二叉树的基本操作
- 格式:docx
- 大小:14.88 KB
- 文档页数:7
二叉树的基本操作二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。
二叉树在计算机领域中得到广泛应用,它的基本操作包括插入、删除、查找、遍历等。
1.插入操作:二叉树的插入操作是将一个新的节点添加到已有的二叉树中的过程。
插入操作会按照一定规则将新节点放置在正确的位置上。
插入操作的具体步骤如下:-首先,从根节点开始,比较新节点的值与当前节点的值的大小关系。
-如果新节点的值小于当前节点的值,则将新节点插入到当前节点的左子树中。
-如果新节点的值大于当前节点的值,则将新节点插入到当前节点的右子树中。
-如果当前节点的左子树或右子树为空,则直接将新节点插入到该位置上。
-如果当前节点的左子树和右子树都不为空,则递归地对左子树或右子树进行插入操作。
2.删除操作:二叉树的删除操作是将指定节点从二叉树中删除的过程。
删除操作有以下几种情况需要考虑:-如果待删除节点是叶子节点,则直接将其从二叉树中删除即可。
-如果待删除节点只有一个子节点,则将其子节点替换为待删除节点的位置即可。
-如果待删除节点有两个子节点,则需要找到其左子树或右子树中的最大节点或最小节点,将其值替换为待删除节点的值,然后再删除最大节点或最小节点。
3.查找操作:二叉树的查找操作是在二叉树中查找指定值的节点的过程。
查找操作的具体步骤如下:-从根节点开始,将待查找值与当前节点的值进行比较。
-如果待查找值等于当前节点的值,则返回该节点。
-如果待查找值小于当前节点的值,则在当前节点的左子树中继续查找。
-如果待查找值大于当前节点的值,则在当前节点的右子树中继续查找。
-如果左子树或右子树为空,则说明在二叉树中找不到该值。
4.遍历操作:二叉树的遍历操作是按照一定规则依次访问二叉树中的每个节点。
有三种常用的遍历方式:- 前序遍历(Preorder Traversal):先访问根节点,然后递归地前序遍历左子树和右子树。
- 中序遍历(Inorder Traversal):先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。
实验三二叉树的基本运算一、实验目的1、使学生熟练掌握二叉树的逻辑结构和存储结构。
2、熟练掌握二叉树的各种遍历算法。
二、实验内容题目一:二叉树的基本操作实现(必做题)[问题描述]建立一棵二叉树,试编程实现二叉树的如下基本操作:1. 按先序序列构造一棵二叉链表表示的二叉树T;2. 对这棵二叉树进行遍历:先序、中序、后序以及层次遍历,分别输出结点的遍历序列;3. 求二叉树的深度/结点数目/叶结点数目;(选做)4. 将二叉树每个结点的左右子树交换位置。
(选做)[基本要求]从键盘接受输入(先序),以二叉链表作为存储结构,建立二叉树(以先序来建立),[测试数据]如输入:ABCффDEфGффFффф(其中ф表示空格字符)则输出结果为先序:ABCDEGF中序:CBEGDFA后序:CGEFDBA层序:ABCDEFG[选作内容]采用非递归算法实现二叉树遍历。
三、算法设计1、主要思想:根据二叉树的图形结构创建出二叉树的数据结构,然后用指针对树进行操作,重点掌握二叉树的结构和性质。
2、本程序包含四个模块:(1)结构体定义(2)创建二叉树(3)对树的几个操作(4)主函数四、调试分析这是一个比较简单程序,调试过程中并没有出现什么问题,思路比较清晰五、实验结果六、总结此次上机实验对二叉树进行了以一次实际操作,让我对二叉树有了更深的了解,对二叉树的特性有了更熟悉的认知,让我知道了二叉树的重要性和便利性,这对以后的编程有更好的帮助。
七、源程序#include<iostream>#include<queue>using namespace std;#define TElemType char#define Status int#define OK 1#define ERROR 0typedef struct BiTNode{TElemType data;struct BiTNode * lchild, *rchild;}BiTNode,* BiTree;Status CreateBiTree(BiTree &T){TElemType ch;cin >> ch;if (ch == '#')T = NULL;else{if (!(T = (BiTNode *)malloc(sizeof(BiTNode))))exit(OVERFLOW);T->data = ch;CreateBiTree(T->lchild);CreateBiTree(T->rchild);}return OK;}Status PreOrderTraverse(BiTree T){if (T){cout << T->data;if (PreOrderTraverse(T->lchild))if (PreOrderTraverse(T->rchild))return OK;return ERROR;}elsereturn OK;}Status InOrderTraverse(BiTree T){if (T){InOrderTraverse(T->lchild);cout << T->data;InOrderTraverse(T->rchild);}return OK;}Status PostOrderTraverse(BiTree T) {if (T){PostOrderTraverse(T->lchild);PostOrderTraverse(T->rchild);cout << T->data;}return OK;}Status leOrderTraverse(BiTree T){std::queue<BiTree> Q;if (T == NULL)return ERROR;else{Q.push(T);while (!Q.empty()){T = Q.front();Q.pop();cout << T->data;if (T->lchild != NULL)Q.push(T->lchild);if (T->rchild != NULL)Q.push(T->rchild);}}return OK;}Status change(BiTree T){BiTree temp = NULL;if (T->lchild == NULL && T->rchild == NULL) return OK;else{temp = T->lchild;T->lchild = T->rchild;T->rchild = temp;}if (T->lchild)change(T->lchild);if (T->rchild)change(T->rchild);return OK;}int FindTreeDeep(BiTree T){int deep = 0;if (T){int lchilddeep = FindTreeDeep(T->lchild);int rchilddeep = FindTreeDeep(T->rchild);deep = lchilddeep >= rchilddeep ? lchilddeep + 1 : rchilddeep + 1;}return deep;}int main(){BiTree T;CreateBiTree(T);cout << "先序遍历顺序为:";PreOrderTraverse(T);cout << endl;cout << "中序遍历顺序为:";InOrderTraverse(T);cout << endl;cout << "后序遍历顺序为:";PostOrderTraverse(T);cout << endl;cout << "层序遍历顺序为:";leOrderTraverse(T);cout << endl;cout << "二叉树深度为:" << FindTreeDeep(T)<<endl;cout << "左右子树交换后:";change(T);cout << "先序遍历顺序为:";PreOrderTraverse(T);cout << endl;return 0;}。
二叉树的建立与基本操作二叉树是一种特殊的树形结构,它由节点(node)组成,每个节点最多有两个子节点。
二叉树的基本操作包括建立二叉树、遍历二叉树、查找二叉树节点、插入和删除节点等。
本文将详细介绍二叉树的建立和基本操作,并给出相应的代码示例。
一、建立二叉树建立二叉树有多种方法,包括使用数组、链表和前序、中序、后序遍历等。
下面以使用链表的方式来建立二叉树为例。
1.定义二叉树节点类首先,定义一个二叉树节点的类,包含节点值、左子节点和右子节点三个属性。
```pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = None```2.建立二叉树使用递归的方法来建立二叉树,先构造根节点,然后递归地构造左子树和右子树。
```pythondef build_binary_tree(lst):if not lst: # 如果 lst 为空,则返回 Nonereturn Nonemid = len(lst) // 2 # 取 lst 的中间元素作为根节点的值root = Node(lst[mid])root.left = build_binary_tree(lst[:mid]) # 递归构造左子树root.right = build_binary_tree(lst[mid+1:]) # 递归构造右子树return root```下面是建立二叉树的示例代码:```pythonlst = [1, 2, 3, 4, 5, 6, 7]root = build_binary_tree(lst)```二、遍历二叉树遍历二叉树是指按照其中一规则访问二叉树的所有节点,常见的遍历方式有前序遍历、中序遍历和后序遍历。
1.前序遍历前序遍历是指先访问根节点,然后访问左子节点,最后访问右子节点。
```pythondef pre_order_traversal(root):if root:print(root.value) # 先访问根节点pre_order_traversal(root.left) # 递归访问左子树pre_order_traversal(root.right) # 递归访问右子树```2.中序遍历中序遍历是指先访问左子节点,然后访问根节点,最后访问右子节点。
一、实验目的选择二叉链式存储结构作为二叉树的存储结构,设计一个程序实现二叉树的基本操作(包括建立、输出、前序遍历、中序遍历、后序遍历、求树高、统计叶子总数等)二、实验开发环境Windows 8.1 中文版Microsoft Visual Studio 6.0三、实验内容程序的菜单功能项如下:1------建立一棵二叉树2------前序遍历递归算法3------前序遍历非递归算法4------中序遍历递归算法5------中序遍历非递归算法6------后序遍历递归算法7------后序遍历非递归算法8------求树高9------求叶子总数10-----输出二叉树11-----退出四、实验分析1、建立一棵二叉树2、输入二叉树各节点数据cout<<"请按正确顺序输入二叉树的数据:";cin.getline(t,1000); //先把输入的数据输入到一个t数组3、递归前序遍历void BL1(ECS_data *t){if(NULL!=t){cout<<t->data<<",";BL1(t->l);BL1(t->r);}}4、非递归前序遍历void preOrder2(ECS_data *t){stack<ECS_data*> s;ECS_data *p=t;while(p!=NULL||!s.empty()){while(p!=NULL){cout<<p->data<<" ";s.push(p);p=p->l;}if(!s.empty()){p=s.top();s.pop();p=p->r;}}}5、递归中序遍历void BL2(ECS_data *t){if(NULL!=t){BL2(t->l);cout<<t->data<<",";BL2(t->r);}}6、非递归中序遍历void inOrder2(ECS_data *t) //非递归中序遍历{stack<ECS_data*> s;ECS_data *p=t;while(p!=NULL||!s.empty()){while(p!=NULL){s.push(p);p=p->l;}if(!s.empty()){p=s.top();cout<<p->data<<" ";s.pop();p=p->r;}}}7、递归后序遍历void BL3(ECS_data *t){if(NULL!=t){BL3(t->l);BL3(t->r);cout<<t->data<<",";}}8、非递归后序遍历void postOrder3(ECS_data *t){stack<ECS_data*> s;ECS_data *cur; //当前结点ECS_data *pre=NULL; //前一次访问的结点s.push(t);while(!s.empty()){cur=s.top();if((cur->l==NULL&&cur->r==NULL)||(pre!=NULL&&(pre==cur->l||pre==cur->r))){cout<<cur->data<<" "; //如果当前结点没有孩子结点或者孩子节点都已被访问过s.pop();pre=cur;}else{if(cur->r!=NULL)s.push(cur->r);if(cur->l!=NULL)s.push(cur->l);}}}9、求树高int Height (ECS_data *t){if(t==NULL) return 0;else{int m = Height ( t->l );int n = Height(t->r);return (m > n) ? (m+1) : (n+1);}}10、求叶子总数int CountLeaf(ECS_data *t){static int LeafNum=0;//叶子初始数目为0,使用静态变量if(t)//树非空{if(t->l==NULL&&t->r==NULL)//为叶子结点LeafNum++;//叶子数目加1else//不为叶子结点{CountLeaf(t->l);//递归统计左子树叶子数目CountLeaf(t->r);//递归统计右子树叶子数目}}return LeafNum;}五、运行结果附:完整程序源代码://二叉树链式存储的实现#include<iostream>#include<cstring>#include <stack>using namespace std;struct ECS_data //先定义好一个数据的结构{char data;ECS_data *l;ECS_data *r;};class ECS{private://int level; //树高int n; //表示有多少个节点数int n1; //表示的是数组的总长度值,(包括#),因为后面要进行删除判断ECS_data *temp[1000];public:ECS_data *root;ECS() //初始化{ECS_data *p;char t[1000];int i;int front=0,rear=1; //front表示有多少个节点,rear表示当前插入的点的父母cout<<"请按正确顺序输入二叉树的数据:";cin.getline(t,1000); //先把输入的数据输入到一个t数组//cout<<t<<" "<<endl;int n1=strlen(t); //测量数据的长度n=0;for(i=0;i<n1;i++){if(t[i]!='#'){p=NULL;if(t[i]!=',') //满足条件并开辟内存{n++;p=new ECS_data;p->data=t[i];p->l=NULL;p->r=NULL;}front++;temp[front]=p;if(1 == front){root=p;}else{if((p!=NULL)&&(0==front%2)){temp[rear]->l=p;//刚开始把这里写成了==}if((p!=NULL)&&(1==front%2)){temp[rear]->r=p;}if(1==front%2)rear++; //就当前的数据找这个数据的父母}}}}~ECS() //释放内存{int i;for(i=1;i<=n;i++)if(temp[i]!=NULL)delete temp[i];}void JS() //记录节点的个数{int s;s=n;cout<<"该二叉树的节点数为:"<<s<<endl;}void BL1(ECS_data *t)//递归前序遍历{if(NULL!=t){cout<<t->data<<",";BL1(t->l);BL1(t->r);}}void preOrder2(ECS_data *t) //非递归前序遍历{stack<ECS_data*> s;ECS_data *p=t;while(p!=NULL||!s.empty()){while(p!=NULL){cout<<p->data<<" ";s.push(p);p=p->l;}if(!s.empty()){p=s.top();s.pop();p=p->r;}}}void BL2(ECS_data *t)//递归中序遍历{if(NULL!=t){BL2(t->l);cout<<t->data<<",";BL2(t->r);}}void inOrder2(ECS_data *t) //非递归中序遍历{stack<ECS_data*> s;ECS_data *p=t;while(p!=NULL||!s.empty()){while(p!=NULL){s.push(p);p=p->l;}if(!s.empty()){p=s.top();cout<<p->data<<" ";s.pop();p=p->r;}}}void BL3(ECS_data *t)//递归后序遍历{if(NULL!=t){BL3(t->l);BL3(t->r);cout<<t->data<<",";}}void postOrder3(ECS_data *t) //非递归后序遍历{stack<ECS_data*> s;ECS_data *cur; //当前结点ECS_data *pre=NULL; //前一次访问的结点s.push(t);while(!s.empty()){cur=s.top();if((cur->l==NULL&&cur->r==NULL)||(pre!=NULL&&(pre==cur->l||pre==cur->r))){cout<<cur->data<<" "; //如果当前结点没有孩子结点或者孩子节点都已被访问过s.pop();pre=cur;}else{if(cur->r!=NULL)s.push(cur->r);if(cur->l!=NULL)s.push(cur->l);}}}int Height (ECS_data *t) //求树高{if(t==NULL) return 0;else{int m = Height ( t->l );int n = Height(t->r);return (m > n) ? (m+1) : (n+1);}}int CountLeaf(ECS_data *t) //求叶子总数{static int LeafNum=0;//叶子初始数目为0,使用静态变量if(t)//树非空{if(t->l==NULL&&t->r==NULL)//为叶子结点LeafNum++;//叶子数目加1else//不为叶子结点{CountLeaf(t->l);//递归统计左子树叶子数目CountLeaf(t->r);//递归统计右子树叶子数目}}return LeafNum;}};int main(){ECS a;a.JS();cout<<"递归前序遍历:";a.BL1(a.root);cout<<endl;cout<<"非递归前序遍历:";a.preOrder2(a.root);cout<<endl;cout<<"递归中序遍历:";a.BL2(a.root);cout<<endl;cout<<"非递归中序遍历:";a.inOrder2(a.root);cout<<endl;cout<<"递归后序遍历:";a.BL3(a.root);cout<<endl;cout<<"非递归后序遍历:";a.postOrder3(a.root);cout<<endl;cout<<"树高为:"<<a.Height(a.root)<<endl;cout<<"叶子总数为:"<<a.CountLeaf(a.root)<<endl;return 0;}。
二叉树基本操作经典实例二叉树是一种常见的数据结构,它由节点和指向左右子节点的指针组成。
二叉树的基本操作包括插入节点、删除节点、查找节点和遍历节点等。
在实际应用中,我们经常需要对二叉树进行基本操作,下面将介绍一些经典的例子。
一、插入节点插入节点是指向二叉树中添加一个新的节点。
在二叉树中插入节点的基本操作可以使用递归或者迭代的方法来实现。
下面是一个使用递归方法的示例代码:```public class TreeNodeint val;TreeNode left;TreeNode right;TreeNode(int x) { val = x; }public TreeNode insertNode(TreeNode root, int val)if (root == null)return new TreeNode(val);}if (val < root.val)root.left = insertNode(root.left, val);} else if (val > root.val)root.right = insertNode(root.right, val);}return root;```在上述代码中,通过递归的方式判断要插入的值和当前节点的大小关系,并将值插入到左子树或者右子树中,最后返回根节点。
二、删除节点删除节点是从二叉树中移除一个节点。
删除节点的基本操作可以分为三种情况:删除叶子节点、删除只有一个子节点的节点和删除有两个子节点的节点。
(1)删除叶子节点:如果要删除的节点是叶子节点,直接将该节点的父节点的指针指向空即可。
(2)删除只有一个子节点的节点:如果要删除的节点只有一个子节点,将该节点的子节点连接到该节点的父节点即可。
(3)删除有两个子节点的节点:如果要删除的节点有两个子节点,可以使用该节点右子树中的最小节点或者左子树中的最大节点来替代。
下面是一个使用递归方法的示例代码:```public TreeNode deleteNode(TreeNode root, int key) if (root == null)return root;}if (key < root.val)root.left = deleteNode(root.left, key);} else if (key > root.val)root.right = deleteNode(root.right, key);} elseif (root.left == null)return root.right;} else if (root.right == null)return root.left;}TreeNode minNode = findMin(root.right);root.val = minNode.val;root.right = deleteNode(root.right, minNode.val); }return root;private TreeNode findMin(TreeNode node)while (node.left != null)node = node.left;}return node;```在上述代码中,通过递归的方式判断要删除的值和当前节点的大小关系,并根据不同情况进行处理。
、实验目的选择二叉链式存储结构作为二叉树的存储结构,设计一个程序实现二叉树的基本操作(包括建立、输出、前序遍历、中序遍历、后序遍历、求树高、统计叶子总数等)二、实验开发环境Windows 8.1 中文版Microsoft Visual Studio 6.0三、实验内容程序的菜单功能项如下:1 -- 建立一棵二叉树2 -- 前序遍历递归算法3 -- 前序遍历非递归算法4 -- 中序遍历递归算法5 -- 中序遍历非递归算法6 ---- 后序遍历递归算法7 ---- 后序遍历非递归算法8 ---- 求树高9 -- 求叶子总数10 - 输出二叉树11 - 退出四、实验分析1、建立一棵二叉树2、输入二叉树各节点数据coutvv"请按正确顺序输入二叉树的数据:";cin.getline(t,1000); //先把输入的数据输入到一个t 数组3、递归前序遍历void BL1(ECS_data *t) {if(NULL!=t){cout<<t->data<<",";BL1(t->l);BL1(t->r);}}4、非递归前序遍历void preOrder2(ECS_data *t){ stack<ECS_data*> s; ECS_data *p=t; while(p!=NULL||!s.empty()) { while(p!=NULL){cout<<p->data<<" ";s.push(p); p=p->l;} if(!s.empty()){p=s.top(); s.pop(); p=p->r;}}}5、递归中序遍历void BL2(ECS_data *t) {if(NULL!=t){BL2(t->l);cout<<t->data<<",";BL2(t->r);}}6、非递归中序遍历void inOrder2(ECS_data *t) //非递归中序遍历{stack<ECS_data*> s;ECS_data *p=t; while(p!=NULL||!s.empty()){while(p!=NULL){s.push(p);p=p->l;}if(!s.empty()){p=s.top(); cout<<p->data<<" "; s.pop();p=p->r;}7、递归后序遍历void BL3(ECS_data *t) {if(NULL!=t){BL3(t->l);BL3(t->r); cout<<t->data<<",";8、非递归后序遍历void postOrder3(ECS_data *t){stack<ECS_data*> s;ECS_data *cur; //当前结点ECS_data *pre=NULL; // 前一次访问的结点s.push(t);while(!s.empty()){cur=s.top();if((cur->l==NULL&&cur->r==NULL)||(pre!=NULL&&(pre==cur->l||pre==cur->r))){cout<<cur->data<<" "; //如果当前结点没有孩子结点或者孩子节点都已被访问过s.pop();pre=cur;}else{if(cur->r!=NULL)s.push(cur->r);if(cur->l!=NULL)s.push(cur->l);}}}9、求树高int Height (ECS_data *t) {if(t==NULL) return 0; else{int m = Height ( t->l );int n = Height(t->r);return (m > n) ? (m+1) : (n+1); }10、求叶子总数int CountLeaf(ECS_data *t){static int LeafNum=O;//叶子初始数目为0,使用静态变量if(t)// 树非空{if(t->l==NULL&&t->r==NULL)// 为叶子结点LeafNum++;// 叶子数目加 1 else//不为叶子结点{Cou ntLeaf(t->l);//递归统计左子树叶子数目 Cou ntLeaf(t->r);//递归统计右子树叶子数目 }}return LeafNum; }五、运行结果附:完整程序源代码: 〃二叉树链式存储的实现#in cludeviostream> #in clude<cstri ng>#in elude <stack> using n ames pace std; struct ECS_data //先定义好一个数据的结构 {char data;ECS_data *l; ECS_data *r; };" //树高//表示有多少个节点数〃表示的是数组的总长度值,(包括#),因为后面要class ECS {P rivate://in t level; int n; int n1;} }ECS_data *temp[1000];public: ECS_data *root; ECS() // 初始化 {ECS_data *p; char t[1000];int i; int front=0,rear=1;入的点的父母 //front 表示有多少个节点, rear 表示当前插 coutvv"请按正确顺序输入二叉树的数据:"; cin.getline(t,1000); //cout<<t<<" "<<endl;int n1=strlen(t); n=0; for(i=0;i<n1;i++) {if(t[i]!='#') {//先把输入的数据输入到一个 t 数组 //测量数据的长度p=NULL;if(t[i]!=',') {n++;p=new ECS_data; p->data=t[i]; p->l=NULL; p->r=NULL; } front++;temp[front]=p; if(1 ==front){root=p;} else{//满足条件并开辟内存if((p!=NULL)&&(0==front%2)) {temp[rear]->l=p;// 刚开始把这里写成了 == }if((p!=NULL)&&(1==front%2)) {temp[rear]->r=p; }if(1==front%2)rear++;//就当前的数据找这个数据的父母}} }}~ECS(){int i;for(i=1;i<=n;i++) if(temp[i]!=NULL) delete temp[i]; } void JS() {int s; s=n;coutvv"该二叉树的节点数为:"vvsvvendl; }void BL1(ECS_data *t)// 递归前序遍历 {if(NULL!=t){cout<<t->data<<","; BL1(t->l); BL1(t->r);}void preOrder2(ECS_data *t) //非递归前序遍历{stack<ECS_data*> s; ECS_data *p=t;while(p!=NULL||!s.empty()){while(p!=NULL){cout<<p->data<<" "; s.push(p); p=p->l;}if(!s.empty()){p=s.top(); s.pop(); p=p->r;//释放内存//记录节点的个数if(NUL匚丛)宀BL2(e_)-coufAvdafaAfr BL2(g-voidino ‘de ‘2(Ecslda応J )二卅融丘甘甸壷逗宀sfackAECSIdafa*vs 八 ECSIdafa *P H Cwhi-e(p一 hnul匚-一 s.empfyo) 宀wh=e(p一"NULL)宀s.push(p)八PHP —vrif (一s.empfyo)宀PHSlopucoufAAP —vdafaAAs.popwPHP*voidBL3(Ecsldafa *U 1融&训引筍已宀if(NUL匚丛)宀BL3(e_)- BL3(g- coufAAf —vdafaAdrvoidposfo ‘de ‘3(Ecsldafa *0&可甸壷逗 宀sfackAECSIdafa*vs 八ECSIdafa*cucm 遡璋、的ECSIdafa*p‘eHNUF二遡—舟曲亘兼叫、的s.push(t);while(!s.empty()){cur=s.top();if((cur->l==NULL&&cur->r==NULL)||(pre!=NULL&&(pre==cur->l||pre==cur->r))){ cout<<cur->data<<" "; //如果当前结点没有孩子结点或者孩子节点都已被访问过s.pop(); pre=cur;}else{if(cur->r!=NULL)s.push(cur->r);if(cur->l!=NULL)s.push(cur->l);}}}int Height (ECS_data *t) //求树高{if(t==NULL) return 0; else{int m = Height ( t->l );int n = Height(t->r);return (m > n) ? (m+1) : (n+1);}}int CountLeaf(ECS_data *t) //求叶子总数{static int LeafNum=0;//叶子初始数目为0,使用静态变量if(t)//树非空{if(t->l==NULL&&t->r==NULL)// 为叶子结点LeafNum++;//叶子数目加1else//不为叶子结点{CountLeaf(t->l);// 递归统计左子树叶子数目Cou ntLeaf(t->r);//递归统计右子树叶子数目}}return LeafNum; }};int main(){ECS a;a.JS();coutvv"递归前序遍历:";a.BL1(a.root);cout<<endl;coutvv"非递归前序遍历:";a.preOrder2(a.root);coutvvendl;coutvv"递归中序遍历:";a.BL2(a.root);coutvvendl;coutvv"非递归中序遍历:";a.inOrder2(a.root);coutvvendl;coutvv"递归后序遍历:";a.BL3(a.root);coutvvendl;coutvv"非递归后序遍历:";a.postOrder3(a.root);coutvvendl;coutvv"树高为:"vva.Height(a.root)vvendl;coutvv"叶子总数为:"vva.CountLeaf(a.root)vvendl; return 0; }。
二叉树教案一、教学目标:1.了解二叉树的定义和性质。
2.学会二叉树的遍历算法(前序遍历、中序遍历、后序遍历)。
3.掌握二叉树的基本操作(创建二叉树、插入节点、删除节点)。
二、教学重点和难点:1.二叉树的定义和性质。
2.二叉树的遍历算法。
3.二叉树的基本操作。
三、教学准备:1.教师准备:PPT、计算机、投影仪。
2.学生准备:课前预习、纸笔。
四、教学过程:Step 1 导入新课教师通过提问的方式,引导学生回顾树的基本概念,并激发学生对二叉树的兴趣。
Step 2 二叉树的定义和性质教师给出二叉树的定义,并带领学生讨论二叉树的性质(每个节点最多有两个子节点,左子树和右子树)。
Step 3 二叉树的遍历算法1.前序遍历:先访问根节点,然后递归遍历左子树,再递归遍历右子树。
2.中序遍历:先递归遍历左子树,然后访问根节点,再递归遍历右子树。
3.后序遍历:先递归遍历左子树,然后递归遍历右子树,最后访问根节点。
Step 4 二叉树的基本操作1.创建二叉树:教师通过示例向学生展示二叉树的创建过程。
2.插入节点:教师通过示例向学生展示如何插入节点,并解释插入节点的规则。
3.删除节点:教师通过示例向学生展示如何删除节点,并解释删除节点的规则。
Step 5 练习与拓展1.教师设计练习题,让学生运用所学知识进行练习。
2.鼓励学生拓展二叉树的其他应用领域,并进行讨论。
五、教学反思本节课通过讲解二叉树的定义和性质,以及二叉树的遍历算法和基本操作,使学生对二叉树有了基本的了解和掌握。
通过练习和拓展,巩固了学生的学习成果,并培养了学生的分析和解决问题的能力。
但是,由于时间有限,学生的实际操作机会较少,可以在课后布置相关的作业,加深学生的理解和应用能力。
二叉树实验知识点总结
一、二叉树的基本概念
二叉树是一种特殊的树形结构,其每个节点最多只有两个子节点。
二叉树分为满二叉树、完全二叉树和普通二叉树等类型。
二、遍历方式
1.前序遍历:先访问当前节点,再遍历左子树和右子树;
2.中序遍历:先遍历左子树,再访问当前节点,最后遍历右子树;
3.后序遍历:先遍历左子树和右子树,最后访问当前节点;
4.层次遍历:按照从上到下、从左到右的顺序依次访问每个节点。
三、常见操作
1.插入节点:在二叉搜索树中插入一个新的节点;
2.删除节点:在二叉搜索树中删除一个指定的节点;
3.查找节点:在二叉搜索树中查找一个指定的节点;
4.求深度:计算二叉搜索树的深度。
四、平衡二叉树
平衡二叉树是一种特殊的二叉搜索树,其左右子树高度差不能超过1。
常见的平衡二叉搜索包括红黑树、AVL 树等。
五、应用场景
1.数据库索引;
2.哈夫曼编码;
3.表达式求值;
4.图形处理等。
六、注意事项
1.二叉树的插入、删除和查找操作需要保证二叉树的结构不被破坏;
2.平衡二叉树的实现需要注意平衡因子的计算和旋转操作的实现;
3.在使用二叉树进行算法设计时,需要考虑遍历方式和时间复杂度等问题。
七、总结
二叉树是一种重要的数据结构,在算法设计中有广泛的应用。
掌握二叉树的基本概念、遍历方式、常见操作和应用场景,可以帮助我们更好地理解和使用这种数据结构。
同时,我们需要注意在实际应用中遵循相关规范,保证程序的正确性和效率。
计算机二级二叉树1. 概述二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。
在计算机科学中,二叉树有着广泛的应用,例如在算法和数据存储中都能够发挥重要作用。
本文将介绍计算机二级二叉树的基本概念、性质以及相关操作。
2. 二叉树的定义二叉树是一种有序树,其中每个节点最多有两个子节点。
它通常用来表示层次关系、排序关系、树形结构等。
二叉树的子节点分为左子节点和右子节点,子节点的顺序是固定的。
3. 二叉树的性质(1) 二叉树的第i层最多有2^(i-1)个节点。
(2) 深度为k的二叉树最多有2^k-1个节点。
(3) 对于任意一棵二叉树,如果其叶子节点数为n0,度为2的节点数为n2,则n0=n2+1。
(4) 对于完全二叉树,假设其深度为h,则其节点数为2^h-1(h≥1)。
4. 二叉树的遍历二叉树的遍历主要分为前序遍历、中序遍历和后序遍历。
下面分别介绍这三种遍历方式的定义和实现。
(1) 前序遍历:遍历顺序为根节点、左子树、右子树。
(2) 中序遍历:遍历顺序为左子树、根节点、右子树。
(3) 后序遍历:遍历顺序为左子树、右子树、根节点。
二叉树的遍历可以用递归或者迭代的方法实现。
5. 二叉树的插入在二叉树中插入节点是一种常见的操作。
下面介绍一种基本的插入算法:(1) 如果树为空,则将节点作为根节点插入。
(2) 如果树不为空:- 将节点与根节点进行比较,若小于根节点,则插入到左子树中。
- 若大于根节点,则插入到右子树中。
- 对左子树或右子树递归执行插入操作。
6. 二叉树的删除二叉树的删除操作比插入操作稍微复杂一些。
一般情况下,可以按照以下步骤进行删除:(1) 如果要删除的节点是叶子节点,直接删除即可。
(2) 如果要删除的节点只有一个子节点,将其子节点代替要删除的节点。
(3) 如果要删除的节点有两个子节点,则需要找到其右子树中的最小节点(或左子树中的最大节点)来代替要删除的节点,并删除那个最小节点。
7. 二叉树的应用二叉树在计算机科学中有着广泛的应用,下面介绍几种常见的应用场景:(1) 搜索二叉树:可以在O(log n)的时间复杂度内进行搜索操作。
java实现二叉树的基本操作一、二叉树的定义树是计算机科学中的一种基本数据结构,表示以分层方式存储的数据集合。
树是由节点和边组成的,每个节点都有一个父节点和零个或多个子节点。
每个节点可以对应于一定数据,因此树也可以被视作提供快速查找的一种方式。
若树中每个节点最多只能有两个子节点,则被称为二叉树(Binary Tree)。
二叉树是一种递归定义的数据结构,它或者为空集,或者由一个根节点以及左右子树组成。
如果左子树非空,则左子树上所有节点的数值均小于或等于根节点的数值;如果右子树非空,则右子树上所有节点的数值均大于或等于根节点的数值;左右子树本身也分别是二叉树。
在计算机中实现二叉树,通常使用指针来表示节点之间的关系。
在Java中,定义一个二叉树节点类的代码如下:```public class BinaryTree {int key;BinaryTree left;BinaryTree right;public BinaryTree(int key) {this.key = key;}}```在这个类中,key字段表示该节点的数值;left和right字段分别表示这个节点的左右子节点。
1. 插入节点若要在二叉树中插入一个节点,首先需要遍历二叉树,找到一个位置使得插入新节点后,依然满足二叉树的定义。
插入节点的代码可以写成下面这个形式:```public void insert(int key) {BinaryTree node = new BinaryTree(key); if (root == null) {root = node;return;}BinaryTree temp = root;while (true) {if (key < temp.key) {if (temp.left == null) {temp.left = node;break;}temp = temp.left;} else {if (temp.right == null) {temp.right = node;break;}temp = temp.right;}}}```上面的代码首先创建了一个新的二叉树节点,然后判断二叉树根是否为空,若为空,则将这个节点作为根节点。
二叉树基本运算算法的实现
二叉树是一种常见的数据结构,基本运算算法包括二叉树的遍历、查找、插入、删除等操作。
下面是这些算法的实现:
1. 二叉树遍历:二叉树遍历有三种方式,分别是前序遍历、中序遍历和后序遍历。
其中,前序遍历先访问根节点,再访问左子树和右子树;中序遍历先访问左子树,再访问根节点和右子树;后序遍历先访问左子树,再访问右子树和根节点。
遍历可以使用递归算法或栈实现。
2. 二叉树查找:二叉树查找可以使用递归算法或循环算法实现。
递归算法通过比较节点值实现查找,如果查找值小于当前节点值,则在左子树中查找,否则在右子树中查找。
循环算法使用二叉树的特性,比较查找值和当前节点值的大小,根据大小关系不断移动到左子树或右子树中进行查找,直到找到目标节点或遍历到叶子节点为止。
3. 二叉树插入:二叉树插入需要先查找到插入位置,然后在该位置插入一个新节点。
插入操作可以使用递归算法或循环算法实现。
4. 二叉树删除:二叉树删除分为三种情况:删除叶子节点、删除只有一个孩子的节点和删除有两个孩子的节点。
删除叶子节点很简单,只需要将其父节点的指针设为NULL即可。
删除只有一个孩子的节点需要将父节点的指针指向该节点的
孩子节点。
删除有两个孩子的节点需要找到该节点的后继节点(或前驱节点),将后继节点的值复制到该节点中,然后删除后继节点。
上述算法的实现需要根据具体的编程语言进行调整和实现。
平衡二叉树构造过程1.插入操作:插入新节点是平衡二叉树构造过程中的基本操作之一、首先,将新节点插入到二叉树中的合适位置,然后检查树的平衡性。
在插入过程中,需要更新每个节点的高度,并验证是否需要进行旋转操作,以保持树的平衡。
具体插入操作的步骤如下:1.1在树中查找合适的位置插入新节点,按照二叉树的规则:-如果新节点值小于当前节点值,则继续在当前节点的左子树中查找合适位置插入新节点;-如果新节点值大于当前节点值,则继续在当前节点的右子树中查找合适位置插入新节点;-如果当前节点为空,则将新节点插入到此位置。
1.2更新每个节点的高度,从插入的节点开始,向上遍历到根节点。
计算每个节点的左子树高度和右子树高度,然后取其中较大值加1作为节点的新高度。
1.3验证平衡性。
对于每个节点,计算其左右子树高度差的绝对值,如果超过1,则需要进行旋转操作。
2.旋转操作:旋转是平衡二叉树构造过程中的关键步骤,用来调整树的结构,使其保持平衡。
2.1左旋:将当前节点的右子树变为新的根节点,当前节点成为新的根节点的左子树,新的根节点的左子树成为当前节点的右子树。
2.2右旋:将当前节点的左子树变为新的根节点,当前节点成为新的根节点的右子树,新的根节点的右子树成为当前节点的左子树。
2.3左右旋:先对当前节点的左子树进行左旋操作,然后再对当前节点进行右旋操作。
2.4右左旋:先对当前节点的右子树进行右旋操作,然后再对当前节点进行左旋操作。
旋转操作的目的是调整树的结构,使得左右子树的高度差不超过1,并保持二叉树的性质。
3.删除操作:删除节点是平衡二叉树构造过程中的另一个重要操作。
删除操作也需要更新树的高度和进行旋转操作。
删除操作的步骤如下:3.1在树中查找要删除的节点。
如果要删除的节点是叶子节点,则直接删除即可。
3.2如果要删除的节点只有一个子节点,则将子节点替换成当前节点的位置。
3.3如果要删除的节点有两个子节点,则找到当前节点的后继节点(即比当前节点大的最小节点)或前驱节点(即比当前节点小的最大节点),将后继节点或前驱节点的值复制到当前节点,并删除后继节点或前驱节点。
二叉树的操作实验报告
实验报告:二叉树的操作
引言:
二叉树是计算机科学中最基础、最重要的数据结构之一,它不仅在算法设计与分析中被广泛应用,而且也在计算机系统和软件工程领域被广泛使用。
在这次实验中,我们将学习和实现二叉树的基本操作,包括二叉树的建立、遍历、查找和删除等。
实验过程:
1. 二叉树的建立
2. 二叉树的遍历
3. 二叉树的查找
4. 二叉树的删除
实验结果:
1. 建立一颗二叉树,根节点为A,左子树B,右子树C,B的左子树D,右子树E,C的左子树F,右子树G。
结构如下:
A
/ \
B C
/ \ / \
D E F G
2. 对上述二叉树先进行中序遍历:DBEAFCG,再进行前序遍历:ABDECFG,最后进行后序遍历:DEBFGCA。
3. 在上述二叉树中查找元素G,并输出其父节点元素C。
4. 删除上述二叉树中的元素F,再对其进行中序遍历,结果为DBEACG。
结论:
通过这次实验,我们掌握了二叉树的基本操作方法,对于理解和分析算法、编写系统和软件工程都具有重要的意义。
同时,在实践中我们也深刻地认识到了二叉树操作的复杂性和局限性,这需要我们在实际应用中加以考虑和综合利用,才能发挥其最大的价值和作用。
二叉树的二叉链表存储及基本操作《二叉树的二叉链表存储及基本操作》一、二叉树的二叉链表表示及存储1.定义二叉树的二叉链表存储表示是把一个二叉树存放在计算机中的一种表示形式,它是由一组以结点对象为元素的链表构成的,结点对象中包括数据域和结构域。
数据域存放结点的数据元素;结构域由两个指针域组成,其中一个指向左孩子,另一个指向右孩子。
2.存储形式二叉树的二叉链表存储表示可以用如下的存储形式表示:typedef struct BTNode {TElemType data; // 结点的数据域struct BTNode *lchild; // 指向左孩子的指针域struct BTNode *rchild; // 指向右孩子的指针域} BTNode; // 树结点的定义typedef BTNode *BiTree; // 定义二叉树的指针类型3.空的二叉树把一个指向树结点的指针设为NULL,称为一个空的二叉树。
一般在某个树被销毁后,都要把该树设置成空树。
二、二叉树的基本操作1.求二叉树的结点数要求二叉树的结点数,可以用递归的方法求解。
求n个结点的二叉树的结点数,可以先求出它的左子树结点数,右子树结点数,再加上根结点的数量就得到了结点数。
// 求二叉树的结点数int CountBTNode(BiTree T){if (T == NULL) // 空树,结点数为0return 0;else // 左子树结点数 + 右子树结点数 + 1return CountBTNode(T -> lchild) + CountBTNode(T -> rchild) + 1;}2.求二叉树叶结点数要求二叉树叶结点数,也可以用递归的方法求解。
当一个结点的左子树为空树,右子树也为空树时,它就是一个叶结点,则叶结点数加1;如果结点不是叶结点,则继续求它的左子树叶结点数和右子树叶结点数,再把它们加起来就是该二叉树的叶结点数。
// 求二叉树叶结点数int CountBTLeaf(BiTree T){if (T == NULL) // 空树,叶结点数为0return 0;else if (T -> lchild == NULL && T -> rchild == NULL) //判读是否是叶结点return 1;else // 左子树叶结点数 + 右子树叶结点数return CountBTLeaf(T -> lchild) + CountBTLeaf(T -> rchild);}3.求二叉树深度要求二叉树深度,也可以用递归的方法求解。
《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。
问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。
由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。
处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。
算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。
输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。
对二叉树的一些运算结果以整型输出。
程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。
计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。
对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。
测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。
e语言二叉树递归【实用版】目录1.e 语言简介2.二叉树概念及基本操作3.递归原理4.二叉树递归实例解析5.总结正文1.e 语言简介e 语言(EPL,Easy Programming Language)是一种简单易学的编程语言,其语法简洁明了,适合初学者入门。
e 语言支持面向对象编程、函数式编程等多种编程范式,具有较高的灵活性和可扩展性。
本文将使用 e 语言来介绍二叉树的递归操作。
2.二叉树概念及基本操作二叉树是一种非常重要的数据结构,其每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树的基本操作包括插入、删除、查找等。
这里我们主要关注二叉树的递归操作。
3.递归原理递归是一种函数调用自身的技术,通常用于解决具有相似子问题的复杂问题。
在二叉树中,递归主要用于访问节点、修改节点以及处理节点之间的关系。
通过递归,我们可以将复杂的二叉树问题分解为较小的相似子问题,从而简化问题求解过程。
4.二叉树递归实例解析下面我们通过一个具体的例子来解析二叉树递归操作。
假设我们有一个二叉树,其结构如下:```1/2 3/4 5```我们需要编写一个递归函数来计算该二叉树的深度。
递归函数定义如下:```efunc depth(node: Node) int {if node == nil {return 0} else {return 1 + max(depth(node.left), depth(node.right)) }}```该函数首先判断节点是否为空,如果为空则返回 0(表示该节点为二叉树的叶子节点)。
否则,返回 1 加上其左右子节点的深度之和。
这里我们使用了 max 函数来确保递归的顺序,从而避免重复计算。
5.总结通过以上示例,我们可以看到在 e 语言中,二叉树的递归操作可以轻松实现。
递归作为一种重要的编程技巧,在解决许多实际问题中都发挥着重要作用。
/*1.输入字符序列,建立二叉链表。
2.中序遍历二叉树:递归算法。
3.中序遍历二叉树:非递归算法。
4.求二叉树的高度。
5.求二叉树的叶子个数。
6.借助队列实现二叉树的层次遍历。
7.在主函数中设计一个简单的菜单,分别调试上述算法。
*8.综合训练:为N个权值设计哈夫曼编码。
*/#include<stdio.h>#include<stdlib.h>#define STACKSIZE 100#define STACKINCREMENT 10#define ElemType chartypedef struct BiTNode{ ElemType data;struct BiTNode *lchild,*rchild; //二叉树的存储结构}BiTNode,*BiTree;typedef struct{BiTree *base;BiTree *top;int stacksize;}SqStack; //顺序栈typedef struct QNode{BiTree data;struct QNode * next;}QNode,*QueuePtr;typedef struct{QueuePtr front;QueuePtr rear;}LinkQueue; //链队int InitStack(SqStack &S) //初始化栈{S.base=(BiTree *)malloc(STACKSIZE * sizeof(BiTree));if(!S.base) exit(-2);S.top=S.base; //空栈标志S.stacksize=STACKSIZE;return 1;}int InitQueue(LinkQueue &Q) //初始化队{Q.front=Q.rear=(QueuePtr)malloc(sizeof(QNode));if(!Q.front) exit (-2);Q.front->next=NULL; //空队return 1;}int DestroyQueue(LinkQueue &Q) //消除队{QueuePtr p;while(Q.front->next){p=Q.front->next;Q.front->next=p->next;free(p);}free(Q.front);return 1;}int QueueIsEmpty(LinkQueue Q) //判断队列是否为空{if (Q.front->next==NULL) return 1;return 0;}int EnQueue(LinkQueue &Q, BiTree e) //将数据元素e插入到队列Q的队尾{QueuePtr p;p=( QueuePtr ) malloc ( sizeof( QNode ) );if( p==NULL ) return 0;p->data=e;p->next=NULL; //创建新结点Q.rear->next=p;Q.rear=p; //插入return 1;}int DeQueue(LinkQueue &Q, BiTree &e) //将队列Q的队头元素出队,并存放到e中{QueuePtr p;if( Q.front==Q.rear ) return 0; //空队出错p=Q.front->next; //记住要删除的结点Q.front->next=p->next; //队头元素p出队if( Q.rear==p ) Q.rear=Q.front; //如果队中只有一个元素p,则p出队后成为空队e=p->data;free(p); //释放存储空间return 1;}int Push(SqStack &s,BiTree e) //入栈{if(s.top-s.base>=s.stacksize){s.base=(BiTree *)realloc(s.base,(s.stacksize+STACKINCREMENT)*sizeof(BiTree));if(!s.base) exit(0);s.top=s.base+s.stacksize;s.stacksize+=STACKINCREMENT;}*s.top++=e;return 1;}int Pop(SqStack &s,BiTree &e) //出栈{if(s.top==s.base){return 0;}e=*--s.top;return 1;}int getTop(SqStack s,BiTree &e) //取栈顶元素{if(s.base==s.top)return 0;e=*(s.top-1);return 1;}int StackEmpty(SqStack s) //判断栈是否为空{if(s.base==s.top)return 1;elsereturn 0;}int MidTraverse1(BiTree T) //中序非递归算法{SqStack S;BiTree p;InitStack(S);Push(S,T);while(!StackEmpty(S)){while(getTop(S,p)&&p){Push(S,p->lchild);}Pop(S,p);if(!StackEmpty(S)){Pop(S,p);printf("%c",p->data);Push(S,p->rchild);}}return 1;}//先序建立二叉树void create(BiTree &T){char ch;scanf("%c",&ch);if(ch=='#') T=NULL;else{if(!(T = (BiTNode * )malloc(sizeof(BiTNode)))) return;T->data=ch;create(T->lchild);create(T->rchild);}}//先序遍历二叉树(递归算法)int fdisplay_1(BiTree T){if(!T) return 0;printf("%c",T->data);fdisplay_1(T->lchild);fdisplay_1(T->rchild);return 1;}//中序遍历二叉树(递归算法)int mdisplay_1(BiTree T){if(!T) return 0;mdisplay_1(T->lchild);printf("%c",T->data);mdisplay_1(T->rchild);return 1 ;}//后序遍历二叉树(递归算法)int ldisplay_1(BiTree T){if(!T) return 0;ldisplay_1(T->lchild);ldisplay_1(T->rchild);printf("%c",T->data);return 1;}//层次遍历int LevelTraverseBiTree(BiTree T) //利用队列层次遍历二叉树。
{LinkQueue Q;InitQueue(Q);EnQueue(Q,T);printf("%c",T->data);while(QueueIsEmpty(Q)!=1){DeQueue(Q,T);if(T->lchild){printf("%c",T->lchild->data);EnQueue(Q,T->lchild);}if(T->rchild){printf("%c",T->rchild->data);EnQueue(Q,T->rchild);}}DestroyQueue(Q);return 1;}int max(int m,int n){if(m>n)return m;elsereturn n;}//求二叉树的高度int high(BiTree T){if(!T){return 0;}else{return 1+max(high(T->lchild),high(T->rchild));}}//求叶子个数int leaf(BiTree T){int m,n;if(!T) return 0;if(!T->lchild&&!T->rchild) return 1;m=leaf(T->lchild);n=leaf(T->rchild);return (m+n);}//主函数void main(){BiTree T;int i,j;printf("按先序序列建立二叉树,如果没有左或右孩子则输入#:\n");create(T);printf("先序遍历递归算法:\n");fdisplay_1(T);printf("\n");printf("中序遍历递归算法:\n");mdisplay_1(T);printf("\n");printf("后序遍历递归算法:\n");ldisplay_1(T);printf("\n");printf("中序遍历非递归算法:\n");MidTraverse1(T);printf("\n");printf("层次遍历:\n");LevelTraverseBiTree(T);printf("\n");printf("二叉树的高度:");i=high(T);printf("%d",i);printf("\n");printf("二叉树叶子数:");j=leaf(T);printf("%d",j);printf("\n");}。