八年级上册数学 分式填空选择单元测试卷(含答案解析)
- 格式:doc
- 大小:464.00 KB
- 文档页数:10
八年级数学上册 分式填空选择单元测试卷附答案一、八年级数学分式填空题(难)1.下列结论:①不论a 为何值时21a a +都有意义;②1a =-时,分式211a a +-的值为0;③若211x x +-的值为负,则x 的取值范围是1x <;④若112x x x x ++÷+有意义,则x 的取值范围是x ≠﹣2且x ≠0.其中正确的是________ 【答案】①③ 【解析】 【分析】根据分式有意义的条件对各式进行逐一分析即可. 【详解】①正确.∵a 不论为何值不论a 2+2>0,∴不论a 为何值21aa +都有意义; ②错误.∵当a =﹣1时,a 2﹣1=1﹣1=0,此时分式无意义,∴此结论错误;③正确.∵若211x x +-的值为负,即x ﹣1<0,即x <1,∴此结论正确;④错误,根据分式成立的意义及除数不能为0的条件可知,若112x x x x++÷+有意义,则x 的取值范围是即20010x x x x⎧⎪+≠⎪≠⎨⎪+⎪≠⎩,x ≠﹣2,x ≠0且x ≠﹣1,故此结论错误.故答案为:①③. 【点睛】本题考查的是分式有意义的条件,解答此题要注意④中除数不能为0,否则会造成误解.2.当m =___________________时,关于x 的分式方程223242mx x x x +=--+无解 【答案】m=1、m=-4或m=6. 【解析】 【分析】方程两边都乘以(x+2)(x-2)把分式方程化为整式方程,当分式方程有增根或分式方程化成的整式方程无解时原分式方程无解,根据这两种情形即可计算出m 的值. 【详解】解:方程两边都乘以(x+2)(x-2)去分母得, 2(x+2)+mx=3(x-2),整理得(1-m )x=10,∴当m=1时,此整式方程无解,所以原分式方程也无解. 又当原分式方程有增根时,分式方程也无解, ∴当x=2或-2时原分式方程无解, ∴2(1-m )=10或-2(1-m )=10, 解得:m=-4或m=6,∴当m=1、m=-4或m=6时,关于x 的方程223242mx x x x +=--+无解. 【点睛】本题考查了分式方程的无解条件.分式方程无解有两种情形:一是分式方程有增根;二是分式方程化成的整式方程无解.3.函数y =x 的取值范围是______. 【答案】23x -<≤ 【解析】 【分析】根据二次根式及分式有意义的条件,结合所给式子得到关于x 的不等式组,解不等式组即可求出x 的取值范围. 【详解】由题意得,30200x x ⎧-≥⎪+≥⎨≠,解得:-2<x≤3, 故答案为:-2<x≤3. 【点睛】本题考查了二次根式及分式有意义的条件,注意掌握二次根式有意义:被开方数为非负数,分式有意义分母不为零.4.方程146x x =+的解是_____. 【答案】x =2.【解析】 【分析】本题考查解分式方程的能力,观察可得最简公分母是x (x+6),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解. 【详解】方程两边同乘以x (x+6),得x+6=4x , 解得x=2.经检验:x=2是原方程的解. 【点睛】此题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程解.(2)解分式方程一定注意要验根.5.若11a b+=3,则22a b a ab b +-+的值为_____. 【答案】35【解析】 【分析】 由113a b +=,可得3a b ab +=,即b+a=3ab ,整体代入22a ba ab b +-+即可求解.【详解】∵113a b +=, ∴3a bab+=,即b+a=3ab ∴22a b a ab b +-+=3ab 6ab ab -=3ab 5ab =35.【点睛】本题考查了分式的化简求值,利用整体代入求值是解决本题的关键.6.化简:224a a -﹣12a -=_____. 【答案】12a + 【解析】【分析】原式通分并利用同分母分式的减法法则计算,约分即可得到结果.【详解】原式=()()()()222222a a a a a a +-+-+-=()()222a a a -+- =12a +, 故答案为:12a +.【点睛】本题考查了分式的加减法,熟练掌握分式加减法的运算法则是解本题的关键.7.如果x+1x =3,则24233x x x ++的值等于_____ 【答案】122【解析】 【分析】由x +1x =3得x 2+2+21x =9,即x 2+21x=7,整体代入原式=221331x x ++=221131x x++(),计算可得结论. 【详解】解:∵x +1x =3,∴(x +1x )2=9,即x 2+2+21x =9,则x 2+21x=7. ∵x ≠0,∴原式=221331x x ++=221131x x ++() =1371⨯+ =122. 故答案为122. 【点睛】本题主要考查分式的值,解题的关键是熟练掌握整体代入思想的运用及利用分式的基本性质对分式变形.8.若分式的值为零,则x 的值为________.【答案】1 【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1. 考点:分式的值为零的条件.9.已知关于x 的方程3x n22x 1+=+的解是负数,则n 的取值范围为 .【答案】n <2且3n 2≠ 【解析】 【分析】 【详解】 分析:解方程3x n22x 1+=+得:x=n ﹣2, ∵关于x 的方程3x n22x 1+=+的解是负数,∴n ﹣2<0,解得:n <2. 又∵原方程有意义的条件为:1x 2≠-,∴1n 22-≠-,即3n 2≠. ∴n 的取值范围为n <2且3n 2≠.10.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元. 【答案】28 【解析】设这种电子产品的标价为x 元, 由题意得:0.9x −21=21×20%, 解得:x=28,所以这种电子产品的标价为28元. 故答案为28.二、八年级数学分式解答题压轴题(难)11.某小麦改良品种后平均每公顷增加产量a 吨,原来产m 吨小麦的一块土地,现在小麦的总产量增加了20吨.(1)当a =0.8,m =100时,原来和现在小麦的平均每公顷产量各是多少?(2)请直接接写出原来小麦的平均每公顷产量是 吨,现在小麦的平均每公顷产量是 吨;(用含a 、m 的式于表示)(3)在这块土地上,小麦的改良品种成熟后,甲组收割完需n 小时,乙组比甲组少用0.5小时就能收割完,求两组一起收割完这块麦田需要多少小时?【答案】(1)原来和现在小麦的平均每公顷产量各是4吨,4.8吨;(2)20ma ,+2020ma a ;(3)两组一起收割完这块麦田需要2241n nn --小时. 【解析】 【分析】(1)设原来小麦平均每公顷产量是x 吨,根据题意列出分式方程求解并验根即可;(2)设原来小麦平均每公顷产量是y 吨,根据题意列出分式方程求解并验根即可;(3)由题意得知,工作总量为m+20,甲的工作效率为:20m n +,乙的工作效率为:200.5m n +-,再由工作总量除以甲乙的工作效率和即可得出工作时间. 【详解】解:(1)设原来平均每公顷产量是x 吨,则现在平均每公顷产量是(x +0.8)吨, 根据题意可得:100100200.8x x +=+ 解得:x =4,检验:当x =4时,x (x +0.8)≠0, ∴原分式方程的解为x =4, ∴现在平均每公顷产量是4.8吨,答:原来和现在小麦的平均每公顷产量各是4吨,4.8吨.(2)设原来小麦平均每公顷产量是y 吨,则现在玉米平均每公顷产量是(y +a )吨,根据题意得:20m m y y a+=+解得;y =20ma , 经检验:y =20ma是原方程的解, 则现在小麦的平均每公顷产量是:202020ma ma a a ++= 故答案为:20ma ,2020ma a+; (3)根据题意得:()20.5202202020.5410.5n n m n n m m n n n n -+-==++--+- 答:两组一起收割完这块麦田需要2241n nn --小时.【点睛】本题考查的知识点主要是根据题意列分式方程并求解,找出题目中的等量关系式是解题的关键.12.一件工程,甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做 20 天,剩下的工程再由甲、乙两队合作 60天完成. (1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为 8.6 万元,乙队每天的施工费用为 5.4 万元,工程预算的施工费用为 1000 万元,若在甲、乙工程队工作效率不变的情况下使施工时间最短,问安排预算的施工费用是否够用?若不够用,需追加预算多少万元?【答案】(1)甲、乙两队单独完成这项工程分别需120天、180天 (2)工程预算的施工费用不够用,需追加预算8万元 【解析】试题分析:(1)首先表示出甲、乙两队需要的天数,进而利用由甲队先做20天,剩下的工程再由甲、乙两队合作60天完成得出等式求出答案; (2)首先求出两队合作需要的天数,进而求出答案.试题解析:解:(1)设乙队单独完成这项工程需要x 天,则甲队单独完成这项工程需要23x 天. 根据题意,得201160()12233x x x ++=,解得:x =180.经检验,x =180是原方程的根,∴23x =23×180=120,答:甲、乙两队单独完成这项工程分别需120天和180天;(2)设甲、乙两队合作完成这项工程需要y 天,则有11()1120180y +=,解得 y =72. 需要施工费用:72×(8.6+5.4)=1008(万元).∵1008>1000,∴工程预算的施工费用不够用,需追加预算8万元.点睛:此题主要考查了分式方程的应用以及一元一次方程的应用,正确得出等量关系是解题关键.13.阅读理解:把一个分式写成两个分式的和叫做把这个分式表示成部分分式.如何将2131xx --表示成部分分式? 设分式2131x x --=11m nx x +-+,将等式的右边通分得:(1)(1)(1)(1)m x n x x x ++-+-=()(1)(1)m n x m n x x ++-+-,由2131x x --=()(1)(1)m n x m nx x ++-+-得:31m n m n +=-⎧⎨-=⎩,解得:12m n =-⎧⎨=-⎩,所以2131x x --=1211x x --+-+. (1)把分式1(2)(5)x x --表示成部分分式,即1(2)(5)x x --=25m nx x +--,则m = ,n = ; (2)请用上述方法将分式43(21)(2)x x x -+-表示成部分分式.【答案】(1)13-,13;(2)21212x x ++-.【解析】 【分析】仿照例子通分合并后,根据分子的对应项的系数相等,列二元一次方程组求解. 【详解】 解:(1)∵()()()522525m n x m n m n x x x x +--+=----, ∴0521m n m n +=⎧⎨--=⎩,解得:1313m n ⎧=-⎪⎪⎨⎪=⎪⎩. (2)设分式()()43212x x x -+-=212m nx x ++-将等式的右边通分得:()()()()221212m x n x x x -+++-=()()()22212m n x m n x x +-++-,由()()43212x x x -+-=()()()22212m n x m nx x +-++-, 得2423m n m n +=⎧⎨-+=-⎩,解得21m n =⎧⎨=⎩. 所以()()43212x x x -+-=21212x x ++-.14.阅读下面的解题过程:已知2113x x =+,求241x x +的值。
八年级上册数学 分式填空选择单元测试卷(解析版)一、八年级数学分式填空题(难)1.当m =___________________时,关于x 的分式方程223242mx x x x +=--+无解 【答案】m=1、m=-4或m=6.【解析】【分析】方程两边都乘以(x+2)(x-2)把分式方程化为整式方程,当分式方程有增根或分式方程化成的整式方程无解时原分式方程无解,根据这两种情形即可计算出m 的值.【详解】解:方程两边都乘以(x+2)(x-2)去分母得,2(x+2)+mx=3(x-2),整理得(1-m )x=10,∴当m=1时,此整式方程无解,所以原分式方程也无解.又当原分式方程有增根时,分式方程也无解,∴当x=2或-2时原分式方程无解,∴2(1-m )=10或-2(1-m )=10,解得:m=-4或m=6,∴当m=1、m=-4或m=6时,关于x 的方程223242mx x x x +=--+无解. 【点睛】本题考查了分式方程的无解条件.分式方程无解有两种情形:一是分式方程有增根;二是分式方程化成的整式方程无解.2.已知==x y n 为正整数),则当=n ______时,22101012902018x y xy +-+=.【答案】3【解析】【分析】根据分式的分母有理化把x 、y 化简,利用完全平方公式把原式变形,计算即可.【详解】解:221===+-x n221===++y n 1=xy ,2222221010129020181010129020181010+-+=+-+=+x y xy x y x y2222194019421942=+=++=+x y x xy y2()196+=x y ,14+=x y则212114+-++=n n ,解得,3n =,故答案为3.【点睛】考查的是分式的化简求值、完全平方公式,掌握分式的分母有理化的一般步骤是解题的关键.3.已知关于x 的方程12x a x +=--有解且大于0,则a 的取值范围是_____. 【答案】a <2 且 a ≠-2【解析】【分析】 分式方程去分母转化为整式方程,求出整式方程的解,令其解大于0,列出关于a 的不等式,求出不等式的解集,即可得到a 的范围.【详解】解:原分式方程去分母得:x+a=-x+2,解得:22a x -=, 根据题意得:22a ->0且22a -≠2, 解得:a<2,a ≠-2.故答案为:a<2,a ≠-2.【点睛】 本题考查了分式方程的解,弄清题意和理解分式有意义的条件是解本题的关键.4.若方程256651130x x k x x x x ---=---+的解不大于13,则k 的取值范围是__________. 【答案】15k ≤且k ≠±1.【解析】【分析】 通过去分母去括号,移项,合并同类项,求出112k x +=,结合条件,列出关于k 的不等式组,即可求解.【详解】256651130x x k x x x x ---=---+ 方程两边同乘以(x-6)(x-5),得:22(5)(6)x x k ---=,去括号,移项,合并同类项,得:211x k =+, 解得:112k x +=, ∵方程256651130x x k x x x x ---=---+的解不大于13,且x≠6,x≠5, ∴11132k +≤且11115622k k ++≠≠,, ∴15k ≤且k ≠±1.故答案是:15k ≤且k ≠±1.【点睛】 本题主要考查含参数的分式方程的解法,掌握分式方程的解法,是解题的关键.5.若方程81877--=--x x x有增根,则增根是____________. 【答案】7【解析】 ∵分式方程81877x x x--=--有增根, ∴x-7=0,∴原方程增根为x=7,因此,本题正确答案是7.6.若32a b =,则a b a -的值为____________ 【答案】12-【解析】【分析】利用32a b =,在a b a -中,将b 用a 表示,约掉a 得到结果. 【详解】∵32a b =,∴3=2a b 代入a b a-得: 3122aa a -=-故答案为:12-【点睛】 本题考查分式的运算,解题关键是运用已知字母间的关系,将分式中的字母简化,以至可约分求得.7.已知11x y =3,则代数式21422x xy y x xy y ----的值为___. 【答案】4【解析】 【分析】由11x y-=3,得y x xy -=3即y-x=3xy,然后代入代数式,进行消元,即可得到结论. 【详解】 解:由11x y-=3,得y x xy -=3即y-x=3xy ,x-y=-3xy, 则21422x xy y x xy y ----=2()142x y xy x y xy ----=61432xy xy xy xy----=4 故答案为:4【点睛】本题主要考查代数式的求解,利用消元法是解决本题的关键.8.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__. 【答案】-1或5或13- 【解析】【分析】 直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【详解】去分母得:()443x m x m ++-=+,可得:()151m x m +=-,当10m +=时,一元一次方程无解,此时1m =-,当10m +≠时,则5141m x m -==±+,解得:5m =或13-.故答案为:1-或5或13-.【点睛】此题主要考查了分式方程的解,正确分类讨论是解题关键.9.当x =1时,分式x b x a -+无意义;当x =2时,分式23x b x a -+的值为0,则a +b =_____. 【答案】3【解析】【分析】先根据分式无意义的条件可求出a 的值,再根据分式值为0的条件可求出b 的值,最后将求出的a,b 代入计算即可.【详解】因为当1x =时,分式x b x a -+无意义, 所以10a +=,解得: 1a =-,因为当2x =时,分式23x b x a -+的值为零, 所以4020b a -=⎧⎨+≠⎩, 解得: 4b =,所以143,a b +=-+=故答案为:3.【点睛】本题主要考查分式无意义和分式值为0的条件,解决本题的关键是要熟练掌握分式无意义和分式值为0的条件.10.方程的解是_____________.【答案】x =2【解析】试题分析:此题是分式方程的解法问题,先把方程两边同乘以x-3,化为整式方程为2-x=(x-3)+1,再解这个整式方程求得x=2,然后把x=2代入x-3≠0,检验出x=2是原分式方程的解即可.故答案为:x=2.点睛:解分式方程的步骤为:1、确定最简公分母;2、方程两边同乘以最简公分母,化为整式方程;3、解整式方程;4、代入检验,确定是否为分式方程的解.二、八年级数学分式解答题压轴题(难)11.我们知道,假分数可以化为整数与真分数的和的形式,例如:76112333+==+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”. 例如:像33x x -+,23x x -,…这样的分式是假分式;像23x -,23x x -,…这样的分式是真分式. 类似的,假分式也可以化为整式与真分式的和(差)的形式. 例如:将分式2253x x x +-+拆分成一个整式与一个真分式的和(差)的形式. 方法一:解:由分母为3x +,可设225(3)()x x x x a b +-=+++则由22225(3)()33(3)(3)x x x x a b x ax x a b x a x a b +-=+++=++++=++++ 对于任意x ,上述等式均成立, ∴3235a a b +=⎧⎨+=-⎩,解得12a b =-⎧⎨=-⎩∴225(3)(1)2(3)(1)22133333x x x x x x x x x x x x +-+--+-==-=--+++++ 这样,分式2253x x x +-+就被拆分成一个整式与一个真分式的和(差)的形式. 方法二:解:2225332(3)(3)2(3)32213333333x x x x x x x x x x x x x x x x x x x +-+---+-+-++===--=--+++++++ 这样,分式2253x x x +-+就拆分成一个整式与一个真分式的和(差)的形式. (1)请仿照上面的方法,选择其中一种方法将分式2731x x x ---拆分成一个整式与一个真分式的和(差)的形式;(2)已知整数x 使分式225112x x x +-+的值为整数,求出满足条件的所有整数x 的值. 【答案】(1)961x x ---;(2)x=-1或-3或11或-15.【解析】【分析】(1)先变形2731x xx---=26691x x xx--+--,由“真分式”的定义,仿照例题即可得出结论;(2)先把分式化为真分式,再根据分式的值为整数确定整数x的值.【详解】解:(1)2731x xx---=26691x x xx--+--=(1)6(1)91x x xx-----=961 xx---;(2)225112x xx+-+=2242132x x xx+++-+=2(2)(2)132x x xx+++-+=13212xx+-+,∵x是整数,225112x xx+-+也是整数,∴x+2=1或x+2=-1或x+2=13或x+2=-13,∴x=-1或-3或11或-15.【点睛】本题考查了逆用整式和分式的加减法对分式进行变形.解决本题的关键是理解真分式的定义对分子进行拆分.12.八年级某同学在“五一”小长假中,随父母驾车去蜀南竹海观光旅游.去时走高等级公路,全程90千米;返回时,走高速公路,全程120千米.返回时的平均速度是去时平均速度的1.6倍,所用时间比去时少用了18分钟.求返回时的平均速度是多少千米每小时?【答案】返回时的平均速度是80千米/小时.【解析】分析:根据题意,设去时的平均速度是x千米/小时,找到等量关系:返回时所用时间比去时少用了18分钟,列分式方程求解即可.详解:设去时的平均速度是x千米/小时.由题:90120181.660 x x=+解得:50x=检验:50x =是原方程的解.并且,当50x =时,1.680x =,符合题意.答:返回时的平均速度是80千米/小时.点睛:此题主要考查了分式方程的应用,关键是确定问题的等量关系,根据等量关系列方程解答.13.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.甲工程队施工一天,需付工程款1万元;乙工程队施工一天,需付工程款0.6万元.根据甲、乙工程队的投标书测算,可有三种施工方案:(A )甲队单独完成这项工程,刚好如期完成;(B )乙队单独完成这项工程要比规定工期多用4天;(C )若甲、乙两队合做3天后,剩下的工程由乙队单独做,也正好如期完工. 为了节省工程款,同时又能如期完工,你认为应选择哪一种方案?并说明理由.【答案】为了节省工程款,同时又能如期完工,应选C 方案.【解析】试题分析:设完成工程规定工期为x 天,根据等量关系:甲、乙两队合做3天后,剩下的工程由乙队单独做,也正好如期完工,列方程,求解即可得到甲、乙工程队单独完成所需的天数,然后求出每种方案所需的工程款,比较即可得出结论.试题解析:解:设完成工程规定工期为x 天,依题意得: 1133()144x xx x -++=++ 解得:x =12. 经检验,x =12符合原方程和题意,∴x +4=16.∴甲工程队单独完成需12天,乙工程队单独完成需16天.∵B 方案不能按时完成,∴要舍弃.A 方案的工程款为12×1=12(万元),C 方案的工程款为3×1+12×0.6=10.2(万元), ∴应选C 方案.答:为了节省工程款,同时又能如期完工,应选C 方案.14.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同. (1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?【答案】(1)甲,乙两种玩具分别是15元/件,25元/件;(2)共有四种方案.【解析】【分析】(1)设甲种玩具进价x 元/件,则乙种玩具进价为(40﹣x )元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.【详解】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,x=15,经检验x=15是原方程的解.∴40﹣x=25.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<24.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.考点:分式方程的应用;一元一次不等式组的应用.15.某商家用1200元购进了一批T恤,上市后很快售完,商家又用2800元购进了第二批这种T恤,所购数量是第一批购进量的2倍,但单价贵了5元.(1)该商家购进的第一批T恤是多少件?(2)若两批T恤按相同的标价销售,最后剩下20件按八折优惠卖出,如果希望两批T恤全部售完的利润率不低于16%(不考虑其它因素),那么每件T恤的标价至少是多少元?【答案】(1)商家购进的第一批恤是40件;(2)每件恤的标价至少40元.【解析】【分析】(1)可设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,根据第二批这种衬衫单价贵了5元,列出方程求解即可;(2)设每件衬衫的标价y元,求出利润表达式,然后列不等式解答.【详解】(1)解:设购进的第一批恤是x件.由题意,得1200280052x x=-解得x=40.经检验,x=40是所列方程的解.所以商家购进的第一批恤是40件.(2)设每件的标价是y元由题意,(40+40×2-20)y+0.8×20y≥(1200+2800)(1+16%)解得y≥40.即每件恤的标价至少40元.【点睛】本题考查的知识点是分式方程的应用和一元一次不等式的应用,解题关键是弄清题意并找出题中的数量关系并列出方程.。
八年级数学上册 分式填空选择单元测试卷附答案一、八年级数学分式填空题(难)1.下列结论:①不论a 为何值时21a a +都有意义;②1a =-时,分式211a a +-的值为0;③若211x x +-的值为负,则x 的取值范围是1x <;④若112x x x x ++÷+有意义,则x 的取值范围是x ≠﹣2且x ≠0.其中正确的是________【答案】①③【解析】【分析】根据分式有意义的条件对各式进行逐一分析即可.【详解】①正确.∵a 不论为何值不论a 2+2>0,∴不论a 为何值21a a +都有意义; ②错误.∵当a =﹣1时,a 2﹣1=1﹣1=0,此时分式无意义,∴此结论错误; ③正确.∵若211x x +-的值为负,即x ﹣1<0,即x <1,∴此结论正确; ④错误,根据分式成立的意义及除数不能为0的条件可知,若112x x x x++÷+有意义,则x 的取值范围是即20010x x x x⎧⎪+≠⎪≠⎨⎪+⎪≠⎩,x ≠﹣2,x ≠0且x ≠﹣1,故此结论错误.故答案为:①③.【点睛】本题考查的是分式有意义的条件,解答此题要注意④中除数不能为0,否则会造成误解.2.对于x >0,规定()1x f x x =+,例如122112(2),12132312f f ⎛⎫==== ⎪+⎝⎭+,那么12019f ⎛⎫ ⎪⎝⎭1120182017f f ⎛⎫⎛⎫++⋯ ⎪ ⎪⎝⎭⎝⎭1(1)(2)(2019)2f f f f ⎛⎫++++⋯+ ⎪⎝⎭=_________ 【答案】201812【解析】【分析】根据f (x )求出f (1x ),进而得到f (x )+f (1x)=1,原式结合后,计算即可求出值. 【详解】 解:∵x >0,规定()1x f x x =+, ∴111111x f x x x⎛⎫== ⎪+⎝⎭+,即1111()1,(1)1112x x f x f f x x x x +⎛⎫+=+=== ⎪+++⎝⎭, 则原式=1111(2019)(2018)(2)(1)20182019201822f f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫++++⋯+++= ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦,故答案为:201812. 【点睛】此题考查了分式的加减法,以及规律型:数字的变化类,熟练掌握运算法则是解本题的关键.3.计算:()()()()()()()11111122320182019x x x x x x x x ++++=+++++++________________. 【答案】()20192019x x + 【解析】【分析】利用裂项法先将每个分式化简,再将结果相加即可.【详解】∵111(1)1x x x x =-++, 111(1)(2)12x x x x =-++++ 111(2)(3)23x x x x =-++++ ……111(2018)(2019)20182019x x x x =-++++∴原式=11111111()()()()1122320182019x x x x x x x x -+-+-+⋅⋅⋅+-+++++++ =112019x x -+ =()20192019x x +. 【点睛】此题考察分式的混合运算,运用裂项法将每个分式化简是解题的关键.4.若关于x 的分式方程12x -﹣3a x -=2256x x -+无解,求a=______. 【答案】-1或2【解析】 ∵12x -﹣3a x -=2256x x -+, ∴12x -+3a x -=()223x x --() ∵方程无解,∴(x -2)(x -3)=0, ∴x =2由x =3.5.若方程81877--=--x x x有增根,则增根是____________. 【答案】7【解析】 ∵分式方程81877x x x--=--有增根, ∴x-7=0,∴原方程增根为x=7,因此,本题正确答案是7.6.当x =1时,分式x b x a -+无意义;当x =2时,分式23x b x a -+的值为0,则a +b =_____. 【答案】3【解析】【分析】先根据分式无意义的条件可求出a 的值,再根据分式值为0的条件可求出b 的值,最后将求出的a,b 代入计算即可.【详解】因为当1x =时,分式x b x a-+无意义, 所以10a +=,解得: 1a =-,因为当2x =时,分式23x b x a-+的值为零, 所以4020b a -=⎧⎨+≠⎩, 解得: 4b =,所以143,a b +=-+=故答案为:3.【点睛】本题主要考查分式无意义和分式值为0的条件,解决本题的关键是要熟练掌握分式无意义和分式值为0的条件.7.关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是___________. 【答案】2?m >且3m ≠.【解析】【分析】方程两边同乘以x-1,化为整数方程,求得x ,再列不等式得出m 的取值范围.【详解】方程两边同乘以x-1,得,m-3=x-1,解得x=m-2,∵分式方程3111m x x+=--的解为正数, ∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m >2且m≠3,故答案为m >2且m≠3.8.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.【答案】28【解析】设这种电子产品的标价为x 元,由题意得:0.9x −21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.9.已知关于x 的方程232x m x +=-的解是正数,则m 的取值范围是__________.【答案】m >-6且m ≠-4【解析】试题分析:分式方程去分母转化为整式方程,表示出x ,根据x 为正数列出关于m 的不等式,求出不等式的解集即可确定出m 的范围.试题解析:分式方程去分母得:2x+m=3(x-2),解得:x=m+6,根据题意得:x=m+6>0,且m+6≠2,解得:m >-6,且m≠-4.考点: 分式方程的解.10.满足222210105,4b a a b a b a b+=+=++的整数对(),a b 的组数为 _________________ ; 【答案】2【解析】【分析】将两式联立组成方程组,先将两式相减,再根据题意a 、b 均为整数,得出新的方程组求出满足条件的解,再数出满足条件的个数即可.【详解】 解:2222105104b a a b a b a b ⎧+=⎪⎪+⎨⎪+=⎪+⎩①② 由①-②得()22101b a a b a b--+=+ ()221010a b a b a b----=+ 去分母,并整理得()()()()()()()()222222110011011011010a b a b a b a b a b a b a b a b --+--=--+---=--+-=因为,a b 为整数,所以有22111010a b a b --=⎧⎨+-=⎩①②221-110-10a b a b --=⎧⎨+-=⎩③22110101a b a b --=⎧⎨+-=⎩④221-1010-1a b a b --=⎧⎨+-=⎩⑤2212105a b a b --=⎧⎨+-=⎩⑥221-210-5a b a b --=⎧⎨+-=⎩⑦221-510-2a b a b --=⎧⎨+-=⎩⑧2215102a b a b --=⎧⎨+-=⎩解方程组①得,42a b =⎧⎨=⎩或24a b =-⎧⎨=-⎩;解方程组②得,0a b ;解方程组③得,此方程组无解;解方程组④得,此方程组无解;解方程组⑤得,无整数解;解方程组⑥得,12a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩解方程组⑦得,22a b =-⎧⎨=⎩解方程组⑧得,无整数解;将求出的解代入原方程,42a b =⎧⎨=⎩或12a b =⎧⎨=⎩是原方程的解 所以满足题意的数对有(1,2)或(4,2)故答案为:2.【点睛】本题考查了分式方程的整数解的特殊解法,认真审题,弄清题意是解决本题的关键.二、八年级数学分式解答题压轴题(难)11.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当0a >,0b >时,∵2()20a b a ab b -=-+≥,∴2a b ab +≥,当且仅当a b =时取等号.请利用上述结论解决以下问题:(1)当0x >时,1x x +的最小值为_______;当0x <时,1x x+的最大值为__________. (2)当0x >时,求2316x x y x++=的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2,-2;(2)11;(3)25【解析】【分析】(1)当x >0时,按照公式a=b 时取等号)来计算即可;x <0时,由于-x >0,-1x>0,则也可以按照公式a=b 时取等号)来计算; (2)将2316x x y x++=的分子分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,四边形ABCD 的面积用含x 的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可.【详解】解:(1)当x >0时,12x x +≥= 当x <0时,11x x x x ⎛⎫+=--- ⎪⎝⎭∵12x x --≥= ∴12x x ⎛⎫---≤- ⎪⎝⎭∴当0x >时,1x x +的最小值为2;当0x <时,1x x+的最大值为-2; (2)由2316163x x y x x x++==++ ∵x >0,∴163311y x x =++≥= 当16x x= 时,最小值为11; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD∴x :9=4:S △AOD∴:S △AOD =36x∴四边形ABCD 面积=4+9+x+361325x ≥+= 当且仅当x=6时取等号,即四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大.12.我们知道,假分数可以化为整数与真分数的和的形式,例如:76112333+==+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”. 例如:像33x x -+,23x x -,…这样的分式是假分式;像23x -,23x x-,…这样的分式是真分式. 类似的,假分式也可以化为整式与真分式的和(差)的形式. 例如:将分式2253x x x +-+拆分成一个整式与一个真分式的和(差)的形式. 方法一:解:由分母为3x +,可设225(3)()x x x x a b +-=+++则由22225(3)()33(3)(3)x x x x a b x ax x a b x a x a b +-=+++=++++=++++ 对于任意x ,上述等式均成立,∴3235a a b +=⎧⎨+=-⎩,解得12a b =-⎧⎨=-⎩∴225(3)(1)2(3)(1)22133333x x x x x x x x x x x x +-+--+-==-=--+++++ 这样,分式2253x x x +-+就被拆分成一个整式与一个真分式的和(差)的形式. 方法二:解:2225332(3)(3)2(3)32213333333x x x x x x x x x x x x x x x x x x x +-+---+-+-++===--=--+++++++ 这样,分式2253x x x +-+就拆分成一个整式与一个真分式的和(差)的形式. (1)请仿照上面的方法,选择其中一种方法将分式2731x x x ---拆分成一个整式与一个真分式的和(差)的形式;(2)已知整数x 使分式225112x x x +-+的值为整数,求出满足条件的所有整数x 的值. 【答案】(1)961x x ---;(2)x=-1或-3或11或-15. 【解析】【分析】 (1)先变形2731x x x ---=26691x x x x --+--,由“真分式”的定义,仿照例题即可得出结论; (2)先把分式化为真分式,再根据分式的值为整数确定整数x 的值. 【详解】 解:(1)2731x x x ---=26691x x x x --+-- =(1)6(1)91x x x x ----- =961x x ---; (2)225112x x x +-+= 2242132x x x x +++-+ =2(2)(2)132x x x x +++-+ =13212x x +-+, ∵x 是整数,225112x x x +-+也是整数, ∴x+2=1或x+2=-1或x+2=13或x+2=-13,∴x=-1或-3或11或-15.【点睛】本题考查了逆用整式和分式的加减法对分式进行变形.解决本题的关键是理解真分式的定义对分子进行拆分.13.阅读理解: 把一个分式写成两个分式的和叫做把这个分式表示成部分分式.如何将2131x x --表示成部分分式?设分式2131x x --=11m n x x +-+,将等式的右边通分得:(1)(1)(1)(1)m x n x x x ++-+-=()(1)(1)m n x m n x x ++-+-,由2131x x --= ()(1)(1)m n x m n x x ++-+-得:31m n m n +=-⎧⎨-=⎩,解得:12m n =-⎧⎨=-⎩,所以2131x x --=1211x x --+-+. (1)把分式1(2)(5)x x --表示成部分分式,即1(2)(5)x x --=25m n x x +--,则m = ,n = ;(2)请用上述方法将分式43(21)(2)x x x -+-表示成部分分式.【答案】(1)13-,13;(2)21212x x ++-. 【解析】【分析】 仿照例子通分合并后,根据分子的对应项的系数相等,列二元一次方程组求解.【详解】解:(1)∵()()()522525m n x m n m n x x x x +--+=----, ∴0521m n m n +=⎧⎨--=⎩, 解得:1313m n ⎧=-⎪⎪⎨⎪=⎪⎩. (2)设分式()()43212x x x -+-=212m n x x ++-将等式的右边通分得:()()()()221212m x n x x x -+++-=()()()22212m n x m n x x +-++-, 由()()43212x x x -+-=()()()22212m n x m n x x +-++-, 得2423m n m n +=⎧⎨-+=-⎩, 解得21m n =⎧⎨=⎩. 所以()()43212x x x -+-=21212x x ++-.14.有甲、乙两名采购员去同一家公司分别购买两次饲料,两次购买的饲料价格分别为m 元/千克和n 元/千克,且m≠n ,两名采购员的采购方式也不同,其中甲每次购买800千克,乙每次用去800元,而不管购买多少千克的饲料。
八年级数学上册 分式填空选择单元测试卷 (word 版,含解析)一、八年级数学分式填空题(难)1.已知:x 满足方程11200620061x x =--,则代数式2004200620052007x x -+的值是_____. 【答案】20052007-【解析】 因为11200620061xx =--,则200420062005200520062006001120072007x x x x x x x --=⇒=⇒=⇒=---+ . 故答案:20052007-.2.若方程81877--=--x x x有增根,则增根是____________. 【答案】7【解析】 ∵分式方程81877x x x--=--有增根, ∴x-7=0,∴原方程增根为x=7,因此,本题正确答案是7.3.函数y =x 的取值范围是______. 【答案】23x -<≤【解析】【分析】根据二次根式及分式有意义的条件,结合所给式子得到关于x 的不等式组,解不等式组即可求出x 的取值范围.【详解】由题意得,30200x x ⎧-≥⎪+≥⎨≠, 解得:-2<x≤3,故答案为:-2<x≤3.【点睛】本题考查了二次根式及分式有意义的条件,注意掌握二次根式有意义:被开方数为非负数,分式有意义分母不为零.4.已知11x y =3,则代数式21422x xy y x xy y----的值为___. 【答案】4【解析】 【分析】由11x y-=3,得y x xy -=3即y-x=3xy,然后代入代数式,进行消元,即可得到结论. 【详解】 解:由11x y -=3,得y x xy -=3即y-x=3xy ,x-y=-3xy, 则21422x xy y x xy y ----=2()142x y xy x y xy ----=61432xy xy xy xy----=4 故答案为:4【点睛】本题主要考查代数式的求解,利用消元法是解决本题的关键.5.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__. 【答案】-1或5或13- 【解析】【分析】 直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【详解】去分母得:()443x m x m ++-=+,可得:()151m x m +=-,当10m +=时,一元一次方程无解,此时1m =-,当10m +≠时,则5141m x m -==±+, 解得:5m =或13-.故答案为:1-或5或13-.【点睛】此题主要考查了分式方程的解,正确分类讨论是解题关键.6.若关于x 的分式方程2222x m m x x +=--有增根,则m 的值为_______. 【答案】1【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母20x -=,得到2x =,然后代入化为整式方程的方程算出m 的值.【详解】解:方程两边都乘2x =,得22(2)x m m x -=-∵原方程有增根,∴最简公分母20x -=,解得2x =,当2x =时,1m =故m 的值是1,故答案为1【点睛】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7.当x 取_____时,分式1111x x x+--有意义. 【答案】x≠0且x≠±1【解析】分析:要想使分式有意义,那么分式的分母就不能为0,据此列出关于x 的不等式组,解不等式组即可求得x 的取值范围. 详解:由题意可知,只有当:0101101x x x x x x ⎧⎪⎪≠⎪⎪-≠⎨⎪+⎪-≠⎪-⎪⎩时,原分式才有意义,解得:011x x x ≠⎧⎪≠±⎨⎪≠-⎩,即当x ≠0且x ≠±1时,原分式有意义.故答案为:x ≠0且x ≠±1.点睛:本题主要考查了分式有意义的条件,要求掌握.对于任意一个分式,分母都不能为0,否则分式无意义.解此类问题,只要令分式中分母不等于0,求得字母的取值即可. 本题的难点在于,题中是一个繁分式,需一层一层分析,x 是1x的分母,所以x ≠0; x ﹣1x 是11x x x +-的分母,所以x ﹣1x ≠0;1﹣11x x x+-又是整个分式的分母,因此1﹣11xx x+-≠0.繁分式的有关知识超出初中教材大纲要求,只在竞赛中出现.8.若关于x 的方程233x m x x =+--无解.则m =________. 【答案】3【解析】【分析】先去分母得到整式方程x=2(x-3)+m ,整理得x+m=6,由于关于x 的方程233x m x x =+--无解,则x-3=0,即x=3,然后把x=3代入x+m=6即可求出m 的值.【详解】去分母得x=2(x−3)+m ,整理得x+m=6,∵关于x 的方程233x m x x =+--无解. ∴x−3=0,即x=3,∴3+m=6,∴m=3.故答案为:3.【点睛】此题考查分式方程的解,解题关键在于利用方程无解进行解答.9.化简:(a +2+52a -)243a a -⋅+=_______. 【答案】2a ﹣6【解析】【分析】先计算括号,进行通分,后按同分母加减计算,再计算乘除,约分即可.【详解】原式=24524()223a a a a a ---⋅--+ =292(2)23a a a a --⋅-+ =(3)(3)2(2)23a a a a a +--⋅-+ =2(a ﹣3)=2a ﹣6.故答案为2a ﹣6.【点睛】 本题考查分式的混合运算,解题的关键是记住分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.10.满足222210105,4b a a b a b a b+=+=++的整数对(),a b 的组数为 _________________ ; 【答案】2【解析】【分析】将两式联立组成方程组,先将两式相减,再根据题意a 、b 均为整数,得出新的方程组求出满足条件的解,再数出满足条件的个数即可.【详解】 解:2222105104b a a b a b a b ⎧+=⎪⎪+⎨⎪+=⎪+⎩①② 由①-②得()22101b a a b a b--+=+ ()221010a b a b a b----=+ 去分母,并整理得()()()()()()()()222222110011011011010a b a b a b a b a b a b a b a b --+--=--+---=--+-=因为,a b 为整数,所以有22111010a b a b --=⎧⎨+-=⎩①②221-110-10a b a b --=⎧⎨+-=⎩③22110101a b a b --=⎧⎨+-=⎩④221-1010-1a b a b --=⎧⎨+-=⎩⑤2212105a b a b --=⎧⎨+-=⎩⑥221-210-5a b a b --=⎧⎨+-=⎩⑦221-510-2a b a b --=⎧⎨+-=⎩⑧2215102a b a b --=⎧⎨+-=⎩解方程组①得,42a b =⎧⎨=⎩或24a b =-⎧⎨=-⎩; 解方程组②得,0a b ;解方程组③得,此方程组无解;解方程组④得,此方程组无解;解方程组⑤得,无整数解;解方程组⑥得,12a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩解方程组⑦得,22a b =-⎧⎨=⎩解方程组⑧得,无整数解;将求出的解代入原方程,42a b =⎧⎨=⎩或12a b =⎧⎨=⎩是原方程的解 所以满足题意的数对有(1,2)或(4,2)故答案为:2.【点睛】本题考查了分式方程的整数解的特殊解法,认真审题,弄清题意是解决本题的关键.二、八年级数学分式解答题压轴题(难)11.某市为了做好“全国文明城市”验收工作,计划对市区S 米长的道路进行改造,现安排甲、乙两个工程队进行施工.(1)已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米,求甲、乙两工程队每天改造道路的长度各是多少米.(2)若甲工程队每天可以改造a 米道路,乙工程队每天可以改造b 米道路,(其中a b ).现在有两种施工改造方案: 方案一:前12S 米的道路由甲工程队改造,后12S 米的道路由乙工程队改造; 方案二:完成整个道路改造前一半时间由甲工程队改造,后一半时间由乙工程队改造. 根据上述描述,请你判断哪种改造方案所用时间少?并说明理由.【答案】(1)甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;(2)方案二所用的时间少【解析】【分析】(1)设乙工程队每天道路的长度为x 米,根据“甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同”,列出分式方程,即可求解;(2)根据题意,分别表示出两种方案所用的时间,再作差比较大小,即可得到结论.【详解】(1)设乙工程队每天道路的长度为x 米,则甲工程队每天道路的长度为()30x +米, 根据题意,得:36030030x x=+, 解得:150x =,检验,当150x =时,()300x x +≠,∴原分式方程的解为:150x =,30180x +=,答:甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;(2)设方案一所用时间为:111()222s s a b s t a b ab+=+=, 方案二所用时间为2t ,则221122t a t b s +=,22s t a b=+, ∴22()22()a b a b S S S ab a b ab a b +--=++, ∵a b ,00a b >>,,∴()20a b ->, ∴202a b S S ab a b+->+,即:12t t >, ∴方案二所用的时间少.【点睛】本题主要考查分式方程的实际应用以及分式的减法法则,找出等量关系,列分式方程,掌握分式的通分,是解题的关键.12.阅读下面的解题过程:已知2113x x =+,求241x x +的值。
八年级数学上册 分式填空选择单元测试题(Word 版 含解析)一、八年级数学分式填空题(难)1.若关于x 的分式方程1x a x -+=a 无解,则a 的值为____. 【答案】1或-1【解析】根据方程无解,可让x+1=0,求出x=-1,然后再化为整式方程可得到x-a=a (x+1),把x=-1代入即可求得-1-a=(-1+1)×a ,解答a=-1;当a=1时,代入可知方程无解.故答案为1或-1.2.若222222M ab b a b a b a b a b---=--+,则M =________. 【答案】2a【解析】【分析】把等式两边变为同分母的分式,分母相同分子也相同,即可得出答案·. 【详解】222222M ab b a b a b ---- =2222M ab b a b-+- a b a b -+=2()()()a b a b a b -+-=22222a ab b a b-+-, 22222M ab b a ab b -+=-+所以M=2a故答案为:2a【点睛】本题考查分式的减法运算、平方差公式、完全平方公式,利用等式两边分母相同,分子也相同求解是解题的关键.3.已知a 1=1t t+,a 2=111a -,a 3=211a -,…,a n +1=11n a - (n 为正整数,且t≠0,1),则a 2018=______(用含有t 的式子表示).【答案】1+t【解析】分析:把a 1代入确定出a 2,把a 2代入确定出a 3,依此类推,得到一般性规律,即可确定出a 2018的值.详解:根据题意得:a 1=1t t +,a 2=1111t t t=+-+,a 3=411111111t a t t t t=-==--++,…,2018÷3=672…2,∴a 2018的值为1+t . 故答案为:1+t .点睛:本题考查了分式的混合运算,弄清题中的规律是解答本题的关键.4.已知210a a --=,且423223215211a xa a xa a -+=-+-,则x =______. 【答案】27【解析】【分析】先根据a 2-a-1=0,得出a 2,a 3,a 4的值,然后将等式化简求解.【详解】解:由题意可得a 2−a−1=0∴a 2=a+1 ∴a 4=(a 2)2=(a+1)2=a 2+2a+1=a+1+2a+1=3a+2,a 3=a ⋅a 2=a(a+1)=a 2+a=a+1+a=2a+1, ∵423223215211a xa a xa a -+=-+- ∴2264321521211a a a a x x a +-+=-++- 22663151211a a x x a a +-∴=-++ ()()22116631512a a x a a x ⨯+-=-⨯++整理得()2-38110ax a +⨯+=∴381x = 27x ∴=故答案为:27.【点睛】本题主要考查了分解分式方程,通知所学知识对a 2,a 3,a 4进行变形是解题的关键.5.若关于x 的分式方程333x a x x +--=2a 无解,则a 的值为_____. 【答案】1或12【解析】分析:直接解分式方程,再利用当1-2a=0时,当1-2a≠0时,分别得出答案.详解:去分母得:x-3a=2a (x-3),整理得:(1-2a )x=-3a ,当1-2a=0时,方程无解,故a=12; 当1-2a≠0时,x=312a a --=3时,分式方程无解, 则a=1,故关于x 的分式方程333x a x x +-+=2a 无解,则a 的值为:1或12. 故答案为1或12. 点睛:此题主要考查了分式方程的解,正确分类讨论是解题关键.6.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____. 【答案】5a <且3a ≠【解析】【分析】直接解分式方程,进而利用分式方程的解是正数得出a 的取值范围,进而结合分式方程有意义的条件分析得出答案.【详解】去分母得:122a x -+=-,解得:5x a =-,50a ->,解得:5a <,当52x a =-=时,3a =不合题意,故5a <且3a ≠.故答案为:5a <且3a ≠.【点睛】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键.7.若11a b+=3,则22a b a ab b +-+的值为_____. 【答案】35【解析】【分析】 由113a b +=,可得3a b ab +=,即b+a=3ab ,整体代入22a b a ab b+-+即可求解. 【详解】∵113a b+=, ∴3a b ab +=,即b+a=3ab ∴22a b a ab b +-+=3ab 6ab ab -=3ab 5ab =35. 【点睛】 本题考查了分式的化简求值,利用整体代入求值是解决本题的关键.8.当x 取_____时,分式1111x x x+--有意义. 【答案】x≠0且x≠±1【解析】分析:要想使分式有意义,那么分式的分母就不能为0,据此列出关于x 的不等式组,解不等式组即可求得x 的取值范围. 详解:由题意可知,只有当:0101101x x x x x x ⎧⎪⎪≠⎪⎪-≠⎨⎪+⎪-≠⎪-⎪⎩时,原分式才有意义,解得:011x x x ≠⎧⎪≠±⎨⎪≠-⎩,即当x ≠0且x ≠±1时,原分式有意义.故答案为:x ≠0且x ≠±1.点睛:本题主要考查了分式有意义的条件,要求掌握.对于任意一个分式,分母都不能为0,否则分式无意义.解此类问题,只要令分式中分母不等于0,求得字母的取值即可. 本题的难点在于,题中是一个繁分式,需一层一层分析,x 是1x的分母,所以x ≠0; x ﹣1x 是11x x x +-的分母,所以x ﹣1x ≠0;1﹣11x x x+-又是整个分式的分母,因此1﹣11xx x+-≠0.繁分式的有关知识超出初中教材大纲要求,只在竞赛中出现.9.已知a 是方程x 2﹣2018x+1=0的一个根a ,则a 2﹣2017a+220181a +的值为_____. 【答案】2017【解析】试题解析:根据题意可知:a 2﹣2018a+1=0,∴a 2+1=2018a ,a 2﹣2017a=a ﹣1,∴原式=a 2﹣2017a+1a=a ﹣1+1a =21a a+﹣1 =2018﹣1=2017故答案为201710.关于x 的分式方程111x k k x x +-=+-的解为非负数,则k 的取值范围为_____. 【答案】k ≤12且k ≠0 【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为非负数求出k 的范围即可.【详解】解:去分母得:(x +k )(x ﹣1)﹣k (x +1)=(x +1)(x ﹣1),整理得:x 2﹣x +kx ﹣k ﹣kx ﹣k =x 2﹣1,解得:x =1﹣2k ,∵分式方程的解为非负数,得到1﹣2k ≥0,且1﹣2k ≠1,解得:k ≤12且k ≠0, 故答案为:k ≤12且k ≠0 【点睛】此题考查了分式方程的解的定义,方程的解即为能使方程左右两边相等的未知数的值.此题方程的解为非负数,即为x ≥0且x ≠1.其中x ≠1容易漏掉,为易错点.二、八年级数学分式解答题压轴题(难)11.某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导.(1)甲、乙两个工厂每天各能加工多少件产品?(2)该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?【答案】(1)甲工厂每天加工16件产品,则乙工厂每天加工24件;(2)乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【解析】【分析】(1)此题的等量关系为:乙工厂每天加工产品的件数=甲工厂每天加工产品的件数+8;甲工厂单独加工48件产品的时间=乙工厂单独加工72件产品的时间,设未知数,列方程求出方程的解即可;(2)先分别求出甲乙两工厂单独加工这批新产品所需时间,再求出甲工厂所需费用,然后根据乙工厂所需费用要小于甲工厂所需费用,设未知数,列不等式,再求出不等式的最大整数解即可.【详解】(1)设甲工厂每天加工x件产品,则乙工厂每天加工(x+8)件产品,根据题意得:48728x x=+,解得:x=16,检验:x(x+8)=16(16+8)≠0,∴x=16是原方程的解,∴x+8=16+8=24,答:甲工厂每天加工16件产品,则乙工厂每天加工24件.(2)解:甲工厂单独加工这批新产品所需时间为:960÷16=60,所需费用为:60×800+50×60=51000,乙工厂单独加工这批新产品所需时间为:960÷24=40,解:设乙工厂向公司报加工费用每天最多为y元时,有望加工这批产品则:40y+40×50≤51000解之y≤1225∴y的最大整数解为:y=1225答:乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【点睛】本题考查分式方程的应用,涉及到的公式:工作总量=工作效率×工作时间;分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.12.观察下列等式:1 12⨯=1-12,123⨯=12-13,134⨯=13-14.将以上三个等式的两边分别相加,得:1 12⨯+123⨯+134⨯=1-12+12-13+13-14=1-14=34.(1)直接写出计算结果:112⨯+123⨯+134⨯+…+()11n n +=________. (2)仿照112⨯=1-12, 123⨯=12-13, 134⨯=13-14的形式,猜想并写出: ()13n n +=________. (3)解方程: ()()()()()111333669218x x x x x x x ++=++++++. 【答案】1n n +;11133n n ⎛⎫- ⎪+⎝⎭【解析】 试题分析:本题考查分式的运算规律,通过所给等式,可以将(1)展开进行计算, (1)1 12⨯+123⨯+134⨯+…+()11n n +=11111111112233411n n n -+-+-+⋯+-=-++, =1n n +, (2)因为()()()11333333n n n n n n n n n n +-=-=++++=()133n n +, 所以,()1111 333n n n n ⎛⎫=- ⎪++⎝⎭, (3)根据(2)的结论将(3)中方程进行化简可得:()()()()()111333669218x x x x x x x ++=++++++, 1111111333669x x x x x x ⎡⎤-+-+-⎢⎥+++++⎣⎦=3218x +, 11139x x ⎡⎤-⎢⎥+⎣⎦=3218x +, 解得2x =,经检验, 2x =,是原分式方程的解.解:(1) 1n n + (2) 11133n n ⎛⎫- ⎪+⎝⎭(3)仿照(2)中的结论,原方程可变形为11111113(333669218x x x x x x x -+-+-=++++++, 即()111369x x =+,解得x =2.经检验,x =2是原分式方程的解.13.水蜜桃是无锡市阳山的特色水果,水蜜桃一上市,水果店的老板用2000元购进一批水密桃,很快售完;老板又用3300元购进第二批水蜜桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批水蜜桃每件进价是多少元?(2)老板以每件65元的价格销售第二批水蜜桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批水密桃的销售利润不少于288元,剩余的仙桃每件售价最多打几折?(利润=售价-进价)【答案】(1)50;(2)6折.【解析】【分析】(1)根据题意设第一批水蜜桃每件进价是x 元,利用第二批水密桃进价建立方程求解即可;(2)根据题意设剩余的仙桃每件售价最多打m 折,并建立不等式,求出其解集即可得出剩余的仙桃每件售价最多打几折.【详解】解:(1)设第一批水蜜桃每件进价是x 元,则有: 20003(5)33002x x ⨯⨯+=,解得50x =, 所以第一批水蜜桃每件进价是50元.(2)由(1)得出第二批水密桃的进价为:55元,数量为:33006055=件, 设剩余的仙桃每件售价最多打m 折,则有: 6580606065(180)3300288m ⨯⨯+⨯⨯--≥%%,解得0.6m ≥,即最多打6折.【点睛】本题考查分式方程的实际应用以及不等式的实际应用,理解题意并根据题意建立方程和不等式是解题的关键.14.某建设工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.【答案】(1)甲、乙两队单独完成这项工程各需要30天和60天(2)工程预算的施工费用不够用,需追加预算1万元【解析】【分析】(1)求的是工效,时间较明显,一定是根据工作总量来列等量关系,等量关系为:甲6天的工作总量+甲乙合作16天的工作总量=1;(2)应先算出甲乙合作所需天数,再算所需费用,和19万进行比较.【详解】解:(1)设甲队单独完成这项目需要x天,则乙队单独完成这项工程需要2x天,根据题意,得611161 x x2x⎛⎫++=⎪⎝⎭,解得x=30经检验,x=30是原方程的根,则2x=2×30=60答:甲、乙两队单独完成这项工程各需要30天和60天.(2)设甲、乙两队合作完成这项工程需要y天,则有11y13060⎛⎫+=⎪⎝⎭,解得y=20需要施工费用:20×(0.67+0.33)=20(万元)∵20>19,∴工程预算的施工费用不够用,需追加预算1万元.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.15.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款2.4万元,乙工程队工程款1万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用12天;(3)若甲,乙两队合做6天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.【答案】在不耽误工期的前提下,选第三种施工方案最节省工程款.【解析】【分析】关键描述语为:“甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成”;说明甲队实际工作了3天,乙队工作了x天完成任务,工作量=工作时间×工作效率等量关系为:甲3天的工作量+乙规定日期的工作量=1列方程.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.【详解】解:设规定日期为x 天.由题意得66611212x x x x -++=++, ∴6112x x x +=+, ∴2267212x x x x ++=+,∴12x =;经检验:x=12是原方程的根.方案(1):2.4×12=28.8(万元);方案(2)比规定日期多用12天,显然不符合要求;方案(3):2.4×6+1×12=26.4(万元).∵28.8>26.4,∴在不耽误工期的前提下,选第三种施工方案最节省工程款.【点睛】本题考查了分式方程的应用,找到合适的等量关系是解决问题的关键.在既有工程任务,又有工程费用的情况下.先考虑完成工程任务,再考虑工程费用.。
八年级上册分式填空选择单元测试卷 (word 版,含解析)一、八年级数学分式填空题(难)1.若222222M ab b a ba b a b a b---=--+,则M =________. 【答案】2a 【解析】 【分析】把等式两边变为同分母的分式,分母相同分子也相同,即可得出答案·. 【详解】222222M ab b a b a b ---- =2222M ab b a b-+- a b a b -+=2()()()a b a b a b -+-=22222a ab b a b -+-, 22222M ab b a ab b -+=-+所以M=2a 故答案为:2a 【点睛】本题考查分式的减法运算、平方差公式、完全平方公式,利用等式两边分母相同,分子也相同求解是解题的关键.2.如果实数x 、y 满足方程组30233x y x y +=⎧⎨+=⎩,求代数式(xy x y ++2)÷1x y +.【答案】1 【解析】解:原式=222()xy x y x y x y ++⋅++=xy +2x +2y ,方程组:30233x y x y +=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩,当x =3,y =﹣1时,原式=﹣3+6﹣2=1.故答案为1.点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.3.当m= __________ 时,关于x 的分式方程231062x m x x x +++=--+没有实数解. 【答案】4或-6 【解析】 【分析】先将分式方程化为整式方程,根据方程231062x m x x x +++=--+没有实数解会产生增根判断增根是x=3或x=-2,再把增根x=3或x=-2代入整式方程即可求出m 的值.【详解】解:方程231062x m x x x +++=--+变形为310(3)(2)2x m x x x +++=-++, 方程两边同时乘以(3)(2)x x -+去分母得:x+m+3+x-3=0; 整理得:2x+m=0∵关于x 的分式方程231062x m x x x +++=--+没有实数解. ∴分式方程有增根x=3或x=-2.把x=3和x=-2分别代入2x+m=0中 得m=-6或m=4. 【点睛】分式方程无解问题或增根问题可按如下步骤进行:①根据最简公分母确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.但也要注意,有时分式方程转化成的整式方程本身没有实数根,也是导致分式方程没有实数根的一种情况,所以要考虑全面,免得漏解.4.若关于x 的分式方程25x -=1-5m x -有增根,则m 的值为________【答案】-2 【解析】2155mx x =--- 方程两侧同时乘以最简公分母(x -5),得 ()25x m =--, 整理,得 7x m =+,即7m x =-. 令最简公分母x -5=0,得 x =5,∵x =5应该是整式方程7x m =+的解, ∴m =5-7=-2. 故本题应填写:-2. 点睛:本题考查了分式方程增根的相关知识. 一方面,增根使原分式方程去分母时所使用的最简公分母为零. 另一方面,增根还应该是原分式方程所转化成的整式方程的解. 因此,在解决这类问题时,可以通过令最简公分母为零得到增根的候选值,再利用原分式方程所转化成的整式方程检验这些候选值是否为该整式方程的解,从而确定增根. 在本题中,参数m 的值正是利用x =5满足整式方程这一结论求得的.5.若方程256651130x x kx x x x ---=---+的解不大于13,则k 的取值范围是__________.【答案】15k ≤且k ≠±1. 【解析】 【分析】通过去分母去括号,移项,合并同类项,求出112k x +=,结合条件,列出关于k 的不等式组,即可求解. 【详解】256651130x x kx x x x ---=---+ 方程两边同乘以(x-6)(x-5),得:22(5)(6)x x k ---=,去括号,移项,合并同类项,得:211x k =+, 解得:112k x +=, ∵方程256651130x x kx x x x ---=---+的解不大于13,且x≠6,x≠5, ∴11132k +≤且11115622k k ++≠≠,, ∴15k ≤且k ≠±1.故答案是:15k ≤且k ≠±1. 【点睛】本题主要考查含参数的分式方程的解法,掌握分式方程的解法,是解题的关键.6.计算22111m m m ---的结果是_____. 【答案】11m - 【解析】【分析】根据分式的加减法法则进行计算即可得答案. 【详解】原式=22111m m m +-- =()()111m m m ++-=11m -, 故答案为11m -. 【点睛】本题考查分式的加减运算,熟练掌握分式加减的运算法则是解题的关键,本题属于基础题.7.使分式的值为0,这时x=_____.【答案】1 【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法8.若关于x 的方程233x m x x =+--无解.则m =________. 【答案】3 【解析】 【分析】先去分母得到整式方程x=2(x-3)+m ,整理得x+m=6,由于关于x 的方程233x mx x =+--无解,则x-3=0,即x=3,然后把x=3代入x+m=6即可求出m 的值. 【详解】去分母得x=2(x−3)+m , 整理得x+m=6, ∵关于x 的方程233x mx x =+--无解. ∴x−3=0,即x=3, ∴3+m=6, ∴m=3. 故答案为:3. 【点睛】此题考查分式方程的解,解题关键在于利用方程无解进行解答.9.如果记y ==f (x ),并且f (1)表示当x =1时y 的值,即f (1)==;f ()表示当x =时y 的值,即f ()==;那么f (1)+f (2)+f()+f (3)+f ()+…+f (2013)+f ()= .【答案】2012.5【解析】试题分析:由题意f(2)+f()==1,f(3)+f()=1,…,f(2013)+f()=1,根据这个规律即可求得结果.由题意得f(1)+f(2)+f()+f(3)+f()+…+f(2013)+f()=+1+1+1…+1=2012.5.考点:找规律-式子的变化点评:解答此类找规律的问题的关键是仔细分析所给式子的特征得到规律,再把这个规律应用于解题.10.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,则可列方程方程为________.【答案】1209020x x=+【解析】【分析】设小江每小时分拣x个物件,分别表示出小李和小江分拣所用的时间,最后再根据“小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同”体现的等量关系即可列出方程.【详解】解:设小江每小时分拣x个物件,根据题意得:1209020x x=+.故答案为1209020x x=+.【点睛】本题考查了分式方程的应用,明确题意、确定等量关系是解答本题的关键.二、八年级数学分式解答题压轴题(难)11.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍. 若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍.(注:=垃圾处理量垃圾处理率垃圾排放量)(1)求该市2018年平均每天的垃圾排放量;(2)预计该市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加10%. 如果按照创卫要求“城市平均每天的垃圾处理率不低于90%”,那么该市2020年平均每天的垃圾处理量在2019年平均每天的垃圾处理量的基础上,至少还需要増加多少万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求? 【答案】(1)100;(2)98. 【解析】 【分析】(1)设2018年平均每天的垃圾排放量为x 万吨,根据题意列方程求出x 的值即可; (2)设设2020年垃圾的排放量还需要増加m 万吨,根据题意列出不等式,解得m 的取值范围即可得到答案. 【详解】(1)设2018年平均每天的垃圾排放量为x 万吨,40 2.5401.25100x x⨯=⨯+,解得:x=100,经检验,x=100是原分式方程的解, 答:2018年平均每天的垃圾排放量为100万吨. (2)由(1)得2019年垃圾的排放量为200万吨, 设2020年垃圾的排放量还需要増加m 万吨,40 2.5200(110%)m⨯+⨯+≥90%,m ≥98,∴至少还需要増加98万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求. 【点睛】此题考查分式方程的实际应用,一元一次不等式的实际应用,正确理解题意,找到各量之间的关系是解题的关键.12.某快递公司有甲、乙、丙三个机器人分配快件,甲单独完成需要x 小时,乙单独完成需要y 小时,丙单独完成需要z 小时.(1)求甲单独完成的时间是乙丙合作完成时间的几倍?(2)若甲单独完成的时间是乙丙合作完成时间的a 倍,乙单独完成的时间是甲丙合作完成时间的b 倍,丙单独完成的时间是甲乙合作完成时间的c 倍,求111111a b c +++++的值.【答案】(1)甲单独完成的时间是乙丙合作完成时间的xy xzyz+倍;(2)1 【解析】分析:(1)先求出乙丙合作完成时间,再用甲单独完成的时间除以乙丙合作完成时间即可求解;(2)根据“甲单独作完成的天数为乙丙合作完成天数的a 倍”,可得x =11ayz+,运用比例的基本性质、等式的性质及分式的基本性质可得11a +=yz xy yz xz ++;同理,根据“乙单独作完成的天数为甲、丙合作完成天数的b 倍”,可得11b +=xz xy yz xz ++;根据“丙单独作完成的天数为甲、乙合作完成天数的c 倍”,可得11c +=xy xy yz xz ++,将它们分别代入所求代数式,即可得出结果.详解:(1)x ÷[1÷(1y +1z)]=x ÷[1÷y zyz+] =x ÷yzy z+ =xy xzyz+. 答:甲单独完成的时间是乙丙合作完成时间的xy xzyz+倍; (2)由题意得x =11ayz +①,y =11bx z+②,z =11cx y +③.由①得a =x y +x z ,∴a +1=x y +x z +1,∴11a +=11x x y z++=yz xy yz xz ++;同理,由②得11b +=xz xy yz xz ++; 由③得11c +=xy xy yz xz ++; ∴111111a b c +++++=yz xy yz xz +++xz xy yz xz +++xy xy yz xz ++=xy yz xz xy yz xz++++=1. 点睛:本题主要考查分式方程在工程问题中的应用及代数式求值.工程问题的基本关系式为:工作总量=工作效率×工作时间.注意两人合作的工作效率等于两人单独作的工作效率之和.本题难点在于将列出的方程变形,用含有x 、y 、z 的代数式分别表示11a +、11b +、11c +的值.13.某商场在一楼与二楼之间装有一部自动扶梯,以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯上走到二楼(扶梯本身也在行驶).如果二人都做匀速运动,且男孩每分钟走动的级数是女孩的两倍.又已知男孩走了27级到达顶部,女孩走了18级到达顶部(二人每步都只跨1级).(1)扶梯在外面的部分有多少级.(2)如果扶梯附近有一从二楼下到一楼的楼梯,台阶级数与扶梯级数相等,这两人各自到扶梯顶部后按原速度走下楼梯,到一楼后再乘坐扶梯(不考虑扶梯与楼梯间的距离).则男孩第一次追上女孩时,他走了多少台阶? 【答案】(1)楼梯有54级(2) 198级 【解析】 【试题分析】(1)设女孩速度为x 级/分,电梯速度为y 级/分,楼梯(扶梯)为s 级,则男孩速度为2x 级/分, 根据时间相等列方程,有:2727,21818.s x y s xy -⎧=⎪⎪⎨-⎪=⎪⎩ ①两式相除,得327418s s -=-,解方程得54s =即可. 因此楼梯有54级.(2)设男孩第一次追上女孩时,走过扶梯m 次,走过楼梯n 次,则这时女孩走过扶梯()1m -次,走过楼梯()1n -次.将54s = 代入方程组①,得2y x =,即男孩乘扶梯上楼的速度为4x 级/分,女孩乘扶梯上楼的速度为3x 级/分.于是有()()5415415454.423m n m n x x x x--+=+ 从而114231m n m n --+=+,即616n m +=. 无论男孩第一次追上女孩是在扶梯上还是在下楼时,,m n 中必有一个为正整数,且01m n ≤-≤,经试验知只有13,26m n ==符合要求.这时,男孩第一次追上女孩所走过的级数是:132********⨯+⨯=(级). 【试题解析】(1)设女孩速度为x 级/分,电梯速度为y 级/分,楼梯(扶梯)为s 级,则男孩速度为2x 级/分,依题意有2727,21818.s x y s x y -⎧=⎪⎪⎨-⎪=⎪⎩① 把方程组①中的两式相除,得327418s s -=-,解得54s =. 因此楼梯有54级.(2)设男孩第一次追上女孩时,走过扶梯m 次,走过楼梯n 次,则这时女孩走过扶梯()1m -次,走过楼梯()1n -次.将54s = 代入方程组①,得2y x =,即男孩乘扶梯上楼的速度为4x 级/分,女孩乘扶梯上楼的速度为3x 级/分.于是有()()5415415454.423m n m n x x x x--+=+ 从而114231m n m n --+=+,即616n m +=. 无论男孩第一次追上女孩是在扶梯上还是在下楼时,,m n 中必有一个为正整数,且01m n ≤-≤,经试验知只有13,26m n ==符合要求. 这时,男孩第一次追上女孩所走过的级数是:132********⨯+⨯=(级).14.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗;(2)已知每本硬面笔记本比软面笔记本贵a 元,是否存在正整数a ,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a 的值;若不存在,请说明理由.【答案】(1))不能买到;(2)存在,a 的值为3或9. 【解析】 【分析】 【详解】解:(1))设每本软面笔记本x 元,则每本硬面笔记本(x+1.2)元,由题意,得12211.2x x =+, 解得:x=1.6. 此时12211.6 1.2 1.6=+=7.5(不符合题意), 所以,小明和小丽不能买到相同数量的笔记本;(2)设每本软面笔记本m 元(1≤m≤12的整数),则每本硬面笔记本(m+a )元,由题意,得1221m m a=+, 解得:a=34m , ∵a 为正整数, ∴m=4,8,12. ∴a=3,6,9.当86m a =⎧⎨=⎩时,12211.5m m a ==+(不符合题意) ∴a 的值为3或9.15.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--. (1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x =,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?【答案】(1)0x =;(2)原分式方程中“?”代表的数是-1. 【解析】 【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答. 【详解】(1)方程两边同时乘以()2x -得()5321x +-=-解得 0x =经检验,0x =是原分式方程的解. (2)设?为m ,方程两边同时乘以()2x -得()321m x +-=-由于2x =是原分式方程的增根, 所以把2x =代入上面的等式得()3221m +-=- 1m =-所以,原分式方程中“?”代表的数是-1. 【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.。
八年级数学上册分式填空选择单元测试卷(解析版)一、八年级数学分式填空题(难)1.如果关于x 的分式方程1a x +-3=11x x -+有负分数解,且关于x 的不等式组2()43412a x x x x -≥--⎧⎪⎨+<+⎪⎩的解集为x <-2,那么符合条件的所有整数a 的积是_________. 【答案】9【解析】()243412a x x x x ⎧-≥--⎪⎨+<+⎪⎩①②, 由①得:x≤2a+4,由②得:x<-2,由不等式组的解集为x<-2,得到2a+4≥-2,即a≥-3,分式方程去分母得:a-3x-3=1-x , x=42a -, 由分式方程1a x +-3=11x x -+有负分数解,则有a-4<0,所以a<4, 所以-3≤a<4,把a=-3代入整式方程得:-3x-6=1-x ,即x=-72,符合题意; 把a=-2代入整式方程得:-3x-5=1-x ,即x=-3,不合题意; 把a=-1代入整式方程得:-3x-4=1-x ,即x=-52,符合题意; 把a=0代入整式方程得:-3x-3=1-x ,即x=-2,不合题意;把a=1代入整式方程得:-3x-2=1-x ,即x=-32,符合题意; 把a=2代入整式方程得:-3x-1=1-x ,即x=-1,不合题意;把a=3代入整式方程得:-3x=1-x ,即x=-12,符合题意, ∴符合条件的整数a 取值为-3,-1,1,3,之积为9,故选D 【点睛】本题考查了解一元一次不等式组,以及解分式方程,熟练掌握运算法则是解本题的关键.2.若方程256651130x x k x x x x ---=---+的解不大于13,则k 的取值范围是__________. 【答案】15k ≤且k ≠±1.【解析】【分析】 通过去分母去括号,移项,合并同类项,求出112k x +=,结合条件,列出关于k 的不等式组,即可求解.【详解】 256651130x x k x x x x ---=---+ 方程两边同乘以(x-6)(x-5),得:22(5)(6)x x k ---=,去括号,移项,合并同类项,得:211x k =+, 解得:112k x +=, ∵方程256651130x x k x x x x ---=---+的解不大于13,且x≠6,x≠5, ∴11132k +≤且11115622k k ++≠≠,, ∴15k ≤且k ≠±1.故答案是:15k ≤且k ≠±1.【点睛】本题主要考查含参数的分式方程的解法,掌握分式方程的解法,是解题的关键.3.八年级数学教师邱龙从家里出发,驾车去离家180km 的风景区度假,出发一小时内按原计划的速度匀速行驶,一小时后以原速的1.5倍匀速行驶,并提前40分钟到达风景区;第二天返回时以去时原计划速度的1.2倍行驶回到家里.那么来回行驶时间相差_________分钟.【答案】10【解析】【分析】设从家到风景区原计划行驶速度为x km/h ,根据“实际时间=计划时间-4060”得出方程,求出原计划的行驶速度,进而计算出从家到风景区所用的时间以及回家所用的时间,即可得出结论.【详解】设从家到风景区原计划行驶速度为x km/h ,根据题意可得:1801.5x x -+11804060x =-,解得:x =60,检验得:x =60是原方程的根. ∴第一天所用的时间601804060=-=73(小时), 第二天返回时所用时间=180÷(60×1.2)=2.5(小时),时间差=2.5-73=16(小时)=10(分钟). 故答案为:10.【点睛】本题考查了分式方程的应用,正确得出方程是解答本题的关键.4.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____. 【答案】5a <且3a ≠【解析】【分析】直接解分式方程,进而利用分式方程的解是正数得出a 的取值范围,进而结合分式方程有意义的条件分析得出答案.【详解】去分母得:122a x -+=-,解得:5x a =-,50a ->,解得:5a <,当52x a =-=时,3a =不合题意,故5a <且3a ≠.故答案为:5a <且3a ≠.【点睛】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键.5.化简3m m ++269m -÷23m -的结果是___________________. 【答案】1【解析】【分析】先进行分式的除法运算,然后再进行分式的加法运算即可得.【详解】m m 3++26m 9-÷2m 3-=()()63·3332m m m m m -+++- =333m m m +++ =1,故答案为:1.【点睛】 本题考查了分式的混合运算,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.6.若20x y y -+-=,则x y-3的值为 【答案】12 【解析】【分析】根据非负数的性质列出方程求出x 、y 的值,代入所求代数式计算即可.【详解】∵20x y y -+-=, ∴0{20x y y -=-=, 解得22x y =⎧⎨=⎩, ∴x y-3=22-3=12, 故答案为12.7.若a 2+5ab ﹣b 2=0,则的值为__.【答案】5【解析】试题分析:先根据题意得出b 2﹣a 2=5ab ,再由分式的减法法则把原式进行化简﹣===5. 故答案为:5.点睛:本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.8.如果关于x 的不等式组0{243(2)x m x x ->-<-的解集为,且关于的分式方程有非负整数解,则符合条件的所有m 的取值之积为( )A .B .C .D .15-【答案】C【解析】试题解析:()-0{2-43-2x m x x ⋯⋯>①<②, 解①得x >m ,解②得x >1.不等式组的解集是x >1,则m ≤1.解方程1322x m x x -+=--, 去分母,得1-x -m =3(2-x ),去括号,得1-x -m =6-3x , 移项,得-x +3x =6-1+m ,合并同类项,得2x =5+m ,系数化成1得x =5+m 2. ∵分式方程1322x m x x -+=--有非负整数解, ∴5+m ≥0,∴m >-5,∴-5≤m ≤1,∴m =-5,-3,1,∴符合条件的m 的所有值的积是15,故选C .9.已知a 是方程x 2﹣2018x+1=0的一个根a ,则a 2﹣2017a+220181a +的值为_____. 【答案】2017【解析】试题解析:根据题意可知:a 2﹣2018a+1=0,∴a 2+1=2018a ,a 2﹣2017a=a ﹣1,∴原式=a 2﹣2017a+1a=a ﹣1+1a =21a a+﹣1 =2018﹣1=2017故答案为201710.关于x 的分式方程111x k k x x +-=+-的解为非负数,则k 的取值范围为_____. 【答案】k ≤12且k ≠0 【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为非负数求出k 的范围即可.【详解】解:去分母得:(x +k )(x ﹣1)﹣k (x +1)=(x +1)(x ﹣1),整理得:x 2﹣x +kx ﹣k ﹣kx ﹣k =x 2﹣1,解得:x =1﹣2k ,∵分式方程的解为非负数,得到1﹣2k ≥0,且1﹣2k ≠1,解得:k ≤12且k ≠0, 故答案为:k ≤12且k ≠0 【点睛】此题考查了分式方程的解的定义,方程的解即为能使方程左右两边相等的未知数的值.此题方程的解为非负数,即为x ≥0且x ≠1.其中x ≠1容易漏掉,为易错点.二、八年级数学分式解答题压轴题(难)11.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.据上述条件解决下列问题:①规定期限是多少天?写出解答过程;②在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?【答案】规定期限20天;方案(3)最节省【解析】【分析】设这项工程的工期是x 天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.【详解】解:设规定期限x 天完成,则有:415x x x +=+, 解得x=20.经检验得出x=20是原方程的解;答:规定期限20天.方案(1):20×1.5=30(万元)方案(2):25×1.1=27.5(万元 ),方案(3):4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.点睛:本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出分式方程④检验⑤作答.注意:分式方程的解必须检验.12.某小麦改良品种后平均每公顷增加产量a 吨,原来产m 吨小麦的一块土地,现在小麦的总产量增加了20吨.(1)当a =0.8,m =100时,原来和现在小麦的平均每公顷产量各是多少?(2)请直接接写出原来小麦的平均每公顷产量是 吨,现在小麦的平均每公顷产量是 吨;(用含a 、m 的式于表示)(3)在这块土地上,小麦的改良品种成熟后,甲组收割完需n 小时,乙组比甲组少用0.5小时就能收割完,求两组一起收割完这块麦田需要多少小时?【答案】(1)原来和现在小麦的平均每公顷产量各是4吨,4.8吨;(2)20ma ,+2020ma a ;(3)两组一起收割完这块麦田需要2241n n n --小时. 【解析】【分析】(1)设原来小麦平均每公顷产量是x 吨,根据题意列出分式方程求解并验根即可;(2)设原来小麦平均每公顷产量是y 吨,根据题意列出分式方程求解并验根即可;(3)由题意得知,工作总量为m+20,甲的工作效率为:20m n +,乙的工作效率为:200.5m n +-,再由工作总量除以甲乙的工作效率和即可得出工作时间.【详解】 解:(1)设原来平均每公顷产量是x 吨,则现在平均每公顷产量是(x +0.8)吨, 根据题意可得:100100200.8x x +=+ 解得:x =4,检验:当x =4时,x (x +0.8)≠0,∴原分式方程的解为x =4,∴现在平均每公顷产量是4.8吨,答:原来和现在小麦的平均每公顷产量各是4吨,4.8吨.(2)设原来小麦平均每公顷产量是y 吨,则现在玉米平均每公顷产量是(y +a )吨, 根据题意得:20m m y y a+=+ 解得;y =20ma , 经检验:y =20ma 是原方程的解, 则现在小麦的平均每公顷产量是:202020ma ma a a ++= 故答案为:20ma ,2020ma a +; (3)根据题意得:()20.5202202020.5410.5n n m n n m m n n n n -+-==++--+- 答:两组一起收割完这块麦田需要2241n n n --小时. 【点睛】本题考查的知识点主要是根据题意列分式方程并求解,找出题目中的等量关系式是解题的关键.13.小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.【答案】从节约开支角度考虑,应选乙公司单独完成【解析】试题分析:需先算出甲乙两公司独做完成的周数.等量关系为:甲6周的工作量+乙6周的工作量=1;甲4周的工作量+乙9周的工作量=1;还需算出甲乙两公司独做需付的费用.等量关系为:甲做6周所需钱数+乙做6周所需钱数=5.2;甲做4周所需钱数+乙做9周所需钱数=4.8.试题解析:解:设甲公司单独完成需x 周,需要工钱a 万元,乙公司单独完成需y 周,需要工钱b 万元.依题意得:661491x y x y⎧+=⎪⎪⎨⎪+=⎪⎩,解得:1015x y =⎧⎨=⎩. 经检验:1015x y =⎧⎨=⎩是方程组的根,且符合题意. 又6() 5.2101549 4.81015a b a b ⎧+=⎪⎪⎨⎪⨯+⨯=⎪⎩,解得:64a b =⎧⎨=⎩. 即甲公司单独完成需工钱6万元,乙公司单独完成需工钱4万元.答:从节约开支角度考虑,应选乙公司单独完成.点睛:本题主要考查分式的方程的应用,根据题干所给的等量关系求出两公司单独完成所需时间和工钱,然后比较应选择哪个公司.14.“绿色环保,健康出行”新能源汽车越来越占领汽车市场,以“北汽”和“北汽 新能源 EV500”为例,分别在某加油站和某充电站加油和充电的电费均为 300 元,而续 航里程之比则为 1∶4.经计算新能源汽车相比燃油车节约 0.6 元/公里.(1)分别求出燃油车和新能源汽车的续航单价(每公里费用);(2)随着更多新能源车进入千家万户,有条件的小区及用户将享受 0.48 元/度的优惠专用电费.以新能源 EV500 为例,充电 55 度可续航 400 公里,试计算每公里所需电费, 并求出与燃油车相同里程下的所需费用(油电)百分比.【答案】(1)燃油车0.8;新能源汽车0.2;(2)8.25%【解析】【分析】(1)设新能源汽车续航单价为x 元/公里,则燃油车续航单价为(x+0.6)元/公里,根据等量关系式:新能源汽车续航里程:燃油车续航里程=4∶1,列出方程,解之即可.(2)根据总价=单价×数量可得新能源汽车400公里所需费用,再用此费用÷总公里数即可得新能源汽车每公里所需电电费;由(1)知燃油汽车每公里费用,用此费用乘以总公里数可得燃油汽车总费用,再用新能源汽车的总费用÷燃油车相同里程下的所需费用即可得答案.【详解】解:(1)设新能源汽车续航单价为x 元/公里,则燃油车续航单价为(x+0.6)元/公里,依题可得:300 x :3000.6x=4:1,解得:x=0.2,∴燃油车续航单价为:x+0.6=0.2+0.6=0.8(元/公里),答:新能源汽车续航单价为0.2元/公里,燃油车续航单价为0.8元/公里.(2)依题可得新能源汽车400公里所需费用为:0.48×55=26.4(元),∴新能源汽车每公里所需电电费为:26.4÷400=0.066(元/公里),依题可得燃油汽车400公里所需费用为:400×0.8=320(元),∴新能源汽车与燃油车相同里程下的所需费用(油电)百分比为:26.4÷320=0.0825=8.25%.答:新能源汽车每公里所需电电费为0.066元;新能源汽车与燃油车相同里程下的所需费用(油电)百分比为8.25%.【点睛】本题主要考查了分式方程的实际应用,找准等量关系,正确列出分式方程是解题的关键.15.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?【答案】(1)甲,乙两种玩具分别是15元/件,25元/件;(2)共有四种方案.【解析】【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.【详解】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,x=15,经检验x=15是原方程的解.∴40﹣x=25.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<24.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.考点:分式方程的应用;一元一次不等式组的应用.。
八年级上册数学 分式填空选择单元测试卷(解析版)一、八年级数学分式填空题(难)1.已知:x 满足方程11200620061x x =--,则代数式2004200620052007x x -+的值是_____. 【答案】20052007-【解析】 因为11200620061xx =--,则200420062005200520062006001120072007x x x x x x x --=⇒=⇒=⇒=---+ . 故答案:20052007-.2.若x+1x,则x-1x=____________. 【答案】±2【解析】【分析】 先对等式x+1x21()8x x +=,整理得到2216x x+=,再用完全平方公式求出21()x x-的值,再开平方求出1x x -的值. 【详解】解:∵x+1x, ∴21()8x x += ∴22128x x ++= ∴2216x x+= ∴22211()2624x x x x-=+-=-= ∴12x x-=± 故答案是: ±2.【点睛】本题考查了互为倒数的两个数的和与差的完全平方公式的应用,利用当两数互为倒数时积为1这个特征去解题是关键.3.若方程256651130x x k x x x x ---=---+的解不大于13,则k 的取值范围是__________. 【答案】15k ≤且k ≠±1.【解析】【分析】 通过去分母去括号,移项,合并同类项,求出112k x +=,结合条件,列出关于k 的不等式组,即可求解.【详解】 256651130x x k x x x x ---=---+ 方程两边同乘以(x-6)(x-5),得:22(5)(6)x x k ---=,去括号,移项,合并同类项,得:211x k =+, 解得:112k x +=, ∵方程256651130x x k x x x x ---=---+的解不大于13,且x≠6,x≠5, ∴11132k +≤且11115622k k ++≠≠,, ∴15k ≤且k ≠±1.故答案是:15k ≤且k ≠±1.【点睛】本题主要考查含参数的分式方程的解法,掌握分式方程的解法,是解题的关键.4.已知关于x 的方程4433x m m x x---=--无解,则m=________. 【答案】-3或1【解析】【分析】分式方程去分母转化为整式方程()348m x m +=+,分两种情况:(1)()348m x m +=+无实数根,(2)整式方程()348m x m +=+的根是原方程的增根,分别求解即可.【详解】去分母得:()()434x x m m ---+=-,整理得()348m x m +=+,由于原方程无解,故有以下两种情况:(1)()348m x m +=+无实数根,即30m +=且480m +≠,解得3m =-;(2)整式方程()348m x m +=+的根是原方程的增根, 即4833m m +=+,解得1m =; 故答案为:3m =-或1m =.【点睛】此题考查了分式方程无解的条件,分式方程无解,有两种情况,①整式方程本身无解;②整式方程有解,但使得分式方程的最简公分母为零(即为增根).5.八年级数学教师邱龙从家里出发,驾车去离家180km 的风景区度假,出发一小时内按原计划的速度匀速行驶,一小时后以原速的1.5倍匀速行驶,并提前40分钟到达风景区;第二天返回时以去时原计划速度的1.2倍行驶回到家里.那么来回行驶时间相差_________分钟.【答案】10【解析】【分析】设从家到风景区原计划行驶速度为x km/h ,根据“实际时间=计划时间-4060”得出方程,求出原计划的行驶速度,进而计算出从家到风景区所用的时间以及回家所用的时间,即可得出结论.【详解】设从家到风景区原计划行驶速度为x km/h ,根据题意可得:1801.5x x -+11804060x =-, 解得:x =60,检验得:x =60是原方程的根. ∴第一天所用的时间601804060=-=73(小时), 第二天返回时所用时间=180÷(60×1.2)=2.5(小时),时间差=2.5-73=16(小时)=10(分钟). 故答案为:10.【点睛】 本题考查了分式方程的应用,正确得出方程是解答本题的关键.6.将1111100m n =⎧⎪⎨=⎪⎩,222199m n =⎧⎪⎨=⎪⎩,333198m n =⎧⎪⎨=⎪⎩,…10010010011m n =⎧⎪⎨=⎪⎩,依次代入1111y m n =+++得到1y ,2y ,3y …100y ,那么123100y y y y ++++=__________. 【答案】100.【解析】【分析】用m 表示n ,然后化简11n +,再分别表示123100y y y y 、、、、,再求和即可. 【详解】解:分析可知n=1101m -, ∴n+1=1101m -+1=102101m m --, ∴1n 1+=101m 102m --=1-1102m-, ∴1y =12+1-1101,2y =13+1-1100,3y =14+1-199,…,100y =1101+1-12, ∴1231001y y y y 2++++=+13+14+…+1101-(1111101100992+++⋯+)+100=100 故答案是:100.【点睛】本题考查了分式的规律性问题,逐个计算找到规律是解题关键,体现了由特殊到一般的数学思想.7.化简a b b a a b+--的结果是______ 【答案】﹣1【解析】 分析:直接利用分式加减运算法则计算得出答案.详解:a b b a a b +--=a b b a b a ---=()1a b b a b a b a---==---. 故答案为-1. 点睛:此题主要考查了分式的加减运算,正确掌握运算法则是解题关键.8.关于x 的方程12ax x +-=−1的解是正数,则a 的取值范围是________. 【答案】a>-1且a≠-0.5【解析】2-x 方程两侧同时乘以最简公分母(x -2),得 ()12ax x +=--,整理,得 ()11a x +=,①(1) 当a =-1时,方程①为01x ⋅=,此方程无解.(2) 当a ≠-1时,解方程①,得11x a =+. ∵原分式方程有解, ∴11x a =+不为增根, ∴当11x a =+时,最简公分母x -2≠0, ∴1201a -≠+, ∴12a ≠-. ∵原分式方程的解为正数, ∴101x a =>+, ∴1a >-. 综上所述,a 的取值范围应该为1a >-且12a ≠-,即a >-1且a ≠-0.5. 故本题应填写:a >-1且a ≠-0.5.点睛:本题考查了分式方程的解的相关知识. 本题的难点在于准确且全面地理解分式方程的解为正数这一条件. 一方面,既然分式方程所转化成的整式方程只有一个解,那么这个解就不应该是增根;另一方面,当分式方程的解为正数时该整式方程的解也应该为正数. 另外,在去分母后,由于未知数x 的系数中含有未知参数a ,所以不能直接进行“系数化为1”的步骤,应该对参数a 的值进行讨论.9.已知a 是方程x 2﹣2018x+1=0的一个根a ,则a 2﹣2017a+220181a +的值为_____. 【答案】2017【解析】试题解析:根据题意可知:a 2﹣2018a+1=0,∴a 2+1=2018a ,a 2﹣2017a=a ﹣1,∴原式=a 2﹣2017a+1aa=21a a+﹣1 =2018﹣1=2017故答案为201710.满足222210105,4b a a b a b a b+=+=++的整数对(),a b 的组数为 _________________ ; 【答案】2【解析】【分析】将两式联立组成方程组,先将两式相减,再根据题意a 、b 均为整数,得出新的方程组求出满足条件的解,再数出满足条件的个数即可.【详解】 解:2222105104b a a b a b a b ⎧+=⎪⎪+⎨⎪+=⎪+⎩①② 由①-②得()22101b a a b a b--+=+ ()221010a b a b a b----=+ 去分母,并整理得()()()()()()()()222222110011011011010a b a b a b a b a b a b a b a b --+--=--+---=--+-=因为,a b 为整数,所以有22111010a b a b --=⎧⎨+-=⎩①②221-110-10a b a b --=⎧⎨+-=⎩③22110101a b a b --=⎧⎨+-=⎩④221-1010-1a b a b --=⎧⎨+-=⎩⑤2212105a b a b --=⎧⎨+-=⎩⑥221-210-5a b a b --=⎧⎨+-=⎩⑦221-510-2a b a b --=⎧⎨+-=⎩⑧2215102a b a b --=⎧⎨+-=⎩解方程组①得,42a b =⎧⎨=⎩或24a b =-⎧⎨=-⎩; 解方程组②得,0a b ;解方程组③得,此方程组无解;解方程组④得,此方程组无解;解方程组⑤得,无整数解;解方程组⑥得,12ab=⎧⎨=⎩或21ab=-⎧⎨=-⎩解方程组⑦得,22 ab=-⎧⎨=⎩解方程组⑧得,无整数解;将求出的解代入原方程,42ab=⎧⎨=⎩或12ab=⎧⎨=⎩是原方程的解所以满足题意的数对有(1,2)或(4,2)故答案为:2.【点睛】本题考查了分式方程的整数解的特殊解法,认真审题,弄清题意是解决本题的关键.二、八年级数学分式解答题压轴题(难)11.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.据上述条件解决下列问题:①规定期限是多少天?写出解答过程;②在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?【答案】规定期限20天;方案(3)最节省【解析】【分析】设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.【详解】解:设规定期限x天完成,则有:415x x x +=+, 解得x=20.经检验得出x=20是原方程的解;答:规定期限20天.方案(1):20×1.5=30(万元)方案(2):25×1.1=27.5(万元 ),方案(3):4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.点睛:本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出分式方程④检验⑤作答.注意:分式方程的解必须检验.12.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当0a >,0b >时,∵2()20a b a ab b -=-+≥,∴2a b ab +≥,当且仅当a b =时取等号.请利用上述结论解决以下问题:(1)当0x >时,1x x +的最小值为_______;当0x <时,1x x+的最大值为__________. (2)当0x >时,求2316x x y x++=的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2,-2;(2)11;(3)25【解析】【分析】(1)当x >0时,按照公式ab a=b 时取等号)来计算即可;x <0时,由于-x >0,-1x>0,则也可以按照公式ab a=b 时取等号)来计算; (2)将2316x x y x++=的分子分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,四边形ABCD 的面积用含x 的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可.【详解】解:(1)当x >0时,12x x +≥= 当x <0时,11x x x x ⎛⎫+=--- ⎪⎝⎭∵12x x --≥= ∴12x x ⎛⎫---≤- ⎪⎝⎭∴当0x >时,1x x +的最小值为2;当0x <时,1x x+的最大值为-2; (2)由2316163x x y x x x++==++ ∵x >0,∴163311y x x =++≥= 当16x x= 时,最小值为11; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD∴x :9=4:S △AOD∴:S △AOD =36x∴四边形ABCD 面积=4+9+x+361325x ≥+= 当且仅当x=6时取等号,即四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大.13.某小麦改良品种后平均每公顷增加产量a 吨,原来产m 吨小麦的一块土地,现在小麦的总产量增加了20吨.(1)当a =0.8,m =100时,原来和现在小麦的平均每公顷产量各是多少?(2)请直接接写出原来小麦的平均每公顷产量是 吨,现在小麦的平均每公顷产量是 吨;(用含a 、m 的式于表示)(3)在这块土地上,小麦的改良品种成熟后,甲组收割完需n 小时,乙组比甲组少用0.5小时就能收割完,求两组一起收割完这块麦田需要多少小时?【答案】(1)原来和现在小麦的平均每公顷产量各是4吨,4.8吨;(2)20ma ,+2020ma a ;(3)两组一起收割完这块麦田需要2241n n n --小时. 【解析】【分析】(1)设原来小麦平均每公顷产量是x 吨,根据题意列出分式方程求解并验根即可;(2)设原来小麦平均每公顷产量是y 吨,根据题意列出分式方程求解并验根即可;(3)由题意得知,工作总量为m+20,甲的工作效率为:20m n +,乙的工作效率为:200.5m n +-,再由工作总量除以甲乙的工作效率和即可得出工作时间. 【详解】解:(1)设原来平均每公顷产量是x 吨,则现在平均每公顷产量是(x +0.8)吨, 根据题意可得:100100200.8x x +=+ 解得:x =4,检验:当x =4时,x (x +0.8)≠0,∴原分式方程的解为x =4,∴现在平均每公顷产量是4.8吨,答:原来和现在小麦的平均每公顷产量各是4吨,4.8吨.(2)设原来小麦平均每公顷产量是y 吨,则现在玉米平均每公顷产量是(y +a )吨, 根据题意得:20m m y y a +=+ 解得;y =20ma , 经检验:y =20ma 是原方程的解, 则现在小麦的平均每公顷产量是:202020ma ma a a ++= 故答案为:20ma ,2020ma a +; (3)根据题意得:()20.5202202020.5410.5n n m n n m m n n n n -+-==++--+- 答:两组一起收割完这块麦田需要2241n n n --小时. 【点睛】本题考查的知识点主要是根据题意列分式方程并求解,找出题目中的等量关系式是解题的关键.14.某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克;(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【答案】(1)该商店第一次购进水果100千克;(2)每千克水果的标价至少是15元.【解析】【分析】(1)首先根据题意,设该商店第一次购进水果x千克,则第二次购进水果2x千克,然后根据:(1000÷第一次购进水果的重量 +2)×第二次购进的水果的重量=2400,列出方程,求出该商店第一次购进水果多少千克即可.(2)首先根据题意,设每千克水果的标价是x元,然后根据:(两次购进的水果的重量﹣20)×x+20×0.5x≥两次购进水果需要的钱数+950,列出不等式,求出每千克水果的标价是多少即可.【详解】解:(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,(1000x+2)×2x=2400整理,可得:2000+4x=2400,解得x=100.经检验,x=100是原方程的解.答:该商店第一次购进水果100千克.(2)设每千克水果的标价是x元,则(100+100×2﹣20)×x+20×0.5x≥1000+2400+950整理,可得:290x≥4350,解得x≥15,∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.【点睛】此题主要考查了分式方程的应用,以及一元一次不等式的应用,要熟练掌握,注意建立不等式要善于从“关键词”中挖掘其内涵.15.“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元;(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A 型车数量的两倍.已知,A 型车和B 型车的进货价格分别为1500元和1800元,计划B 型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多.【答案】(1) 2000元;(2) A 型车20辆,B 型车40辆.【解析】【分析】(1)设去年A 型车每辆售价x 元,则今年售价每辆为(x ﹣200)元,由卖出的数量相同列出方程求解即可;(2)设今年新进A 型车a 辆,则B 型车(60﹣a )辆,获利y 元,由条件表示出y 与a 之间的关系式,由a 的取值范围就可以求出y 的最大值.【详解】解:(1)设去年A 型车每辆售价x 元,则今年售价每辆为(x ﹣200)元,由题意,得 8000080000(110%)200x x -=-, 解得:x=2000.经检验,x=2000是原方程的根.答:去年A 型车每辆售价为2000元;(2)设今年新进A 型车a 辆,则B 型车(60﹣a )辆,获利y 元,由题意,得y=a+(60﹣a ),y=﹣300a+36000.∵B 型车的进货数量不超过A 型车数量的两倍,∴60﹣a≤2a ,∴a≥20.∵y=﹣300a+36000.∴k=﹣300<0,∴y 随a 的增大而减小.∴a=20时,y 最大=30000元.∴B 型车的数量为:60﹣20=40辆.∴当新进A 型车20辆,B 型车40辆时,这批车获利最大.【点睛】本题考查分式方程的应用;一元一次不等式的应用.。
八年级上册数学 分式填空选择单元测试题(Word 版 含解析)一、八年级数学分式填空题(难)1.对实数a 、b ,定义运算☆如下:a ☆b=(,0){(,0)b b a a b a a a b a ->≠≤≠,例如:2☆3=2﹣3=18,则计算:[2☆(﹣4)]☆1=_____.【答案】16【解析】【分析】判断算式a ☆b 中,a 与b 的大小,转化为对应的幂运算即可求得答案.【详解】由题意可得:[2☆(﹣4)]☆1=2﹣4☆1 =116☆1 =(116)﹣1 =16,故答案为:16.【点睛】本题考查了新定义运算、负整数指数幂,弄清题意,理解新定义运算的规则是解决此类题目的关键.2.如果111a b +=,则2323a ab b a ab b-+=++__________. 【答案】15-【解析】【分析】 由111a b +=得a+b=ab ,然后再对2323a ab b a ab b-+++变形,最后代入,即可完成解答. 【详解】 解:由111a b+=得a+b=ab , 2323a ab b a ab b -+=++2332a b ab a b ab +-++=()()232a b ab a b ab +-++=232ab ab ab ab -+=15-. 【点睛】本题考查了分式的化简求值,解答的关键在于分式的灵活变形.3.若方程81877--=--x x x有增根,则增根是____________. 【答案】7【解析】 ∵分式方程81877x x x--=--有增根, ∴x-7=0,∴原方程增根为x=7,因此,本题正确答案是7.4.计算22111m m m---的结果是_____. 【答案】11m - 【解析】 【分析】根据分式的加减法法则进行计算即可得答案.【详解】原式=22111m m m +-- =()()111m m m ++- =11m -, 故答案为11m -. 【点睛】本题考查分式的加减运算,熟练掌握分式加减的运算法则是解题的关键,本题属于基础题.5.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____. 【答案】5a <且3a ≠【解析】【分析】直接解分式方程,进而利用分式方程的解是正数得出a 的取值范围,进而结合分式方程有意义的条件分析得出答案.【详解】去分母得:122a x -+=-,解得:5x a =-,50a ->,解得:5a <,当52x a =-=时,3a =不合题意,故5a <且3a ≠.故答案为:5a <且3a ≠.【点睛】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键.6.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________. 【答案】k <6且k≠3【解析】分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零. 详解:233x k x x -=--, 方程两边都乘以(x-3),得x=2(x-3)+k ,解得x=6-k≠3,关于x 的方程程233x k x x -=--有一个正数解, ∴x=6-k >0,k <6,且k≠3,∴k 的取值范围是k <6且k≠3.故答案为k <6且k≠3.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k 的范围是解此题的关键.7.已知x m =6,x n =3,则x 2m ﹣n 的值为_____.【答案】12【解析】【分析】逆用“同底数幂的除法法则和幂的乘方的运算法则”进行解答即可.【详解】∵63m n x x ==,,∴222()6312m n m n x x x -=÷=÷=.故答案为12.【点睛】熟记“同底数幂的除法法则:m n m n a a a -÷=,幂的乘方的运算法则:()m n mn a a =,并能逆用这两个法则”是解答本题的关键.8.若关于x 的分式方程2222x m m x x+=--有增根,则m 的值为_______. 【答案】1【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母20x -=,得到2x =,然后代入化为整式方程的方程算出m 的值.【详解】解:方程两边都乘2x =,得22(2)x m m x -=-∵原方程有增根,∴最简公分母20x -=,解得2x =,当2x =时,1m =故m 的值是1,故答案为1【点睛】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.9.若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 【答案】3【解析】【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m 的值.【详解】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.已知a 是方程x 2﹣2018x+1=0的一个根a ,则a 2﹣2017a+220181a +的值为_____.【答案】2017【解析】试题解析:根据题意可知:a 2﹣2018a+1=0,∴a 2+1=2018a ,a 2﹣2017a=a ﹣1,∴原式=a 2﹣2017a+1a=a ﹣1+1a =21a a+﹣1 =2018﹣1=2017故答案为2017二、八年级数学分式解答题压轴题(难)11.阅读下面的材料,并解答后面的问题 材料:将分式23411x x x +-+拆分成一个整式与一个分式(分子为整数)的和(差)的形式. 解:由分母为1x +,可设2341(1)(3)x x x x a b +-=+++.因为223(1)(3)333(3)x x a b x ax x a b x a x a b +++=++++=++++,所以223413(3)x x x a x a b +-=++++.所以341a a b +=⎧⎨+=-⎩,解之,得12a b =⎧⎨=-⎩. 所以2341(1)(31)211x x x x x x +-++-=++ (1)(31)2231111x x x x x x ++=-=+-+++ 这样,分式23411x x x +-+就被拆分成了一个整式31x +与一个分式21x +的差的形式. 问题:(1)请将分式22361x x x ++-拆分成一个整式与一个分式(分子为整数)的和(差)的形式;(2)请将分式4225932x x x +-+拆分成一个整式与一个分式(分子为整数)的和(差)的形式.【答案】(1)2236112511x x x x x ++=++--;(2)4222259315122x x x x x +-=--++.【解析】【分析】(1)仿照例题将2236x x ++分解为(1)(2)x x a b -++,求出a 、b 的值即可得到答案;(2)将42593x x +-分解为22(2)(5)x x m n +++,得到10923m m n +=⎧⎨+=-⎩,求出m 、n ,整理后即可得到答案.【详解】(1)由分母为x-1,可设2236x x ++=(1)(2)x x a b -++,∵(1)(2)x x a b -++=22222(2)()x ax x a b x a x b a +--+=+-+-,∴2236x x ++22(2)()x a x b a =+-+- ∴236a b a -=⎧⎨-=⎩,得511a b =⎧⎨=⎩, ∴22361x x x ++-=(1)(25)111x x x -++-=(1)(25)1111x x x x -++--=11251x x ++-; (2)由分母为22x +,可设42593x x +-=22(2)(5)x x m n +++,∵22(2)(5)x x m n +++=4224251025(10)(2)m x mx x m x m n n x +++++=+++ ∴42593x x +-=42(10)(2)5x m n x m ++++, ∴10923m m n +=⎧⎨+=-⎩,得11m n =-⎧⎨=-⎩, ∴4225932x x x +-+=222(2)(51)12x x x +--+=221512x x --+. 【点睛】此题是仿照例题解题的形式解题,正确理解题意,明确例题中的计算的方法是解题的关键.12.我们知道,假分数可以化为整数与真分数的和的形式,例如:76112333+==+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”. 例如:像33x x -+,23x x -,…这样的分式是假分式;像23x -,23x x -,…这样的分式是真分式. 类似的,假分式也可以化为整式与真分式的和(差)的形式. 例如:将分式2253x x x +-+拆分成一个整式与一个真分式的和(差)的形式. 方法一:解:由分母为3x +,可设225(3)()x x x x a b +-=+++则由22225(3)()33(3)(3)x x x x a b x ax x a b x a x a b +-=+++=++++=++++ 对于任意x ,上述等式均成立,∴3235a a b +=⎧⎨+=-⎩,解得12a b =-⎧⎨=-⎩∴225(3)(1)2(3)(1)22133333x x x x x x x x x x x x +-+--+-==-=--+++++ 这样,分式2253x x x +-+就被拆分成一个整式与一个真分式的和(差)的形式. 方法二:解:2225332(3)(3)2(3)32213333333x x x x x x x x x x x x x x x x x x x +-+---+-+-++===--=--+++++++ 这样,分式2253x x x +-+就拆分成一个整式与一个真分式的和(差)的形式. (1)请仿照上面的方法,选择其中一种方法将分式2731x x x ---拆分成一个整式与一个真分式的和(差)的形式;(2)已知整数x 使分式225112x x x +-+的值为整数,求出满足条件的所有整数x 的值. 【答案】(1)961x x ---;(2)x=-1或-3或11或-15. 【解析】【分析】 (1)先变形2731x x x ---=26691x x x x --+--,由“真分式”的定义,仿照例题即可得出结论;(2)先把分式化为真分式,再根据分式的值为整数确定整数x 的值.【详解】解:(1)2731x x x ---=26691x x x x --+-- =(1)6(1)91x x x x ----- =961x x ---; (2)225112x x x +-+= 2242132x x x x +++-+ =2(2)(2)132x x x x +++-+=13212xx+-+,∵x是整数,225112x xx+-+也是整数,∴x+2=1或x+2=-1或x+2=13或x+2=-13,∴x=-1或-3或11或-15.【点睛】本题考查了逆用整式和分式的加减法对分式进行变形.解决本题的关键是理解真分式的定义对分子进行拆分.13.杨梅是漳州的特色时令水果.杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价每件比第一批多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销.要使得第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折(利润-售价-进价)?【答案】(1)120元(2)至少打7折.【解析】【分析】(1)设第一批杨梅每件进价是x元,则第二批每件进价是(x+5)元,再根据等量关系:第二批杨梅所购件数是第一批的2倍;(2)设剩余的杨梅每件售价y元,由利润=售价-进价,根据第二批的销售利润不低于320元,可列不等式求解.【详解】解:(1)设第一批杨梅每件进价是x元,则120025002,5 x x⨯=+解得120.x=经检验,x=120是原方程的解且符合题意.答:第一批杨梅每件进价为120元.(2)设剩余的杨梅每件售价打y折.则2500250015080%150(180%)0.12?500320. 125125y⨯⨯+⨯⨯-⨯-≥解得y≥7.答:剩余的杨梅每件售价至少打7折.【点睛】考查分式方程的应用, 一元一次不等式的应用,读懂题目,从题目中找出等量关系以及不等关系是解题的关键.14.“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A 型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A 型自行车去年每辆售价多少元;(2)该车行今年计划新进一批A 型车和新款B 型车共60辆,且B 型车的进货数量不超过A 型车数量的两倍.已知,A 型车和B 型车的进货价格分别为1500元和1800元,计划B 型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多.【答案】(1) 2000元;(2) A 型车20辆,B 型车40辆.【解析】【分析】(1)设去年A 型车每辆售价x 元,则今年售价每辆为(x ﹣200)元,由卖出的数量相同列出方程求解即可;(2)设今年新进A 型车a 辆,则B 型车(60﹣a )辆,获利y 元,由条件表示出y 与a 之间的关系式,由a 的取值范围就可以求出y 的最大值.【详解】解:(1)设去年A 型车每辆售价x 元,则今年售价每辆为(x ﹣200)元,由题意,得 8000080000(110%)200x x -=-, 解得:x=2000.经检验,x=2000是原方程的根.答:去年A 型车每辆售价为2000元;(2)设今年新进A 型车a 辆,则B 型车(60﹣a )辆,获利y 元,由题意,得y=a+(60﹣a ),y=﹣300a+36000.∵B 型车的进货数量不超过A 型车数量的两倍,∴60﹣a≤2a ,∴a≥20.∵y=﹣300a+36000.∴k=﹣300<0,∴y 随a 的增大而减小.∴a=20时,y 最大=30000元.∴B 型车的数量为:60﹣20=40辆.∴当新进A 型车20辆,B 型车40辆时,这批车获利最大.【点睛】本题考查分式方程的应用;一元一次不等式的应用.15.某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲、乙两队合作完成该工程需要多少天?【答案】(1)这项工程的规定时间是30天;(2)甲乙两队合作完成该工程需要18天.【解析】【分析】(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x 天完工,依题意列方程即可解答;(2)求出甲、乙两队单独施工需要的时间,再根据题意列方程即可.【详解】(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,依题意,得: 1551511.5x x++=.解得: 30x=,经检验,30x=是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,111()183045÷+=(天),答:甲乙两队合作完成该工程需要18天.【点睛】本题考查分式方程的应用,理解题意,根据等量关系列出方程是解题的关键.。
人教版八年级上册数学 分式填空选择单元测试卷 (word 版,含解析)一、八年级数学分式填空题(难)1.下列结论:①不论a 为何值时21a a +都有意义;②1a =-时,分式211a a +-的值为0;③若211x x +-的值为负,则x 的取值范围是1x <;④若112x x x x ++÷+有意义,则x 的取值范围是x ≠﹣2且x ≠0.其中正确的是________【答案】①③【解析】【分析】根据分式有意义的条件对各式进行逐一分析即可.【详解】①正确.∵a 不论为何值不论a 2+2>0,∴不论a 为何值21a a +都有意义; ②错误.∵当a =﹣1时,a 2﹣1=1﹣1=0,此时分式无意义,∴此结论错误; ③正确.∵若211x x +-的值为负,即x ﹣1<0,即x <1,∴此结论正确; ④错误,根据分式成立的意义及除数不能为0的条件可知,若112x x x x++÷+有意义,则x 的取值范围是即20010x x x x⎧⎪+≠⎪≠⎨⎪+⎪≠⎩,x ≠﹣2,x ≠0且x ≠﹣1,故此结论错误.故答案为:①③.【点睛】本题考查的是分式有意义的条件,解答此题要注意④中除数不能为0,否则会造成误解.2.如果关于x 的分式方程1a x +-3=11x x -+有负分数解,且关于x 的不等式组2()43412a x x x x -≥--⎧⎪⎨+<+⎪⎩的解集为x <-2,那么符合条件的所有整数a 的积是_________. 【答案】9【解析】()243412a x x x x ⎧-≥--⎪⎨+<+⎪⎩①②, 由①得:x≤2a+4,由②得:x<-2,由不等式组的解集为x<-2,得到2a+4≥-2,即a≥-3,分式方程去分母得:a-3x-3=1-x , x=42a -, 由分式方程1a x +-3=11x x -+有负分数解,则有a-4<0,所以a<4, 所以-3≤a<4, 把a=-3代入整式方程得:-3x-6=1-x ,即x=-72,符合题意; 把a=-2代入整式方程得:-3x-5=1-x ,即x=-3,不合题意; 把a=-1代入整式方程得:-3x-4=1-x ,即x=-52,符合题意; 把a=0代入整式方程得:-3x-3=1-x ,即x=-2,不合题意;把a=1代入整式方程得:-3x-2=1-x ,即x=-32,符合题意; 把a=2代入整式方程得:-3x-1=1-x ,即x=-1,不合题意;把a=3代入整式方程得:-3x=1-x ,即x=-12,符合题意, ∴符合条件的整数a 取值为-3,-1,1,3,之积为9,故选D 【点睛】本题考查了解一元一次不等式组,以及解分式方程,熟练掌握运算法则是解本题的关键.3.若关于x 的分式方程1x a x -+=a 无解,则a 的值为____. 【答案】1或-1【解析】根据方程无解,可让x+1=0,求出x=-1,然后再化为整式方程可得到x-a=a (x+1),把x=-1代入即可求得-1-a=(-1+1)×a ,解答a=-1;当a=1时,代入可知方程无解.故答案为1或-1.4.若11a b+=3,则22a b a ab b +-+的值为_____.【答案】35【解析】【分析】 由113a b +=,可得3a b ab +=,即b+a=3ab ,整体代入22a b a ab b+-+即可求解. 【详解】 ∵113a b+=, ∴3a b ab +=,即b+a=3ab ∴22a b a ab b +-+=3ab 6ab ab -=3ab 5ab =35. 【点睛】 本题考查了分式的化简求值,利用整体代入求值是解决本题的关键.5.若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是 ▲ 【答案】0.【解析】方程两边都乘以最简公分母(x -2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x 的值,然后代入进行计算即可求出m 的值: 方程两边都乘以(x -2)得,2-x -m=2(x -2).∵分式方程有增根,∴x -2=0,解得x=2.∴2-2-m=2(2-2),解得m=0.6.化简a b b a a b+--的结果是______ 【答案】﹣1【解析】 分析:直接利用分式加减运算法则计算得出答案.详解:a b b a a b +--=a b b a b a ---=()1a b b a b a b a---==---. 故答案为-1. 点睛:此题主要考查了分式的加减运算,正确掌握运算法则是解题关键.7.关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是___________.【答案】2?m >且3m ≠.【解析】【分析】方程两边同乘以x-1,化为整数方程,求得x ,再列不等式得出m 的取值范围.【详解】方程两边同乘以x-1,得,m-3=x-1,解得x=m-2,∵分式方程3111m x x+=--的解为正数, ∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0, ∴m >2且m≠3,故答案为m >2且m≠3.8.已知114a b +=,则3227a ab b a b ab-++-=______. 【答案】1【解析】 ∵11a b+=4, ∴4b a ab+=, ∴a+b=4ab, ∴-322-7a ab b a b ab ++=()32()7a b ab a b ab +-+-=4387ab ab ab ab --=ab ab=1 故答案为:1.9.关于x 的分式方程111x k k x x +-=+-的解为非负数,则k 的取值范围为_____. 【答案】k ≤12且k ≠0 【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为非负数求出k 的范围即可.【详解】解:去分母得:(x +k )(x ﹣1)﹣k (x +1)=(x +1)(x ﹣1),整理得:x 2﹣x +kx ﹣k ﹣kx ﹣k =x 2﹣1,解得:x =1﹣2k ,∵分式方程的解为非负数,得到1﹣2k ≥0,且1﹣2k ≠1,解得:k≤12且k≠0,故答案为:k≤12且k≠0【点睛】此题考查了分式方程的解的定义,方程的解即为能使方程左右两边相等的未知数的值.此题方程的解为非负数,即为x≥0且x≠1.其中x≠1容易漏掉,为易错点.10.某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,若设甲商品的单价为x元,则购买240元甲商品的数量比购买300元乙商品的数量多____件.【答案】90 x【解析】设甲商品的单价为x元,乙商品的单价为2x元,根据购买240元甲商品的数量比购买300元乙商品的数量多2403004803009022x x x x--==.故答案为:90 x.二、八年级数学分式解答题压轴题(难)11.已知:方程﹣=﹣的解是x=,方程﹣=﹣的解是x=,试猜想:(1)方程+=+的解;(2)方程﹣=﹣的解(a、b、c、d表示不同的数).【答案】(1)x=4;(2)x=.【解析】通过解题目中已知的两个方程的过程可以归纳出方程的解与方程中的常数之间的关系,利用这个关系可得出两个方程的解.解:解方程﹣=﹣,先左右两边分别通分可得:,化简可得:,整理可得:2x=15﹣8,解得:x=,这里的7即为(﹣3)×(﹣5)﹣(﹣2)×(﹣4),这里的2即为[﹣2+(﹣4)]﹣[﹣3+(﹣5)];解方程﹣=﹣,先左右两边分别为通分可得:,化简可得:,解得:x=,这里的11即为(﹣7)×(﹣5)﹣(﹣4)×(﹣6),这里的2即为[﹣4+(﹣6)]﹣[﹣7+(﹣5)];所以可总结出规律:方程解的分子为右边两个分中的常数项的积减去左边两个分母中的常数项的积,解的分母为左边两个分母中的常数项的差减去右边两个分母中常数项的差.(1)先把方程分为两边差的形式:方程﹣=﹣,由所总结的规律可知方程解的分子为:(﹣1)×(﹣6)﹣(﹣7)×(﹣2)=﹣8,分母为[﹣7+(﹣2)]﹣[﹣6+(﹣1)]=﹣2,所以方程的解为x==4;(2)由所总结的规律可知方程解的分子为:cd﹣ab,分母为(a+b)﹣(c+d),所以方程的解为x=.12.如图,小刚家、王老师家、学校在同一条路上,小刚家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米.由于小刚的父母战斗在抗震救灾第一线,为了使他能按时到校,王老师每天骑自行车送小刚上学.已知王老师骑自行车的速度是步行的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?【答案】王老师的步行速度是5km/h,则王老师骑自行车的速度是15km/h.【解析】【分析】王老师接小刚上学走的路程÷骑车的速度-平时上班走的路程÷步行的速度=2060小时.【详解】设王老师的步行速度是km /h x ,则王老师骑自行车是3km /h x , 由题意可得:330.50.520360x x ++-=,解得:5x =, 经检验,5x =是原方程的根,∴315x =答:王老师的步行速度是5km /h ,则王老师骑自行车的速度是15km /h .【点睛】本题考查列分式方程解应用题.重点在于准确地找出相等关系,需注意①王老师骑自行车接小刚所走路程是(3+3+0.5)千米;②注意单位要统一.13.为了迎接运动会,某校八年级学生开展了“短跑比赛”。
八年级数学上册 分式填空选择单元测试卷 (word 版,含解析)一、八年级数学分式填空题(难)1.已知x 2﹣4x ﹣5=0,则分式265x x x --的值是_____. 【答案】2【解析】 试题分析:根据分式的特点,可变形为22665453xx x x x x x =----+,然后整体代入可得623x x=. 故答案为2.2.当m =___________________时,关于x 的分式方程223242mx x x x +=--+无解 【答案】m=1、m=-4或m=6.【解析】【分析】方程两边都乘以(x+2)(x-2)把分式方程化为整式方程,当分式方程有增根或分式方程化成的整式方程无解时原分式方程无解,根据这两种情形即可计算出m 的值.【详解】解:方程两边都乘以(x+2)(x-2)去分母得,2(x+2)+mx=3(x-2),整理得(1-m )x=10,∴当m=1时,此整式方程无解,所以原分式方程也无解.又当原分式方程有增根时,分式方程也无解,∴当x=2或-2时原分式方程无解,∴2(1-m )=10或-2(1-m )=10,解得:m=-4或m=6,∴当m=1、m=-4或m=6时,关于x 的方程223242mx x x x +=--+无解. 【点睛】本题考查了分式方程的无解条件.分式方程无解有两种情形:一是分式方程有增根;二是分式方程化成的整式方程无解.3.如果在解关于x 的方程212212x x kx x x x x ++-=+-+-时产生了增根,那么k 的值为_____________.【答案】5-或12-.【解析】【分析】分式方程的增根是分式方程在去分母时产生的,分式方程的增根是使公分母等于0的x 值,所以先将分式方程去分母得整式方程,根据分式方程的增根适合整式方程,将增根代入整式方程可得关于k 的方程,根据解方程,可得答案.【详解】 解:原方程变形为122(1)1(2)x kx x x x x x ++-+=-+-, 方程去分母后得:(1)(1)(2)2x x x x kx -+-+=+,整理得:(2)3k x +=-,分以下两种情况:令1x =,23k +=-,5k ∴=-;令2x =-,2(2)3k -+=-,12k ∴=-, 综上所述,k 的值为5-或12-. 故答案为:5-或12-. 【点睛】本题考查了分式方程的增根,利用分式方程的增根得出关于k 的方程是解题关键.4.方程146x x =+的解是_____. 【答案】x =2. 【解析】【分析】本题考查解分式方程的能力,观察可得最简公分母是x (x+6),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.【详解】方程两边同乘以x (x+6),得x+6=4x ,解得x=2.经检验:x=2是原方程的解.【点睛】此题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程解.(2)解分式方程一定注意要验根.5.化简:(1221121x x x x x ++÷=--+)_____.【答案】11x x -+. 【解析】【分析】 原式括号中两项通分,同时利用除法法则变形,约分即可得到结果.【详解】 (1+1x 1-)÷22x x x 2x 1+-+ =22x x 2x 1x 1x x-+⨯-+ =()2x x 1x 1x x 1-⨯-+ =x 1x 1-+, 故答案为x 1x 1-+. 【点睛】 本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.6.当x =1时,分式x b x a -+无意义;当x =2时,分式23x b x a -+的值为0,则a +b =_____. 【答案】3【解析】【分析】先根据分式无意义的条件可求出a 的值,再根据分式值为0的条件可求出b 的值,最后将求出的a,b 代入计算即可.【详解】因为当1x =时,分式x b x a -+无意义, 所以10a +=,解得: 1a =-,因为当2x =时,分式23x b x a-+的值为零, 所以4020b a -=⎧⎨+≠⎩, 解得: 4b =,所以143,a b +=-+=故答案为:3.【点睛】本题主要考查分式无意义和分式值为0的条件,解决本题的关键是要熟练掌握分式无意义和分式值为0的条件.7.若关于x 的分式方程3x x --2=3m x -有增根,则增根为________,m =________. 【答案】x =3 3【解析】【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m 的值.【详解】方程两边都乘(x-3),得x-2(x-3)=m ,∵原方程有增根,∴最简公分母x-3=0,即增根是x=3,把x=3代入整式方程,得m=3,故答案为x=3,3.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.【答案】28【解析】设这种电子产品的标价为x 元,由题意得:0.9x −21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.9.当x 取_____时,分式1111x x x+--有意义. 【答案】x≠0且x≠±1【解析】分析:要想使分式有意义,那么分式的分母就不能为0,据此列出关于x 的不等式组,解不等式组即可求得x 的取值范围.详解:由题意可知,只有当:0101101x x x x x x ⎧⎪⎪≠⎪⎪-≠⎨⎪+⎪-≠⎪-⎪⎩时,原分式才有意义,解得:011x x x ≠⎧⎪≠±⎨⎪≠-⎩,即当x ≠0且x ≠±1时,原分式有意义.故答案为:x ≠0且x ≠±1.点睛:本题主要考查了分式有意义的条件,要求掌握.对于任意一个分式,分母都不能为0,否则分式无意义.解此类问题,只要令分式中分母不等于0,求得字母的取值即可. 本题的难点在于,题中是一个繁分式,需一层一层分析,x 是1x的分母,所以x ≠0; x ﹣1x 是11x x x +-的分母,所以x ﹣1x ≠0;1﹣11x x x+-又是整个分式的分母,因此1﹣11xx x+-≠0.繁分式的有关知识超出初中教材大纲要求,只在竞赛中出现.10.关于x 的分式方程111x k k x x +-=+-的解为非负数,则k 的取值范围为_____. 【答案】k ≤12且k ≠0 【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为非负数求出k 的范围即可.【详解】解:去分母得:(x +k )(x ﹣1)﹣k (x +1)=(x +1)(x ﹣1),整理得:x 2﹣x +kx ﹣k ﹣kx ﹣k =x 2﹣1,解得:x =1﹣2k ,∵分式方程的解为非负数,得到1﹣2k ≥0,且1﹣2k ≠1,解得:k ≤12且k ≠0, 故答案为:k ≤12且k ≠0 【点睛】此题考查了分式方程的解的定义,方程的解即为能使方程左右两边相等的未知数的值.此题方程的解为非负数,即为x ≥0且x ≠1.其中x ≠1容易漏掉,为易错点.二、八年级数学分式解答题压轴题(难)11.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天 120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.【答案】(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.【解析】【分析】(1)设甲工厂每天加工 x 件新品,乙工厂每天加工 1.5x 件新品,根据题意找出等量关系:甲厂单独加工这批产品所需天数﹣乙工厂单独加工完这批产品所需天数=20,由等量关系列出方程求解.(2)分别计算出甲单独加工完成、乙单独加工完成、甲、乙合作完成需要的时间和费用,比较大小,选择既省时又省钱的加工方案即可.【详解】(1)设甲工厂每天加工 x 件新品,乙工厂每天加工 1.5x 件新品,则:解得:x=16经检验,x=16 是原分式方程的解∴甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品(2)方案一:甲工厂单独完成此项任务,则需要的时间为:960÷16=60 天需要的总费用为:60×(80+15)=5700 元方案二:乙工厂单独完成此项任务,则需要的时间为:960÷24=40 天需要的总费用为:40×(120+15)=5400 元方案三:甲、乙两工厂合作完成此项任务,设共需要 a 天完成任务,则16a+24a=960∴a=24∴需要的总费用为:24×(80+120+15)=5 160 元综上所述:甲、乙两工厂合作完成此项任务既省时又省钱.【点睛】本题主要考查分式方程的应用,解题的关键在于理解清楚题意,找出等量关系,列出方程求解.需要注意:①分式方程求解后,应注意检验其结果是否符合题意;②选择最优方案时,需将求各个方案所需时间和所需费用,经过比较后选择最优的那个方案.12.某市为了做好“全国文明城市”验收工作,计划对市区S 米长的道路进行改造,现安排甲、乙两个工程队进行施工.(1)已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米,求甲、乙两工程队每天改造道路的长度各是多少米.(2)若甲工程队每天可以改造a 米道路,乙工程队每天可以改造b 米道路,(其中a b ).现在有两种施工改造方案: 方案一:前12S 米的道路由甲工程队改造,后12S 米的道路由乙工程队改造; 方案二:完成整个道路改造前一半时间由甲工程队改造,后一半时间由乙工程队改造. 根据上述描述,请你判断哪种改造方案所用时间少?并说明理由.【答案】(1)甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;(2)方案二所用的时间少【解析】【分析】(1)设乙工程队每天道路的长度为x 米,根据“甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同”,列出分式方程,即可求解;(2)根据题意,分别表示出两种方案所用的时间,再作差比较大小,即可得到结论.【详解】(1)设乙工程队每天道路的长度为x 米,则甲工程队每天道路的长度为()30x +米, 根据题意,得:36030030x x=+, 解得:150x =,检验,当150x =时,()300x x +≠,∴原分式方程的解为:150x =,30180x +=,答:甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;(2)设方案一所用时间为:111()222s s a b s t a b ab+=+=, 方案二所用时间为2t ,则221122t a t b s +=,22s t a b=+, ∴22()22()a b a b S S S ab a b ab a b +--=++, ∵a b ,00a b >>,,∴()20a b ->,∴202a b S S ab a b+->+,即:12t t >, ∴方案二所用的时间少. 【点睛】 本题主要考查分式方程的实际应用以及分式的减法法则,找出等量关系,列分式方程,掌握分式的通分,是解题的关键.13.阅读理解: 把一个分式写成两个分式的和叫做把这个分式表示成部分分式.如何将2131x x --表示成部分分式?设分式2131x x --=11m n x x +-+,将等式的右边通分得:(1)(1)(1)(1)m x n x x x ++-+-=()(1)(1)m n x m n x x ++-+-,由2131x x --= ()(1)(1)m n x m n x x ++-+-得:31m n m n +=-⎧⎨-=⎩,解得:12m n =-⎧⎨=-⎩,所以2131x x --=1211x x --+-+. (1)把分式1(2)(5)x x --表示成部分分式,即1(2)(5)x x --=25m n x x +--,则m = ,n = ;(2)请用上述方法将分式43(21)(2)x x x -+-表示成部分分式. 【答案】(1)13-,13;(2)21212x x ++-. 【解析】【分析】仿照例子通分合并后,根据分子的对应项的系数相等,列二元一次方程组求解.【详解】 解:(1)∵()()()522525m n x m n m n x x x x +--+=----, ∴0521m n m n +=⎧⎨--=⎩, 解得:1313m n ⎧=-⎪⎪⎨⎪=⎪⎩. (2)设分式()()43212x x x -+-=212m n x x ++-将等式的右边通分得:()()()()221212m x n x x x -+++-=()()()22212m n x m n x x +-++-, 由()()43212x x x -+-=()()()22212m n x m n x x +-++-, 得2423m n m n +=⎧⎨-+=-⎩, 解得21m n =⎧⎨=⎩. 所以()()43212x x x -+-=21212x x ++-.14.某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导.(1)甲、乙两个工厂每天各能加工多少件产品?(2)该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?【答案】(1)甲工厂每天加工16件产品,则乙工厂每天加工24件;(2)乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【解析】【分析】(1)此题的等量关系为:乙工厂每天加工产品的件数=甲工厂每天加工产品的件数+8;甲工厂单独加工48件产品的时间=乙工厂单独加工72件产品的时间,设未知数,列方程求出方程的解即可;(2)先分别求出甲乙两工厂单独加工这批新产品所需时间,再求出甲工厂所需费用,然后根据乙工厂所需费用要小于甲工厂所需费用,设未知数,列不等式,再求出不等式的最大整数解即可.【详解】(1)设甲工厂每天加工x 件产品,则乙工厂每天加工(x+8)件产品, 根据题意得:48728x x =+, 解得:x=16,检验:x(x+8)=16(16+8)≠0,∴x=16是原方程的解,∴x+8=16+8=24,答:甲工厂每天加工16件产品,则乙工厂每天加工24件.(2)解:甲工厂单独加工这批新产品所需时间为:960÷16=60,所需费用为:60×800+50×60=51000,乙工厂单独加工这批新产品所需时间为:960÷24=40,解:设乙工厂向公司报加工费用每天最多为y元时,有望加工这批产品则:40y+40×50≤51000解之y≤1225∴y的最大整数解为:y=1225答:乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【点睛】本题考查分式方程的应用,涉及到的公式:工作总量=工作效率×工作时间;分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.15.杨梅是漳州的特色时令水果.杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价每件比第一批多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销.要使得第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折(利润-售价-进价)?【答案】(1)120元(2)至少打7折.【解析】【分析】(1)设第一批杨梅每件进价是x元,则第二批每件进价是(x+5)元,再根据等量关系:第二批杨梅所购件数是第一批的2倍;(2)设剩余的杨梅每件售价y元,由利润=售价-进价,根据第二批的销售利润不低于320元,可列不等式求解.【详解】解:(1)设第一批杨梅每件进价是x元,则120025002,5 x x⨯=+解得120.x=经检验,x=120是原方程的解且符合题意.答:第一批杨梅每件进价为120元.(2)设剩余的杨梅每件售价打y折.则2500250015080%150(180%)0.12?500320. 125125y⨯⨯+⨯⨯-⨯-≥解得y≥7.答:剩余的杨梅每件售价至少打7折.【点睛】考查分式方程的应用, 一元一次不等式的应用,读懂题目,从题目中找出等量关系以及不等关系是解题的关键.。
八年级数学上册分式填空选择单元测试卷 (word 版,含解析)一、八年级数学分式填空题(难)1.对实数a 、b ,定义运算☆如下:a ☆b=(,0){(,0)b b a a b a a a b a ->≠≤≠,例如:2☆3=2﹣3=18,则计算:[2☆(﹣4)]☆1=_____.【答案】16【解析】【分析】判断算式a ☆b 中,a 与b 的大小,转化为对应的幂运算即可求得答案.【详解】由题意可得:[2☆(﹣4)]☆1=2﹣4☆1 =116☆1 =(116)﹣1 =16,故答案为:16.【点睛】本题考查了新定义运算、负整数指数幂,弄清题意,理解新定义运算的规则是解决此类题目的关键.2.已知关于x 的方程12x a x +=--有解且大于0,则a 的取值范围是_____. 【答案】a <2 且 a ≠-2【解析】【分析】 分式方程去分母转化为整式方程,求出整式方程的解,令其解大于0,列出关于a 的不等式,求出不等式的解集,即可得到a 的范围.【详解】解:原分式方程去分母得:x+a=-x+2, 解得:22a x -=, 根据题意得:22a ->0且22a -≠2, 解得:a<2,a ≠-2.故答案为:a<2,a ≠-2.【点睛】本题考查了分式方程的解,弄清题意和理解分式有意义的条件是解本题的关键.3.函数y =x 的取值范围是______. 【答案】23x -<≤【解析】【分析】根据二次根式及分式有意义的条件,结合所给式子得到关于x 的不等式组,解不等式组即可求出x 的取值范围.【详解】由题意得,30200x x ⎧-≥⎪+≥⎨≠, 解得:-2<x≤3,故答案为:-2<x≤3.【点睛】本题考查了二次根式及分式有意义的条件,注意掌握二次根式有意义:被开方数为非负数,分式有意义分母不为零.4.化简:224a a -﹣12a -=_____. 【答案】12a + 【解析】【分析】原式通分并利用同分母分式的减法法则计算,约分即可得到结果. 【详解】原式=()()()()222222a a a a a a +-+-+-=()()222a a a -+- =12a +, 故答案为:12a +. 【点睛】本题考查了分式的加减法,熟练掌握分式加减法的运算法则是解本题的关键.5.已知x 为正整数,当时x=________时,分式62x-的值为负整数.【答案】3、4、5、8【解析】由题意得:2﹣x <0,解得x >2,又因为x 为正整数,讨论如下:当x=3时,62x -=﹣6,符合题意; 当x=4时,62x -=﹣3,符合题意; 当x=5时,62x -=﹣2,符合题意; 当x=6时,62x -=﹣32,不符合题意,舍去; 当x=7时,62x -=﹣65,不符合题意,舍去; 当x=8时, 62x-=﹣1,符合题意; 当x≥9时,﹣1<62x-<0,不符合题意.故x 的值为3,4,5,8. 故答案为:3、4、5、8.6.若22440,x y x xy y x y--+=+则等于________. 【答案】13【解析】 解:∵x 2﹣4xy +4y 2=0,∴(x ﹣2y )2=0,∴x =2y ,∴x y x y -+=22y y y y -+=13.故答案为13. 点睛:根据已知条件x 2﹣4xy +4y 2=0,求出x 与y 的关系是解答本题的关键.7.小明到商场购买某个牌子的铅笔x 支,用了y 元(y 为整数).后来他又去商场时,发现这种牌子的铅笔降价20%,于是他比上一次多买了10支铅笔,用了4元钱,那么小明两次共买了铅笔________支.【答案】40或90【解析】【分析】因y 元买了x 只铅笔,则每只铅笔y x 元;降价20%后,每只铅笔的价格是45y x元,依题意得45y x(x+10)=4,变形可得x=105y y -,即可得y <5;再由x 、y 均是正整数,确定y 只能取3或4,由此求得x 的值,即可得小明两次所买铅笔的数量.因y元买了x只铅笔,则每只铅笔yx元;降价20%后,每只铅笔的价格是(1-20%)yx元,即45yx元,依题意得:45yx(x+10)=4,∴y(x+10)=5x∴x=105yy -,∴5-y>0,即y<5;又∵x、y均是正整数,∴y只能取3和4;①当y=3时, x=15,小明两次共买了铅笔:15+15+10=40(支)②当y=4时, x=40,小明两次共买了铅笔:40+(40+10)=90(支)故答案为40或90.【点睛】本题考查了方程的应用,解决根据题意列出方程45yx(x+10)=4确定x、y的值是解决问题的关键.8.某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,若设甲商品的单价为x元,则购买240元甲商品的数量比购买300元乙商品的数量多____件.【答案】90 x【解析】设甲商品的单价为x元,乙商品的单价为2x元,根据购买240元甲商品的数量比购买300元乙商品的数量多2403004803009022x x x x--==.故答案为:90 x.9.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,则可列方程方程为________.【答案】1209020x x=+【解析】【分析】设小江每小时分拣x个物件,分别表示出小李和小江分拣所用的时间,最后再根据“小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同”体现的等量关系即可列出【详解】解:设小江每小时分拣x 个物件,根据题意得:1209020x x =+. 故答案为1209020x x=+. 【点睛】本题考查了分式方程的应用,明确题意、确定等量关系是解答本题的关键.10.满足222210105,4b a a b a b a b+=+=++的整数对(),a b 的组数为 _________________ ; 【答案】2【解析】【分析】将两式联立组成方程组,先将两式相减,再根据题意a 、b 均为整数,得出新的方程组求出满足条件的解,再数出满足条件的个数即可.【详解】 解:2222105104b a a b a b a b ⎧+=⎪⎪+⎨⎪+=⎪+⎩①② 由①-②得()22101b a a b a b--+=+ ()221010a b a b a b ----=+ 去分母,并整理得()()()()()()()()222222110011011011010a b a b a b a b a b a b a b a b --+--=--+---=--+-=因为,a b 为整数,所以有22111010a b a b --=⎧⎨+-=⎩①②221-110-10a b a b --=⎧⎨+-=⎩③22110101a b a b --=⎧⎨+-=⎩④221-1010-1a b a b --=⎧⎨+-=⎩⑤2212105a b a b --=⎧⎨+-=⎩⑥221-210-5a b a b --=⎧⎨+-=⎩⑦221-510-2a b a b --=⎧⎨+-=⎩⑧2215102a b a b --=⎧⎨+-=⎩解方程组①得,42a b =⎧⎨=⎩或24a b =-⎧⎨=-⎩; 解方程组②得,0a b ;解方程组③得,此方程组无解;解方程组④得,此方程组无解;解方程组⑤得,无整数解;解方程组⑥得,12ab=⎧⎨=⎩或21ab=-⎧⎨=-⎩解方程组⑦得,22 ab=-⎧⎨=⎩解方程组⑧得,无整数解;将求出的解代入原方程,42ab=⎧⎨=⎩或12ab=⎧⎨=⎩是原方程的解所以满足题意的数对有(1,2)或(4,2)故答案为:2.【点睛】本题考查了分式方程的整数解的特殊解法,认真审题,弄清题意是解决本题的关键.二、八年级数学分式解答题压轴题(难)11.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍. 若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍.(注:=垃圾处理量垃圾处理率垃圾排放量)(1)求该市2018年平均每天的垃圾排放量;(2)预计该市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加10%. 如果按照创卫要求“城市平均每天的垃圾处理率不低于90%”,那么该市2020年平均每天的垃圾处理量在2019年平均每天的垃圾处理量的基础上,至少还需要増加多少万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求?【答案】(1)100;(2)98.【解析】【分析】(1)设2018年平均每天的垃圾排放量为x万吨,根据题意列方程求出x的值即可;(2)设设2020年垃圾的排放量还需要増加m万吨,根据题意列出不等式,解得m的取值范围即可得到答案.【详解】(1)设2018年平均每天的垃圾排放量为x 万吨,40 2.540 1.25100x x⨯=⨯+, 解得:x=100,经检验,x=100是原分式方程的解,答:2018年平均每天的垃圾排放量为100万吨.(2)由(1)得2019年垃圾的排放量为200万吨,设2020年垃圾的排放量还需要増加m 万吨,40 2.5200(110%)m ⨯+⨯+≥90%, m ≥98,∴至少还需要増加98万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求.【点睛】此题考查分式方程的实际应用,一元一次不等式的实际应用,正确理解题意,找到各量之间的关系是解题的关键.12.阅读下面的解题过程:已知2113x x =+,求241x x +的值。
八年级上册分式填空选择单元达标训练题(Word 版 含答案)一、八年级数学分式填空题(难)1.已知x 2﹣4x ﹣5=0,则分式265x x x --的值是_____. 【答案】2【解析】 试题分析:根据分式的特点,可变形为22665453xx x x x x x =----+,然后整体代入可得623x x=. 故答案为2.2.如果111a b +=,则2323a ab b a ab b-+=++__________. 【答案】15-【解析】【分析】 由111a b +=得a+b=ab ,然后再对2323a ab b a ab b-+++变形,最后代入,即可完成解答. 【详解】 解:由111a b+=得a+b=ab , 2323a ab b a ab b -+=++2332a b ab a b ab +-++=()()232a b ab a b ab +-++=232ab ab ab ab -+=15-. 【点睛】本题考查了分式的化简求值,解答的关键在于分式的灵活变形.3.已知==x y n 为正整数),则当=n ______时,22101012902018x y xy +-+=.【答案】3【解析】【分析】根据分式的分母有理化把x 、y 化简,利用完全平方公式把原式变形,计算即可.【详解】解:221===+-x n221===++y n 1=xy ,2222221010129020181010129020181010+-+=+-+=+x y xy x y x y2222194019421942=+=++=+x y x xy y2()196+=x y ,14+=x y则212114+-++=n n ,解得,3n =,故答案为3.【点睛】考查的是分式的化简求值、完全平方公式,掌握分式的分母有理化的一般步骤是解题的关键.4.当m= __________ 时,关于x 的分式方程231062x m x x x +++=--+没有实数解. 【答案】4或-6 【解析】【分析】 先将分式方程化为整式方程,根据方程231062x m x x x +++=--+没有实数解会产生增根判断增根是x=3或x=-2,再把增根x=3或x=-2代入整式方程即可求出m 的值.【详解】 解:方程231062x m x x x +++=--+变形为310(3)(2)2x m x x x +++=-++, 方程两边同时乘以(3)(2)x x -+去分母得:x+m+3+x-3=0; 整理得:2x+m=0∵关于x 的分式方程231062x m x x x +++=--+没有实数解. ∴分式方程有增根x=3或x=-2. 把x=3和x=-2分别代入2x+m=0中得m=-6或m=4.【点睛】分式方程无解问题或增根问题可按如下步骤进行:①根据最简公分母确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.但也要注意,有时分式方程转化成的整式方程本身没有实数根,也是导致分式方程没有实数根的一种情况,所以要考虑全面,免得漏解.5.如果在解关于x 的方程212212x x kx x x x x ++-=+-+-时产生了增根,那么k 的值为_____________.【答案】5-或12-. 【解析】【分析】分式方程的增根是分式方程在去分母时产生的,分式方程的增根是使公分母等于0的x 值,所以先将分式方程去分母得整式方程,根据分式方程的增根适合整式方程,将增根代入整式方程可得关于k 的方程,根据解方程,可得答案.【详解】 解:原方程变形为122(1)1(2)x kx x x x x x ++-+=-+-, 方程去分母后得:(1)(1)(2)2x x x x kx -+-+=+,整理得:(2)3k x +=-,分以下两种情况:令1x =,23k +=-,5k ∴=-;令2x =-,2(2)3k -+=-,12k ∴=-, 综上所述,k 的值为5-或12-. 故答案为:5-或12-. 【点睛】本题考查了分式方程的增根,利用分式方程的增根得出关于k 的方程是解题关键.6.已知关于x 的方程4433x m m x x---=--无解,则m=________. 【答案】-3或1【解析】【分析】分式方程去分母转化为整式方程()348m x m +=+,分两种情况:(1)()348m x m +=+无实数根,(2)整式方程()348m x m +=+的根是原方程的增根,分别求解即可.【详解】去分母得:()()434x x m m ---+=-,整理得()348m x m +=+,由于原方程无解,故有以下两种情况:(1)()348m x m +=+无实数根,即30m +=且480m +≠,解得3m =-;(2)整式方程()348m x m +=+的根是原方程的增根, 即4833m m +=+,解得1m =; 故答案为:3m =-或1m =.【点睛】此题考查了分式方程无解的条件,分式方程无解,有两种情况,①整式方程本身无解;②整式方程有解,但使得分式方程的最简公分母为零(即为增根).7.阅读材料:方程1111123x x x x -=-+--的解为x=1,方程1111134x x x x -=----的解为x=2,方程11111245x x x x -=-----的解为3,x =,根据你发现的方程的规律,写出解是x=n 的对应方程为____________________. 【答案】11112112x n x n x n x n -=--+-+---- 【解析】【分析】 观察方程左边第二项的分母分别是x ,x-1,x-2,可知解是x=n 的对应方程左边第二项的分母是x-(n-1),其它分母的情况对照与此分母的关系可分别写出.【详解】解:解是x=n 的对应方程为11112112x n x n x n x n -=--+-+----. 【点睛】本题考查根据分式方程解的规律来写分式方程,观察所给的材料信息时,要注意从特殊形式到一般形式的规律与特征.8.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__. 【答案】-1或5或13- 【解析】【分析】 直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【详解】去分母得:()443x m x m ++-=+,可得:()151m x m +=-,当10m +=时,一元一次方程无解,此时1m =-,当10m +≠时, 则5141m x m -==±+, 解得:5m =或13-.故答案为:1-或5或13-.【点睛】此题主要考查了分式方程的解,正确分类讨论是解题关键.9.若关于x 的分式方程x 2322m m x x++=--的解为正实数,则实数m 的取值范围是____.【答案】m <6且m≠2.【解析】【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【详解】 x 2322m m x x++=--, 方程两边同乘(x-2)得,x+m-2m=3x-6,解得,x=6-2m , 由题意得,6-2m >0, 解得,m <6, ∵6-2m ≠2, ∴m≠2, ∴m<6且m≠2.【点睛】要注意的是分式的分母暗含着不等于零这个条件,这也是易错点.10.关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是___________. 【答案】2?m >且3m ≠.【解析】【分析】方程两边同乘以x-1,化为整数方程,求得x ,再列不等式得出m 的取值范围.【详解】方程两边同乘以x-1,得,m-3=x-1,解得x=m-2,∵分式方程3111m x x+=--的解为正数, ∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m >2且m≠3,故答案为m >2且m≠3.二、八年级数学分式解答题压轴题(难)11.阅读下面材料并解答问题 材料:将分式322231x x x x --++-+拆分成一个整式与一个分式(分子为整数)的和的形式. 解:由分母为21x -+,可设()322231()x x x x x a b --++=-+++,则323223x x x x ax x a b --++=--+++∵对任意x 上述等式均成立,∴2a =且3a b +=,∴2a =,1b = ∴()2322221(2)12312111x x x x x x x x x -+++--++==++-+-+-+ 这样,分式322231x x x x --++-+被拆分成了一个整式2x +与一个分式211x -+的和 解答:(1)将分式371x x +-拆分成一个整式与一个分式(分子为整数)的和的形式 (2)求出422681x x x --+-+的最小值. 【答案】(1)3+101x -;(2)8 【解析】【分析】(1)直接把分子变形为3(x-1)+10解答即可;(2)由分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a)+b ,按照题意,求出a 和b 的值,即可把分式422681x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式. 【详解】解:(1)371x x +-=33101x x -+- =()31101x x -+- =3+101x -; (2)由分母为21x -+,可设4268x x --+()()221x x a b =-+++,则4268x x --+ ()()221x x a b =-+++422x ax x a b =--+++ 42(1)()x a x a b =---++.∵对于任意的x ,上述等式均成立,∴168a a b -=⎧⎨+=⎩解得71a b =⎧⎨=⎩ ∴422681x x x --+-+ ()()2221711x x x -+++=-+ ()()222217111x x x x -++=+-+-+ 22171x x =++-+. ∴当x=0时,22171x x ++-+取得最小值8,即 422681x x x --+-+的最小值是8. 【点睛】 本题主要考查分式的混合运算,解答本题的关键是理解阅读材料中的方法,并能加以正确应用.12.某商场购进甲、乙两种空调共50台.已知购进一台甲种空调比购进一台乙种空调进价少0.3万元;用20万元购进甲种空调数量是用40万元购进乙种空调数量的2倍.请解答下列问题:(1)求甲、乙两种空调每台进价各是多少万元?(2)若商场预计投入资金不少于10万元,且购进甲种空调至少31台,商场有哪几种购进方案?(3)在(2)条件下,若甲种空调每台售价1100元,乙种空调每台售价4300元,甲、乙空调各有一台样机按八折出售,其余全部标价售出,商场从销售这50台空调获利中拿出2520元作为员工福利,其余利润恰好又可以购进以上空调共2台.请直接写出该商场购进这50台空调各几台.【答案】(1)0.1,0.4;(2)商场有3种购进方案:①购买甲种空调31台,购买乙种空调19台;②购买甲种空调32台,购买乙种空调18台;③购买甲种空调33台,购买乙种空调17台;(3)购买甲种空调32台,购买乙种空调18台【解析】【分析】(1)可设甲种空调每台进价是x 万元,则乙种空调每台进价是(x+0.3)万元,根据等量关系用20万元购进甲种空调数量=用40万元购进乙种空调数量×2,列出方程求解即可; (2)设购买甲种空调n 台,则购买乙种空调(50﹣n )台,根据商场预计投入资金不少于10万元,且购进甲种空调至少31台,求出n 的范围,即可确定出购买方案;(3)找到(2)中3种购进方案符合条件的即为所求.【详解】解:(1)设甲种空调每台进价是x 万元,则乙种空调每台进价是(x+0.3)万元,依题意有20x =400.3x ×2, 解得x =0.1,x+0.3=0.1+0.3=0.4.答:甲种空调每台进价是0.1万元,乙种空调每台进价是0.4万元;(2)设购买甲种空调n 台,则购买乙种空调(50﹣n )台,依题意有0.10.4(50)1031sn n n +-⎧⎨⎩, 解得31≤n≤3313, ∵n 为整数, ∴n 取31,32,33,∴商场有3种购进方案:①购买甲种空调31台,购买乙种空调19台;②购买甲种空调32台,购买乙种空调18台;③购买甲种空调33台,购买乙种空调17台;(3)①购买甲种空调31台,购买乙种空调19台,(31﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(19﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520=3000﹣120+5400﹣560﹣2520=7720﹣2520=5200(元),不符合题意,舍去;②购买甲种空调32台,购买乙种空调18台,(32﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(18﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520=3100﹣120+5100﹣560﹣2520=7520﹣2520=5000(元),符合题意;③购买甲种空调33台,购买乙种空调17台,(33﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(17﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520=3200﹣120+4800﹣560﹣2520=7320﹣2520=4800(元),不符合题意,舍去.综上所述,购买甲种空调32台,购买乙种空调18台.【点睛】此题考查了分式方程的应用,以及一元一次不等式组的应用,弄清题中的等量关系是解本题的关键.13.我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式, 如:112122111111x x x x x x x x +-+-==+=+-----; 2322522552()11111x x x x x x x x -+-+-==+=+-+++++. (1)下列分式中,属于真分式的是:____________________(填序号) ①21a a -+; ②21x x +; ③223b b +; ④2231a a +-. (2)将假分式4321a a +-化成整式与真分式的和的形式为: 4321a a +-=______________+________________. (3)将假分式231a a +-化成整式与真分式的和的形式: 231a a +-=_____________+______________.【答案】(1)③;(2)2,521a -;(3)a +1+41a - . 【解析】 试题分析:(1)认真阅读题意,体会真分式的特点,然后判断即可;(2)根据题意的化简方法进行化简即可;(3)根据题意的化简方法进行化简即可.试题解析:(1)①中的分子分母均为1次,②中分子次数大于分母次数,③分子次数小于分母次数,④分子分母次数一样,故选③.(2)4321a a +-=42552212121a a a a -+=+---,故答案为2,5221a +-; (3)231a a +-=214(1)(1)4111a a a a a a -++-=+---=411a a ++-,故答案为a+1+41a -.14.在计算23224x x x x +-++-的过程中,三位同学给出了不同的方法: 甲同学的解法:原式=222222(3)(2)26284444x x x x x x x x x x x +--+-----==----; 乙同学的解法:原式=3231312(2)(2)222x x x x x x x x x x +-++--=-=++-+++=1; 丙同学的解法:原式=(x+3)(x ﹣2)+2﹣x=x 2+x ﹣6+2﹣x=x 2﹣4.(1)请你判断一下, 同学的解法从第一步开始就是错误的, 同学的解法是完全正确的.(2)乙同学说:“我发现无论x 取何值,计算的结果都是1”.请你评价一下乙同学的话是否合理,并简要说明理由.【答案】(1)丙,乙;(2)不合理,理由见解析.【解析】试题分析:(1)根据分式的加减法,由分解因式和同分母的分式加减,可知甲第2步去括号时没变号;乙正确;丙第一步的计算漏掉了分母,由此可知答案;(2)根据乙的正确化简结果可知最终结果与x 值无关,但是要注意所选取的x 不能使分式无意义.试题解析:(1)丙同学的解法从第一步开始就是错误的,乙同学的解法是完全正确的; 故答案为:丙,乙;(2)不合理,理由:∵当x≠±2时,22232(3)(2)22444x x x x x x x x x +-+--+=-+---=222262444x x x x x x +--+-=--=1, ∴乙同学的话不合理,15.探索:(1)如果32311x m x x -=+++,则m=_______; (2)如果53522x m x x -=+++,则m=_________; 总结:如果ax b m a x c x c+=+++(其中a 、b 、c 为常数),则m=________; (3)利用上述结论解决:若代数式431x x --的值为整数,求满足条件的整数x 的值. 【答案】(1)-5;(2)-13 ; b -ac ;(3)0或2【解析】试题解析: ()323(1)55133.1111x x m x x x x -+-==-=+++++ 5.m ∴=-()535(2)1313255.2222x x m x x x x -+-==-=+++++ 13.m ∴=- 总结:().ax b a x c b ac b ac m a a x c x c x c x c +++--==+=+++++ .m b ac ∴=-()434(1)1134.111x x x x x --+==+--- 又∵代数式431x x --的值为整数, 11x ∴-为整数, 11x ∴-=或11x -=-2x ∴=或 0.。