过第一、二、四象限,函数y=bx+a的图象经过第一、三、四象限,观察图象,只有选项B符合题意.故选:B.10.【解答】解:1﹣,,0.2727727772…(两个2之间一次多一个7)是无理数,故选:B.11.【解答】解:∵y=mx+2﹣5m=m(x﹣5)+2,∴当x=5时,y=2.故选:C.12.【解答】解:∵x2++4=4x,∴(x﹣2)2+=0,则x﹣2=0,y﹣1=0,解得:x=2,y=1,∴=+2=2.5,故选:C.二、填空题(本题共4小题,每小题3分,共12分)13.【解答】解:∵=a+b,其中a是整数,0<b<1,∴b=﹣2,∴a=2,∴(4+)(a﹣b)=(4+)×(2﹣+2)=(4+)×(4﹣)=16﹣7=9,故答案为:9.14.【解答】解:依照题意画出图形,如图所示.设一次函数图象与y轴交于点Q(0,m),则S△POQ=×|﹣3|×|m|=4,∴m=±.设一次函数的解析式为y=kx+b(k≠0).当m=时,将(﹣3,0),(0,)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=x+.当m=﹣时,同理可求出一次函数的解析式为y=﹣x﹣.故答案为:y=x+或y=﹣x﹣.15.【解答】解:∵1<a<2,∴|﹣|=a﹣(2﹣a)=2a﹣2.故答案为:2a﹣2.16.【解答】解:∵a<1,∴a﹣1<0,∴(a﹣1)=(a﹣1)=(a﹣1)×[]=﹣.故答案为:﹣.三、解答题(共52分)17.【解答】解:原式=﹣1+2﹣1+2=3.18.【解答】解:(1),把②代入①得:2x+15﹣4x=11,解得:x=2,把x=2代入②得:y=15﹣4×2=7,方程组的解为:,(2)原方程组整理得:,②﹣①×10得:4y=2,解得:y=,把y=代入①得:3x﹣1=0,解得:x=,故方程组的解为:.19.【解答】解:依题意画图得:作B关于Y轴的对称点B′,A关于X轴的对称点A′,连接A′B′,他们与X轴,Y轴的交点便为所求.如图所示,过A′与B′两点的直线的函数解析式可求.设过A′与B′两点的直线的函数解析式为y=kx+b.依题意得:﹣8k+b=﹣3,4k+b=5解得,k=,b=,所以,(0,n)为(0,).(m,0)为(﹣3.5,0)所以,=﹣.故答案为﹣.20.【解答】解:(1)把A(2,0)分别代入y=kx﹣2b+1和y=(1﹣k)x+b﹣1得,解得,所以直线l1的解析式为y=x﹣3,直线l2的解析式为y=﹣x+1;(2)当x=0时,y=x﹣3=﹣3,则B点坐标为(0,﹣3);当x=0时,y=﹣x+1=1,则C点坐标为(0,1),所以△ABC的面积=×(1+3)×2=4.21.【解答】解:(1)当y=1时,有﹣x+m=1,∴x=2m﹣2,∴点D的坐标为(2m﹣2,1).∵点D是线段BC上的动点(与端点B、C不重合),∴0<2m﹣2<3,∴1<m<2.5.故答案为:1<m<2.5.(2)①当点E在线段OA上时,如图1所示.当y=0时,有﹣x+m=0,∴x=2m,∴点E的坐标为(2m,0),∴2m≤3,∴此时1<m≤1.5,S=OA•OC=m;②当点E在线段AB上时(与端点A、B不重合),此时1.5<m<2.5,如图2所示.当x=3时,y=﹣x+m=m﹣1.5,∴点E的坐标为(3,m﹣1.5).∵点D的坐标为(2m﹣2,1),点B的坐标为(3,1),∴CD=2m﹣2,BD=5﹣2m,AE=m﹣1.5,BE=2.5﹣m,S=S矩形OABC﹣S△OAE﹣S△OCD﹣S△BDE,=OA•OC﹣OA•AE﹣OC•CD﹣BD•BE,=3×1﹣×3(m﹣1.5)﹣(2m﹣2)﹣(5﹣2m)(2.5﹣m),=﹣m2+2.5m.综上所述:S与m的函数关系式为S=.22.【解答】解:(1)有函数图象可得,在跑步的全过程中,甲共跑了900米,甲的速度为:900÷600=1.5米/秒,故答案为:900,1.5;(2)由图象可得,甲跑500秒的路程是:500×1.5=750米,甲跑600米的时间是:(750﹣150)÷1.5=400秒,乙跑步的速度是:750÷(400﹣100)=2.5米/秒,乙在途中等候甲的时间是:500﹣400=100秒,即乙跑步的速度是2.5米/秒,乙在途中等候甲的时间是100秒;(3)∵D(600,900),A(100,0),B(400,750),∴OD的函数关系式是y=1.5x,AB的函数关系式是y=2.5x﹣250,根据题意得,解得x=250,250﹣100=150(秒),即乙出发150秒时第一次与甲相遇.故答案为:(1)900;1.5;(2)2.5;100;(3)150.23.【解答】解:(1)∵一次函数的解析式为函数图象与x轴、y轴分别交于点A、B,∴A(1,0),B(0,),∴AB=2,设AC=x,则BC=2x,由勾股定理得,4x2﹣x2=4,解得x=,S△ABC==;(2)过P作PD⊥x轴,垂足为D,S△APB=S梯形ODPB+S△AOB﹣S△APD=•=,﹣=,解得m=;(3)∵AB==2,∴当AQ=AB时,点Q1(3,0),Q2(﹣1,0),Q3(0,﹣);当AB=BQ时,点Q4(0,+2),Q5(0,﹣2),Q2(﹣1,0);当AQ=BQ时,点Q6(0,),Q2(﹣1,0),综上可得:(0,),(0,),(﹣1,0)(3,0),(0,),(0,)。
2019~2020学年度第一学期期中考试八年级数学试题(考试时间∶120分钟 试卷总分∶150分 )第Ⅰ卷 (本卷满分100分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.现有长度为4cm 和7cm 的两根小棒,请你再找一根小棒,并以这三根小棒为边围成一个三角形,则下列长度的小棒可选的是A .2cmB .3cmC .5cmD .12cm 2.下列多边形中,对角线是5条的多边形是A .四边形B .五边形C .六边形D .七边形 3.下列运算中,正确的是 A .236a a a ⋅=B .()325a a = C .()3326a a =D .()23a a a -⋅=4.图中两个三角形全等,则1∠等于A .40︒B .50︒C .60︒D .80︒第4题图 第5题图5.如图,AD 是ABC ∆的高,AD 也是ABC ∆的中线,则下列结论不一定成立.....的是 A .AB =AC B .AD =BC C .B C ∠=∠ D .BAD CAD ∠=∠ 6.如图,已知A ,D ,B ,E 在同一条直线上,且AD =BE ,AC =DF ,补充下列其中一个条件后,不一定...能得到△ABC ≌△DEF 的是A .BC EF =B .AC ∥DF C .C F ∠=∠D .BAC EDF ∠=∠DCBA1656560°80°FEDC BA第6题图7.下列条件中能判断△ABC 为直角三角形的是A .ABC ∠+∠=∠ B .A B C ∠=∠=∠ C .90A B ∠-∠=︒D .23A B C ∠=∠=∠ 8.若x 2+kx +4是一个完全平方式,则k 的值是A .4B .4±C .8D .8±9.计算210011004996-⨯=A .2017-B .2017C .2019-D .201910.如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为24a b ,则图2中纸盒底部长方形的周长为 A .4ab B .8ab C .4a b + D .82a b +二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答题卷指定的位置. 11.计算:()21233a a a -÷= .12.一个多边形的内角和比它的外角和多180°,则这个多边形的边数是 .第13题图 第14题图 第15题图13.如图,已知B 处在A 处的南偏西44°方向,C 处在A 处的正南方向,B 处在C 处的南偏西80°方向,则ABC ∠的度数为 .14.如图,点E ,F 分别是四边形AB ,AD 上的点,已知△EBC ≌△DFC ,且80A ∠=︒,则B C F∠的度数是 .15.如图,△ABC 的边BC 上有一点D ,取AD 的中点E ,连接BE ,CE ,如果△ABC 的面积为2,则图中阴影部分的面积为 .图2图1第10题图16.如图,边长为n 的正方形纸片剪出一个边长为3n -的正方形之后,剩余部分可剪拼成一个长方形,若该长方形一边的长为3,则另一边的长为 .三、解答题(共5小题.第17至20题,每小题10分,第21题12分,共52分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形. 17.(本题10分)(1)计算:()()2341a a a a --÷;(2)解不等式:()()()()2311x x x x +->+-.18.(本题10分)如图,BD 是△ABC 的角平分线,AE ⊥BD 交BD 的延长线于点E ,72ABC ∠=︒,C ∠:ADB ∠=2:3,求∠BAC 和∠DAE 的度数.19.(本题10分)已知5xy =,()216x y -=,求22x y +和x y +的值.20.(本题10分)如图,点B 为AC 上一点,AD ∥CE ,ADB CBE ∠=∠,BD =EB . 求证:(1)△ABD ≌△CEB ;(2)AC= AD+CE .nn -33第16题图EDCBA第18题图EDCBA已知等腰三角形的周长是13. (1)如果腰长是底边长的45,求底边的长; (2)若该三角形其中两边的长为3x 和25x +,求底边的长.第Ⅱ卷(本卷满分50分)四、填空题(共4小题,每小题4分,共16分)下列各题不需要写出解答过程,请将结果直接填在答题卷指定的位置.22.已知2n a =,3n b =,n 是正整数,则用含有a ,b 的式子表示26n 的值为 . 23.如图,四边形ABCD 中,=90A B ∠∠=︒,AB 边上有一点E ,CE 、DE 分别是BCD ∠和ADC∠的角平分线,如果△CDE 的面积是12,CD =8,那么AB 的长度为 .第23题图 第25题图24.在△ABC 中,AD 是高,AE 是角平分线,已知70ACB ∠=︒,15EAD ∠=︒,则ABC ∠的度数为 .25.如图,AB ⊥CD 于点E ,且AB CD AC ==,若点I 是△ACE 的角平分线的交点,点F 是BD 的中点.下列结论:①135AIC ∠=︒;②BD BI =;③AIC BID S S ∆∆=;④IF ⊥AC .其中正确的是 (填序号).五、解答题(共3小题.第26题10分,第27题12分,第28题12分共34分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.EDCBA FIEDCBA如图,已知()0,A a ,(),0B b ,(),0C c 是平面直角坐标系中三点,且a ,b 满足2690a b a a -+-+=,3c <.(1)求A 、B 两点的坐标; (2)若△ABC 的面积为6.①在图中画出△ABC ;②若△ABP 与△ABC 全等,直接写出所有符合条件的P 点的坐标;(3)已知MAB ABC ∠=∠,BM AC =,若满足条件的M 点有且只有两个,直接写出此时c 的取值范围.27.(本题12分)以下关于x 的各个多项式中,a ,b ,c ,m ,n 均为常数. (1)根据计算结果填写下表:(2)已知()()223x x mx n +++既不含二次项,也不含一次项,求m n +的值.(3)多项式M 与多项式231x x -+的乘积为43223x ax bx cx +++-,则2a b c ++的值为 .第26题图已知,点(),1A t 是平面直角坐标系中第一象限的点,点B ,C 分别是y 轴负半轴和x 轴正半轴上的点,连接AB ,AC ,BC .(1)如图1,若1OB =,32OC =,且A ,B ,C 在同一条直线上,求t 的值; (2)如图2,当1t =,180ACO ACB ∠+∠=︒时,求BC OC OB +-的值;(3)如图3,点(),H m n 是AB 上一点,90A OHA ∠=∠=︒,若OB OC =,求m n +的值.图1 图2 图32019~2020学年度第一学期期中考试 八年级数学参考答案及评分标准卷I :一、选择题:1.C 2.B 3.D 4.A 5.C 6.C 7.A 8.B 9.B 10.D 二、填空题:11.41a - 12.5 13.36︒ 14.100︒ 15.1 16.23n - 三、解答题:17.(1)解:原式= 22a a a -- ……………………………… 4分= a - ……………………………… 5分(2)解:2261x x x -->- ……………………………… 4分5x <- ……………………………… 5分18.解:∵C ∠:ADB ∠=2:3∴32ADB C ∠=∠ ………………………………1分 在BCD ∆中,3122DBC ADB C C C C ∠=∠-∠=∠-∠=∠ ……… 2分∵BD 是△ABC 中的角平分线 ∴11723622ABD DBC ABC ∠=∠=∠=⨯︒=︒ ……………………… 3分 ∴223672C DBC ∠=∠=⨯︒=︒ ……………………………… 4分在ABC ∆中,18036BAC ABC ACB ∠=︒-∠-∠=︒ ……………………… 6分∵AE ⊥BD ,∴90AEB ∠=︒ ……………………… 7分∴9054BAE ABE ∠=︒-∠=︒ ……………………… 8分 ∴18DAE BAE BAC ∠=∠-∠=︒ ……………………… 10分19.解:∵()2222x y x y xy -=+-∴221625x y =+-⨯∴2226x y += ………………………………5分 又∵()2222261036x y x y xy +=++=+=∴6x y +=± ……………………………… 10分20.(1)证明:∵AD ∥CE∴A C ∠=∠ ………………………………2分 在ABD ∆和CEB ∆中A CADB CBE BD EB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABD CEB ∆≅∆ ………………………………7分 (2)证明:∵ABD CEB ∆≅∆∴AD CB =,AB CE = ………………………………9分 ∴AB CB AD CE +=+即AC= AD+CE . ………………………………10分 21.(1)解:设底边长为x ,则腰长为45x 441355x x x ++= 解得 5x = 答:底边长为5. ……………………………… 3分 (2)解:①当325x x =+,即这两边都为腰时5x =∴31513x =>(不合题意,舍去) ………………………………6分 ②当3x 为底边时∵()322513x x ++= 解得37x = ∴937x =……………………………… 9分 ③当25x +为底时∵232513x x ⋅++= 解得1x = ∴257x +=,33x =∵337+<(不合题意,舍去) ∴该等腰三角形的底边为97. ……………………………… 12分 卷II :四、填空题:22.22a b 23.6 24.40︒或100︒ 25.①③④ 五、解答题:26.解:(1)∵2690a b a a -+-+=∴()230a b a -+-= ………………2分 又∵0a b -≥,()230a -≥ ∴()230a b a -=-= ∴3a b ==即()0,3A ,()3,0B ………………4分(2)①()1,0C - ………………5分 ②()4,3或()0,1-或()3,4 ………………8分 (3)0c =或3c ≤- ………………10分 27.(1)………………3分(2)∵()()()()2222369x x mx n x x x mx n+++=++++∴二次项系数为:69m n ++,一次项系数为:96m n + …………5分 ∵该多项式不含二次项和一次项∴690960m n m n ++=⎧⎨+=⎩ ………………7分 解得:23m n =-⎧⎨=⎩∴1m n += ………………9分 (3)4- ………………12分28.(1)解:作AH ⊥x 轴于H ,则90AHC BOC ∠=∠=︒,1AH BO ==在AHC ∆和BOC ∆中ACH BCO AHC BOC AH BO ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AHC BOC ∆≅∆ ………………………………2分∴32HC OC ==∴3t = (3)(2)作AM ⊥y 轴,AN ⊥x 轴,AH ⊥BC ,垂足分别是M ,N ,H ,则1AM AN OM ON ====∵180ACO ACB ACB ACH ∠+∠=︒=∠+∠∴ACO ACH ∠=∠∴AN AH AM == ……………………4分 可证ABM ABH ∆≅∆,得BM BH = …………5分 可证AHC ANC ∆≅∆,得CN CH = …………6分∴BC OC OB BC ON CN OB BC CH OB ON +-=++-=+-+2BH OB ON BM OB ON OM ON =-+=-+=+= ……………………7分 (3)作AQ ⊥CA 交CA 的延长线于Q ,EH ⊥y 轴于E ,AF ⊥x 轴交EH 于点F证OHB OQC ∆≅∆得OH=OQ 又∵OH ⊥AB ,OQ ⊥CA∴45OAH OAQ ∠=∠=︒ ……………………9分 再证OEH HFA ∆≅∆ ……………………11分 ∴EH FA = ∴1m n =-即1m n += ……………………12分。
2019-2020学年八年级(上)期中考试数学试卷一、选择题(本大题共12小题,共48.0分)1.下列说法正确的是()A. 等腰三角形的高、中线、角平分线互相重合B. 顶角相等的两个等腰三角形全等C. 等腰三角形的两个底角相等D. 等腰三角形一边不可以是另一边的2倍【答案】C【解析】解:A、错误.等腰三角形的底边上的高、底边上的中线、顶角的平分线互相重合;B、错误.腰不一定相等,所以不一定是全等三角形;C、正确;D、错误.腰可以是底的两倍;故选:C.根据等腰三角形的性质和判定以及全等三角形的判定方法即可一一判断.本题考查等腰三角形的性质、全等三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是()A. 直角三角形B. 钝角三角形C. 等腰三角形D. 等边三角形【答案】D【解析】解:根据轴对称的性质可知,OP1=OP2=OP,∠P1OP2=60°,∴△P1OP2是等边三角形.故选:D.根据轴对称的性质可知:OP1=OP2=OP,∠P1OP2=60°,即可判断△P1OP2是等边三角形.主要考查了等边三角形的判定和轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.3.下列四个选项中,正确的是()A. 若等腰三角形的底角为40°,则这个等腰三角形的顶角的度数是100°B. 点P在△ABC中AB边的垂直平分线上,则点P到∠ACB两边的距离相等C. 五边形的内角和是900°D. 点P(-2,5)关于x轴对称的点Q的坐标是Q(2,-5)【答案】A【解析】解:A、若等腰三角形的底角为40°,则这个等腰三角形的顶角的度数是100,故选项正确;B、点P在△ABC中AB边的垂直平分线上,则点P到AB两端点的距离相等,故选项错误;C、五边形的内角和是(5-2)×180°=540°,故选项错误;D、点P(-2,5)关于x轴对称的点Q的坐标是Q(-2,-5),故选项错误.故选:A.A、根据等腰三角形的性质和三角形内角和定理即可求解;B、根据线段垂直平分线的性质即可求解;C、根据多边形内角和定理即可求解;D、关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,依此即可求解.本题主要考查对角平分线的性质的理解和掌握,能熟练地利用角平分线的性质进行推理是解此题的关键.4.如图,∠DAC是△ABC的一个外角,AE平分∠DAC,且AE∥BC,则△ABC一定是()A. 等边三角形B. 直角三角形C. 等腰三角形D. 等腰直角三角形【答案】C【解析】证明:∵AE平分∠DAC,∴∠1=∠2,∵AE∥BC,∴∠1=∠C,∠B=∠2,∴∠B=∠C,即AB=AC,∴△ABC是等腰三角形.故选:C.求出∠B=∠C即可,利用角平分线得到角相等,由平行线得到角相等,再进行等量代换可得△ABC是等腰三角形.本题考查了等腰三角形的性质及判定定理及平行线的性质、角平分线的性质;进行角的等量代换是正确解答本题的关键.5.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,点D是AE上的一点,则下列结论错误的是()A. AE⊥BCB. △BED≌△CEDC. △BAD≌△CADD. ∠ABD=∠DBE【答案】D【解析】解:∵在△ABC中,AB=AC,AE是∠BAC的平分线,∴AE垂直平分BC,∴A、B、C正确,∵点D为AE上的任一点,∴∠ABD=∠DBE不正确,故选:D.根据等腰三角形顶角的平分线也是底边的中线即可确定正确的结论.本题考查了等腰三角形的性质及全等三角形的判定与性质,属于等腰三角形的基础题,比较简单.6.如图所示,在3×3正方形网格中,已有三个小正方形被涂黑,将剩余的白色小正方形再任意涂黑一个,则所得黑色图案是轴对称图形的情况有()A. 6种B. 5种C. 4种D. 2种【答案】C【解析】解:根据题意,涂黑每一个空格都会出现一种可能情况,共出现6种可能情况,其中,涂左上角和右下角的方框所得到的黑色图案组成的图形是中心对称而不是轴对称,故一共有4种情形,故选:C.根据题意,涂黑一个格共6种可能情况,结合轴对称的意义,可得到轴对称图形的情况数目.此题考查轴对称图形问题,关键是根据题意得出涂黑一个格共6种可能情况.7.AD=AE,AB=AC,BE、CD交于F,则图中相等的角共有(除去∠DFE=∠BFC)()A. 2对B. 3对C. 4对D. 5对【答案】C【解析】解:∵AB=AC,∠A=∠A,AE=AD,∴△ABE≌△ACD(SAS),∴∠B=∠C,∠AEB=∠ADC,∴∠BEC=∠BDC,∵∠DFB=∠EFC,∴共有4对角相等,故选:C.只要证明△ABE≌△ACD(SAS),即可解决问题;本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题.8.如图,在△ABC中,∠B=60°,∠EDC=∠BAC,且D为BC中点,DE=CE,则AE:AB的值为()A.B.C.D. 无法确定【答案】A【解析】解:∵DE=CE∴∠EDC=∠C,∵∠EDC=∠BAC,∴∠EDC=∠BAC=∠C,∵∠B=60°,∴△ABC及△DCE是等边三角形,∵D为BC中点,∴DE是△ABC的中位线,∴AE:AB=1:2.故选:A.先根据DE=CE得出∠EDC=∠C,再由∠EDC=∠BAC可知∠EDC=∠BAC=∠C,由∠B=60°可知△ABC及△DCE是等边三角形,再根据D为BC中点可知DE是△ABC的中位线,故可得出结论.本题考查的是等边三角形的判定与性质,根据题意判断出△ABC及△DCE是等边三角形是解答此题的关键.9.如图,点P为∠AOB内一点,分别作点P关于OA、OB的对称点P1,P2,连接P1P2交OB于M,交OA于N,P1P2=15,则△PMN的周长为()A. 16B. 15C. 14D. 13【答案】B【解析】解:∵P点关于OB、OA的对称点为P1,P2,∴P1M=PM,P2N=PN,∴△PMN的周长=MN+PM+PN=MN+P1M+P2N=P1P2,∵P1P2=15,∴△PMN的周长为15.故选:B.根据轴对称的性质可得P1M=PM,P2N=PN,然后根据三角形的周长定义,求出△PMN 的周长为P1P2,从而得解.本题考查轴对称的性质,解题时注意:对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.10.如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(A、P、A′不共线),下列结论中,错误的是()A. △AA′P是等腰三角形B. MN垂直平分AA′、CC′C. △ABC与△A′B′C′面积相等D. 直线AB,A′B′的交点不一定在直线MN上【答案】D【解析】解:∵△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,∴△AA′P是等腰三角形,MN垂直平分AA′,CC′,这两个三角形的面积相等,故A、B、C选项正确,直线AB,A′B′关于直线MN对称,因此交点一定在MN上,故D错误,故选:D.据对称轴的定义,△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,可以判断出图中各点或线段之间的关系.本题考查轴对称的性质与运用,解题时注意:对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.11.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A. 0个B. 1个C. 2个D. 3个【答案】D【解析】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②正确;故选:D.先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS 证明△AOD与△COD全等.12.如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A. △EBD是等腰三角形,EB=EDB. 折叠后∠ABE和∠C′BD一定相等C. 折叠后得到的图形是轴对称图形D. △EBA和△EDC′一定是全等三角形【答案】B【解析】解:由题意得:△BC′D≌△BFD,∴DC′=DF,∠C′=∠C=90°;∠C′BD=∠CBD;又∵四边形ABCD为矩形,∴∠A=∠F=90°;DE∥BF,AB=DF;∴∠EDB=∠FBD,DC′=AB;∴∠EDB=∠C′BD,∴EB=ED,△EBD为等腰三角形;在△ABE与△CDE中,∵,∴△ABE≌△C′DE(HL);又∵△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形;综上所述,选项A、C、D成立,∴下列说法错误的是B,故选:B.根据题意结合图形可以证明EB=ED,进而证明△ABE≌△C′DE;此时可以判断选项A、B、D是成立的,问题即可解决.该命题主要考查了翻折变换及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图中隐含的等量关系;借助矩形的性质、全等三角形的判定等几何知识来分析、判断、推理或解答二、填空题(本大题共6小题,共24.0分)13.若等腰三角形两边的长分别为3cm和7cm,则第三边的长是______cm.【答案】7【解析】解:当3cm为腰时,3+3<7,不合题意,舍去.所以只有7cm为腰,故答案是:7.根据三角形的三边关系和等腰三角形的性质解答.考查三角形的边时,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边,当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.14.等腰三角形的一个底角比顶角小42°,它的顶角是______.【答案】88°【解析】解:设∵等腰三角形的一个底角为α,根据题意得:α+α+α+42°=180°,∴α=46°,∴它的顶角是88°,故答案为:88°.根据等腰三角形的性质和三角形的内角和即可得到结论.本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.15.点P(1,2)关于y轴对称的点的坐标是______.【答案】(-1,2)【解析】解:∵点P(m,n)关于y轴对称点的坐标P′(-m,n),∴点P(1,2)关于y轴对称的点的坐标为(-1,2).本题可以根据假设法,设出题中所有点的坐标,然后根据掌握的平面直角坐标系的基本性质,点对称的特点即可求解.本题考查平面直角坐标系点的对称性质,属于对基本内容的考查,学生需认真掌握有关内容.16.如图,等边△ABC中,AD是中线,DE⊥AC于点E,DE=3,则点D到AB的距离为:______.【答案】3【解析】解:∵△ABC是等边三角形,∴∠C=60°,AB=AC,∵AD是中线,∴∠BAD=∠CAD,∵DE⊥AC,∴点D到AB的距离等于DE的长,即点D到AB的距离为3,故答案为:3.由等边三角形性质及AD是中线知AD是∠BAC平分线,再由DE⊥AC知点D到AB的距离等于DE的长,据此可得答案.本题主要考查等边三角形的性质,解题的关键是掌握等腰三角形的三线合一性质及角平分线的性质.17.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠C=40°,则∠BAE的度数为______°.【答案】10【解析】解:∵ED是AC的垂直平分线,∴AE=CE,∴∠EAC=∠C=40°,∵在Rt△ABC中,∠B=90°,∴∠BAC=90°-∠C=50°,∴∠BAE=∠BAC-∠EAC=10°.故答案为:10.由ED是AC的垂直平分线,可得AE=CE,继而求得∠BAE=∠C=40°,然后由在Rt△ABC 中,∠B=90°,即可求得∠BAC的度数,继而求得答案.此题考查了线段垂直平分线的性质、等腰三角形的性质以及直角三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.18.如图,在平面直角坐标系中,分别平行于x轴、y轴的两直线a、b相交于点A(3,4).连接OA,若在直线a上存在点P,使△AOP是以AO为腰的等腰三角形.请写出所有满足条件的点P的坐标是______【答案】(8,4)、(-2,4)、(-3,4)【解析】解:∵A(3,4)∴OB=3,AB=4∴0A==5∴当OA为等腰三角形一条腰,则点P的坐标是(8,4),(-2,4),(-3,4);故答案为:(8,4),(-2,4),(-3,4).根据题意可得0A=5,再根据情况OA为等腰三角形一条腰计算求解.本题考查了坐标与图形的性质及等腰三角形的判定;根据等腰三角形的判定解答是正确解答本题的关键.三、解答题(本大题共9小题,共78.0分)19.如图,已知AB=CD,AC=DB.求证:∠A=∠D.【答案】证明:在△ABC和△DCB中,∵AB=DC,AC=DB,BC=CB,∴△ABC≌△DCB(SSS),∴∠A=∠D.【解析】分析题目条件,AB、AC围成△ABC,DC、DB围成△DCB,BC为它们的公共边,容易判断△ABC≌△DCB,从而得出∠A=∠D.本题考查全等三角形的判定,性质的综合运用,可以由结论探究所要证明全等的三角形,然后找全等的条件.20.一个多边形的内角和是外角和的2倍,它是几边形?【答案】解:设多边形边数为n.则360°×2=(n-2)•180°,解得n=6.故是六边形.【解析】多边形的外角和是360度,多边形的外角和是内角和的一半,则多边形的内角和是720度,根据多边形的内角和可以表示成(n-2)•180°,依此列方程可求解.本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.21.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.【答案】解:(1)如图:(2)∵∠B=30°,∠ACB=130°,∴∠BAC=180°-30°-130°=20°,∵∠ACB=∠D+∠CAD,AD⊥BC,∴∠CAD=130°-90°=40°,∴∠BAD=20°+40°=60°.【解析】(1)延长BC,作AD⊥BC于D;作BC的中点E,连接AE即可;(2)可根据三角形的内角和定理求∠BAC=20°,由外角性质求∠CAD=40°,那可得∠BAD=60°.此题是计算与作图相结合的探索.考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.22.已知:如图,在Rt△ABC中,∠C=90°,点D在CB边上,∠DAB=∠B,点E在AB边上且满足∠CAB=∠BDE.求证:AE=BE.【答案】证明:∵∠C=90°,∴∠CAB+∠B=90°.∵∠CAB=∠BDE,∴∠BDE+∠B=90°,∴∠DEB=90°.∵∠DAB=∠B,∴DA=DB,∴AE=BE.【解析】由∠C=90°结合三角形内角和定理可得出∠CAB+∠B=90°,由∠CAB=∠BDE可得出∠BDE+∠B=90°,进而可得出∠DEB=90°,由∠DAB=∠B可得出DA=DB,再利用等腰三角形的三线合一可证出AE=BE.本题考查了等腰三角形的判定与性质以及三角形内角和定理,牢记等腰三角形的三线合一解题的关键.23.如图,在△ABC中,AB=AC,∠BAC=120°,DE垂直平分AC,交BC于D,交AC于E,且DE=2cm,求BC的长.【答案】解:连接AD,∵DE垂直平分AC,∴AD=CD,∠DEC=90°,∴∠DAC=∠C,∵在△ABC中,AB=AC,∠BAC=120°,∴∠B=∠C==30°,∴∠DAC=∠C=∠B=30°,∴∠ADB=∠DAC+∠C=60°,∴∠BAD=180°-∠B-∠ADB=90°,在Rt△CDE中,∠C=30°,DE=2cm,∴CD=2DE=4cm,∴AD=CD=4cm,在Rt△BAD中,∠B=30°,∴BD=2AD=8cm,∴BC=BD+CD=12(cm).【解析】首先连接AD,由DE垂直平分AC,根据线段垂直平分线的性质,易得AD=CD,又由在△ABC中,AB=AC,∠BAC=120°,易求得∠DAC=∠B=∠C=30°,继而可得∠BAD=90°,然后利用含30°角的直角三角形的性质,即可求得BC的长.此题考查了线段垂直平分线的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.24.如图,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.【答案】证明:(1)∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.又∵AE=BD,∴△AEC≌△BDA(SAS).∴AD=CE;(2)∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.【解析】根据等边三角形的性质,利用SAS证得△AEC≌△BDA,所以AD=CE,∠ACE=∠BAD,再根据三角形的外角与内角的关系得到∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.本题利用了等边三角形的性质和三角形的一个外角等于与它不相邻的两个内角的和求解.25.按要求用尺规作图(要求:不写作法,但要保留作图痕迹,并写出结论)已知:线段AB求作:线段AB的垂直平分线MN.【答案】解:作法:(1)分别以A,B点为圆心,以大于的长为半径作弧,两弧相交于M,N两点;(2)作直线MN,MN即为线段AB的垂直平分线.【解析】分别以A,B点为圆心,以大于的长为半径作弧,两弧相交于M,N两点;作直线MN,MN即为线段AB的垂直平分线.本题考查的是基本作图,熟知线段垂直平分线的作法是解答此题的关键.26.如图,图中的小方格都是边长为1的正方形,①直接写出△ABC的各顶点坐标:A(______,______),B(______,______)C(______,______);②画出△ABC关于y轴的对称图形△A1B1C1;③直接写出△ABC关于x轴对称的△A2B2C2的顶点A2(______,______)B2(______,______)(其中A2与A对应,B2与B对应,不必画图.)【答案】-3 2 -4 -3 -1 -1 -3 -2 -4 3【解析】解:①△ABC的各顶点坐标:A(-3,2)、B(-4,-3)、C(-1,-1);故答案为:-3、2;-4、-3;-1、-1;②如图,△A1B1C1即为所求,③如图,△A2B2C2即为所求,A2坐标为(-3,-2)、B2坐标为(-4,3).故答案为:-3、-2;-4、3.①根据三角形在坐标中的位置可得;②分别作出点A、B、C关于y轴的对称点,再顺次连接可得;③分别作出点A、B、C关于x轴的对称点,再首尾顺次连接可得.本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键.27.知识链接:将两个含30°角的全等三角尺放在一起,让两个30°角合在一起成60°,经过拼凑、观察、思考,探究出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.如图,等边三角形ABC的边长为4cm,点D从点C出发沿CA向A运动,点E从B 出发沿AB的延长线BF向右运动,已知点D、E都以每秒0.5cm的速度同时开始运动,运动过程中DE与BC相交于点P,设运动时间为x秒.(1)请直接写出AD长.(用x的代数式表示)(2)当△ADE为直角三角形时,运动时间为几秒?(3)求证:在运动过程中,点P始终为线段DE的中点.【答案】解:(1)由题意得,CD=0.5x,则AD=4-0.5x;(2)∵△ABC是等边三角形,∴AB=BC=AC=4cm,∠A=∠ABC=∠C=60°.设x秒时,△ADE为直角三角形,∴∠ADE=90°,BE=0.5x,AD=4-0.5x,AE=4+0.5x,∴∠AED=30°,∴AE=2AD,∴4+0.5x=2(4-0.5x),∴x=;答:运动秒后,△ADE为直角三角形;(3)如图2,作DG∥AB交BC于点G,∴∠GDP=∠BEP,∠DGP=∠EBP,∠CDG=∠A=60°,∠CGD=∠ABC=60°,∴∠C=∠CDG=∠CGD,∴△CDG是等边三角形,∴DG=DC,∵DC=BE,∴DG=BE.在△DGP和△EBP中,,∴△DGP≌△EBP(ASA),∴DP=PE,∴在运动过程中,点P始终为线段DE的中点.【解析】(1)根据题意得到CD=0.5x,结合图形求出AD;(2)设x秒时,△ADE为直角三角形,则BE=0.5x,AD=4-0.5x,AE=4+0.5x,根据30°的直角边等于斜边的一般建立方程求出其解即可;(3)作DG∥AB交BC于点G,证明△DGP≌△EBP,得出PD=PE.本题考查了等边三角形的判定与性质,直角三角形的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,掌握全等三角形的判定定理和性质定理,等边三角形的判定定理和性质定理是关键.。
2019-2020学年度八年级数学上册期中考试卷(有答案)一、选择题(共10题;共20分)1.下列几何图形不一定是轴对称图形的是()A. 线段B. 角C. 等腰三角形D. 直角三角形2.三角形一个外角小于与它相邻的内角,这个三角形是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 属于哪一类不能确定3.(2017·金华)下列各组数中,不可能成为一个三角形三边长的是( )A. 2,3,4B. 5,7,7C. 5,6,12D. 6,8,104.等腰三角形的两条边长分别为15cm和7cm,则它的周长为()A. 37cmB. 29cmC. 37cm或29cmD. 无法确定5.如图,在△ABC中,AB=AC ,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12,图中阴影部分的面积为( ).A. 6B. 10.5C. 11D. 15.56.如图,一副分别含有30°和45°角的两个直角三角板,拼成如图所示,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A. 10°B. 15°C. 25°D. 30°7.(2017•百色)多边形的外角和等于()A. 180°B. 360°C. 720°D. (n﹣2)•180°8.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A. 6B. 5C. 3D. 39.能将三角形面积平分的是三角形的()A. 角平分线B. 高C. 中线D. 外角平分线10.已知等腰三角形的周长为14,其腰长为4,则它的底边长为()A. 4B. 5C. 6D. 4或6二、填空题(共5题;共18分)11.等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为________.12.如图示,点B在AE上,∠CBE=∠DBE,要使ΔABC≌ΔABD, 还需添加一个条件是________.(填上你认为适当的一个条件即可)13.十五边形的外角和等于________ .14.已知点A(m,3)与点B(2,n)关于y轴对称,则m=________,n=________.15.如图,AC与BD交于点P,AP=CP,从以下四个论断①AB=CD,②BP=DP,③∠B=∠D,④∠A=∠C中选择一个论断作为条件,则不一定能使△APB≌△CPD的论断是________(限填序号).三、解答题(共8题;共62分)16.如图,在△ABC中,点D、E分别为BC、AD的中点,若S△ABC=1,求S△ABE.17.已知:如图,PM⊥BD于BD中点M,PN⊥AD于AD中点N,PM=PN,试说明:OB=OA。
2019-2020年八年级上册数学期中考试试卷及答案
一. 选择题(每小题3分,共30分.每小题都有四个选项,其中有且只有一个选项是正确的) 1、下列说法正确的是…………………………………………… ( ) A .1的立方根是1±; B .24±=; C 、81的平方根是3±; D 、0没有平方根; 2、在下列实数中,无理数是( )
A .3
5
-
B .2π
C .01.0
D .327-
3、 下列计算结果正确的是. …………………( )
A.. 3
3
6
x x x += B. 3
4
b b b ⋅= C. 3
2
6
428a a a ⋅= D. 2
2
532a a -=.
4、 下列多项式相乘,结果为1662-+a a 的是………………… ( ) A. )8)(2(--a a B. )8)(2(-+a a C. )8)(2(+-a a D. )8)(2(++a a
5、如m x +与3+x 的乘积中不含..x 的一次项....
,则m 的值为…………………( ) A .3- B .3 C . 0
D . 1
6、下列式子从左到右的变形中,属于因式分解的是 …………………( )
A 、2
(1)(1)1x x x +-=-
B 、2
21(2)1x x x x -+=-+
C 、2
2
()()a b a b a b -=+- D 、()()mx my nx ny m x y n x y +++=+++
7.由下列条件不能判断△ABC 是直角三角形的是( )
A .∠A :∠
B :∠C=3:4:5 B .∠A :∠B :∠C=2:3:5
C .∠A -∠C =∠B
D .222AC BC AB =-
8、如图所示:求黑色部分(长方形)的面积为…………………( ) A 、24 B 、30 C 、48 D 、18 9、估算324+的值是…………………( ) A .在5和6之间 B .在6和7之间 C .在7和8之间
D .在8和9之间
10.和数轴上的点一一对应的数是…………………( )
A 、分数
B 、有理数
C 、无理数
D 、实数 二.填空题(每空3分,共27分) 11. 33x =,则x =______
12, 若5,4m n
x x ==.则
m n
x
-=_______.
13.如图1,在边长为a 的正方形中剪去一个边 长为b 的小正形(a >b ),把剩下部分拼成一个 梯形(如图2),利用这两幅图形面积,可以验证
的乘法公式是 14. 计算:x 3.(2x 3)2÷()
2
4
x =___________
15.分解因式,直接写出结果)(6)(4)(8a x c x a b a x a ---+-=
16.已知3=-b a ,2=b a ,则22b a +的值为 。
17.若1692
++mx x 是一个完全平方式,那么m 的值是
18. 在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:
如对于多项式4
4y x -,因式分解的结果是))()((2
2
y x y x y x ++-,若取x =9,y =9时,则各个因式的
值是:)(y x -=0,)(y x +=18,)(2
2y x +=162,于是就可以把“018162”作为一个六位数的密码.对于 多项式3
2
x xy -,取x =27,y =3时,用上述方法产生的密码是: (写出一个即可).
19.如图,一个蚂蚁要在在一个长、宽、高分别为2、3、1分米的长方体的表面从A 点爬到B 点,那么最短 的路径是 分米。
(结果可以保留根号) 三.解答题(本大题共 63 分) 20. 计算(每小题4分共16分) ⑴
48532+- ⑵ (16x 3-8x 2+4x )÷(-2x )
⑶ (21)(21)a a +-+ ⑷()xy y x 42
+-
21.因式分解(每小题4分共12分)
(1)a a a 32
44-+ (2) 3x 3-12xy 2 (3) (x -1)(x -3)-8 22. (本题满分6分) 先化简, 再求值:2
(3)(3)(3),1,2x y x y x y x y -++-==-其中
23. (本题满分6分)已知a 、b 、c 满足2|a -2012|=2c -2
c -1 . 求a
c 的值.
24、(本题满分6分)阅读下列解题过程:已知a 、b 、c 为△ABC 的三边,且满足
222244a c b c a b -=-,试判定△ABC 的形状.
解:∵ 222244a c b c a b -=-
∴2
2
2
2
2
2
2
()()()c a b a b a b -=+- (1 ) ∴ 222c a b =+ (2 )
∴ △ABC 是直角三角形 (3)
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:_______. (2)错误的原因为 (3)本题正确的结论是
25、(7分)"我市道路交通管理条例"规定:小汽车在环岛路上行驶速度不得超过60千米../.小时..。
如图, 一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方30米.C 处,过 了2秒后,测得小汽车与车速检测仪间距离为50米.。
请问这辆小汽车超速了吗?为什么?若超速,则超速了多少?
26、(10分)如图,在四边形ABCD 中,AD AB =,︒=∠=∠90BCD DAB ,设CD BC p +=,四
边形ABCD 的面积为S .(8分)
(1)试探究S 与p 之间的关系,并说明理由. (2)若四边形ABCD 的面积为12,求CD BC +的值.
河南沈丘外语中学八年级(上)数学试卷参考答案
一选择题(每小题3分,共30分.每小题都有四个选项,其中有且只有一个选项是正确的)
1、C
2、B
3、 B
4、 C
5、A .
观测点 小汽车 小汽车 B
C A
6、C
7.A
8、B 9、C 10.D 二.
11. 27 12, 4
5
. 13.
2
2))((b a b a b a -=-+
14. 4x
15. )324)((2c b a a x --- 16. 5
17. ±24
18. 272430或242730或302724或302427(写出一个即可). 19. 52
三.解答题(本大题有8小题,共 68 分) 20. ⑴
48532+- ⑵ (16x 3-8x 2+4x )÷(-2x )
=5 =2482-+-x x ⑶ (21)(21)a a +-+ ⑷()xy y x 42
+-
=241a - =2
22y xy x ++
21.因式分解(每小题4分共16分)
(1)a a a 32
44-+ (2) 3x 3-12xy 2 =2
)2(-a a =)2)(2(3y x y x x -+ (3(x -1)(x -3)-8 =)1)(5(+-x x
22.解:xy x y x y x y x 618)3)(3()3(2
2-=-++-
当2,1-==y x 时 原式=30)2(161186182
=-⨯⨯-⨯=-xy x
23.由已知得 2|a -2012|+0)1(2=-c .
∴ 0102012=-=-c a 即1
2012
==c a
∴ 1=a c
24、解 (1)从(2)步开始出现错误 (2)2
2
b a -可能为0
(3)△ABC 是直角三角形或等腰三角形
25.解:这辆小汽车超速了。
因为有已知可知AB=50米 AC=30米 在直角三角形ABC 中 222BC AC AB +=
∴222222403050=-=-=AC AB BC
∴40=BC
∵
202
40
2==BC (米./.秒.)合72千米../.小时..>.60千米../.小时..
∴这辆小汽车超速了,每小时超速12千米
26、(1)如图,连结BD ,由︒=∠=∠90BCD DAB 得2
2
2
AD AB BD +=,
222CD BC BD +=∴2222AD AB CD BC +=+.
又∵AD AB = ∴2222AB CD BC =+ ∵︒=∠=∠90BCD DAB
∴CD BC AD AB S ⋅+⋅=21
21
CD BC AB ⋅+=2
1
212 ∴CD BC S AB ⋅-=22 ∴()CD BC S AB CD BC ⋅-==+222222CD BC S ⋅-=24 ∴S CD CD BC BC 4222=+⋅+,即()2
4CD BC S +=∴2
4
1p S =
. (2)由(1)得
124
12
=p ,3448==∴p 即34=+CD BC (2)求AD 的长;。