人教版高中数学选修2-3练习:第一章1.2-1.2.2第2课时组合的综合应用 Word版含解析
- 格式:doc
- 大小:157.50 KB
- 文档页数:6
第2课时组合的综合应用1.学会运用组合的概念分析简单的实际问题.(重点)2.能解决无限制条件的组合问题.3.掌握解决组合问题的常见的方法.(难点)[基础·初探]教材整理组合的实际应用阅读教材P23例6~P25,完成下列问题.1.组合与排列的异同点共同点:排列与组合都是从n个不同元素中取出m(m≤n)个元素.不同点:排列与元素的顺序有关,组合与元素的顺序无关.2.应用组合知识解决实际问题的四个步骤(1)判断:判断实际问题是否是组合问题.(2)方法:选择利用直接法还是间接法解题.(3)计算:利用组合数公式结合两个计数原理计算.(4)结论:根据计算结果写出方案个数.1.把三张游园票分给10个人中的3人,分法有________.【解析】把三张票分给10个人中的3人,不同分法有C310=10×9×8 3×2×1=120(种).【答案】1202.甲、乙、丙三位同学选修课程,从4门课程中,甲选修2 门,乙、丙各选修3门,则不同的选修方案共有______种.【解析】 甲选修2门,有C 24=6(种)不同方案.乙选修3门,有C 34=4(种)不同选修方案.丙选修3门,有C 34=4(种)不同选修方案.由分步乘法计数原理,不同的选修方案共有6×4×4=96(种).【答案】 963.从0,1, 2,π2, 3,2这六个数字中,任取两个数字作为直线y =x tan α+b 的倾斜角和截距,可组成______条平行于x 轴的直线.【解析】 要使得直线与x 轴平行,则倾斜角为0,截距在0以外的五个数字均可.故有C 15=5条满足条件.【答案】 54.将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排2名学生,那么互不相同的分配方案共有________种. 【导学号:97270018】【解析】 每个宿舍至少2名学生,故甲宿舍安排的人数可以为2人,3人,4人,5人,甲宿舍安排好后,乙宿舍随之确定,所以有C 27+C 37+C 47+C 57=112种分配方案.【答案】 112[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑:疑问2: 解惑: 疑问3: 解惑:[小组合作型]无限制条件的组合问题在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人参加市级培训.在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必需参加;(3)甲、乙、丙三人不能参加;(4)甲、乙、丙三人只能有1人参加.【精彩点拨】本题属于组合问题中的最基本的问题,可根据题意分别对不同问题中的“含”与“不含”作出正确分析和判断,弄清每步从哪里选,选出多少等问题.【自主解答】(1)从中任取5人是组合问题,共有C512=792种不同的选法.(2)甲、乙、丙三人必需参加,则只需要从另外9人中选2人,是组合问题,共有C29=36种不同的选法.(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C59=126种不同的选法.(4)甲、乙、丙三人只能有1人参加,可分两步:先从甲、乙、丙中选1人,有C13=3种选法;再从另外9人中选4人,有C49种选法.共有C13C49=378种不同的选法.解答简单的组合问题的思考方法1.弄清要做的这件事是什么事.2.选出的元素是否与顺序有关,也就是看看是不是组合问题.3.结合两个计数原理,利用组合数公式求出结果.[再练一题]1.现有10名教师,其中男教师6名,女教师4名.(1)现要从中选2名去参加会议,有多少种不同的选法?(2)选出2名男教师或2名女教师去外地学习的选法有多少种?【解】(1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即C210=10×9=45.2×1(2)可把问题分两类:第1类,选出的2名是男教师有C26种方法;第2类,选出的2 名是女教师有C24种方法,即C26+C24=21(种).有限制条件的组合问题高二(1)班共有35名同学,其中男生20名,女生15名,今从中选出3名同学参加活动.(1)其中某一女生必须在内,不同的取法有多少种?(2)其中某一女生不能在内,不同的取法有多少种?(3)恰有2名女生在内,不同的取法有多少种?(4)至少有2名女生在内,不同的取法有多少种?(5)至多有2名女生在内,不同的取法有多少种?【精彩点拨】可从整体上分析,进行合理分类,弄清关键词“恰有”“至少”“至多”等字眼.使用两个计数原理解决.【自主解答】(1)从余下的34名学生中选取2名,有C234=561(种).∴不同的取法有561种.(2)从34名可选学生中选取3名,有C334种.或者C335-C234=C334=5 984种.∴不同的取法有5 984种.(3)从20名男生中选取1名,从15名女生中选取2名,有C120C215=2 100种.∴不同的取法有2 100种.(4)选取2名女生有C120C215种,选取3名女生有C315种,共有选取方式N=C120 C215+C315=2 100+455=2 555种.∴不同的取法有2 555种.(5)选取3名的总数有C335,因此选取方式共有N=C335-C315=6 545-455=6 090种.∴不同的取法有6 090种.常见的限制条件及解题方法1.特殊元素:若要选取的元素中有特殊元素,则要以有无特殊元素,特殊元素的多少作为分类依据.2.含有“至多”“至少”等限制语句:要分清限制语句中所包含的情况,可以此作为分类依据,或采用间接法求解.3.分类讨论思想:解题的过程中要善于利用分类讨论思想,将复杂问题分类表达,逐类求解.[再练一题]2.“抗震救灾,众志成城”,在我国“四川5·12”抗震救灾中,某医院从10名医疗专家中抽调6名奔赴赈灾前线,其中这10名医疗专家中有4名是外科专家.问:(1)抽调的6名专家中恰有2名是外科专家的抽调方法有多少种?(2)至少有2名外科专家的抽调方法有多少种?(3)至多有2名外科专家的抽调方法有多少种?【解】(1)分步:首先从4名外科专家中任选2名,有C24种选法,再从除外科专家的6人中选取4人,有C46种选法,所以共有C24·C46=90(种)抽调方法.(2)“至少”的含义是不低于,有两种解答方法.法一(直接法)按选取的外科专家的人数分类:①选2名外科专家,共有C24·C46种选法;②选3名外科专家,共有C34·C36种选法;③选4名外科专家,共有C44·C26种选法.根据分类加法计数原理,共有C24·C46+C34·C36+C44·C26=185(种)抽调方法.法二(间接法)不考虑是否有外科专家,共有C610种选法,考虑选取1名外科专家参加,有C14·C56种选法;没有外科专家参加,有C66种选法,所以共有:C610-C14·C56-C66=185(种)抽调方法.(3)“至多2名”包括“没有”“有1名”“有2名”三种情况,分类解答.①没有外科专家参加,有C66种选法;②有1名外科专家参加,有C14·C56种选法;③有2名外科专家参加,有C24·C46种选法.所以共有C66+C14·C56+C24·C46=115(种)抽调方法.组合在几何中的应用平面内有12个点,其中有4个点共线,此外再无任何3点共线.以这些点为顶点,可构成多少个不同的三角形?【精彩点拨】解答本题可以从共线的4个点中选取2个、1个、0个作为分类标准,也可以从反面考虑,任意三点的取法种数减去共线三点的取法种数.【自主解答】法一:以从共线的4个点中取点的多少作为分类标准.第1类:共线的4个点中有2个点为三角形的顶点,共有C24C18=48个不同的三角形;第2类:共线的4个点中有1个点为三角形的顶点,共有C14C28=112个不同的三角形;第3类:共线的4个点中没有点为三角形的顶点,共有C38=56个不同的三角形.由分类加法计数原理知,不同的三角形共有48+112+56=216(个).法二(间接法):从12个点中任意取3个点,有C312=220种取法,而在共线的4个点中任意取3个均不能构成三角形,即不能构成三角形的情况有C34=4种.故这12个点能构成三角形的个数为C312-C34=216个.1.解决几何图形中的组合问题,首先应注意运用处理组合问题的常规方法分析解决问题,其次要注意从不同类型的几何问题中抽象出组合问题,寻找一个组合的模型加以处理.2.图形多少的问题通常是组合问题,要注意共点、共线、共面、异面等情形,防止多算.常用直接法,也可采用排除法.[再练一题]3.四面体的一个顶点为A,从其他顶点和各棱中点中取3个点,使它们与点A在同一平面上,有多少种不同的取法?【解】如图所示,含顶点A的四面体的3个面上,除点A外每个面都有5个点,从中取出3点必与点A共面,共有3C35种取法,含顶点A的三条棱上各有三个点,它们与所对的棱的中点共面,共有3种取法.根据分类加法计数原理,不同的取法有3C35+3=33种.[探究共研型]排列、组合的综合应用探究1从集合{1,2,3,4}中任取两个不同元素相乘,有多少个不同的结果?完成的“这件事”指的是什么?【提示】共有C24=4×32=6(个)不同结果.完成的“这件事”是指:从集合{1,2,3,4}中任取两个不同元素并相乘.探究2从集合{1,2,3,4}中任取两个不同元素相除,有多少不同结果?这是排列问题,还是组合问题?完成的“这件事”指的是什么?【提示】共有A24-2=10(个)不同结果;这个问题属于排列问题;完成的“这件事”是指:从集合{1,2,3,4}中任取两个不同元素并相除.探究3完成“从集合{0,1,2,3,4}中任取三个不同元素组成一个是偶数的三位数”这件事需先分类,还是先分步?有多少个不同的结果?【提示】由于0不能排在百位,而个位必须是偶数.0是否排在个位影响百位与十位的排法,所以完成这件事需按0是否在个位分类进行.第一类:0在个位,则百位与十位共A24种排法;第二类:0不在个位且不在百位,则需先从2,4中任选一个排个位再从剩下非零数字中取一个排百位,最后从剩余数字中任取一个排十位,共C12C13C13=18(种)不同的结果,由分类加法原理,完成“这件事”共有A24+C12C13C13=30(种)不同的结果.有5个男生和3个女生,从中选出5人担任5门不同学科的课代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文课代表;(3)某男生必须包括在内,但不担任数学课代表;(4)某女生一定要担任语文课代表,某男生必须担任课代表,但不担任数学课代表.【精彩点拨】(1)按选中女生的人数多少分类选取.(2)采用先选后排的方法.(3)先安排该男生,再选出其他人担任4科课代表.(4)先安排语文课代表的女生,再安排“某男生”课代表,最后选其他人担任余下三科的课代表.【自主解答】(1)先选后排,先选可以是2女3男,也可以是1女4男,共有C35C23+C45C13种,后排有A55种,共(C35C23+C45C13)·A55=5 400种.(2)除去该女生后,先选后排,有C47·A44=840种.(3)先选后排,但先安排该男生,有C47·C14·A44=3 360种.(4)先从除去该男生、该女生的6人中选3人有C36种,再安排该男生有C13种,其余3人全排有A33种,共C36·C13·A33=360种.解决排列、组合综合问题要遵循两个原则1.按事情发生的过程进行分步.2.按元素的性质进行分类.解决时通常从以下三个途径考虑:(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列或组合数.[再练一题]4.(1)某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案共有()A.16种B.36种C.42种D.60种(2)某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加,则他们发言时不能相邻,那么不同的发言顺序的种数为()A.360 B.520 C.600 D.720【解析】(1)若选择了两个城市,则有C24C23A22=36种投资方案;若选择了三个城市,则有C34A33=24种投资方案,因此共有36+24=60种投资方案.(2)分两类:第一类,甲、乙中只有一人参加,则有C12C35A44=2×10×24=480种选法.第二类,甲、乙都参加时,则有C25(A44-A22A33)=10×(24-12)=120种选法.所以共有480+120=600种选法.【答案】(1)D(2)C[构建·体系]1.楼道里有12盏灯,为了节约用电,需关掉3盏不相邻的灯,则关灯方案有()A.72种B.84种C.120种D.168种【解析】需关掉3盏不相邻的灯,即将这3盏灯插入9盏亮着的灯的空中,所以关灯方案共有C310=120(种).故选C.【答案】 C2.编号为1,2,3,4,5,6,7的七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案有()A.60种B.20种C.10种D.8种【解析】四盏熄灭的灯产生的5个空档中放入三盏亮灯,即C35=10.【答案】 C3.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有________种(用数字作答). 【导学号:97270019】【解析】有C13·C24·A22=36种满足题意的分配方案.其中C13表示从3个乡镇中任选定1个乡镇,且其中某2名大学生去的方法数;C24表示从4名大学生中任选2名到上一步选定的乡镇的方法数;A22表示将剩下的2名大学生分配到另2个乡镇去的方法数.【答案】364.在直角坐标平面xOy上,平行直线x=n(n=0,1,2,…,5)与平行直线y =n(n=0,1,2,…,5)组成的图形中,矩形共有________个.【解析】在垂直于x轴的6条直线中任取2条,在垂直于y轴的6条直线中任取2条,四条直线相交得出一个矩形,所以矩形总数为C26×C26=15×15=225个.【答案】2255.车间有11名工人,其中5名是钳工,4名是车工,另外两名老师傅既能当车工又能当钳工,现在要在这11名工人里选派4名钳工,4名车工修理一台机床,问有多少种选派方法.【解】法一:设A,B代表两名老师傅.A,B都不在内的选派方法有:C45·C44=5(种);A,B都在内且当钳工的选派方法有:C22·C25·C44=10(种);A,B都在内且当车工的选派方法有:C22·C45·C24=30(种);A,B都在内,一人当钳工,一人当车工的选派方法有:C22·A22·C35·C34=80(种);A,B有一人在内且当钳工的选派方法有:C12·C35·C44=20(种);A,B有一人在内且当车工的选派方法有:C12·C45·C34=40(种).所以共有C45·C44+C22·C25·C44+C22·C45·C24+C22·A22·C35·C34+C12·C35·C44+C12·C45·C34=185(种)选派方法.法二:5名钳工有4名被选上的方法有:C45·C46=75(种);5名钳工有3名被选上的方法有:C35·C45·C12=100(种);5名钳工有2名被选上的方法有:C25·C22·C44=10(种).所以一共有75+100+10=185(种)选派方法.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.(2016·中山高二检测)圆上有10个点,过每三个点画一个圆内接三角形,则一共可以画的三角形个数为()A.720B.360C.240D.120【解析】确定三角形的个数为C310=120.【答案】 D2.某电视台连续播放5个广告,其中有3个不同的商业广告和2个不同的奥运广告.要求最后必须播放奥运广告,且2个奥运广告不能连续播放,则不同的播放方式有()A.120种B.48种C.36种D.18种【解析】最后必须播放奥运广告有C12种,2个奥运广告不能连续播放,倒数第2个广告有C13种,故共有C12C13A33=36种不同的播放方式.【答案】 C3.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种【解析】均为奇数时,有C45=5种;均为偶数时,有C44=1种;两奇两偶时,有C24·C25=60种,共有66种.【答案】 D4.(2016·青岛高二检测)将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子里,每个盒内放一个球,恰好3个球的标号与其在盒子的标号不一致的放入方法种数为()A.120 B.240 C.360 D.720【解析】先选出3个球有C310=120种方法,不妨设为1,2,3号球,则1,2,3号盒中能放的球为2,3,1或3,1,2两种.这3个号码放入标号不一致的盒子中有2种不同的方法,故共有120×2=240种方法.【答案】 B5.从乒乓球运动员男5名、女6名中组织一场混合双打比赛,不同的组合方法种数为()A.C25C26B.C25A26C.C25A22C26A22D.A25A26【解析】分两步进行:第一步,选出两名男选手,有C25种方法;第二步,从6名女生中选出2名且与已选好的男生配对,有A26种.故有C25A26种.【答案】 B二、填空题6.某单位有15名成员,其中男性10人,女性5人,现需要从中选出6名成员组成考察团外出参观学习,如果按性别分层,并在各层按比例随机抽样,则此考察团的组成方法种数是________.【解析】按性别分层,并在各层按比例随机抽样,则需从10名男性中抽取4人,5名女性中抽取2人,共有C410C25=2 100种抽法.【答案】 2 1007.某球队有2名队长和10名队员,现选派6人上场参加比赛,如果场上最少有1名队长,那么共有________种不同的选法.【解析】若只有1名队长入选,则选法种数为C12·C510;若两名队长均入选,则选法种数为C410,故不同选法有C12·C510+C410=714(种).【答案】7148.现有6张风景区门票分配给6位游客,若其中A,B风景区门票各2张,C,D风景区门票各1张,则不同的分配方案共有________种.【解析】6位游客选2人去A风景区,有C26种,余下4位游客选2人去B 风景区,有C24种,余下2人去C,D风景区,有A22种,所以分配方案共有C26C24 A22=180(种).【答案】180三、解答题9.α,β是两个平行平面,在α内取四个点,在β内取五个点.(1)这些点最多能确定几条直线,几个平面?(2)以这些点为顶点最多能作多少个三棱锥?【解】(1)在9个点中,除了α内的四点共面和β内的五点共面外,其余任意四点不共面且任意三点不共线时,所确定直线才能达到最多,此时,最多能确定直线C29=36条.在此条件下,只有两直线平行时,所确定的平面才最多.又因为三个不共线的点确定一个平面,故最多可确定C24C15+C14C25+2=72个平面.(2)同理,在9个点中,除了α内的四点共面和β内的五点共面外,其余任意四点不共面且任意三点不共线时,所作三棱锥才能达到最多.此时最多能作C34C15+C24C25+C14C35=120个三棱锥.10.按照下列要求,分别求有多少种不同的方法?(1)6个不同的小球放入4个不同的盒子;(2)6个不同的小球放入4个不同的盒子,每个盒子至少一个小球;(3)6个相同的小球放入4个不同的盒子,每个盒子至少一个小球.【解】(1)每个小球都有4种方法,根据分步乘法计数原理,共有46=4 096种不同放法.(2)分两类:第1类,6个小球分3,1,1,1放入盒中;第2类,6个小球分2,2,1,1放入盒中,共有C36·C14·A33+C26·C24·A24=1 560(种)不同放法.(3)法一按3,1,1,1放入有C14种方法,按2,2,1,1,放入有C24种方法,共有C14+C24=10(种)不同放法.法二(挡板法)在6个球之间的5个空中插入三个挡板,将6个球分成四位,共有C35=10(种)不同放法.[能力提升]1.(2015·四川高考)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个【解析】分两类进行分析:第一类是万位数字为4,个位数字分别为0,2;第二类是万位数字为5,个位数字分别为0,2,4.当万位数字为4时,个位数字从0,2中任选一个,共有2A34个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有C13A34个偶数.故符合条件的偶数共有2A34+C13A34=120(个).【答案】 B2.如图1-2-1,A,B,C,D为海上的四个小岛,要建三座桥,将这四个小岛连接起来,则不同的建桥方案共有________种.图1-2-1【解析】四个小岛中每两岛建一座桥共建六座桥,其中建三座桥连接四个小岛符合要求的建桥方案是只要三座桥不围成封闭的三角形区域符合要求,如桥AC,BC,BD符合要求,而围成封闭三角形不符合要求,如桥AC,CD,DA,不符合要求,故共有C36-4=16种不同的建桥方案.【答案】163.(2016·孝感高级中学期中)正五边形ABCDE中,若把顶点A,B,C,D,E染上红、黄、绿、黑四种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有________种. 【导学号:97270020】【解析】若用三种颜色,有C15A34种染法,若用四种颜色,有5·A44种染法,则不同的染色方法有C15A34+5·A44=240(种).【答案】2404.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?【解】(1)先排前4次测试,只能取正品,有A46种不同测试方法,再从4件次品中选2件排在第5和第10的位置上测试,有C24A22=A24种测法,再排余下4件的测试位置,有A44种测法.所以共有不同测试方法A46·A24·A44=103 680种.(2)第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现,所以共有不同测试方法C16·C34·A44=576种.。
第2课时组合的综合应用学习目标 1.能应用组合知识解决有关组合的简单实际问题.2.能解决有限制条件的组合问题.知识点组合的特点(1)组合的特点是只取不排组合要求n个元素是不同的,被取出的m个元素也是不同的,即从n个不同的元素中进行m 次不放回地取出.(2)组合的特性元素的无序性,即取出的m个元素不讲究顺序,没有位置的要求.(3)相同的组合根据组合的定义,只要两个组合中的元素完全相同(不管顺序如何),就是相同的组合.类型一有限制条件的组合问题例1 课外活动小组共13人,其中男生8人,女生5人,并且男、女生各有一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法?(1)至少有一名队长当选;(2)至多有两名女生当选;(3)既要有队长,又要有女生当选.考点组合的应用题点有限制条件的组合问题解(1)C513-C511=825(种)(2)至多有2名女生当选含有三类:有2名女生;只有1名女生;没有女生,所以共有C25C38+C15C48+C58=966(种)选法.(3)分两类:第一类女队长当选,有C412=495(种)选法,第二类女队长没当选,有C14C37+C24C27+C34C17+C44=295(种)选法,所以共有495+295=790(种)选法.反思与感悟有限制条件的抽(选)取问题,主要有两类:一是“含”与“不含”问题,其解法常用直接分步法,即“含”的先取出,“不含”的可把所指元素去掉再取,分步计数;二是“至多”“至少”问题,其解法常有两种解决思路:一是直接分类法,但要注意分类要不重不漏;二是间接法,注意找准对立面,确保不重不漏.跟踪训练1 某食堂每天中午准备4种不同的荤菜,7种不同的蔬菜,用餐者可以按下述方法之一搭配午餐:(1)任选两种荤菜、两种蔬菜和白米饭;(2)任选一种荤菜、两种蔬菜和蛋炒饭.则每天不同午餐的搭配方法共有( )A.210种 B.420种 C.56种 D.22种考点组合的应用题点有限制条件的组合问题答案 A解析由分类加法计数原理知,两类配餐的搭配方法之和即为所求,所以每天不同午餐的搭配方法共有C24C27+C14C27=210(种).类型二与几何有关的组合应用题例2 如图,在以AB为直径的半圆周上,有异于A,B的六个点C1,C2,…,C6,线段AB上有异于A,B的四个点D1,D2,D3,D4.(1)以这10个点中的3个点为顶点可作多少个三角形?其中含C1点的有多少个?(2)以图中的12个点(包括A,B)中的4个点为顶点,可作出多少个四边形?考点组合的应用题点与几何有关的组合问题解(1)方法一可作出三角形C36+C16·C24+C26·C14=116(个).方法二可作三角形C310-C34=116(个),其中以C1为顶点的三角形有C25+C15·C14+C24=36(个).(2)可作出四边形C46+C36·C16+C26·C26=360(个).反思与感悟(1)图形多少的问题通常是组合问题,要注意共点、共线、共面、异面等情形,防止多算.常用直接法,也可采用间接法.(2)在处理几何问题中的组合问题时,应将几何问题抽象成组合问题来解决.跟踪训练2 空间中有10个点,其中有5个点在同一个平面内,其余点无三点共线,无四点共面,则以这些点为顶点,共可构成四面体的个数为( )A.205 B.110 C.204 D.200考点 组合的应用题点 与几何有关的组合问题 答案 A解析 方法一 可以按从共面的5个点中取0个、1个、2个、3个进行分类,则得到所有的取法总数为C 05C 45+C 15C 35+C 25C 25+C 35C 15=205.方法二 从10个点中任取4个点的方法数中去掉4个点全部取自共面的5个点的情况,得到所有构成四面体的个数为C 410-C 45=205. 类型三 分组、分配问题命题角度1 不同元素分组、分配问题例3 6本不同的书,分为3组,在下列条件下各有多少种不同的分配方法? (1)每组2本(平均分组);(2)一组1本,一组2本,一组3本(不平均分组); (3)一组4本,另外两组各1本(局部平均分组). 考点 排列组合综合问题 题点 分组分配问题解 (1)每组2本,均分为3组的方法数为C 26C 24C 22A 33=15×6×16=15.(2)一组1本,一组2本,一组3本的分组种数为C 36C 23C 11=20×3=60. (3)一组4本,另外两组各1本的分组种数为C 46C 12C 11A 22=15×22=15.反思与感悟 一般地,n 个不同的元素分成p 组,各组内元素数目分别为m 1,m 2,…,m p ,其中k 组元素数目相等,那么分组方法数是C m 1n C m 2n -m 1C m 3n -m 1-m 2…C m p m pA kk. 跟踪训练3 6本不同的书,分给甲、乙、丙3人,在下列条件下各有多少种不同的分配方法? (1)甲2本,乙2本,丙2本; (2)甲1本,乙2本,丙3本; (3)甲4本,乙、丙每人1本; (4)每人2本;(5)一人1本,一人2本,一人3本; (6)一人4本,其余两人每人1本. 考点 排列组合综合问题 题点 分组分配问题解 (1)(2)(3)中,由于每人分的本数固定,属于定向分配问题,由分步乘法计数原理得: (1)共有C 26C 24C 22=90(种)不同的分配方法;(2)共有C16C25C33=60(种)不同的分配方法;(3)共有C46C12C11=30(种)不同的分配方法.(4)(5)(6)属于不定向分配问题,是该类题中比较困难的问题.分配给3人,同一本书给不同的人是不同的分法,属于排列问题.实际上可看作两个步骤:先分为3组,再把这3组分给甲、乙、丙3人的全排列数A33即可.因此,(4)共有C26C24C22÷A33×A33=90(种)不同的分配方法;(5)共有C16C25C33×A33=360(种)不同的分配方法;(6)共有C46C12C11÷A22×A33=90(种)不同的分配方法.命题角度2 相同元素分配问题例4 将6个相同的小球放入4个编号为1,2,3,4的盒子,求下列方法的种数.(1)每个盒子都不空;(2)恰有一个空盒子;(3)恰有两个空盒子.考点排列组合综合问题题点分组分配问题解(1)先把6个相同的小球排成一行,在首尾两球外侧放置一块隔板,然后在小球之间5个空隙中任选3个空隙各插一块隔板,有C35=10(种).(2)恰有一个空盒子,插板分两步进行.先在首尾两球外侧放置一块隔板,并在5个空隙中任选2个空隙各插一块隔板,如|0|000|00|,有C25种插法,然后将剩下的一块隔板与前面任意一块并放形成空盒,如|0|000||00|,有C14种插法,故共有C25·C14=40(种).(3)恰有两个空盒子,插板分两步进行.先在首尾两球外侧放置一块隔板,并在5个空隙中任选1个空隙各插一块隔板,有C15种插法,如|00|0000|,然后将剩下的两块隔板插入形成空盒.①这两块板与前面三块板形成不相邻的两个盒子,如||00||0000|,有C23种插法.②将两块板与前面三块板之一并放,如|00|||0000|,有C13种插法.故共有C15·(C23+C13)=30(种).反思与感悟相同元素分配问题的处理策略(1)隔板法:如果将放有小球的盒子紧挨着成一行放置,便可看作在排成一行的小球的空隙中插入了若干隔板,相邻两块隔板形成一个“盒”.每一种插入隔板的方法对应着小球放入盒子的一种方法,此法称之为隔板法.隔板法专门解决相同元素的分配问题.(2)将n个相同的元素分给m个不同的对象(n≥m),有C m-1n-1种方法.可描述为n-1个空中插入m-1块板.跟踪训练4 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )A.4种B.10种C.18种D.20种考点排列组合综合问题题点分组分配问题答案 B解析由于只剩一本书,且这些画册、集邮册分别相同,可以从剩余的书的类别进行分析.又由于排列、组合针对的是不同的元素,应从4位朋友中进行选取.第一类:当剩余的一本是画册时,相当于把3本相同的集邮册和1本画册分给4位朋友,只有1位朋友得到画册.即把4位朋友分成人数为1,3的两队,有1个元素的那队分给画册,另一队分给集邮册,有C14种分法.第二类:当剩余的一本是集邮册时,相当于把2本相同的画册和2本相同的集邮册分给4位朋友,有2位朋友得到画册,即把4位朋友分成人数为2,2的两队,一队分给画册,另一队分给集邮册,有C24种分法.因此,满足题意的赠送方法共有C14+C24=4+6=10(种).1.某乒乓球队有9名队员,其中2名是种子选手,现在挑选5名选手参加比赛,种子选手必须在内,那么不同选法共有( )A.26种 B.84种 C.35种 D.21种考点组合的应用题点有限制条件的组合问题答案 C解析从7名队员中选出3人有C37=7×6×53×2×1=35(种)选法.2.身高各不相同的7名同学排成一排照相,要求正中间的同学最高,左右两边分别顺次一个比一个低,这样的排法种数是( )A.5 040 B.36 C.18 D.20考点组合的应用题点有限制条件的组合问题答案 D解析最高的同学站中间,从余下6人中选3人在一侧只有一种站法,另3人在另一侧也只有一种站法,所以排法有C36=20(种).3.直角坐标平面xOy上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有( )A.25个 B.36个 C.100个 D.225个考点组合的应用题点与几何有关的组合问题答案 D解析从垂直于x轴的6条直线中任取2条,从垂直于y轴的6条直线中任取2条,四条直线相交得出一个矩形,所以矩形总数为C26×C26=15×15=225.4.从7名志愿者中安排6人在周六、周日两天参加社区公益活动,若每天安排3人,则不同的安排方案共有________种.(用数字作答)考点排列组合综合问题题点分组分配问题答案140解析安排方案分为两步完成:从7名志愿者中选3人安排在周六参加社区公益活动,有C37种方法;再从剩下的4名志愿者中选3人安排在周日参加社区公益活动,有C34种方法.故不同的安排方案共有C37C34=7×6×53×2×1×4=140(种).5.正六边形顶点和中心共7个点,可组成________个三角形.考点组合的应用题点与几何有关的组合问题答案32解析不共线的三个点可组成一个三角形,7个点中共线的是:正六边形过中心的3条对角线,即共有3种情况,故组成三角形的个数为C37-3=32.1.无限制条件的组合应用题.其解题步骤为:(1)判断;(2)转化;(3)求值;(4)作答.2.有限制条件的组合应用题:(1)“含”与“不含”问题:这类问题的解题思路是将限制条件视为特殊元素和特殊位置,一般来讲,特殊要先满足,其余则“一视同仁”.若正面入手不易,则从反面入手,寻找问题的突破口,即采用排除法.解题时要注意分清“有且仅有”“至多”“至少”“全是”“都不是”“不都是”等词语的确切含义,准确把握分类标准.(2)几何中的计算问题:在处理几何问题中的组合应用问题时,应先明确几何中的点、线、面及构型,明确平面图形和立体图形中的点、线、面之间的关系,将几何问题抽象成组合问题来解决.(3)分组、分配问题:分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同,是不可区分的,而后者即使两组元素个数相同,但因元素不同,仍然是可区分的.一、选择题1.若从1,2,3,…,9这9个整数中同时取3个不同的数,使其和为奇数,则不同的取法共有( )A.30种 B.33种 C.37种 D.40种考点组合的应用题点有限制条件的组合问题答案 D解析从1,2,3,…,9这9个数中取出3个不同的数,使其和为奇数的情况包括:(1)取出的3个数都是奇数,取法有C35=10(种);(2)取出的3个数中有2个偶数、1个奇数,取法有C24C15=30(种),根据分类加法计数原理,满足题意的取法共有10+30=40(种).2.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A.24种 B.14种 C.28种 D.48种考点组合的应用题点有限制条件的组合问题答案 B解析方法一分两类完成:第1类,选派1名女生、3名男生,有C12·C34种选派方案;第2类,选派2名女生、2名男生,有C22·C24种选派方案.故共有C12·C34+C22·C24=14(种)不同的选派方案.方法二6人中选派4人的组合数为C46,其中都选男生的组合数为C44,所以至少有1名女生的选派方案有C46-C44=14(种).3.直线a∥b,a上有5个点,b上有4个点,以这九个点为顶点的三角形个数为( ) A.C25C14+C15C24B.(C25+C14)(C15+C24)C.C39-9 D.C39-C35考点组合的应用题点 与几何有关的组合问题 答案 A解析 可以分为两类:a 上取两点,b 上取一点,则可构成三角形个数为C 25C 14;a 上取一点,b 上取两点,则可构成三角形个数为C 15C 24,利用分类加法计数原理可得以这九个点为顶点的三角形个数为C 25C 14+C 15C 24,故选A.4.从乒乓球运动员男5名、女6名中组织一场混合双打比赛,不同的组合方法有( ) A .C 25C 26种 B .C 25A 26种 C .C 25A 22C 26A 22种D .A 25A 26种考点 排列组合综合问题 题点 排列与组合的综合应用 答案 B解析 先从5名男选手中任意选取2名,有C 25种选法,再从6名女选手中任意选择两名与选出的男选手打比赛,有C 26A 22,即A 26种.所以共有C 25A 26种.5.将标号为A ,B ,C ,D ,E ,F 的6张卡片放入3个不同的信封中,若每个信封放2张卡片,其中标号为A ,B 的卡片放入同1个信封,则不同的放法共有( ) A .12种 B .18种 C .36种 D .54种 考点 排列组合综合问题 题点 分组分配问题 答案 B解析 由题意知,不同的放法共有C 13C 24=3×4×32=18(种).6.某地招募了20名志愿者,他们编号分别为1号,2号,…,19号,20号,如果要从中任意选取4人再按编号大小分成两组去做一些预备服务工作,其中两个编号较小的人在一组,两个编号较大的人在另一组,那么确保5号与14号入选并被分配到同一组的选取种数是( )A .16B .21C .24D .90 考点 排列组合综合问题 题点 分组分配问题 答案 B 解析 分2类:第1类,5号与14号为编号较大的一组,则另一组编号较小的有C 24=6(种)选取方法. 第2类,5号与14号为编号较小的一组,则编号较大的一组有C 26=15(种)选取方法. 由分类加法计数原理得,共有C 24+C 26=6+15=21(种)选取方法.7.北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作,若每天早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为( ) A .C 1214C 412C 48 B .C 1214A 412A 48 C.C 1214C 412C 48A 33D .C 1214C 412C 48A 38考点 排列组合综合问题 题点 分组分配问题 答案 A解析 首先从14人中选出12人共C 1214种,然后将12人平均分为3组共C 412·C 48·C 44A 33种,然后这两步相乘,得C 1214·C 412·C 48A 33.将三组分配下去共C 1214·C 412·C 48种.故选A. 8.假如北京大学给中山市某三所重点中学7个自主招生的推荐名额,则每所中学至少分到一个名额的方法数为( ) A .30 B .21 C .10 D .15 考点 排列组合综合问题 题点 分组分配问题 答案 D解析 用“隔板法”.在7个名额中间的6个空位上选2个位置加2个隔板,有C 26=15(种)分配方法. 二、填空题9.在2017年的上海高考改革方案中,要求每位考生必须在物理、化学、生物、政治、历史、地理6门学科中选择3门学科参加等级考试.小明同学决定在生物、政治、历史三门中至多选择一门,那么小明同学的选择方案有________种. 考点 组合的应用题点 有限制条件的组合问题 答案 10解析 ①在生物、政治、历史三门中选择1门,则在物理、化学、地理中选2门,有C 13C 23=9(种)选法;②在生物、政治、历史三门中选择0门,则物理、化学、地理全选,有C 33=1(种)选法. 共有选法9+1=10(种).10.如图所示的几何体是由一个正三棱锥P -ABC 与正三棱柱ABC -A 1B 1C 1组合而成,现用3种不同颜色对这个几何体的表面涂色(底面A 1B 1C 1不涂色),要求相邻的面均不同色,则不同的涂色方案共有______种.考点涂色问题题点涂色问题答案12解析先涂三棱锥P-ABC的三个侧面,然后涂三棱柱的三个侧面,共有C13×C12×C11×C12=3×2×1×2=12(种)不同的涂法.11.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种.(用数字作答)考点排列组合综合问题题点排列与组合的综合应用答案60解析一、二、三等奖,三个人获得,有A34=24(种).一、二、三等奖,有一个人获得2张,一个人获得1张,共有C23A24=36(种),共有24+36=60(种)不同的获奖情况.三、解答题12.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,求不同取法的种数.考点组合的应用题点有限制条件的组合问题解若没有红色卡片,则需从黄、蓝、绿三色卡片中选3张,若都不同色,则有C14×C14×C14=64(种),若2张同色,则有C23×C12×C24×C14=144(种),若红色卡片有1张,剩余2张不同色,则有C14×C23×C14×C14=192(种),剩余2张同色,则有C14×C13×C24=72(种),所以共有64+144+192+72=472(种)不同的取法.13.现有8名青年,其中有5名能胜任英语翻译工作,有4名能胜任德语翻译工作(其中有1名青年两项工作都能胜任).现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?考点排列组合综合问题题点分组分配问题解可以分三类.精品试卷第一类,让两项工作都能胜任的青年从事英语翻译工作,有C24C23种选法;第二类,让两项工作都能胜任的青年从事德语翻译工作,有C34C13种选法;第三类,让两项工作都能胜任的青年不从事任何工作,有C34C23种选法.根据分类加法计数原理,一共有C24C23+C34C13+C34C23=42(种)不同的选法.四、探究与拓展14.20个不加区别的小球放入编号为1,2,3的三个盒子中,要求每个盒内的球数不小于它的编号数,则不同的放法种数为________.考点排列组合综合问题题点分组分配问题答案120解析先在编号为2,3的盒内分别放入1,2个球,还剩17个小球,三个盒内分别至少再放入1个球,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中即可,共C216=120(种)方法.15.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?考点排列组合综合问题题点排列与组合的综合应用解(1)先排前4次测试,只能取正品,有A46种不同测试方法,再从4件次品中选2件排在第5和第10的位置上测试,有C24A22=A24(种)测法,再排余下4件的测试位置,有A44种测法.所以共有不同测试方法A46·A24·A44=103 680(种).(2)第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现,所以共有不同测试方法C16C34A44=576(种).欢迎下载。
第一章计数原理1.2 排列与组合1.2.1 排列第2课时排列的综合应用A级基础巩固一、选择题1.A,B,C,D,E五人并排站成一行,如果A,B必须相邻且B 在A的右边,那么不同的排法种数是()A.6B.24C.48D.120解析:把A,B视为一人,且B固定在A的右边,则本题相当于4人的全排列,排法共有A44=24(种).答案:B2.用数字1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有()A.48个B.36个C.24个D.18个解析:个位数字是2的有3A33=18(个),个位数字是4的有3A33=18(个),所以共有36个.答案:B3.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种B.12种C.24种D.30种解析:首先甲、乙两人从4门课程中同选1门,有4种方法;其次从剩余3门中任选2门进行排列,排列方法有A23=6(种).于是,甲、乙所选的课程中恰有1门相同的选法共有4×6=24(种).答案:C4.3张卡片正反面分别标有数字1和2,3和4,5和7,若将3张卡片并列组成一个三位数,可以得到不同的三位数的个数为() A.30 B.48 C.60 D.96解析:“组成三位数”这件事,分2步完成:第1步,确定排在百位、十位、个位上的卡片,即为3个元素的一个全排列A33;第2步,分别确定百位、十位、个位上的数字,各有2种方法.根据分步乘法计数原理,可以得到不同的三位数有A33×2×2×2=48(个).答案:B5.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有()A.20种B.30种C.40种D.60种解析:分三类:甲在周一,共有A24种排法;甲在周二,共有A23种排法;甲在周三,共有A22种排法.所以排法共有A24+A23+A22=20(种).答案:A二、填空题6.从班委会的5名成员中选出3名分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有______种(用数字作答).解析:先选出文娱委员,有3种选法,再选出学习委员、体育委员,有A24种选法.由分步乘法计数原理知,选法共有3A24=36(种).答案:367.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.解析:先考虑产品A与B相邻,把A、B作为一个元素有A44种方法,而A、B可交换位置,所以摆法有2A44=48(种).又当A、B相邻又满足A、C相邻,摆法有2A33=12(种).故满足条件的摆法有48-12=36(种).答案:368.在所有无重复数字的四位数中,千位上的数字比个位上的数字大2的数共有________个.解析:千位数字比个位数字大2,有8种可能,即(2,0),(3,1),…,(9,7),前一个数为千位数字,后一个数为个位数字,其余两位无任何限制.所以共有8A28=448(个).答案:448三、解答题9.一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单.(1)3个舞蹈节目不排在开始和结尾,有多少种排法?(2)前4个节目要有舞蹈节目,有多少种排法?解:(1)先从5个演唱节目中选两个排在首尾两个位置有A25种排法,再将剩余的3个演唱节目,3个舞蹈节目排在中间6个位置上有A66种排法,故共有不同排法A25A66=1 440(种).(2)先不考虑排列要求,有A88种排列,其中前4个节目没有舞蹈节目的情况,可先从5个演唱节目中选4个节目排在前四个位置,然后将剩余四个节目排列在后四个位置,有A45A44种排法,所以前四个节目要有舞蹈节目的排法有A88-A45A44=37 440(种).10.3名男生、4名女生,按照不同的要求站成一排,求不同的排队方案有多少种.(1)甲不站中间,也不站两端;(2)甲、乙两人必须相邻;(3)甲、乙两人不得相邻.解:(1)分两步,首先考虑两端及中间位置,从除甲外的6人中选3人排列,有A36种站法,然后再排其余位置,有A44种站法,所以不同站法共有A36A44=2 880(种).(2)把甲、乙两人看成一个元素,首先与其余5人相当于6个元素进行全排列,然后甲、乙两人再进行排列,所以站法共有A66A22=1 440(种).(3)法一先让其余的5人全排列,再让甲、乙两人在每两人之间(含两端)的6个位置插入排列,所以不同站法共有A55·A26=3 600(种).法二不考虑限制条件,共有A77种站法,除去甲、乙相邻的站法A66·A22,所以不同站法共有A77-A66·A22=3 600(种).B级能力提升1.由1,2,3,4,5组成没有重复数字的四位数,按从小到大的顺序排成一个数列{a n},则a72等于()A.1 543 B.2 543C.3 542 D.4 532解析:千位数为1时组成的四位数有A34个,同理,千位数是2,3,4,5时均有A34个数,而千位数字为1,2,3时,从小到大排成数列的个数为3A34=72,即3 542是第72个.答案:C2.三个人坐在一排八个座位上,若每人的两边都要有空位,则不同的坐法种数为________.解析:“每人两边都有空位”是说三个人不相邻,且不能坐两头,可视作5个空位和3个人满足上述两要求的一个排列,只要将3个人插入5个空位形成的4个空当中即可.所以不同坐法共有A34=24(种).答案:24小课堂:如何培养学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
第一章计数原理1.2 排列与组合1.2.2 组合第2课时组合的综合应用A级基础巩固一、选择题1.楼道里有12盏灯,为了节约用电,需关掉3盏不相邻的灯,则关灯方案有()A.72种B.84种C.120种D.168种解析:需关掉3盏不相邻的灯,即将这3盏灯插入9盏亮着的灯的空中,所以关灯方案共有C310=120(种).故选C.答案:C2.某科技小组有6名学生,现从中选出3人去参观展览,至少有一名女生入选的不同选法有16种,则该小组中的女生人数为() A.2 B.3 C.4 D.5解析:设男生人数为x,则女生有(6-x)人.依题意:C36-C3x=16.即x(x-1)(x-2)=6×5×4-16×6=4×3×2.所以x=4,即女生有2人.答案:A3.从编号为1、2、3、4的四种不同的种子中选出3种,在3块不同的土地上试种,每块土地上试种一种,其中1号种子必须试种,则不同的试种方法有()A.24种B.18种C.12种D.96种解析:从3块不同的土地中选1块种1号种子,有C13种方法,从其余的3种种子中选2种种在另外的2块土地上,有A23种方法,所以所求方法有C13A23=18(种).答案:B4.将4个颜色互不相同的球全部收入编号为1和2的2个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有()A.10种B.20种C.36种D.52种解析:根据2号盒子里放球的个数分类:第一类,2号盒子里放2个球,有C24种放法,第二类,2号盒子里放3个球,有C34种放法,剩下的小球放入1号盒中,共有不同放球方法C24+C34=10(种).答案:A5.以圆x2+y2-2x-2y-1=0内横坐标与纵坐标均为整数的点为顶点的三角形个数为()A.76 B.78 C.81 D.84解析:如图,首先求出圆内的整数点个数,然后求组合数,圆的方程为(x-1)2+(y-1)2=3,圆内共有9个整数点.从中任取3个整数点有C39种取法,其中三点共线的有8种.因此,组成三角形的个数为C39-8=76.答案:A二、填空题6.有5名男生和3名女生,从中选出5人分别担任语文、数学、英语、物理、化学学科的课代表,若某女生必须担任语文课代表,则不同的选法共有________种(用数字作答).解析:由题意知,从剩余7人中选出4人担任4个学科课代表,共有A47=840种.答案:8407.50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共有________种.解析:分两类,有4件次品的抽法有C44C146种,有3件次品的抽法有C34C246种,所以不同的抽法共有C44C146+C34C246=4 186(种).答案:4 1868.以正方体的顶点为顶点的四面体共有________个.解析:先从8个顶点中任取4个的取法为C48种,其中,共面的4点有12个,则四面体的个数为C48-12=58(个).答案:58三、解答题9.为了提高学生参加体育锻炼的热情,光明中学组织篮球比赛,共24个班参加,第一轮比赛是先分四组进行单循环赛,然后各组取前两名再进行第二轮单循环赛(在第一轮中相遇过的两个队不再进行比赛),问要进行多少场比赛?解:第一轮每组6个队进行单循环赛,共有C26场比赛,4个组共计4C26场.第二轮每组取前两名,共计8个组,应比赛C28场,由于第一轮中在同一组的两队不再比赛,故应减少4场,因此第二轮的比赛应进行C28=4(场).综上,两轮比赛共进行4C26+C28-4=84(场).10.有5个男生和3个女生,从中选出5人担任5门不同学科的课代表,求分别符合下列条件的选法数.(1)有女生但人数必须少于男生;(2)某男生必须包括在内,但不担任数学课代表;(3)某女生一定要担任语文课代表,某男生必须担任课代表,但不担任数学课代表.解:(1)先选后排,先取可以是2女3男,也可以是1女4男,先取有C35C23+C45C13种,后排有A55种,共(C35C23+C45C13)·A55=5 400(种).(2)先选后排,但先安排该男生,有C47·C14·A44=3 360(种).(3)先从除去该男生、该女生的6人中选3人有C36种,再安排该男生有C13种,其中3人全排有A33种,共C36·C13·A33=360(种).B级能力提升1.从乒乓球运动员男5名、女6名中组织一场混合双打比赛,不同的组合方法种数为()A.C25C26B.C25A26C.C25A22C26A22D.A25A26解析:分两步进行.第一步,选出两名男选手,有C25种方法;第二步,从6名女生中选出2名且与已选好的男生配对,有A26种.故有C25A26种组合方法.答案:B2.某校开设9门课程供学生选修,其中A,B,C3门由于上课时间相同,至多选1门,学校规定,每位同学选修4门,共有________种不同的选修方案(用数字作答).解析:①不选A,B,C的选法有C46=15(种),②选A,B,C中一门课的选法有C36·C13=60(种),所以共有15+60=75(种).答案:753.有五张卡片,它们的正、反面分别写0与1,2与3,4与5,6与7,8与9.将其中任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?解:法一依0与1两个特殊值分析,可分三类:(1)取0不取1,可先从另四张卡片中选一张作百位,有C14种方法;0可在后两位;有C12种方法;最后需从剩下的三张中任取一张,有C13种方法;又除含0的那张外,其他两张都有正面或反面两种可能,故此时可得不同的三位数有C14C12C13·22个.(2)取1不取0,同上分析可得不同的三位数C24·22·A33个.(3)0和1都不取,有不同三位数C34·23·A33个.综上所述,不同的三位数共有C14C12C13·22+C24·22·A23+C34·23·A33=432(个).法二任取三张卡片可以组成不同三位数C35·23·A33个,其中0在百位的有C24·22·A22个,这是不合题意的,故可组成的不同三位数共有C35·23·A33-C24·22·A22=432(个).。
第一章计数原理1.2 排列与组合1.2.1 排列第2课时排列的综合应用A级基础巩固一、选择题1.A,B,C,D,E五人并排站成一行,如果A,B必须相邻且B在A的右边,那么不同的排法种数是()A.6B.24C.48D.120解析:把A,B视为一人,且B固定在A的右边,则本题相当于4人的全排列,排法共有A44=24(种).答案:B2.用数字1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有()A.48个B.36个C.24个D.18个解析:个位数字是2的有3A33=18(个),个位数字是4的有3A33=18(个),所以共有36个.答案:B3.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种B.12种C.24种D.30种解析:首先甲、乙两人从4门课程中同选1门,有4种方法;其次从剩余3门中任选2门进行排列,排列方法有A23=6(种).于是,甲、乙所选的课程中恰有1门相同的选法共有4×6=24(种).答案:C4.3张卡片正反面分别标有数字1和2,3和4,5和7,若将3张卡片并列组成一个三位数,可以得到不同的三位数的个数为() A.30 B.48 C.60 D.96解析:“组成三位数”这件事,分2步完成:第1步,确定排在百位、十位、个位上的卡片,即为3个元素的一个全排列A33;第2步,分别确定百位、十位、个位上的数字,各有2种方法.根据分步乘法计数原理,可以得到不同的三位数有A33×2×2×2=48(个).答案:B5.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有()A.20种B.30种C.40种D.60种解析:分三类:甲在周一,共有A24种排法;甲在周二,共有A23种排法;甲在周三,共有A22种排法.所以排法共有A24+A23+A22=20(种).答案:A二、填空题6.从班委会的5名成员中选出3名分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有______种(用数字作答).解析:先选出文娱委员,有3种选法,再选出学习委员、体育委员,有A24种选法.由分步乘法计数原理知,选法共有3A24=36(种).答案:367.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.解析:先考虑产品A与B相邻,把A、B作为一个元素有A44种方法,而A、B可交换位置,所以摆法有2A44=48(种).又当A、B相邻又满足A、C相邻,摆法有2A33=12(种).故满足条件的摆法有48-12=36(种).答案:368.在所有无重复数字的四位数中,千位上的数字比个位上的数字大2的数共有________个.解析:千位数字比个位数字大2,有8种可能,即(2,0),(3,1),…,(9,7),前一个数为千位数字,后一个数为个位数字,其余两位无任何限制.所以共有8A28=448(个).答案:448三、解答题9.一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单.(1)3个舞蹈节目不排在开始和结尾,有多少种排法?(2)前4个节目要有舞蹈节目,有多少种排法?解:(1)先从5个演唱节目中选两个排在首尾两个位置有A25种排法,再将剩余的3个演唱节目,3个舞蹈节目排在中间6个位置上有A66种排法,故共有不同排法A25A66=1 440(种).(2)先不考虑排列要求,有A88种排列,其中前4个节目没有舞蹈节目的情况,可先从5个演唱节目中选4个节目排在前四个位置,然后将剩余四个节目排列在后四个位置,有A45A44种排法,所以前四个节目要有舞蹈节目的排法有A88-A45A44=37 440(种).10.3名男生、4名女生,按照不同的要求站成一排,求不同的排队方案有多少种.(1)甲不站中间,也不站两端;(2)甲、乙两人必须相邻;(3)甲、乙两人不得相邻.解:(1)分两步,首先考虑两端及中间位置,从除甲外的6人中选3人排列,有A36种站法,然后再排其余位置,有A44种站法,所以不同站法共有A36A44=2 880(种).(2)把甲、乙两人看成一个元素,首先与其余5人相当于6个元素进行全排列,然后甲、乙两人再进行排列,所以站法共有A66A22=1 440(种).(3)法一先让其余的5人全排列,再让甲、乙两人在每两人之间(含两端)的6个位置插入排列,所以不同站法共有A55·A26=3 600(种).法二不考虑限制条件,共有A77种站法,除去甲、乙相邻的站法A66·A22,所以不同站法共有A77-A66·A22=3 600(种).B级能力提升1.由1,2,3,4,5组成没有重复数字的四位数,按从小到大的顺序排成一个数列{a n},则a72等于()A.1 543 B.2 543C.3 542 D.4 532解析:千位数为1时组成的四位数有A34个,同理,千位数是2,3,4,5时均有A34个数,而千位数字为1,2,3时,从小到大排成数列的个数为3A34=72,即3 542是第72个.答案:C2.三个人坐在一排八个座位上,若每人的两边都要有空位,则不同的坐法种数为________.解析:“每人两边都有空位”是说三个人不相邻,且不能坐两头,可视作5个空位和3个人满足上述两要求的一个排列,只要将3个人插入5个空位形成的4个空当中即可.所以不同坐法共有A34=24(种).答案:24。
学业分层测评(建用: 45 分 )[ 学达 ]一、1.(2016 中·山高二 )上有 10 个点,每三个点画一个内接三角形,一共能够画的三角形个数()A.720B.360C.240D.120【分析】确立三角形的个数C310= 120.【答案】D2.某台播放 5 个广告,此中有 3 个不一样的商广告和 2 个不一样的奥运广告.要求最后必播放奥运广告,且2个奥运广告不可以播放,不一样的播放方式有 ()A.120 种B.48 种C.36 种D.18 种【分析】1个奥运广告不可以播放,倒最后必播放奥运广告有 C2种,2数第 2 个广告有 C31种,故共有 C213133=36种不一样的播放方式.C A【答案】C3.若从 1,2,3,⋯,99 个整数中同取 4 个不一样的数,其和偶数,不一样的取法共有 ()A.60 种B.63 种C.65 种D.66 种【分析】44种;两奇两偶均奇数,有 C5=5种;均偶数,有 C4=1,有 C24·C25=60 种,共有 66 种.【答案】D4.(2016 ·青高二 )将号 1,2,⋯,10 的 10 个球放入号 1,2,⋯,10 的10 个盒子里,每个盒内放一个球,恰巧 3 个球的号与其在盒子的号不一致的放入方法种数()A.120B.240C.360D.720【分析】先选出 3 个球有C310= 120 种方法,不如设为1,2,3 号球,则1,2,3号盒中能放的球为2,3,1 或3,1,2 两种.这3 个号码放入标号不一致的盒子中有2种不一样的方法,故共有120×2=240 种方法.【答案】B5.从乒乓球运动员男 5 名、女 6 名中组织一场混淆双打竞赛,不一样的组合方法种数为 ()A.C52C62B.C52A62222222C.C5A2C6A2D.A5A6【分析】分两步进行:第一步,选出两名男选手,有C52种方法;第二步,从 6 名女生中选出 2 名且与已选好的男生配对,有 A 26种.故有 C52A 26种.【答案】 B二、填空题6.某单位有 15 名成员,此中男性 10 人,女性 5 人,现需要从中选出 6 名成员构成观察团出门观光学习,假如按性别分层,并在各层按比率随机抽样,则此观察团的构成方法种数是________.【分析】按性别分层,并在各层按比率随机抽样,则需从10 名男性中抽取 4 人, 5 名女性中抽取 2 人,共有 C410C25= 2 100 种抽法.【答案】 2 1007.某球队有 2 名队长和 10 名队员,现选派 6 人上场参加竞赛,假如场上最罕有 1 名队长,那么共有 ________种不一样的选法.【分析】若只有 1 名队长当选,则选法种数为 C21·105;若两名队长均当选,C4154则选法种数为 C10,故不一样选法有C2·10+ C10= 714(种).C【答案】7148.现有 6 张景色区门票分派给 6 位旅客,若此中 A,B 景色区门票各 2 张,C, D 景色区门票各 1 张,则不一样的分派方案共有 ________种.【分析】2人去 B 6 位旅客选 2 人去 A 景色区,有 C6种,余下 4 位旅客选 22222景色区,有 C4种,余下 2 人去 C,D 景色区,有 A 2种,因此分派方案共有C64C 2A2=180(种).【答案】180三、解答题9.α,β是两个平行平面,在α内取四个点,在β内取五个点.(1)这些点最多能确立几条直线,几个平面?(2)以这些点为极点最多能作多少个三棱锥?【解】(1)在 9 个点中,除了α内的四点共面和β内的五点共面外,其他随意四点不共面且随意三点不共线时,所确立直线才能达到最多,此时,最多能确立直线 C29=36 条.在此条件下,只有两直线平行时,所确立的平面才最多.又由于三个不共线的点确立一个平面,故最多可确立C24C15+C14C25+2=72 个平面.(2)同理,在 9 个点中,除了α内的四点共面和β内的五点共面外,其他任意四点不共面且随意三点不共线时,所作三棱锥才能达到最多.此时最多能作C34C15+C24C25+C14C35=120 个三棱锥.10.依据以下要求,分别求有多少种不一样的方法?(1)6 个不一样的小球放入4个不一样的盒子;(2)6 个不一样的小球放入4个不一样的盒子,每个盒子起码一个小球;(3)6 个同样的小球放入4个不一样的盒子,每个盒子起码一个小球.【解】 (1)每个小球都有 4 种方法,依据分步乘法计数原理,共有 46= 4 096种不一样放法.(2)分两类:第 1 类,6 个小球分 3,1,1,1 放入盒中;第 2 类,6 个小球分 2,2,1,1313222放入盒中,共有 C6·4·3+C6·4·4=1 560(种)不一样放法.C A C A(3)法一按 3,1,1,1放入有 C41种方法,按 2,2,1,1,放入有 C42种方法,共有12C4+C4=10(种 )不一样放法.法二(挡板法 )在 6 个球之间的 5 个空中插入三个挡板,将 6 个球分红四位,3共有 C5=10(种)不一样放法.[ 能力提高 ]1.(2015 ·川高考四 )用数字 0,1,2,3,4,5 构成没有重复数字的五位数,此中比40 000 大的偶数共有()A.144 个B.120 个C.96 个D.72 个【分析】分两类进行剖析:第一类是万位数字为4,个位数字分别为0,2;第二类是万位数字为5,个位数字分别为0,2,4.当万位数字为 4 时,个位数字从5 时,个位数字从0,2,4 中任选0,2 中任选一个,共有2A 34个偶数;当万位数字为13313一个,共有 C34个偶数.故切合条件的偶数共有2A4+C34=120(个).A A【答案】B2.如图 1-2-1,A,B,C,D 为海上的四个小岛,要建三座桥,将这四个小岛连结起来,则不一样的建桥方案共有________种.图 1-2-1【分析】四个小岛中每两岛建一座桥共建六座桥,此中建三座桥连结四个小岛切合要求的建桥方案是只需三座桥不围成关闭的三角形地区切合要求,如桥AC,BC,BD 切合要求,而围成关闭三角形不切合要求,如桥 AC,CD, DA,3不切合要求,故共有C6-4=16 种不一样的建桥方案.【答案】163.(2016 ·感高级中学期中孝 )正五边形 ABCDE 中,若把极点 A, B,C,D,E染上红、黄、绿、黑四种颜色中的一种,使得相邻极点所染颜色不同样,则不同的染色方法共有 ________种. 【导学号: 97270020】【分析】若用三种颜色,有134C54种染法,若用四种颜色,有5·A 4种染法,A则不一样的染色方法有C15A 34+5·A44=240(种).【答案】2404.已知 10 件不一样产品中有 4 件是次品,现对它们进行一一测试,直至找出全部 4 件次品为止.(1)若恰在第 5 次测试,才测试到第一件次品,第 10 次才找到最后一件次品,则这样的不一样测试方法数是多少?(2)若恰在第 5 次测试后,就找出了全部 4 件次品,则这样的不一样测试方法数是多少?【解】 (1)先排前 4 次测试,只好取正品,有 A 46种不一样测试方法,再从 4 件次品中选 2 件排在第 5 和第 10 的地点上测试,有 C24A 22=A 24种测法,再排余下4 件的测试地点,有A44种测法.因此共有不一样测试方法 A 46·A 24·A 44= 103 680 种.(2)第 5 次测试恰为最后一件次品,另 3 件在前 4 次中出现,进而前 4 次有一件正品出现,因此共有不一样测试方法 C16·C34·A 44=576 种 .。
A级:基础巩固练一、选择题1.在平面直角坐标系xOy中,平行直线x=m(m=0,1,2,3,4)与平行直线y =n(n=0,1,2,3,4)组成的图形中,矩形共有 ( )A.25个 B.100个 C.36个 D.200个答案 B解析可以组成C25·C25=10×10=100个矩形.故选B.2.某龙舟队有9名队员,其中3人只会划左舷,4人只会划右舷,2人既会划左舷又会划右舷.现要选派划左舷的3人、右舷的3人共6人去参加比赛,则不同的选派方法共有( )A.56种 B.68种 C.74种 D.92种答案 D解析根据划左舷中有“多面手”人数的多少进行分类:划左舷中没有“多面手”的选派方法有C33C36种,有一个“多面手”的选派方法有C12C23C35种,有两个“多面手”的选派方法有C13C34种,即共有20+60+12=92种不同的选派方法.3.两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( )A.10种 B.15种 C.20种 D.30种答案 C解析按比赛局数分类:3局时有2种,4局时有2C23种,5局时有2C24种,故共有2+2C23+2C24=20种.选C.4.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )A.4种 B.10种 C.18种 D.20种答案 B解析分两种情况:①选2本画册,2本集邮册送给4位朋友,有C24=6种方法;②选1本画册,3本集邮册送给4位朋友,有C14=4种方法,所以不同的赠送方法共有6+4=10(种).故选B.5.某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各2名,分乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学来自同一年级的乘车方式共有 ( )A.24种 B.18种 C.48种 D.36种答案 A解析 第一类:大一的孪生姐妹在甲车上,甲车上剩下2名同学要来自不同的年级,从三个年级中选两个年级,有C 23种选法,然后从选出的两个年级中再分别选1名同学,有C 12C 12种选法,剩下的4名同学乘坐乙车,则有C 23C 12C 12=3×2×2=12种乘车方式;第二类:大一的孪生姐妹不在甲车上,则从剩下的三个年级中选同一个年级的2名同学在甲车上,有C 13C 22种选法,然后再从剩下的两个年级中分别选1名同学,有C 12C 12种选法,则有C 13C 22C 12C 12=3×1×2×2=12种乘车方式.因此共有12+12=24种不同的乘车方式.故选A.二、填空题6.有编号为1,2,3的3个盒子和10个相同的小球,现把这10个小球全部装入3个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有________.答案 15种解析 将编号为1,2,3的盒子分别放入1个,2个,3个小球,将剩下4个球放入三个盒子有四类情况,即“4+0+0”“3+1+0”“2+2+0”“1+1+2”,故共有C 13+A 23+C 13+C 13=15(种).7.在8张奖券中有一、二、三等奖各1张,其余5张无奖,将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).答案 60解析 只需看3张有奖的分配情况就可以,有两类.①4人中每人至多1张有奖,共有A 34=4×3×2=24种获奖情况.②4人中,有1人2张有奖,还有1人1张有奖,其余的2人无奖.共有分法:C 23·A 24=3×4×3=36.总之,共有24+36=60种不同的获奖情况.8.将并排的有不同编号的5个房间安排给5个工作人员临时休息,假定每个人可以选择任一房间,且选择各个房间是等可能的,则恰有2个房间无人选择且这2个房间不相邻的安排方式的种数为________.答案 900解析 先将5人分成三组(1,1,3或2,2,1两种形式),再将这三组人安排到3个房间,然后将2个房间插入前面住了人的3个房间形成的空档中即可,故安排方式共有⎝ ⎛⎭⎪⎫C 15C 14C 33A 22+C 25C 23C 11A 22·A 33·C 24=900(种). 三、解答题9.已知平面α∥平面β,在α内有4个点,在β内有6个点.(1)过这10个点中的3点作一平面,最多可作多少个不同平面?(2)以这些点为顶点,最多可作多少个三棱锥?(3)上述三棱锥中最多可以有多少个不同的体积?解(1)所作出的平面有三类:①α内1点,β内2点确定的平面,有C14·C26个.②α内2点,β内1点确定的平面,有C24·C16个.③α,β本身,有2个.故所作的平面最多有C14·C26+C24·C16+2=98(个).所以最多可作98个不同的平面.(2)所作的三棱锥有三类:①α内1点,β内3点确定的三棱锥,有C14·C36个.②α内2点,β内2点确定的三棱锥,有C24·C26个.③α内3点,β内1点确定的三棱锥,有C34·C16个.∴最多可作出的三棱锥有:C1 4·C36+C24·C26+C34·C16=194(个).所以最多可构成194个三棱锥.(3)∵当等底面积、等高的情况下三棱锥体积才能相等.∴体积不相同的三棱锥最多有C36+C34+C26·C24=114(个).所以最多有114个体积不同的三棱锥.B级:能力提升练10.在运动会上,某代表队中赛艇运动员有10人,3人会划右舷,2人会划左舷,其余5人左右两舷都会划,现要从中选6人上艇,平均分配在两舷上划桨,有多少种不同的选法?解按照只会划左舷被选中的人数进行分类.第1类,不选只会划左舷的2人,需先在两舷都会划的5人中选3人划左舷,有C35种选法,再在剩下的5人中选3人划右舷,有C35种选法,故共有C35C35=100种选法;第2类,只会划左舷的1人入选,有C12种选法,需先在两舷都会划的5人中选2人划左舷,再在会划右舷的6人中选3人划右舷,共有C12C25C36=400种选法;第3类,只会划左舷的2人都入选,有C22种选法,先从两舷都会划的5人中选1人划左舷,再从会划右舷的7人中选3人划右舷,共有C22C15C37=175种选法.由分类加法计数原理,知共有100+400+175=675种不同的选法.。
第2课时组合的综合应用知识点排列与组合的联系和区别排列与组合的共同点都是“从n个不同元素中,任取m个元素”,如果交换两个元素的位置对结果产生影响,就是□01排列问题;反之,如果交换两个元素的位置对结果没有影响,就是□02组合问题.简而言之,□03排列问题与顺序有关,□04组合问题与顺序无关.知识点解排列组合综合题的思路解决该问题的一般思路是先选后排,先□01组合后□02排列,解题时应灵活运用□03分类加法计数原理和□04分步乘法计数原理.分类时,注意各类中是否分步,分步时注意各步中是否分类.利用组合知识解决与几何有关的问题,要注意:(1)将已知条件中的元素的特征搞清,是用直接法还是间接法;(2)要使用分类方法,至于怎样确定分类的标准,这是一个难点,要具体问题具体分析;(3)常用间接法解决该类问题.1.判一判(正确的打“√”,错误的打“×”)(1)3个相同的小球放入5个不同的盒子中,每盒至多放一个球,这个问题是排列问题.( )(2)3个不同的小球放入5个不同的盒子中,每盒至多放一个球,这个问题是组合问题.( )(3)将9本不同的书分成三堆是平均分组问题.( )答案(1)×(2)×(3)√2.做一做(1)4种不同的种子,选出3块不同的土地,每一块地只能种一种,则不同的种法有________种.(2)从3名女生、4名男生中选4人担任奥运会志愿者,若选出的4人中既有男生又有女生,则不同的选法共有________种.(3)将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.答案(1)24 (2)34 (3)360解析(1)C34A33=24(种).(2)C47-C44=34(种).(3)C16C25C33A33=360(种).探究1有限制条件的组合问题例1 男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)既要有队长,又要有女运动员.[解](1)第一步:选3名男运动员,有C36种选法;第二步:选2名女运动员,有C24种选法,故共有C36·C24=120种选法.(2)解法一:(直接法)“至少有1名女运动员”包括以下几种情况,1女4男,2女3男,3女2男,4女1男.由分类加法计数原理知共有C14·C46+C24·C36+C34·C26+C44·C16=246种选法.解法二:(间接法)不考虑条件,从10人中任选5人,有C510种选法,其中全是男运动员的选法有C56种,故“至少有1名女运动员”的选法有C510-C56=246(种).(3)当有女队长时,其他人选法任意,共有C49种选法;不选女队长时,必选男队长,共有C48种选法,其中不含女运动员的选法有C45种,故不选女队长时共有C4 8-C45种选法.所以既有队长又有女运动员的选法共有C49+C48-C45=191(种).拓展提升解答有限制条件的组合问题的基本方法是“直接法”和“间接法(排除法)”,其中用直接法求解时,应依据“特殊元素优先安排”的原则,即优先安排特殊元素,再安排其他元素.而选择间接法的原则是“正难则反”,也就是若正面问题分类较多、较复杂或计算量较大时,不妨从反面问题入手,试一试看是否简单些,特别是涉及“至多”“至少”等组合问题时更是如此.此时正确理解“都不是”“不都是”“至多”“至少”等词语的确切含义是解决这些组合问题的关键.[跟踪训练1]有11名外语翻译人员,其中5名是英语译员,4名是日语译员,另外两名英、日都精通,从中找出8人,使他们可以组成两个翻译小组,其中4人翻译英语,4人翻译日语,这两个小组能同时工作,问这样的8人名单共可开出几张?解解法一:按“英、日都会的人”的参与情况,可分为三类:第一类,“英日都会”的人不参加,有C45C44种;第二类,“英日都会”的人有1人参加,该人可参加英语,也可参加日语,共有C12C35C44+C12C45C34种;第三类,“英日都会”的均参加共有C35C34A22+C25C44+C45C24种.由分类加法原理可得共有C45C44+C12C35C44+C12C45C34+C35C34A22+C25C44+C45C24=185种.解法二:按“英日都会”的人参加英语翻译的人数可分为三类.第一类,“英日都会”的人不参加英语翻译,有C45C46种;第二类,“英日都会”的人恰有一人参与英语翻译,共有C12C35C45种;第三类,“英日都会”的人全部参与英语翻译共有C25C44种.由分类加法原理可得共有C45C46+C12C35C45+C25C44=185种.探究2与几何有关的组合问题例2 如图,在以AB为直径的半圆周上,有异于A,B的六个点C1,C2,C3,C4,C5,C6,直径AB上有异于A,B的四个点D1,D2,D3,D4.问:(1)以这10个点中的3个点为顶点作三角形可作多少个?其中含C1点的有多少个?(2)以图中的12个点(包括A,B)中的4个为顶点,可作出多少个四边形?[解](1)C36+C16·C24+C26·C14=116(个).其中以C1为顶点的三角形有C2 5+C15·C14+C24=36(个).(2)C46+C36·C16+C26·C26=360(个).拓展提升(1)解决几何图形中的组合问题,首先应注意运用处理组合问题的常规方法分析解决问题,其次要注意从不同类型的几何问题中抽象出组合问题,寻找一个组合的模型加以处理.(2)图形多少的问题通常是组合问题,要注意共点、共线、共面、异面等情形,防止多算.常用直接法,也可采用排除法.(3)在处理几何问题中的组合应用问题时,应先明确几何中的点、线、面及构造模型,明确平面图形和立体图形中的点、线、面之间的关系,将几何问题抽象成组合问题来解决.[跟踪训练2](1)四面体的一个顶点为A,从其他顶点和各棱中点中取3个点,使它们和点A在同一平面上,有多少种不同的取法?(2)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,有多少种不同的取法.解(1)(直接法)如图,含顶点A的四面体的3个面上,除点A外都有5个点,从中取出3点必与点A共面共有3C35种取法;含顶点A的三条棱上各有三个点,它们与所对的棱的中点共面,共有3种取法.根据分类加法计数原理,与顶点A共面的三点的取法有3C35+3=33(种).(2)(间接法)如图,从10个点中取4个点的取法有C410种,除去4点共面的取法种数可以得到结果.从四面体同一个面上的6个点取出的4点必定共面.有4C46=60(种),四面体的每一棱上3点与相对棱中点共面,共有6种共面情况,从6条棱的中点中取4个点时有3种共面情形(对棱中点连线两两相交且互相平分),故4点不共面的取法为C410-(60+6+3)=141(种).探究3分组、分配问题角度1:不同元素分组、分配问题例3 6本不同的书,按下列要求各有多少种不同的选法:(1)分给甲、乙、丙三人,每人两本;(2)分为三份,每份两本;(3)分为三份,一份一本,一份两本,一份三本;(4)分给甲、乙、丙三人,一人一本,一人两本,一人三本;(5)分给甲、乙、丙三人,每人至少一本.[解](1)先从6本书中选2本给甲,有C26种选法;再从其余的4本中选2本给乙,有C24种选法;最后从余下的2本书中选2本给丙,有C22种选法;所以分给甲、乙、丙三人,每人2本,共有C26C24C22=90种方法.。
第2课时组合的综合应用一、选择题1.若从1,2,3,…,9这9个整数中同时取3个不同的数,使其和为奇数,则不同的取法共有()A.30种B.33种C.37种D.40种考点组合的应用题点有限制条件的组合问题[答案] D[解析]从1,2,3,…,9这9个数中取出3个不同的数,使其和为奇数的情况包括:(1)取出的3个数都是奇数,取法有C35=10(种);(2)取出的3个数中有2个偶数、1个奇数,取法有C24C15=30(种),根据分类加法计数原理,满足题意的取法共有10+30=40(种).2.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为()A.24种B.14种C.28种D.48种考点组合的应用题点有限制条件的组合问题[答案] B[解析]方法一分两类完成:第1类,选派1名女生、3名男生,有C12·C34种选派方案;第2类,选派2名女生、2名男生,有C 22·C 24种选派方案.故共有C 12·C 34+C 22·C 24=14(种)不同的选派方案.方法二 6人中选派4人的组合数为C 46,其中都选男生的组合数为C 44,所以至少有1名女生的选派方案有C 46-C 44=14(种).3.直线a ∥b ,a 上有5个点,b 上有4个点,以这九个点为顶点的三角形个数为( )A .C 25C 14+C 15C 24B .(C 25+C 14)(C 15+C 24) C .C 39-9 D .C 39-C 35考点 组合的应用题点 与几何有关的组合问题 [答案] A[解析] 可以分为两类:a 上取两点,b 上取一点,则可构成三角形个数为C 25C 14;a 上取一点,b 上取两点,则可构成三角形个数为C 15C 24,利用分类加法计数原理可得以这九个点为顶点的三角形个数为C 25C 14+C 15C 24,故选A.4.从乒乓球运动员男5名、女6名中组织一场混合双打比赛,不同的组合方法有( )A .C 25C 26种B .C 25A 26种 C .C 25A 22C 26A 22种D .A 25A 26种 考点 排列组合综合问题 题点 排列与组合的综合应用 [答案] B[解析] 先从5名男选手中任意选取2名,有C 25种选法,再从6名女选手中任意选择两名与选出的男选手打比赛,有C 26A 22,即A 26种.所以共有C 25A 26种.5.将标号为A ,B ,C ,D ,E ,F 的6张卡片放入3个不同的信封中,若每个信封放2张卡片,其中标号为A ,B 的卡片放入同1个信封,则不同的放法共有( ) A .12种B .18种C .36种D .54种 考点 排列组合综合问题 题点 分组分配问题 [答案] B[解析] 由题意知,不同的放法共有C 13C 24=3×4×32=18(种). 6.某地招募了20名志愿者,他们编号分别为1号,2号,…,19号,20号,如果要从中任意选取4人再按编号大小分成两组去做一些预备服务工作,其中两个编号较小的人在一组,两个编号较大的人在另一组,那么确保5号与14号入选并被分配到同一组的选取种数是( )A .16B .21C .24D .90 考点 排列组合综合问题 题点 分组分配问题 [答案] B [解析] 分2类:第1类,5号与14号为编号较大的一组,则另一组编号较小的有C 24=6(种)选取方法. 第2类,5号与14号为编号较小的一组,则编号较大的一组有C 26=15(种)选取方法.由分类加法计数原理得,共有C 24+C 26=6+15=21(种)选取方法.7.北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作,若每天早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为( )A .C 1214C 412C 48B .C 1214A 412A 48 C.C 1214C 412C 48A 33D .C 1214C 412C 48A 38考点 排列组合综合问题 题点 分组分配问题 [答案] A[解析] 首先从14人中选出12人共C 1214种,然后将12人平均分为3组共C 412·C 48·C 44A 33种,然后这两步相乘,得C 1214·C 412·C 48A 33.将三组分配下去共C 1214·C 412·C 48种.故选A. 8.假如北京大学给中山市某三所重点中学7个自主招生的推荐名额,则每所中学至少分到一个名额的方法数为( ) A .30B .21C .10D .15 考点 排列组合综合问题 题点 分组分配问题 [答案] D[解析] 用“隔板法”.在7个名额中间的6个空位上选2个位置加2个隔板,有C 26=15(种)分配方法. 二、填空题9.在2017年的上海高考改革方案中,要求每位考生必须在物理、化学、生物、政治、历史、地理6门学科中选择3门学科参加等级考试.小明同学决定在生物、政治、历史三门中至多选择一门,那么小明同学的选择方案有________种.考点组合的应用题点有限制条件的组合问题[答案]10[解析]①在生物、政治、历史三门中选择1门,则在物理、化学、地理中选2门,有C13C23=9(种)选法;②在生物、政治、历史三门中选择0门,则物理、化学、地理全选,有C33=1(种)选法.共有选法9+1=10(种).10.如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面涂色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的涂色方案共有______种.考点涂色问题题点涂色问题[答案]12[解析]先涂三棱锥P-ABC的三个侧面,然后涂三棱柱的三个侧面,共有C13×C12×C11×C12=3×2×1×2=12(种)不同的涂法.11.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种.(用数字作答)考点排列组合综合问题题点排列与组合的综合应用[答案]60[解析]一、二、三等奖,三个人获得,有A34=24(种).一、二、三等奖,有一个人获得2张,一个人获得1张,共有C23A24=36(种),共有24+36=60(种)不同的获奖情况.三、解答题12.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,求不同取法的种数.考点组合的应用题点有限制条件的组合问题解若没有红色卡片,则需从黄、蓝、绿三色卡片中选3张,若都不同色,则有C14×C14×C14=64(种),若2张同色,则有C23×C12×C24×C14=144(种),若红色卡片有1张,剩余2张不同色,则有C14×C23×C14×C14=192(种),剩余2张同色,则有C14×C13×C24=72(种),所以共有64+144+192+72=472(种)不同的取法.13.现有8名青年,其中有5名能胜任英语翻译工作,有4名能胜任德语翻译工作(其中有1名青年两项工作都能胜任).现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?考点排列组合综合问题题点分组分配问题解可以分三类.第一类,让两项工作都能胜任的青年从事英语翻译工作,有C24C23种选法;第二类,让两项工作都能胜任的青年从事德语翻译工作,有C34C13种选法;第三类,让两项工作都能胜任的青年不从事任何工作,有C34C23种选法.根据分类加法计数原理,一共有C24C23+C34C13+C34C23=42(种)不同的选法.四、探究与拓展14.20个不加区别的小球放入编号为1,2,3的三个盒子中,要求每个盒内的球数不小于它的编号数,则不同的放法种数为________.考点排列组合综合问题题点分组分配问题[答案]120[解析]先在编号为2,3的盒内分别放入1,2个球,还剩17个小球,三个盒内分别至少再放入1个球,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中即可,共C216=120(种)方法.15.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?考点排列组合综合问题题点排列与组合的综合应用解(1)先排前4次测试,只能取正品,有A46种不同测试方法,再从4件次品中选2件排在第5和第10的位置上测试,有C24A22=A24(种)测法,再排余下4件的测试位置,有A44种测法.所以共有不同测试方法A46·A24·A44=103680(种).(2)第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现,所以共有不同测试方法C16C34A44=576(种).。
学业分层测评(建议用时: 45 分钟 )[ 学业达标 ]一、选择题1.某电影要在 5 所大学里轮番放映,则不一样的轮映方法有 ()A.25 种B.55种C.A55种D.53种【分析】其不一样的轮映方法相当于将5 所大学的全摆列,即A55.【答案】C2.某天上午要排语文,数学,体育,计算机四节课,此中体育不排在第一节,那么这日上午课程表的不一样排法共有()A.6 种B.9 种C.18 种D.24 种【分析】先排体育有 A 13种,再排其余的三科有A33种,共有3×6=18(种 ).【答案】C3.在航天员进行的一项太空实验中,要先后实行 6 个程序,此中程序 A 只能出此刻第一或最后一步,程序 B 和 C 在实行时一定相邻,问实验次序的编排方法共有 ()A.34 种B.48 种C.96 种D.144 种【分析】先清除 A,B,C 外的三个程序,有3A3种不一样排法,再排程序A,1123112有 A 2种排法,最后插空排入 B,C,有 A 4·2种排法,所以共有A 3·2·4·2=96A A A A种不一样的编排方法.【答案】C4.生产过程有 4 道工序,每道工序需要安排一人照看,现从甲、乙、丙等6 名工人中安排 4 人分别照看一道工序,第一道工序只好从甲、乙两名工人中安排 1 人,第四道工序只好从甲、丙两名工人中安排 1 人,则不一样的安排方案共有()A.24 种B.36 种 C.48 种D.72 种【分析】分类达成:第 1 类,若甲在第一道工序,则丙必在第四道工序,其余两道工序无穷制,有 A 24种排法;第 2 类,若甲不在第一道工序 (此时乙必定在第一道工序),则第四道工序有2 种排法,其余两道工序有A42种排法,有 2A 24种排法.由分类加法计数原理,共有 A 24+ 2A24=36 种不一样的安排方案.【答案】B5.(2016 ·韶关检测 )用数字 0,1,2,3,4,5 能够构成没有重复数字,而且比 20 000大的五位偶数共有 ()A.288 个B.240 个C.144 个D.126 个【分析】第 1 类,个位数字是2,首位可排 3,4,5 之一,有 A 31种排法,排其余数字有 A 34种排法,所以有 A 13A 34个数;第 2 类,个位数字是 4,有 A31A 34个数;第 3 类,个位数字是 0,首位可排 2,3,4,5 之一,有 A14种排法,排其余数字有 A 34种排法,所以有 A 14A43个数.由分类加法计数原理,可得共有2A13A 34+A 14A 34=240 个数.【答案】B二、填空题6.从 0,1,2,3 这四个数中选三个不一样的数作为函数f(x)=ax2+bx+ c 中的参数 a,b,c,可构成不一样的二次函数共有 ________个.【导学号: 97270014】【分析】112若获得二次函数,则 a≠0,a 有 A 3种选择,故二次函数有 A 33=A3×3×2=18(个).【答案】187.将序号分别为 1,2,3,4,5 的 5 张观光券所有分给 4 人,每人起码 1 张,如果分给同一人的2 张观光券连号,那么不一样的分法种数是________.【分析】先分组后用分派法求解, 5 张观光券分为 4 组,此中 2 个连号的有 4 种分法,每一种分法中的摆列方法有44A 4种,所以共有不一样的分法 4A4=4×24=96(种 ).【答案】 968.用 1,2,3,4,5,6 构成六位数 (没有重复数字 ),要求任何相邻两个数字的奇偶性不一样,且 1,2 相邻,这样的六位数的个数是________.【分析】可分为三步来达成这件事:第一步:先将 3,5 进行摆列,共有A22种排法;第二步:再将 4,6 插空摆列,共有2A22种排法;第三步:将 1,2 放入 3,5,4,6 形成的空中,共有 A 15种排法.由分步乘法计数原理得,共有 A 222A22A 15=40 种不一样的排法.【答案】40三、解答题9.喜羊羊家族的四位成员与灰太狼、红太狼进行谈判,经过谈判他们握手言和,准备一同照合影像(排成一排 ).(1)要求喜羊羊家族的四位成员一定相邻,有多少种排法?(2)要求灰太狼、红太狼不相邻,有多少种排法?【解】(1)把喜羊羊家族的四位成员当作一个元素,排法为 A 33.又由于四位成员互换次序产生不一样摆列,所以共有A 33·A 44=144 种排法.(2)第一步,将喜羊羊家族的四位成员排好,有 A 44种排法;第二步,让灰太狼、红太狼插入四人形成的空(包含两头 ),有 A 25种排法,共有A 44·A 25= 480 种排法.10.(2016 ·上饶二模 )有红、蓝、黄、绿四种颜色的球各 6 个,每种颜色的 6个球分别标有数字1,2,3,4,5,6,从中任取 3 个标号不一样的球,颜色互不同样且所标数字互不相邻的取法种数.【解】所标数字互不相邻的方法有 135,136,146,246,共 4 种方法 .3 个颜色互不同样有 4A 33= 4×3×2×1= 24 种,所以这 3 个颜色互不同样且所标数字互不相邻的取法种数有4×24= 96 种.[ 能力提高 ]1.将字母 a,a,b,b,c,c 排成三行两列,要求每行的字母互不同样,每列的字母也互不同样,则不一样的摆列方法共有()A.10 种B.12 种C.9 种D.8 种【分析】先排第一列,由于每列的字母互不同样,所以共有3A 3种不一样的排法.1再排第二列,此中第二列第一行的字母共有A 2种不一样的排法,第二列第二、三行的字母只有 1 种排法.31所以共有 A 3·A 2·1=12(种)不一样的摆列方法.【答案】B2.(2016 武·汉调研 )安排 6 名歌手演出的次序时,要求歌手乙、丙均排在歌手甲的前方或许后边,则不一样排法的种数是 ()A .180B .240C .360D .480【分析】不一样的排法种数先全摆列有 A 66,甲、乙、丙的次序有 A 33,乙、丙都排在歌手甲的前方或许后边的次序有甲乙丙,甲丙乙,乙丙甲,丙乙甲,46A 6种次序,所以不一样排法的种数共有4× 3=480 种.A 3【答案】D3.安排 7 位工作人员在 10 月 1 日到 10 月 7 日值班,每人值班一天,此中甲、乙两人都不可以安排在10 月 1 日和 2 日,不一样的安排方法共有 ________种(用数字作答 ).【分析】 法一: (直接法 )先安排甲、乙两人在后 5 天值班,有 A 52= 20 种5 20×120= 2 400 种安排法,其余 5 天再进行摆列,有 A 5=120 种排法,所以共有 排方法.法二: ( 间接法 ) 不考虑甲、乙两人的特别状况,其安排方法有7A 7 =× ××× ××= 种方法,此中不切合要求的有 2 5 1 1 2 5 25+A 25 2A 5=2 6407654321 5040A A A A 种方法,所以共有 5 040-2 640= 2 400 种方法.【答案】2 4004.(2016 山·东临沂月考 )有 4 名男生、 5 名女生,全体排成一行,以下情况各有多少种不一样的排法?(1)甲不在中间也不在两头;(2)甲、乙两人一定排在两头;(3)女生互不相邻.【解】(1)法一:元素剖析法.先排甲有6 种,再排其余人有 A 88种,故共有 6·A 88= 241 920(种 )排法.法二:地点剖析法.中间和两头有36 A 8种排法,包含甲在内的其余6人有 A6种排法,故共有 A 38·A 66=336×730=241 920(种)排法.法三:等时机法 .9 个人全摆列有 A 99种,甲排在每一个地点的时机都是均等的,依题意得,甲不在中间及两头的排法总数是96=241 920(种).A 9×9法四:间接法. A99- 3·A 88= 6A88=241 920(种).(2)先排甲、乙,再排其余 7 人.共有 A 22·A 77= 10 080(种 )排法. (3) 插空法.先排4 名男生有 A 44种方法,再将5 名女生插空,有 A 55种方法,故共有 A44·A 55= 2 880(种 )排法 .。
第2课时组合的综合应用学习目标:1.学会运用组合的概念,分析简单的实际问题.(重点)2.能解决无限制条件的组合问题.(难点)[自主预习·探新知]1.组合的有关概念从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.组合数用符号C m n表示,其公式为C m n=A m nA m m=n(n-1)·(n-2)…(n-m+1)m!.(m,n∈N*,m≤n),特别地C0n=C n n=1.2.组合与排列的异同点共同点:排列与组合都是从n个不同元素中取出m(m≤n)个元素.不同点:排列与元素的顺序有关,组合与元素的顺序无关.3.应用组合知识解决实际问题的四个步骤(1)判断:判断实际问题是否是组合问题.(2)方法:选择利用直接法还是间接法解题.(3)计算:利用组合数公式结合两个计数原理计算.(4)结论:根据计算结果写出方案个数.[基础自测]1.以下四个命题,属于组合问题的是()A.从3个不同的小球中,取出2个排成一列B.老师在排座次时将甲、乙两位同学安排为同桌C.在电视节目中,主持人从100位幸运观众中选出2名幸运之星D.从13位司机中任选出两位开两辆车往返甲、乙两地C[从100位幸运观众中选出2名幸运之星,与顺序无关,是组合问题.] 2.若5名代表分4张同样的参观券,每人最多分一张,且全部分完,那么分法一共有()【导学号:95032059】A.A45种B.45种C.54种D.C45种D[由于4张同样的参观券分给5名代表,每人最多分一张,从5名代表中选4人满足分配要求,故有C45种.]3.某施工小组有男工7名,女工3名,现要选1名女工和2名男工去支援另一施工小组,不同的选法有()A.C310种B.A310种C.A13A27种D.C13C27种D[每个被选的人都无顺序差别,是组合问题.分两步完成:第一步,选女工,有C13种选法;第二步,选男工,有C27种选法.故共有C13C27种不同的选法.] 4.设集合A={a1,a2,a3,a4,a5},则集合A中含有3个元素的子集共有________个.10[从5个元素中取出3个元素组成一组就是集合A的子集,则共有C35=10个子集.][合作探究·攻重难](1)要选2名男生去参加乒乓球赛,有多少种不同选法?(2)要选男、女生各2人参赛,有多少种不同选法?(3)要选2人去参赛,有多少种不同选法?【导学号:95032060】[思路探究]首先要分清是组合还是排列问题,与顺序有关即为排列,与顺序无关即为组合,一定要理解清楚题意.[解](1)从6名男生中选2人的组合数是C26=15种.(2)分两步完成,先从6名男生中选2人,再从4名女生中选2人,均为组合.C26·C24=90种.(3)从10名学生中选2名的组合数C210=45种.1.有两条平行直线a和b,在直线a上取4个点,直线b上取5个点,以这些点为顶点作三角形,这样的三角形共有()A.70个B.80个C.82个D.84个A[分两类分别求即可,共有C24C15+C14C25=30+40=70.]2.若7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有________种.(用数字作答)【导学号:95032061】140[第一步,安排周六有C37种方法,第二步,安排周日有C34种方法,所以不同的安排方案共有C37C34=140种.]3名同学参加活动.(1)其中某一女生必须在内,不同的取法有多少种?(2)其中某一女生不能在内,不同的取法有多少种?(3)恰有2名女生在内,不同的取法有多少种?(4)至少有2名女生在内,不同的取法有多少种?(5)至多有2名女生在内,不同的取法有多少种?[思路探究]可从整体上分析,进行合理分类,弄清关键词“恰有”“至少”“至多”等字眼.使用两个计数原理解决.[解](1)从余下的34名学生中选取2名,有C234=561(种).∴不同的取法有561种.(2)从34名可选学生中选取3名,有C334种.或者C335-C234=C334=5 984种.∴不同的取法有5 984种.(3)从20名男生中选取1名,从15名女生中选取2名,有C120C215=2 100种.∴不同的取法有2 100种.(4)选取2名女生有C120C215种,选取3名女生有C315种,共有选取方式N=C120 C215+C315=2 100+455=2 555种.∴不同的取法有2 555种.(5)选取3名的总数有C335,因此选取方式共有N=C335-C315=6 545-455=6 090种.∴不同的取法有6 090种.3.某地区发生了特别重大铁路交通事故,某医院从10名医疗专家中抽调6名奔赴事故现场抢救伤员,其中这10名医疗专家中有4名是外科专家.问:(1)抽调的6名专家中恰有2名是外科专家的抽调方法有多少种?(2)至少有2名外科专家的抽调方法有多少种?(3)至多有2名外科专家的抽调方法有多少种?[解](1)分步:首先从4名外科专家中任选2名,有C24种选法,再从除外科专家的6人中选取4人,有C46种选法,所以共有C24·C46=90种抽调方法.(2)“至少”的含义是不低于,有两种解答方法,法一:(直接法):按选取的外科专家的人数分类:①选2名外科专家,共有C24·C46种选法;②选3名外科专家,共有C34·C36种选法;③选4名外科专家,共有C44·C26种选法;根据分类加法计数原理,共有C24·C46+C34·C36+C44·C26=185种抽调方法.法二:(间接法):不考虑是否有外科专家,共有C 610种选法,考虑选取1名外科专家参加,有C 14·C 56种选法;没有外科专家参加,有C 66种选法,所以共有:C 610-C 14·C 56-C 66=185种抽调方法. (3)“至多2名”包括“没有”、“有1名”、“有2名”三种情况,分类解答.①没有外科专家参加,有C 66种选法;②有1名外科专家参加,有C 14·C 56种选法;③有2名外科专家参加,有C 24·C 46种选法.所以共有C 66+C 14·C 56+C 24·C 46=115种抽调方法.(1)分给甲、乙、丙三人,每人两本;(2)分为三份,每份两本;(3)分为三份,一份一本,一份两本,一份三本;(4)分给甲、乙、丙三人,一人一本,一人两本,一人三本;(5)分给甲、乙、丙三人,每人至少一本.【导学号:95032062】[思路探究] (1)是平均分组问题,与顺序无关,相当于6本不同的书平均分给甲、乙、丙三人,可以理解为一个人一个人地来取,(2)是“均匀分组问题”,(3)是分组问题,分三步进行,(4)分组后再分配,(5)明确“至少一本”包括“2、2、2型”、“1、2、3型”、“1、1、4型”.[解] (1)根据分步乘法计数原理得到:C 26C 24C 22=90种.(2)分给甲、乙、丙三人,每人两本有C 26C 24C 22种方法,这个过程可以分两步完成:第一步分为三份,每份两本,设有x 种方法;第二步再将这三份分给甲、乙、丙三名同学有A 33种方法.根据分步乘法计数原理可得:C 26C 24C 22=x A 33,所以x =C 26C 24C 22A 33=15.因此分为三份,每份两本一共有15种方法. (3)这是“不均匀分组”问题,一共有C 16C 25C 33=60种方法.(4)在(3)的基础上再进行全排列,所以一共有C 16C 25C 33A 33=360种方法.(5)可以分为三类情况:①“2、2、2型”即(1)中的分配情况,有C 26C 24C 22=90种方法;②“1、2、3型”即(4)中的分配情况,有C 16C 25C 33A 33=360种方法;③“1、1、4型”,有C 46A 33=90种方法.所以一共有90+360+90=540种方法.4.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有________种(用数字作答). 36 [分两步完成:第一步,将4名大学生按2,1,1分成三组,其分法有C 24·C 12·C 11A 22种;第二步,将分好的三组分配到3个乡镇,其分法有A 33种.所以满足条件的分配方案有C 24·C 12·C 11A 22·A 33=36(种).]1.从集合{1,2,3,4}中任取两个不同元素相乘,有多少个不同的结果?完成的“这件事”指的是什么?[提示] 共有C 24=4×32=6(个)不同结果. 完成的“这件事”是指从集合{1,2,3,4}中任取两个不同元素并相乘.2.从集合{1,2,3,4}中任取两个不同元素相除,有多少不同结果?这是排列问题,还是组合问题?完成的“这件事”指的是什么?[提示] 共有A 24-2=10(个)不同结果;这个问题属于排列问题;完成的“这件事”是指从集合{1,2,3,4}中任取两个不同元素并相除.3.完成“从集合{0,1,2,3,4}中任取三个不同元素组成一个是偶数的三位数”这件事需先分类,还是先分步?有多少个不同的结果?[提示]由于0不能排在百位,而个位必须是偶数.0是否排在个位影响百位与十位的排法,所以完成这件事需按0是否在个位分类进行.第一类:0在个位,则百位与十位共A24种排法;第二类:0不在个位且不在百位,则需先从2,4中任选一个排个位再从剩下非零数字中取一个排百位,最后从剩余数字中任取一个排十位,共C12C13C13=18(种)不同的结果,由分类加法计数原理,完成“这件事”共有A24+C12C13C13=30(种)不同的结果.有5个男生和3个女生,从中选出5人担任5门不同学科的课代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文课代表;(3)某男生必须包括在内,但不担任数学课代表;(4)某女生一定要担任语文课代表,某男生必须担任课代表,但不担任数学课代表.【导学号:95032063】[思路探究](1)按选中女生的人数多少分类选取.(2)采用先选后排的方法.(3)先安排该男生,再选出其他人担任四科课代表.(4)先安排语文课代表的女生,再安排“某男生”课代表,最后选其他人担任余下三科的课代表.[解](1)先选后排,先选可以是2女3男,也可以是1女4男,共有C35C23+C45C13种,后排有A55种,共(C35C23+C45C13)·A55=5 400种.(2)除去该女生后,先选后排,有C47·A44=840种.(3)先选后排,但先安排该男生,有C47·C14·A44=3 360种.(4)先从除去该男生、该女生的6人中选3人有C36种,再安排该男生有C13种,其余3人全排有A33种,共C36·C13·A33=360种.5.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加,则他们发言时不能相邻,那么不同的发言顺序的种数为()A.360B.520C.600D.720C[分两类:第一类,甲、乙中只有一人参加,则有C12C35A44=2×10×24=480种选法.第二类,甲、乙都参加时,则有C25(A44-A22A33)=10×(24-12)=120种选法.所以共有480+120=600种选法.][当堂达标·固双基]1.某研究性学习小组有4名男生和4名女生,一次问卷调查活动需要挑选3名同学参加,其中至少一名女生,则不同的选法种数为()A.120B.84C.52D.48C[间接法:C38-C34=52种.]2.编号为1,2,3,4,5,6,7的七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案有()【导学号:95032064】A.60种B.20种C.10种D.8种C[四盏熄灭的灯产生的5个空档中放入三盏亮灯,即C35=10.]3.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种B[分两种情况:①选2本画册,2本集邮册送给4位朋友有C24=6种方法;②选1本画册,3本集邮册送给4位朋友有C14=4种方法,所以不同的赠送方法共有6+4=10种,故选B.]4.在直角坐标平面xOy上,平行直线x=n(n=0,1,2,…,5)与平行直线y =n(n=0,1,2,…,5)组成的图形中,矩形共有________个.225[在垂直于x轴的6条直线中任取2条,在垂直于y轴的6条直线中任取2条,四条直线相交得出一个矩形,所以矩形总数为C26×C26=15×15=225个.]5.课外活动小组共13人,其中男生8人,女生5人,并且男、女各指定一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法?(1)只有一名女生;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选.【导学号:95032065】[解](1)一名女生,四名男生,故共有C15C48=350种选法.(2)将两队长作为一类,其他11人作为一类,故共有C22C311=165种选法.(3)至少有一名队长当选含有两类:有一名队长当选和两名队长都当选.故共有C12C411+C22C311=825种选法.或采用间接法:C513-C511=825种.(4)至多有两名女生含有三类:有两名女生,只有一名女生,没有女生.故共有C25C38+C15C48+C58=966种选法.。
第一章 1.2 1.2.2 第2课时一、选择题(每小题5分,共20分)1.编号为1,2,3,4,5,6,7的七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的亮灯方案有( )A .60种B .20种C .10种D .8种解析: 四盏熄灭的灯产生的5个空当中放入3盏亮灯,有C 35=10(种)方法.答案: C2.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有( )A .140种B .120种C .35种D .34种解析: 分三种情况:①1男3女共有C 14C 33种选法.②2男2女共有C 24C 23种选法.③3男1女共有C 34C 13种选法.则共有C 14C 33+C 24C 23+C 34C 13=34种选法.答案: D3.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A .60种B .63种C .65种D .66种解析: 和为偶数共有3种情况,取4个数均为偶数有C 44=1种取法,取2奇数2偶数有C 24·C 25=60种取法,取4个数均为奇数有C 45=5种取法,故共有1+60+5=66种不同的取法.答案: D4.登山运动员10人,平均分为两组,其中熟悉道路的4人,每组都需要2人,那么不同的分配方法种数是( )A .60B .120C .240D .480解析: 先将4个熟悉道路的人平均分成两组有C 24·C 22A 22种.再将余下的6人平均分成两组有C 36·C 33A 22种.然后这四个组自由搭配还有A 22种,故最终分配方法有12C 24·C 36=60(种). 答案: A二、填空题(每小题5分,共10分)5.7名志愿者中安排6人在周六、周日两天参加社区公益活动,若每天安排3人,则不同的安排方案有________种(用数字作答).解析:先从7人中选6人参加公益活动有C67种选法,再从6人中选3人在周六参加有C36种选法,剩余3人在周日参加,因此有C67C36=140种不同的安排方案.答案:1406.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有________种(用数字作答).解析:有C13·C24·A22=36种满足题意的分配方案.其中C13表示从3个乡镇中任选定1个乡镇,且其中某2名大学生去的方法数;C24表示从4名大学生中任选2名到上一步选定的乡镇的方法数;A22表示将剩下的2名大学生分配到另两个乡镇去的方法数.答案:36三、解答题(每小题10分,共20分)7.男运动员6名,女运动员4名,其中男、女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加.解析:(1)第一步:选3名男运动员,有C36种选法.第二步:选2名女运动员,有C24种选法.共有C36C24=120种选法.(2)方法一:至少有1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男.由分类加法计数原理可得总选法数为C14C46+C24C36+C34C26+C44C16=246种.方法二:“至少有1名女运动员”的反面为“全是男运动员”可用间接法求解.从10人中任选5人有C510种选法,其中全是男运动员的选法有C56种.所以“至少有1名女运动员”的选法为:C510-C56=246种.(3)方法一(直接法):“只有男队长”的选法为C48种;“只有女队长”的选法为C48种;“男、女队长都入选”的选法为C38种;所以共有2C48+C38=196种选法.方法二(间接法):从10人中任选5人有C510种选法.其中不选队长的方法有C58种,所以“至少有1名队长”的选法为C510-C58=196种.8.有五张卡片,它们正反面分别写有0与1,2与3,4与5,6与7,8与9,将其中任意三张并排放在一起组成三位数,问可组成多少个不同的三位数?解析:方法一(直接法):从0与1两个特殊数字着手,可分三类:(1)取0不取1,可先从另四张卡片中选一张作百位,有C14种方法;0可在后两位,有C12种方法;最后从剩下的三张中任取一张,有C13种方法;又除含0的那张外,其他两张都有正面或反面两种可能,故此时可得不同的三位数有C14C12C13·22个.(2)取1不取0,同上分析可得不同的三位数有C24·22·A33个.(3)0和1都不取,有不同的三位数:C34·23·A33个.综上所述,共有不同的三位数:C14C12C13·22+C24·22A33+C34·23A33=432(个).方法二(间接法):任取三张卡片可以组成不同的三位数C35·23·A33个,其中0在百位的有C24·22·A22个,这是不符合题意的,故共有不同的三位数:C35·23A33-C24·22·A22=432(个).(10分)已知平面α∥平面β,在α内有4个点,在β内有6个点,(1)过这10个点中的3点作一平面,最多可作多少个不同平面?(2)以这些点为顶点,最多可作多少个三棱锥?(3)上述三棱锥中最多可以有多少个不同体积的三棱锥?解析:(1)所作出的平面有三类:①α内1点,β内2点确定的平面,有C14·C26个.②α内2点,β内1点确定的平面,有C24·C16个.③α,β本身.故所作的平面最多有C14·C26+C24·C16+2=98(个).(2)所作的三棱锥有三类:①α内1点,β内3点确定的三棱锥,有C14·C36个.②α内2点,β内2点确定的三棱锥,有C24·C26个.③α内3点,β内1点确定的三棱锥,有C34·C16个.∴最多可作出的三棱锥有:C14·C36+C24·C26+C34·C16=194(个).(3)∵当等底面积,等高的情况下三棱锥体积才能相等,∴体积不相同的三棱锥最多有C36+C34+C26·C24=114(个).。
第一章计数原理1.2摆列与组合摆列第 2 课时摆列的综合应用A 级基础稳固一、选择题1.A,B,C,D,E五人并排站成一行,假如A,B 一定相邻且()B 在A 的右侧,那么不一样的排法种数是A.6B.24C. 48D.120分析:把A,B视为一人,且 B 固定在 A 的右侧,则此题相当于 4 人的全摆列,排法共有 A44=24(种).答案: B2.用数字 1,2,3,4,5 能够构成没有重复数字,而且比 20 000大的五位偶数共有 ()A.48 个B. 36 个C.24 个D.18 个分析:个位数字是 2 的有 3A33=18(个 ),个位数字是 4 的有 3A33=18(个),因此共有 36 个.答案: B3.甲、乙两人从 4 门课程中各选修 2 门,则甲、乙所选的课程中恰有 1 门同样的选法有()A.6种B.12 种C.24 种D.30种分析:第一甲、乙两人从 4 门课程中同选 1 门,有4 种方法;其次从节余 3 门中任选 2 门进行摆列,摆列方法有A23=6(种 ).于是,甲、乙所选的课程中恰有 1 门同样的选法共有4×6=24(种).答案: C4.3 张卡片正反面分别标有数字 1 和 2,3 和 4,5 和 7,若将 3张卡片并列构成一个三位数,能够获得不一样的三位数的个数为() A.30 B.48 C.60 D .96分析:“构成三位数”这件事,分 2 步达成:第 1 步,确立排在百位、十位、个位上的卡片,即为 3 个元素的一个全摆列A33;第 2 步,分别确立百位、十位、个位上的数字,各有 2 种方法.依据分步乘法计数原理,能够获得不一样的三位数有 A33×2×2× 2=48(个).答案: B5.甲、乙、丙 3 位志愿者安排在周一至周五的 5 天中参加某项志愿者活动,要求每人参加一天且每日至多安排一人,并要求甲安排在此外两位前方.不一样的安排方法共有()A.20 种B. 30 种C.40 种D.60 种分析:分三类:甲在周一,共有A24种排法;甲在周二,共有A23种排法;甲在周三,共有A22种排法.因此排法共有A24+A23+ A22=20(种).答案: A二、填空题6.从班委会的 5 名成员中选出 3 名分别担当班级学习委员、文委与体育委,此中甲、乙二人不可以担当文委,不一样的法共有 ______种(用数字作答 ).分析:先出文委,有 3 种法,再出学委、体育委,有 A24种法.由分步乘法数原理知,法共有3A24=36(种 ).答案: 367.把 5 件不一样品成一排,若品 A 与品 B 相,且品 A 与品 C 不相,不一样的法有 ________种.分析:先考品 A 与 B 相,把 A、B 作一个元素有 A44种方法,而 A、B 可交地点,因此法有 2A44=48(种 ).又当 A、B 相又足 A、C 相,法有 2A3=12(种).3答案: 368.在全部无重复数字的四位数中,千位上的数字比个位上的数字大 2 的数共有 ________个.分析:千位数字比个位数字大 2,有 8 种可能,即 (2, 0),(3,1),⋯,(9,7),前一个数千位数字,后一个数个位数字,其他两位无任何限制.因此共有8A28= 448(个).答案: 448三、解答9.一晚会有 5 个演唱目和 3 个舞蹈目,要求排出一个目.(1)3 个舞蹈目不排在开始和尾,有多少种排法?(2)前 4 个目要有舞蹈目,有多少种排法?解: (1)先从 5 个演唱目中两个排在首尾两个地点有A2种排5法,再将节余的 3 个演唱目, 3 个舞蹈目排在中 6 个地点上有A66种排法,故共有不一样排法A25A66=1 440(种).(2)先不考虑摆列要求,有A88种摆列,此中前4 个节目没有舞蹈节目的状况,可先从 5 个演唱节目中选 4 个节目排在前四个地点,然后将节余四个节目摆列在后四个地点,有 A45A44种排法,所从前四个节目要有舞蹈节目的排法有 A88-A45A44=37 440(种).10.3 名男生、 4 名女生,依据不一样的要求站成一排,求不一样的排队方案有多少种.(1)甲不站中间,也不站两头;(2)甲、乙两人一定相邻;(3)甲、乙两人不得相邻.解: (1)分两步,第一考虑两头及中间地点,从除甲外的 6 人中选 3 人摆列,有A36种站法,而后再排其他地点,有A44种站法,因此不一样站法共有A36A44=2 880(种).(2)把甲、乙两人当作一个元素,第一与其他 5 人相当于 6 个元素进行全摆列,而后甲、乙两人再进行摆列,因此站法共有A66A22=1 440(种).(3)法一间 (含两头 )的先让其他的 5 人全摆列,再让甲、乙两人在每两人之6 个地点插入摆列,因此不一样站法共有A55· A26= 3600(种).法二不考虑限制条件,共有A77种站法,除掉甲、乙相邻的站法 A66·A22,因此不一样站法共有 A77-A66·A22= 3600(种). B 级能力提高1.由 1,2,3,4, 5 构成没有重复数字的四位数,按从小到大的次序排成一个数列 {a n},则 a72等于 ()A.1 543B.2 543C.3 542D.4 532分析:千位数为 1 时构成的四位数有 A43个,同理,千位数是2,3,4,5 时均有 A34个数,而千位数字为 1,2,3 时,从小到大排成数列的个数为 3A34=72,即 3 542 是第 72 个.答案: C2.三个人坐在一排八个座位上,若每人的两边都要有空位,则不一样的坐法种数为 ________.分析:“每人两边都有空位”是说三个人不相邻,且不可以坐两头,可视作 5 个空位和 3 个人知足上述两要求的一个摆列,只需将 3 个人插入 5 个空位形成的 4 个空中间即可.因此不一样坐法共有 A34=24(种).答案: 24。
第2课时组合的综合应用1.学会运用组合的概念,分析简单的实际问题.(重点)2.能解决无限制条件的组合问题.(难点)[基础·初探]教材整理组合的实际应用阅读教材P23例6~P25,完成下列问题.1.组合与排列的异同点共同点:排列与组合都是从n个不同元素中取出m(m≤n)个元素.不同点:排列与元素的顺序有关,组合与元素的顺序无关.2.应用组合知识解决实际问题的四个步骤(1)判断:判断实际问题是否是组合问题.(2)方法:选择利用直接法还是间接法解题.(3)计算:利用组合数公式结合两个计数原理计算.(4)结论:根据计算结果写出方案个数.1.若5名代表分4张同样的参观券,每人最多分一张,且全部分完,那么分法一共有()A.A45种B.45种C.54种D.C45种【解析】由于4张同样的参观券分给5名代表,每人最多分一张,从5名代表中选4人满足分配要求,故有C45种.【答案】 D2.若7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有________种.(用数字作答)【解析】第一步,安排周六有C37种方法,第二步,安排周日有C34种方法,所以不同的安排方案共有C37C34=140种.【答案】1403.从0,1, 2,π2,3,2这六个数字中,任取两个数字作为直线y=x tanα+b的倾斜角和截距,可组成______条平行于x轴的直线.【解析】要使得直线与x轴平行,则倾斜角为0,截距在0以外的五个数字均可.故有C15=5条满足条件.【答案】 54.将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排2名学生,那么互不相同的分配方案共有________种.【导学号:29472024】【解析】每个宿舍至少2名学生,故甲宿舍安排的人数可以为2人,3人,4人,5人,甲宿舍安排好后,乙宿舍随之确定,所以有C27+C37+C47+C57=112种分配方案.【答案】112[小组合作型]无限制条件的组合问题在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人参加市级培训.在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必需参加;(3)甲、乙、丙三人不能参加;(4)甲、乙、丙三人只能有1人参加.【精彩点拨】本题属于组合问题中的最基本的问题,可根据题意分别对不同问题中的“含”与“不含”作出正确分析和判断,弄清每步从哪里选,选出多少等问题.【自主解答】(1)从中任取5人是组合问题,共有C512=792种不同的选法.(2)甲、乙、丙三人必需参加,则只需要从另外9人中选2人,是组合问题,共有C29=36种不同的选法.(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C59=126种不同的选法.(4)甲、乙、丙三人只能有1人参加,可分两步:先从甲、乙、丙中选1人,有C13=3种选法;再从另外9人中选4人,有C49种选法.共有C13C49=378种不同的选法.解答简单的组合问题的思考方法1.弄清要做的这件事是什么事.2.选出的元素是否与顺序有关,也就是看看是不是组合问题.3.结合两个计数原理,利用组合数公式求出结果.[再练一题]1.现有10名教师,其中男教师6名,女教师4名.(1)现要从中选2名去参加会议,有多少种不同的选法?(2)选出2名男教师或2名女教师去外地学习的选法有多少种?【解】(1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即C210=10×92×1=45.(2)可把问题分两类:第1类,选出的2名是男教师有C26种方法;第2类,选出的2 名是女教师有C24种方法,即C26+C24=21(种).有限制条件的组合问题高二(1)班共有35名同学,其中男生20名,女生15名,今从中选出3名同学参加活动.(1)其中某一女生必须在内,不同的取法有多少种?(2)其中某一女生不能在内,不同的取法有多少种?(3)恰有2名女生在内,不同的取法有多少种?(4)至少有2名女生在内,不同的取法有多少种?(5)至多有2名女生在内,不同的取法有多少种?【精彩点拨】可从整体上分析,进行合理分类,弄清关键词“恰有”“至少”“至多”等字眼.使用两个计数原理解决.【自主解答】(1)从余下的34名学生中选取2名,有C234=561(种).∴不同的取法有561种.(2)从34名可选学生中选取3名,有C34种.或者C35-C234=C34=5 984种.∴不同的取法有5 984种.(3)从20名男生中选取1名,从15名女生中选取2名,有C120C215=2 100种.∴不同的取法有2 100种.(4)选取2名女生有C120C215种,选取3名女生有C315种,共有选取方式N=C120C215+C315=2 100+455=2 555种.∴不同的取法有2 555种.(5)选取3名的总数有C35,因此选取方式共有N=C35-C315=6 545-455=6 090种.∴不同的取法有6 090种.常见的限制条件及解题方法1.特殊元素:若要选取的元素中有特殊元素,则要以有无特殊元素,特殊元素的多少作为分类依据.2.含有“至多”“至少”等限制语句:要分清限制语句中所包含的情况,可以此作为分类依据,或采用间接法求解.3.分类讨论思想:解题的过程中要善于利用分类讨论思想,将复杂问题分类表达,逐类求解.[再练一题]2.现有5名男司机,4名女司机,需选派5人运货到某市.(1)如果派3名男司机、2名女司机,共有多少种不同的选派方法?(2)至少有两名男司机,共有多少种不同的选派方法?【解】(1)从5名男司机中选派3名,有C35种方法,从4名女司机中选派2名,有C24种方法,根据分步乘法计数原理得所选派的方法总数为C35C24=C25C24=5×42×1·4×32×1=60种.(2)从9人中任选5人运货有C59种方法.其中1名男司机,4名女司机有C15C4=5种选法.所以至少有两名男司机的选派方法为C59-5=121种.组合在几何中的应用平面内有12个点,其中有4个点共线,此外再无任何3点共线.以这些点为顶点,可构成多少个不同的三角形?【精彩点拨】解答本题可以从共线的4个点中选取2个、1个、0个作为分类标准,也可以从反面考虑,任意三点的取法种数减去共线三点的取法种数.【自主解答】法一:以从共线的4个点中取点的多少作为分类标准.第1类:共线的4个点中有2个点为三角形的顶点,共有C24C18=48个不同的三角形;第2类:共线的4个点中有1个点为三角形的顶点,共有C14C28=112个不同的三角形;第3类:共线的4个点中没有点为三角形的顶点,共有C38=56个不同的三角形.由分类加法计数原理知,不同的三角形共有48+112+56=216(个).法二(间接法):从12个点中任意取3个点,有C312=220种取法,而在共线的4个点中任意取3个均不能构成三角形,即不能构成三角形的情况有C34=4种.故这12个点能构成三角形的个数为C312-C34=216个.1.解决几何图形中的组合问题,首先应注意运用处理组合问题的常规方法分析解决问题,其次要注意从不同类型的几何问题中抽象出组合问题,寻找一个组合的模型加以处理.2.图形多少的问题通常是组合问题,要注意共点、共线、共面、异面等情形,防止多算.常用直接法,也可采用排除法.[再练一题]3.四面体的一个顶点为A,从其他顶点和各棱中点中取3个点,使它们与点A在同一平面上,有多少种不同的取法?【导学号:29472025】【解】如图所示,含顶点A的四面体的3个面上,除点A外每个面都有5个点,从中取出3点必与点A共面,共有3C35种取法,含顶点A的三条棱上各有三个点,它们与所对的棱的中点共面,共有3种取法.根据分类加法计数原理,不同的取法有3C35+3=33种.[探究共研型]排列、组合的综合应用探究1从集合{1,2,3,4}中任取两个不同元素相乘,有多少个不同的结果?完成的“这件事”指的是什么?【提示】共有C24=4×32=6(个)不同结果.完成的“这件事”是指从集合{1,2,3,4}中任取两个不同元素并相乘.探究2从集合{1,2,3,4}中任取两个不同元素相除,有多少不同结果?这是排列问题,还是组合问题?完成的“这件事”指的是什么?【提示】共有A24-2=10(个)不同结果;这个问题属于排列问题;完成的“这件事”是指从集合{1,2,3,4}中任取两个不同元素并相除.探究3完成“从集合{0,1,2,3,4}中任取三个不同元素组成一个是偶数的三位数”这件事需先分类,还是先分步?有多少个不同的结果?【提示】由于0不能排在百位,而个位必须是偶数.0是否排在个位影响百位与十位的排法,所以完成这件事需按0是否在个位分类进行.第一类:0在个位,则百位与十位共A24种排法;第二类:0不在个位且不在百位,则需先从2,4中任选一个排个位再从剩下非零数字中取一个排百位,最后从剩余数字中任取一个排十位,共C12C13C13=18(种)不同的结果,由分类加法计数原理,完成“这件事”共有A24+C12C13C13=30(种)不同的结果.有5个男生和3个女生,从中选出5人担任5门不同学科的课代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文课代表;(3)某男生必须包括在内,但不担任数学课代表;(4)某女生一定要担任语文课代表,某男生必须担任课代表,但不担任数学课代表.【精彩点拨】(1)按选中女生的人数多少分类选取.(2)采用先选后排的方法.(3)先安排该男生,再选出其他人担任四科课代表.(4)先安排语文课代表的女生,再安排“某男生”课代表,最后选其他人担任余下三科的课代表.【自主解答】(1)先选后排,先选可以是2女3男,也可以是1女4男,共有C35C23+C45 C13种,后排有A5种,共(C35C23+C45C13)·A5=5 400种.(2)除去该女生后,先选后排,有C47·A4=840种.(3)先选后排,但先安排该男生,有C47·C14·A4=3 360种.(4)先从除去该男生、该女生的6人中选3人有C36种,再安排该男生有C13种,其余3人全排有A3种,共C36·C13·A3=360种.解决排列、组合综合问题要遵循两个原则1.按事情发生的过程进行分步.2.按元素的性质进行分类.解决时通常从以下三个途径考虑:(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列或组合数.[再练一题]4.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加,则他们发言时不能相邻,那么不同的发言顺序的种数为( ) A.360 B.520C.600 D.720【解析】分两类:第一类,甲、乙中只有一人参加,则有C12C35A4=2×10×24=480种选法.第二类,甲、乙都参加时,则有C25(A4-A2A3)=10×(24-12)=120种选法.所以共有480+120=600种选法.【答案】 C1.某研究性学习小组有4名男生和4名女生,一次问卷调查活动需要挑选3名同学参加,其中至少一名女生,则不同的选法种数为( )A.120 B.84C.52 D.48【解析】间接法:C38-C34=52种.【答案】 C2.编号为1,2,3,4,5,6,7的七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案有( )A.60种B.20种C.10种D.8种【解析】四盏熄灭的灯产生的5个空档中放入三盏亮灯,即C35=10.【答案】 C3.从一组学生中选出4名学生当代表的选法种数为A,从这组学生中选出2人担任正、副组长的选法种数为B,若BA=213,则这组学生共有________人.【解析】设有学生n人,则A2nC4n=213,解之得n=15.【答案】154.在直角坐标平面xOy上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有________个.【解析】在垂直于x轴的6条直线中任取2条,在垂直于y轴的6条直线中任取2条,四条直线相交得出一个矩形,所以矩形总数为C26×C26=15×15=225个.【答案】2255.课外活动小组共13人,其中男生8人,女生5人,并且男、女各指定一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法?(1)只有一名女生;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选.【解】(1)一名女生,四名男生,故共有C15C48=350种选法.(2)将两队长作为一类,其他11人作为一类,故共有C2C311=165种选法.(3)至少有一名队长当选含有两类:有一名队长当选和两名队长都当选.故共有C12C411+C2C311=825种选法.或采用间接法:C513-C511=825种.(4)至多有两名女生含有三类:有两名女生,只有一名女生,没有女生.故共有C25C38+C15C48+C58=966种选法.。
第一章计数原理1.2 排列与组合1.2.2 组合第2课时组合的综合应用A级基础巩固一、选择题1.楼道里有12盏灯,为了节约用电,需关掉3盏不相邻的灯,则关灯方案有()A.72种B.84种C.120种D.168种解析:需关掉3盏不相邻的灯,即将这3盏灯插入9盏亮着的灯的空中,所以关灯方案共有C310=120(种).故选C.答案:C2.4位同学每人从甲、乙、丙三门课程中选修1门,则恰有2人选修课程甲的不同选法共有()A.12种B.24种C.30种D.36种解析:依题意,满足题意的选法共有C24×2×2=24(种).答案:B3.从编号为1、2、3、4的四种不同的种子中选出3种,在3块不同的土地上试种,每块土地上试种一种,其中1号种子必须试种,则不同的试种方法有()A.24种B.18种C.12种D.96种解析:从3块不同的土地中选1块种1号种子,有C13种方法,从其余的3种种子中选2种种在另外的2块土地上,有A23种方法,所以所求方法有C13A23=18(种).答案:B4.将4个颜色互不相同的球全部收入编号为1和2的2个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有()A.10种B.20种C.36种D.52种解析:根据2号盒子里放球的个数分类:第一类,2号盒子里放2个球,有C24种放法,第二类,2号盒子里放3个球,有C34种放法,剩下的小球放入1号盒中,共有不同放球方法C24+C34=10(种).答案:A5.某电视台连续播放5个广告,其中有3个不同的商业广告和2个不同的公益广告,要求最后播放的必须是公益广告,且2个公益广告不能连续播放,则不同的播放方式有()A.120种B.48种C.36种D.18种解析:依题意,所求播放方式的种数为C12C13A33=2×3×6=36.答案:C二、填空题6.教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.解析:先把6个毕业生平均分成3组,方法有C26C24C22A33(种),再将3组毕业生分到3所学校,方法有A33=6(种),故6个毕业生平均分到3所学校,分派方法共有C26C24C22A33·A33=90(种).答案:907.50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共有________种.解析:分两类,有4件次品的抽法有C44C146种,有3件次品的抽法有C34C246种,所以不同的抽法共有C44C146+C34C246=4 186(种).答案:4 1868.以正方体的顶点为顶点的四面体共有________个.解析:先从8个顶点中任取4个的取法为C48种,其中,共面的4点有12个,则四面体的个数为C48-12=58(个).答案:58三、解答题9.为了提高学生参加体育锻炼的热情,光明中学组织篮球比赛,共24个班参加,第一轮比赛是先分四组进行单循环赛,然后各组取前两名再进行第二轮单循环赛(在第一轮中相遇过的两个队不再进行比赛),问要进行多少场比赛?解:第一轮每组6个队进行单循环赛,共有C26场比赛,4个组共计4C26场.第二轮每组取前两名,共计8个组,应比赛C28场,由于第一轮中在同一组的两队不再比赛,故应减少4场,因此第二轮的比赛应进行C28=4(场).综上,两轮比赛共进行4C26+C28-4=84(场).10.从5名女同学和4名男同学中选出4人参加四场不同的演讲,分别按下列要求,各有多少种不同选法?(1)男、女同学各2名;(2)男、女同学分别至少有1名;(3)在(2)的前提下,男同学甲与女同学乙不能同时选出.解:(1)(C25C24)A44=1 440.所以男、女同学各2名共有1 440种选法.(2)(C15C34+C25C24+C35C14)A44=2 880,所以男、女同学分别至少有1名共有2 880种选法.(3)[120-(C23+C14C13+C24)]A44=2 376,所以在(2)的前提下,男同学甲与女同学乙不能同时选出共有 2 376 种选法.B级能力提升1.从乒乓球运动员男5名、女6名中组织一场混合双打比赛,不同的组合方法种数为()A.C25C26B.C25A26C.C25A22C26A22D.A25A26解析:分两步进行.第一步,选出两名男选手,有C25种方法;第二步,从6名女生中选出2名且与已选好的男生配对,有A26种.故有C25A26种组合方法.答案:B2.某科技小组有六名学生,现从中选出三人去参观展览,至少有一名女生入选的不同选法有16种,则该小组中的女生人数为________.解析:设男生人数为x,则女生有(6-x)人.依题意C36-C3x=16,则6×5×4=x(x-1)(x-2)+16×6,所以x(x-1)(x-2)=2×3×4,解得x=4.即女生有2人.答案:23.有五张卡片,它们的正、反面分别写0与1,2与3,4与5,6与7,8与9.将其中任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?解:法一依0与1两个特殊值分析,可分三类:(1)取0不取1,可先从另四张卡片中选一张作百位,有C14种方法;0可在后两位;有C12种方法;最后需从剩下的三张中任取一张,有C13种方法;又除含0的那张外,其他两张都有正面或反面两种可能,故此时可得不同的三位数有C14C12C13·22个.(2)取1不取0,同上分析可得不同的三位数C24·22·A33个.(3)0和1都不取,有不同三位数C34·23·A33个.综上所述,不同的三位数共有C14C12C13·22+C24·22·A23+C34·23·A33=432(个).法二任取三张卡片可以组成不同三位数C35·23·A33个,其中0在百位的有C24·22·A22个,这是不合题意的,故可组成的不同三位数共有C35·23·A33-C24·22·A22=432(个).。
第一章计数原理
1.2 排列与组合
1.2.2 组合
第2课时组合的综合应用
A级基础巩固
一、选择题
1.一个口袋中装有大小相同的6个白球和4个黑球,从中取2个球,则这两个球同色的不同取法有()
A.27种B.24种C.21种D.18种
解析:分两类:一类是2个白球有C26=15种取法,另一类是2个黑球有C24=6种取法,所以取法共有15+6=21(种).
答案:C
2.4位同学每人从甲、乙、丙三门课程中选修1门,则恰有2人选修课程甲的不同选法共有()
A.12种B.24种C.30种D.36种
解析:依题意,满足题意的选法共有C24×2×2=24(种).
答案:B
3.从编号为1、2、3、4的四种不同的种子中选出3种,在3块
不同的土地上试种,每块土地上试种一种,其中1号种子必须试种,则不同的试种方法有()
A.24种B.18种C.12种D.96种
解析:从3块不同的土地中选1块种1号种子,有C13种方法,从其余的3种种子中选2种种在另外的2块土地上,有A23种方法,所以所求方法有C13A23=18(种).
答案:B
4.将4个颜色互不相同的球全部收入编号为1和2的2个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有()
A.10种B.20种C.36种D.52种
解析:根据2号盒子里放球的个数分类:第一类,2号盒子里放2个球,有C24种放法,第二类,2号盒子里放3个球,有C34种放法,剩下的小球放入1号盒中,共有不同放球方法C24+C34=10(种).答案:A
5.某电视台连续播放5个广告,其中有3个不同的商业广告和2个不同的公益广告,要求最后播放的必须是公益广告,且2个公益广告不能连续播放,则不同的播放方式有()
A.120种B.48种C.36种D.18种
解析:依题意,所求播放方式的种数为C12C13A33=2×3×6=36.
答案:C
二、填空题
6.北京市某中学要把9台型号相同的电脑送给西部地区的三所希
望小学,每所小学至少得到2台,共有________种不同送法.解析:每校先各得一台,再将剩余6台分成3份,用插板法解,共有C25=10(种).
答案:10
7.某校开设9门课程供学生选修,其中A、B、C三门由于上课时间相同,至多选一门,学校规定每位同学选修4门,共有________种不同选修的方案(用数字作答).
解析:分两类,第一类学生不选A,B,C中的任意一门,选法有C46=15(种).第二类学生从A,B,C中选一门,再从其他6门中选3门课程,共有C13C36=60种选法.所以选法共有15+60=75(种).答案:75
8.以正方体的顶点为顶点的四面体共有________个.
解析:先从8个顶点中任取4个的取法为C48种,其中,共面的4点有12个,则四面体的个数为C48-12=58(个).
答案:58
三、解答题
9.为了提高学生参加体育锻炼的热情,光明中学组织篮球比赛,共24个班参加,第一轮比赛是先分四组进行单循环赛,然后各组取前两名再进行第二轮单循环赛(在第一轮中相遇过的两个队不再进行比赛),问要进行多少场比赛?
解:第一轮每组6个队进行单循环赛,共有C26场比赛,4个组共计4C26场.
第二轮每组取前两名,共计8个组,应比赛C28场,由于第一轮中在同一组的两队不再比赛,故应减少4场,因此第二轮的比赛应进行C28=4(场).
综上,两轮比赛共进行4C26+C28-4=84(场).
10.有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式?
(1)分成1本、2本、3本三组;
(2)分给甲、乙、丙三人,其中一人1本,一人2本,一人3本;
(3)分成每组都是2本的三组;
(4)分给甲、乙、丙三人,每人2本.
解:(1)分三步:选选一本有C16种选法;再从余下的5本中选2本有C25有种选法;对于余下的三本全选有C33种选法,由分步乘法计数原理知选法有C16C25C33=60(种).
(2)由于甲、乙、丙是不同的三人,在(1)的基础上,还应考虑再分配的问题,因此选法共有C16C25C33A33=360(种).
(3)先分三步,则应是C26C24C22种选法,但是这里面出现了重复,不妨记6本书分别为A,B,C,D,E,F,若第一步取了(AB,CD,EF),则C26C24C22种分法中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB),(EF,AB,CD),(EF,CD,AB)共A33种情况,而且这A33种情况仅是AB,CD,EF的顺序不同,因此,只算作一种情况,故分配方式
有C26C24C22
A33=15(种).
(4)在问题(3)的基础上再分配,故分配方式有
C26C24C22
A33·A
3
3
=C26C24C22=
90(种).
B级能力提升
1.已知圆上9个点,每两点连一线段,所有线段在圆内的交点有()
A.36个B.72个C.63个D.126个
解析:此题可化归为:圆上9个点可组成多少个四边形,每个四边形的对角线的交点即为所求,所以,交点有C49=126(个).答案:D
2.某科技小组有六名学生,现从中选出三人去参观展览,至少有一名女生入选的不同选法有16种,则该小组中的女生人数为________.解析:设男生人数为x,则女生有(6-x)人.依题意C36-C3x=16,则6×5×4=x(x-1)(x-2)+16×6,所以x(x-1)(x-2)=2×3×4,解得x=4.即女生有2人.
答案:2
3.有五张卡片,它们的正、反面分别写0与1,2与3,4与5,6与7,8与9.将其中任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?
解:法一依0与1两个特殊值分析,可分三类:
(1)取0不取1,可先从另四张卡片中选一张作百位,有C14种方法;
0可在后两位;有C12种方法;最后需从剩下的三张中任取一张,有C13种方法;又除含0的那张外,其他两张都有正面或反面两种可能,故此时可得不同的三位数有C14C12C13·22个.
(2)取1不取0,同上分析可得不同的三位数C24·22·A33个.
(3)0和1都不取,有不同三位数C34·23·A33个.
综上所述,不同的三位数共有
C14C12C13·22+C24·22·A23+C34·23·A33=432(个).
法二任取三张卡片可以组成不同三位数C35·23·A33个,
其中0在百位的有C24·22·A22个,这是不合题意的,
故可组成的不同三位数共有C35·23·A33-C24·22·A22=432(个).。