辽宁省大连市2017-2018学年高三双基测试数学试卷(理科) Word版含解析
- 格式:doc
- 大小:750.63 KB
- 文档页数:22
大连市2017年高三双基测试卷数学试题(理科)说明:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷第22题~第24题为选考题,其它题为必考题.2.考生作答时,将答案答在答题卡上,在本试卷上答题无效,考试结束后,将本试卷和答题卡一并交回.第I 卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知{|3},{|15},()A B A x x B x x C A B =<=-<< 则等于 ( )A .{|1}x x x ≤-≤或3<5B .{|13}x x x ≤-≥或C .{|13}x x x <-≥或D .{|1}x x x ≤-≤≤或352.设复数11,2z i z=+那么等于( )A.12+ B12i + C12i - D.12- 3.下列函数中,在其定义域内既是增函数又是奇函数的是 ( )A .1y x=-B .2log y x =-C .3xy =D .3y x x =+4.已知cos 5αα=-为第二象限角,则tan()4πα+=( )A .13-B .13C .3D .—35.在△ABC 中,a 、b 、c 分别为三个内角A 、B 、C 所对的边,设向量(,),m b c c a =--(,)n b c a =+,若m n ⊥,则角A 的大小为( )A .6π B .3π C .2π D .23π6.工人月工资y (元)与劳动生产率x (千元)变化的回归直线方程为ˆ8050yx =+,则下列判断正确的是( )①劳动生产率为1千元时,工资约为130元;②劳动生产率每提高1千元时,工资平均提高80元; ③劳动生产率每提高1千元时,工资平均提高130元; ④当月工资为210元时,劳动生产率约为2千元. A .①③ B .②④ C .①②④D .①②③④7.定义在R 上的函数()[3,)f x +∞在上单调递减,且(3)f x +是偶函数,则下列不等式中正确的是( ) A .(3)(4)(1)f f f >> B .(1)(3)(4)f f f >>C .(3)(1)(4)f f f >>D .(4)(3)(1)f f f >>8.已知函数2()423x x f x a a =-⋅+-,则函数()f x 有两个相异零点的充要条件是( )A .22a -<<B 2a ≤≤C 2a <≤D 2a <<9.设102100121013579(21),x a a x a x a x a a a a a -=++++++++ 则的值( )A .10132+B .10132-C .10312-D .—10132+10.程序框图如图所示,其输出结果是( )A B C .0D 11.双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1、F 2,离心率为e ,过F 2的直线与双曲线的右支交于A 、B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则e 2的值是( )A.1+B.3+C.4-D.5-12.棱长为球,则这些球的最大半径为( ) AB.2C.4D.6第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答, 二、填空题(本大题共4小题,每小题5分,共20分.)13.如图所示是一个几何体的三视图(单位:cm),则这个几何体的表面积 cm 2.14.设坐标原点为O ,抛物线22y x =上两点A 、B 在该抛物线的准线上的射影分别是A ′、B ′,已知|AB|=|AA ′|+|BB ′|,则OA OB ⋅= 。
页脚内容1页脚内容2页脚内容3页脚内容4页脚内容5页脚内容6页脚内容72018年大连市高三双基考试数学(理科)参考答案说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数,选择题和填空题不给中间分.一.选择题1.C2.D3.B4.A5.B6.D7.C8.B9.D 10.A 11.C 12.B二.填空题13.6014. 15.2 16.{1}-三.解答题17. 解:(Ⅰ)在ABD ∆中,由正弦定理可得sin sin AB BD ADB BAD=∠∠, 在ACD ∆中,由正弦定理可得sin sin AC DC ADC CAD =∠∠,页脚内容8因为sin sin ,sin sin ADB ADC BAD CAD ∠=∠∠=∠, 所以12AB BD AC DC ==. ┄┄┄┄┄┄4分 (面积法、平面几何法酌情给分) (Ⅱ)法一:因为12BD DC =, 所以1121()3333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,┄┄┄┄┄┄8分 所以2221()33AD AB AC =+u u u r u u u r u u u r ,即8448++cos<,9999AB AC =>u u u r u u u r ,所以cos<,0AB AC >=u u u r u u u r , 所以<,=2AB AC π>u u u r u u u r ,所以ABC ∆面积为112=12⨯⨯. ┄┄┄┄┄12分 法二:设BAD α∠=,则ABD ∆面积为11sin 2α⨯,ACD ∆面积为12sin 23α⨯⨯,ABC ∆面积为112sin 22α⨯⨯⨯,所以11sin 2α⨯1+2sin 23α⨯⨯⨯112sin 22α=⨯⨯⨯,┄┄┄┄┄┄8分sin 22sin cos αααα==,所以sin cos 2αα==, 所以ABC ∆面积为112sin 2=12α⨯⨯⨯.┄┄┄┄┄┄12分 法三:设,2BD t DC t ==,在ABD ∆和ACD ∆中分别利用余弦定理,得到:页脚内容9222222(12()2t t +-+-=(),解得3t =,┄┄┄┄┄┄8分所以BC ==ABC ∆为直角三角形,面积为112=12⨯⨯.┄┄┄12分 法四:设,2BD t DC t ==,在ABD ∆和ACD ∆中分别对BAD CAD ∠∠、利用余弦定理,22222212(2)33t t +-+-=,解得t =8分所以BC ==ABC ∆为直角三角形,面积为112=12⨯⨯.┄┄┄12分 18.解:(Ⅰ)设移动支付笔数为X ,则4~(10,)5X B , ┄┄┄┄┄┄2分 所以4418108,105555EX DX =⨯==⨯⨯=. ┄┄┄┄┄┄6分 (Ⅱ)因为222()5002703017030)= 2.841 3.841()()()()44060300200n ad bc a b c d a c b d χ-⨯⨯-⨯=≈<++++⨯⨯⨯(,┄┄┄┄┄9分 所以没有95%的把握认为2017年个人移动支付比例达到了80%与该用户是城市用户还是农村用户有关.┄┄┄┄┄┄12分19. (Ⅰ)法一:过'C 作'C O BD ⊥交BD 于点O ,因为平面'BC D ⊥平面ABD ,所以'C O ⊥平面ABD ,┄┄┄┄┄┄2分页脚内容10 因为AD ⊂平面ABD ,所以'C O ⊥AD ,假设'90ADC ∠=o ,即'AD DC ⊥,因为'''C O DC C =I ,'C O ⊂平面'BC D ,'DC ⊂平面'BC D , 所以AD ⊥平面'BC D ,又BD ⊂平面'BC D ,所以AD BD ⊥,与已知90ADB ∠≠o 矛盾,所以假设不成立.所以'90ADC ∠≠o .┄┄┄┄┄┄4分 法二:过'C 作'C O BD ⊥交BD 于点O ,因为平面'BC D ⊥平面ABD , 所以'C O ⊥平面ABD , ,,'OD OE OC 为过O 作OE BD ⊥交AB 于点E ,以O 为坐标原点,,,x y z 轴,建立空间直角坐标系,如图所示:所以13'(0,0,(,0,0),(0,0),(1,2222C B D A -,,所以,13(,'(,0,2222AD C D =-=-u u u r u u u u r ,所以3'04AD C D ⋅=≠u u u r u u u u r ,所以'90ADC ∠≠o .┄┄┄┄┄┄4分(Ⅱ)由(Ⅰ)的方法二可知,31'(1,'(,0,'(,0,222222C A C D C B =-=-=--u u u u r u u u u r u u u u r页脚内容11设平面'ADC 的一个法向量为111(,,)m x y z =r ,所以有'0'0m C A m C D ⎧⋅=⎪⎨⋅=⎪⎩u u u u r r u u u u r r,即111110302x y z x z ⎧+-=⎪⎪⎨⎪-=⎪⎩,不妨令11x =,则113z y ==,即(1,3m =r ,┄┄┄┄┄┄6分 设平面'ABC 的一个法向量为222(,,)n x y z =r ,所以有'0'0n C A n C B ⎧⋅=⎪⎨⋅=⎪⎩u u u u r r u u u u r r,即2222201-022x y z x z ⎧-=⎪⎪⎨⎪-=⎪⎩, 不妨令23x =,则22z y ==-(3,n =-r ,┄┄┄┄┄┄8分所以3cos ,||||13m n m n m n ⋅<>===-r r r r r r .┄┄┄┄┄┄10分 由题可得,二面角'B AC D --的余弦值为313-.┄┄┄┄┄┄12分 20.解:(Ⅰ)显然点A 在椭圆外,所以1||||PF PA -22(||||)a PA PF =-+, 当P 在线段2AF 上时2||||PA PF +取到最小值,1||||PF PA -取到最大值2a 2分 又12c a =,化简22a a a ==,为长半轴长.┄┄┄4分 (Ⅱ)由12c a =,可得2b a =,所以椭圆方程可化简为222343x y a +=,2AF斜率为b a c =- 所以可以设直线l 方程为y m =+,其与椭圆联立可得:22215430x m a ++-=,且页脚内容1222180480a m ∆=->┄┄┄┄┄┄5分设1122(,),(,)M x y N x y ,根据两点间距离公式及韦达定理可得||MN == 根据点到直线距离公式可得,O 到直线l 的距离为||2m ,┄┄┄┄┄8分 所以222212212(4512)9024OMN m S m a m ∆=⎫+-=≤=⎪⎝⎭当224524a m =时,上式的等号成立,面积取到最大值24,所以2422=4,3a b =, 即椭圆C 的方程为22143x y +=.┄┄┄┄┄12分 21.解:(Ⅰ)法一:()0f x ≤可得ln 2x a x +≥,┄┄┄┄┄┄1分 设ln 2()(0)x g x x x +=>, 则2ln 1'()(0)x g x x x --=>,1'()00g x x e >⇒<<,1'()0g x x e<⇒>, 所以函数()g x 在区间1(0,)e 上为增函数,在1(+)e∞,上为减函数,┄┄┄┄┄3分 所以max 1()()g x g e e==.所以实数a 的取值范围为[,)e +∞.┄┄┄┄┄4分页脚内容13法二:显然0a ≤时,(1)0f >,不符合题意;┄┄┄┄┄1分当0a >时,1'()ax f x x -=,1'()00f x x a >⇒<<,1'()0f x x a <⇒>, 所以函数()f x 在区间1(0,)a 上为增函数,在1(+)a∞,上为减函数,┄┄┄┄┄3分 所以max 11()()ln 10f x f a a==+≤,解得实数a 的取值范围为[,)e +∞.┄┄┄┄┄4分 (Ⅱ)法一:由(Ⅰ)知+1212ln 222x x e e e x x e x ex +--≥--+,┄┄┄┄┄6分 设12()2(0)2x e h x e x ex x +=--+≥,则1'()x h x e ex e +=--, 令()'()x h x φ=,则1'()x x e e φ+=-,当0x >时,恒有'()0x φ>,所以函数'()h x 在区间(0,+)∞上为增函数, 所以'()'(0)0h x h >=,所以函数()h x 在区间(0,+)∞上为增函数, 所以0x >时,()(0)2 4.72h x h e >=+≈,┄┄┄┄┄9分 又112211ln 4.85222e e +-⨯-≈,所以m 的最大值为4.┄┄┄┄┄12分 法二:设2()1(0)2xx h x e x x =---≥,则'()1x h x e x =--,令()'()x h x ψ=,则'()1x x e ψ=- 当0x >时,恒有'()0x ψ>,所以函数'()h x 在区间(0,+)∞上为增函数, 所以'()'(0)0h x h >=,页脚内容14所以函数()h x 在区间(0,+)∞上为增函数,所以()(0)0h x h >=, 所以当0x >时,2+122ln (1)ln ln 222x e x e e x x e x x x ex e x -->++--=+-, 设()+ln t x ex e x =-,则1'()t x e x=-, 1'()0t x x e >⇒>,1'()00t x x e<⇒<<, 所以函数()t x 在区间1(0,)e 上为减函数,在1(+)e∞,上为增函数, 所以1()()2 4.72t x t e e≥=+≈,┄┄┄┄┄9分 又112211ln 4.85222e e +-⨯-≈,所以m 的最大值为4.┄┄┄┄┄12分 22.解:(Ⅰ)4sin ((0,))2πρθθ=∈可以化为224(0)x y y x +=>, 其参数方程为2cos 22sin x y ββ=⎧⎨=+⎩(参数(,)22ππβ∈-). ┄┄┄┄┄4分 (Ⅱ)由题得||4sin OP α=,6||sin cos OQ αα=+,其中(0,)2πα∈,┄┄┄┄┄6分 所以2||221cos 2sin 22sin 2cos 21(sin sin cos )()=()||3322322OP OQ ααααααα--=+=++21=[)]32423πα-+≤,┄┄┄┄┄8分 因为32(,)444πππα-∈-,所以当242ππα-=即38πα=时取到等号,页脚内容15 所以||||OP OQ的最大值为3.┄┄┄┄┄10分 23. 解:(Ⅰ)当1a =时,1()|21|||02f x x x =+--<,即1|21|||2x x +<-, 两边平方可得221(21)()2x x +<-,解得31(,)26x ∈--.┄┄┄┄┄4分 (Ⅱ)1,2211()3,22211,22a x a x a a f x x a x a a x a x a a ⎧---≤-⎪⎪⎪=+--<≤⎨⎪⎪++>⎪⎩,所以()f x 在(,)2a -∞-上为减函数,在(,)2a -+∞为增函数,┄┄┄┄┄6分()f x的最小值1()()1222a a m f a =-=-+≤-=-,当且仅当122a a=即1a =时取到等号. ┄┄┄┄┄8分所以32+10,10m m ≤-≥,所以532322321()(1)1(1)(1)0m m m m m m m m ---=--+=+-≤. 所以5321m m m -≤-┄┄┄┄10分。
辽宁省大连市2017届高三数学3月双基测试试题理(扫描版)2017年大连市高三双基测试 数学(理科)参考答案与评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一.选择题(1)C ;(2)B ; (3)D ;(4)C ; (5)B ;(6)C ;(7)A ;(8)D ; (9)A ;(10)D ;(11) B ; (12)A . 二.填空题(13)130; (14)36; (15) 233; 16.6[,2]2. 三.解答题(17)(本小题满分12分)解:(I )由已知得:222sin sin sin sin sin A B C A B +-=-, ······ 2分 由正弦定理得:222a b c ab +-=-, ················ 3分由余弦定理可得2221cos 22a b c C ab +-==-. ············· 4分 0C π<<,23C π∴=. ····················· 6分 (II )解法一:()sin cos cos sin sin()f x A x B x M x ϕ=⋅=+=+m n , 其中22sin sin cos ,tan cos AM A B Bϕ=+=, ············ 7分 ∵()f x 的图象关于直线3x π=对称,∴,32k k Z ππϕπ+=+∈,∴,6k k Z πϕπ=+∈, ······················ 9分∴sin 3tan cos A B ϕ==cos 3B A =, ············ 10分由(I )得3B A π=-,∴cos()3sin 3A A π-=,解得3tan A =, ············ 11分 ∴6A B π==. ·························· 12分解法二:()sin cos cos sin f x A x B x =⋅=+m n , ∵()f x 的图象关于直线3x π=对称,∴2(0)()3f f π=, ········ 8分 即13sin sin cos 22A AB =-+ ··················· 9分 由(I )得3B A π=-,∴3sin 3cos()3A A π=-, ·········· 10分 解得3tan 3A =, ························ 11分 ∴6A B π==. ·························· 12分(18)(本小题满分12分)解:(I )男生成绩优秀的人数为:57+23=80人,非优秀的人数为:120-80=40人, 女生成绩优秀的人数为:100×(0.25+0.3)=40人,非优秀的人数为:100-40=60人,优秀 非优秀 合计 男生 80 40 120 女生 40 60 100 合计120100220······························· 4分∴有99.9%以上的把握认为体育运动知识竞赛成绩是否优秀与性别有关. · 6分 (II )(i )设3人中至少有2名男生为事件A ,3人中至少有1名女生为事件B ,则322322120()33327P A C ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭, ·················· 7分 3人中有2男1女的概率为223214()339P A B C ⎛⎫== ⎪⎝⎭, ········ 8分∴在其中2人为男生的条件下,另1人为女生的概率4()39(|)20()527P A B P B A P A === 9分(ii )3人中女生人数X 服从二项分布:1(3,)3X B ,∴3312()33iii P X i C -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭(i =0、1、2、3) X 的分布列为:X 0123P································· 11分X 的数学期望()1E X np ==. ··················· 12分(19)(本小题满分12分)解:(Ⅰ)由于22,AB AD AM BM ===,则AM BM ⊥,又平面⊥ADM 平面ABCM ,平面 ADM 平面ABCM =AM ,⊂BM 平面ABCM ,故⊥BM 平面ADM .又⊂AD 平面ADM ,所以BM AD ⊥. ·············· 6分 (Ⅱ)以M 为原点,MB MA ,所在直线为x 轴,y 轴,建立如图所示空间直角坐标系, 设2000(,,)AB M =,,)0,0,2(A ,)0,2,0(B ,)22,0,22(D ,……………………………7分且2DE EB =,所以,222636E,,……………8分 设平面EAM 的一个法向量为m =,,()x y z ,则20MA x ⋅==m ,ME ⋅=m 22220636x y z ++=, 所以平面EAM 的一个法向量m 为014-(),,. ············· 10分又平面DAM 的一个法向量n 为010,,(),zyxABCMDE所以,cos m,n <>=22117171(4)=+-,所以二面角正弦值41717. · 12分(20) (本小题满分12分)解:(Ⅰ)()()()22211(1)11(1)(1)(1)a x ax x a x f x x x x x +-++-'=+=-+-+ ········ 1分 )14f x 函数(在区间(,)上单调递增,()01f x '∴≥在(,4)上恒成立. 2(1)(1)0x a x ∴++-≥, ································· 2分 即()()214431414111x a x x x x x +⎡⎤≥=--+=--+-⎢⎥-+-+-⎣⎦在(,)上恒成立. · 3分 1,410,3x x ∈∴-∈(),(),4141x x ∴-+≥-,取等条件为当且仅当=3x , ()41481x x ⎡⎤∴--+-≤-⎢⎥-⎣⎦,8a ∴≥-.····························· 4分 (Ⅱ)设切点为()00x y ,,则00000004,4320ln 131ax f x x y y x x '=--==-++(),() ()20014131a x x ∴+=-+ ① 且 000042ln(1)31x ax x x -=-++ ② ···· 6分 由①得20041()(1)31a x x =-+-代入②得 000004241ln(1)()(1)331x x x x x -=-+-+-即()3200000472ln 103(1)x x x x x ----+=- ················· 8分 令()()32472ln 131x x x F x x x ---=-+-()则22(81917)()3(1)x x x F x x -+'=-,2819170x x -+=的Δ=-183<02819170x x ∴-+>恒成立.()()1+F x '∴∞在,上恒为正值,()()1+F x ∴∞在,上单调递增. ······ 10分 ()0202F x =∴=代入①式得a =3. ················· 12分(21)(本小题满分12分)解:(Ⅰ)24y x =-的焦点为(1,0)-,1c ∴=.又22e =, 2a ∴=,1b =. ························ 2分∴椭圆E 的方程为2212x y +=. ··················· 3分 (Ⅱ)解法一:由题意,k 存在且不为零,设直线l 方程为()y k x m =-,()()1122A x y B x y ,,,联立方程组()2212x y y k x m ⎧+=⎪⎨⎪=-⎩消元得()22222124220k x mk x k m +-+-=2122412mk x x k +=+,221222212m k x x k -⋅=+ ················ 5分 22221212525(1)()()416k x x mk x x k m =+-++++=222(352)2251216m m k k ---++ · 7分 ∵PA PC ⋅为定值 ∴2352=4m m ---,即235+2=0m m - ∴1221,3m m ==∵34m > ∴1m =, ······················· 8分22222882(1)=12+12+1+++=k k k k k ················· 9分 同理22212222(1)2+1()+==k k BD k ··············· 10分 2222222221(1)(1)16442122(21)(2)9()2++==⨯≥⨯=+++++k k S AC BD k k k k ·· 12分解法二:设直线l 方程为x ty m =+,11(,)A x y ,22(,)C x y .联立方程组2212x y x ty m⎧+=⎪⎨⎪=+⎩消元得222(2)220t y tmy m +++-= 1222+=2tmy y t -∴+,21222=2-⋅+m y y t ··················· 5分 222235225216-+--=++t m m t ···················· 7分PA PC 为定值,235222m m --∴-=1221,3m m ∴==,3,14m m >∴=, ························ 8分2222212224+4+2221+1-=1=+2+2t t t AC t y y t t t ∴=++⨯()()····· 9分同理22221221+22(1)121+2t t BD t t +==+() ················ 10分 ∴面积最小值为169,当且仅当1t =±时成立。
辽宁省大连市2017-2018学年高考数学二模试卷(理科)一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={2,3},B={x|x2﹣4x+3=0},则A∩B等于( )A.{2} B.{3} C.{1} D.{1,3}2.已知复数z的共轭复数为,若||=4,则z•=( )A.4 B.2 C.16 D.±23.对变量x、y有观测数据(x i,y i)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以判断( )A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关4.有4名男医生、3名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A.A•A B.C•CC.C﹣﹣C•C D.A﹣﹣A•A5.在△ABC中,D为BC边的中点,若=(2,0),=(1,4),则=( ) A.(﹣2,﹣4)B.(0,﹣4)C.(2,4)D.(0,4)6.如图为一个观览车示意图,该观览车圆半径为4.8m,圆上最低点与地面距离为0.8m,图中OA与地面垂直,以OA为始边,逆时针转动θ(θ>0)角到OB,设B点与地面距离为h,则h与θ的关系式为( )A.h=5.6+4.8sinθB.h=5.6+4.8cosθC.h=5.6+4.8cos(θ+)D.h=5.6+4.8sin(θ﹣)7.如图所示的流程图,最后输出n的值是( )A.3 B.4 C.5 D.68.设F为抛物线C:y2=2px的焦点,过F且倾斜角为60°的直线交曲线C于A,B两点(B 点在第一象限,A点在第四象限),O为坐标原点,过A作C的准线的垂线,垂足为M,则|OB|与|OM|的比为( )A.B.2 C.3 D.49.用一个平面去截正四面体,使它成为形状,大小都相同的两个几何体,则这样的平面的个数有( )A.6个B.7个C.10个D.无数个10.已知某几何体的三视图如图所示,三视图是边长为1的等腰直角三角形和边长为1的正方形,则该几何体的体积为( )A.B.C.D.11.定义表示不超过X的最大整数.设n∈N*,且M=(n+1)2+n﹣2,则下列不等式恒成立的是( )A.M2≥2n+1B.当n≥2时,2M≥4n﹣2C.M2≥2n+1 D.当n≥3时,2M≥2n+212.对∀x∈(0,),下列四个:①sinx+tanx>2x;②sinx•tanx>x2;③sinx+tanx>x;④sinx•tanx>2x2,则正确的序号是( )A.①、②B.①、③C.③、④D.②、④二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.如图,设抛物线y=﹣x2+1的顶点为A,与x轴正半轴的交点为B,设抛物线与两坐标轴正半轴围成的区域为M,随机往M内投一点,则点P落在△AOB内的概率是__________.14.若(1﹣3x)2015=a0+a1x+a2x2+…+a2015x2015,则++…+的值为__________.15.设点P在曲线y=x2+1(x≥0)上,点Q在曲线y=(x≥1)上,则|PQ|的最小值为__________.16.已知双曲线C:﹣=1(a>0,b>0)左右顶点为A1,A2,左右焦点为F1,F2,P为双曲线C上异于顶点的一动点,直线PA1斜率为k1,直线PA2斜率为k2,且k1k2=1,又△PF1F2内切圆与x轴切于点(1,0),则双曲线方程为__________.三.解答题:(本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知两个数列{a n},{b n},其中{a n}是等比数列,且a2=,a5=﹣,b n=(1﹣a n).(Ⅰ)求{b n}的通项公式;(Ⅱ)设{b n}的前n项和为S n,求证:S n≥+.18.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出500件,量其内径尺寸,结果如表:甲厂:分组一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={2,3},B={x|x2﹣4x+3=0},则A∩B等于( )A.{2} B.{3} C.{1} D.{1,3}考点:交集及其运算.专题:集合.分析:求出B中方程的解确定出B,找出A与B的交集即可.解答:解:由B中方程变形得:(x﹣1)(x﹣3)=0,解得:x=1或x=3,即B={1,3},∵A={2,3},∴A∩B={3},故选:B.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.已知复数z的共轭复数为,若||=4,则z•=( )A.4 B.2 C.16 D.±2考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:先设出复数z=a+bi(a、b∈R),再求出共轭复数,由已知||=4,则z•的答案可求.解答:解:设则=a﹣bi,∵||=,∴z•=(a+bi)•(a﹣bi)=a2+b2=42=16.故选:C.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念及共轭复数的求法,是基础题.3.对变量x、y有观测数据(x i,y i)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以判断( )A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关考点:散点图.专题:数形结合法.分析:通过观察散点图可以知道,y随x的增大而减小,各点整体呈下降趋势,x与y负相关,u随v的增大而增大,各点整体呈上升趋势,u与v正相关.解答:解:由题图1可知,y随x的增大而减小,各点整体呈下降趋势,x与y负相关,由题图2可知,u随v的增大而增大,各点整体呈上升趋势,u与v正相关.故选C点评:本题考查散点图,是通过读图来解决问题,考查读图能力,是一个基础题,本题可以粗略的反应两个变量之间的关系,是不是线性相关,是正相关还是负相关.4.有4名男医生、3名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A.A•A B.C•CC.C﹣﹣C•C D.A﹣﹣A•A考点:排列、组合的实际应用.专题:排列组合.分析:根据题意,分2步分析,先从4名男医生中选2人,再从3名女医生中选出1人,由分步计数原理计算可得答案解答:解:根据题意,先从4名男医生中选2人,有C42种选法,再从3名女医生中选出1人,有C31种选法,则不同的选法共有C42C31种;故选:B点评:本题考查分步计数原理的应用,注意区分排列、组合的不同5.在△ABC中,D为BC边的中点,若=(2,0),=(1,4),则=( )A.(﹣2,﹣4)B.(0,﹣4)C.(2,4)D.(0,4)考点:平面向量的坐标运算.专题:平面向量及应用.分析:根据向量的几何意义和向量的坐标运算计算即可解答:解:=﹣=﹣=(1,4)﹣(2,0)=(1,4)﹣(1,0)=(0,4),故选:D.点评:本题考查了向量的坐标运算,属于基础题.6.如图为一个观览车示意图,该观览车圆半径为4.8m,圆上最低点与地面距离为0.8m,图中OA与地面垂直,以OA为始边,逆时针转动θ(θ>0)角到OB,设B点与地面距离为h,则h与θ的关系式为( )A.h=5.6+4.8sinθB.h=5.6+4.8cosθC.h=5.6+4.8cos(θ+)D.h=5.6+4.8sin(θ﹣)考点:在实际问题中建立三角函数模型.专题:三角函数的求值.分析:本题需要过点O作平行与地面的直线l,过点B作l的垂线,根据三角函数来求解.解答:解:过点O作平行于地面的直线l,再过点B作l的垂线,垂足为P,则∠BOP=θ﹣,根据三角函数的定义得:BP=OBsin(θ﹣)=4.8sin(θ﹣)h=4.8+0.8+BP=5.6+4.8sin(θ﹣)故选:D点评:本题考查了在实际问题中建立三角函数模型的能力.7.如图所示的流程图,最后输出n的值是( )A.3 B.4 C.5 D.6考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的n的值,当n=5时,满足条件2n=32>n2=25,退出循环,输出n的值为5.解答:解:模拟执行程序框图,可得n=1,n=2不满足条件2n>n2,n=3不满足条件2n>n2,n=4不满足条件2n>n2,n=5满足条件2n=32>n2=25,退出循环,输出n的值为5.故选:C.点评:本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的n的值是解题的关键,属于基础题.8.设F为抛物线C:y2=2px的焦点,过F且倾斜角为60°的直线交曲线C于A,B两点(B 点在第一象限,A点在第四象限),O为坐标原点,过A作C的准线的垂线,垂足为M,则|OB|与|OM|的比为( )A.B.2 C.3 D.4考点:直线与圆锥曲线的关系.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:求得抛物线的焦点和准线方程,设出直线AB的方程,代入抛物线方程,消去x,求得y1=﹣p,y2=p,运用两点的距离公式,计算即可得到结论.解答:解:抛物线C:y2=2px的焦点F(,0),准线为x=﹣,设直线AB:y=(x﹣),联立抛物线方程,消去x,可得y2﹣2py﹣p2=0,设A(x1,y1),B(x2,y2),则y1=﹣p,y2=p,由M(﹣,y1),则|OM|===p,|OB|====p,即有|OB|=3|OM|.故选C.点评:本题考查抛物线的方程和性质,主要考查抛物线的焦点和准线方程的运用,同时考查直线和抛物线联立,求得交点,考查运算能力,属于中档题.9.用一个平面去截正四面体,使它成为形状,大小都相同的两个几何体,则这样的平面的个数有( )A.6个B.7个C.10个D.无数个考点:棱锥的结构特征.专题:空间位置关系与距离.分析:根据几何体的性质判断正四面体是中心对称几何体,利用中心对称几何体的性质判断即可.解答:解:∵正四面体是中心对称图形,∴平面过正四面体的中心,则分成为形状,大小都相同的两个几何体,可判断这样的平面有无数个,故选;D点评:本题考查了常见的几何体的性质,关键是确定几何体的性质为中心对称,难度不大,属于中档题.10.已知某几何体的三视图如图所示,三视图是边长为1的等腰直角三角形和边长为1的正方形,则该几何体的体积为( )A.B.C.D.考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是棱长为1的正方体中的三棱锥,画出该三棱锥的直观图,求出它的体积.解答:解:根据几何体的三视图,得;该几何体是棱长为1的正方体中一三棱锥P﹣ABC,如图所示;∴该三棱锥的体积为××12×1=.故选:A.点评:本题考查了几何体的三视图的应用问题,解题的关键是根据三视图得出该几何体的结构特征,是基础题目.11.定义表示不超过X的最大整数.设n∈N*,且M=(n+1)2+n﹣2,则下列不等式恒成立的是( )A.M2≥2n+1B.当n≥2时,2M≥4n﹣2C.M2≥2n+1 D.当n≥3时,2M≥2n+2考点:基本不等式.专题:不等式.分析:分析:首先理解所表示的含义,然后把]2(进行化简,得到M=n>0,再分别判断各选项是否正确,问题得以解决.解答:解:∵则n是正整数,∴2=2=(n+1)2等式成立,∴M=(n+1)2+n﹣(n+1)2=n>0,对于选项A:M2=n2≥2n+1当n=1不成立,对于选项B:2M=2n≥4n﹣2,当n=3时,不成立对于选项C:M2=n2≥2n+1当n=1不成立,对于选项D:2M=2n≥2n+2,分别画出y=2x与y=2x+1的图象,如图所示,由图象可知,当n≥3时,2M≥2n+2恒成立,故选:D点评:本题主要考查取整函数的知识点,解答本题的关键之处是把]2进化简成(n+1)2,只要此步有思路了,本题就迎刃而解了.12.对∀x∈(0,),下列四个:①sinx+tanx>2x;②sinx•tanx>x2;③sinx+tanx>x;④sinx•tanx>2x2,则正确的序号是( )A.①、②B.①、③C.③、④D.②、④考点:同角三角函数基本关系的运用.专题:导数的综合应用;三角函数的图像与性质;不等式的解法及应用.分析:①令f(x)=sinx+tanx﹣2x,求得导数,判断单调性,即可判断;②令f(x)=sinxtanx﹣x2,求得导数,再令g(x)=sinx+﹣2x,求得导数,判断单调性,即可判断f(x)的单调性,进而得到结论;③令x=,求出不等式左右两边的数值,即可判断;④令x=,求出不等式左右两边的数值,即可判断.解答:解:①令f(x)=sinx+tanx﹣2x,求导f′(x)=cosx+sec2x﹣2=,∵x∈(0,),∴0<cosx<1,∴f′(x)>0,即函数单调递增,又f(0)=0,∴f(x)>0,∴sinx+tanx﹣2x>0,即sinx+tanx>2x,故①正确;②令f(x)=sinxtanx﹣x2,f′(x)=cosxtanx+sinxsec2x﹣2x=sinx+﹣2x,g(x)=sinx+﹣2x,g′(x)=cosx+﹣2=cosx+﹣2+,由0<x<,则cosx∈(0,1),cosx+>2,则g′(x)>0,g(x)在(0,)递增,即有g(x)>g(0)=0,即f′(x)>0,f(x)在(0,)递增,即有f(x)>f(0)=0,故②正确;③令x=,则sinx+tanx=sin+tan=,x=,由>,故③错误;④令x=,则sinxtanx=,2x2=,<,故④错误.故选A.点评:此题考查了三角不等式的恒成立问题,主要考查三角函数的图象和性质,运用导数判断单调性,进而得到大小和特殊值法判断,是解题的关键.二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.如图,设抛物线y=﹣x2+1的顶点为A,与x轴正半轴的交点为B,设抛物线与两坐标轴正半轴围成的区域为M,随机往M内投一点,则点P落在△AOB内的概率是.考点:几何概型;二次函数的性质.专题:概率与统计.分析:首先分别求出区域M和△AOB的面积,利用几何概型公式解答.解答:解:由已知区域M的面积为=,△AOB的面积为=,由几何概型可得点P落在△AOB内的概率是;故答案为:.点评:本题考查了定积分以及几何概型公式的运用;关键是分别求出两个区域的面积,利用定积分解答.14.若(1﹣3x)2015=a0+a1x+a2x2+…+a2015x2015,则++…+的值为﹣1.考点:二项式系数的性质.专题:二项式定理.分析:分别在已知的二项式中取x=0和,得到a0=1,,则答案可求.解答:由(1﹣3x)2015=a0+a1x+a2x2+…+a2015x2015,取x=0,得a0=1,再取x=,得,∴.故答案为:﹣1.点评:本题考查了二项式系数的性质,关键是在已知的二项式中对x值的选取,是基础题.15.设点P在曲线y=x2+1(x≥0)上,点Q在曲线y=(x≥1)上,则|PQ|的最小值为.考点:两点间距离公式的应用;二次函数的性质.专题:计算题;函数的性质及应用;圆锥曲线的定义、性质与方程.分析:曲线y=的图象在第一象限,要使曲线y=x2+1上的点与曲线y=上的点取得最小值,点P应在曲线y=x2+1的第一象限内的图象上,分析可知y=x2+1(x≥0)与y=互为反函数,它们的图象关于直线y=x对称,所以,求出y=上点Q到直线y=x的最小值,乘以2即可得到|PQ|的最小值.解答:解:由y=x2+1,得:x2=y﹣1,x=.所以,y=x2+1(x≥0)与y=互为反函数.它们的图象关于y=x对称.P在曲线y=x2+1上,点Q在曲线y=上,设P(x,1+x2),Q(x,)要使|PQ|的距离最小,则P应在y=x2+1(x≥0)上,又P,Q的距离为P或Q中一个点到y=x的最短距离的两倍.以Q点为例,Q点到直线y=x的最短距离d===.所以当=,即x=时,d取得最小值,则|PQ|的最小值等于2×=.故答案为:.点评:本题考查了反函数,考查了互为反函数图象之间的关系,考查了数学转化思想,解答此题的关键是把求两曲线上点的最小距离问题,转化为求一支曲线上的动点到定直线的最小距离问题,此题是中档题.16.已知双曲线C:﹣=1(a>0,b>0)左右顶点为A1,A2,左右焦点为F1,F2,P为双曲线C上异于顶点的一动点,直线PA1斜率为k1,直线PA2斜率为k2,且k1k2=1,又△PF1F2内切圆与x轴切于点(1,0),则双曲线方程为x2﹣y2=1.考点:双曲线的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:设点P是双曲线右支上一点,按双曲线的定义,|PF1|﹣|PF2|=2a,设三角形PF1F2的内切圆心在横轴上的投影为A(x,0),B、C分别为内切圆与PF1、PF2的切点.由同一点向圆引得两条切线相等知|PF1|﹣|PF2|=(PB+BF1)﹣(PC+CF2),由此得到△PF1F2的内切圆的圆心横坐标.即为a=1,再由直线的斜率公式和点P满足双曲线方程,化简整理,即可得到b=1,进而得到双曲线方程.解答:解:设点P是双曲线右支上一点,∴按双曲线的定义,|PF1|﹣|PF2|=2a,若设三角形PF1F2的内切圆心在横轴上的投影为A(x,0),该点也是内切圆与横轴的切点.设B、C分别为内切圆与PF1、PF2的切点.考虑到同一点向圆引的两条切线相等:则有:PF1﹣PF2=(PB+BF1)﹣(PC+CF2)=BF1﹣CF2=AF1﹣F2A=(c+x)﹣(c﹣x)=2x=2a,即x=a所以内切圆的圆心横坐标为a.由题意可得a=1,顶点A1(﹣1,0),A2(1,0),设P(m,n),则m2﹣=1,即n2=b2(m2﹣1),k1k2=1,可得•=1,即有=b2=1,即有双曲线的方程为x2﹣y2=1.故答案为:x2﹣y2=1.点评:本题考查双曲线的定义、方程和性质,主要考查定义法的运用,以及直线的斜率公式的运用,切线的性质,考查运算能力,属于中档题.三.解答题:(本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知两个数列{a n},{b n},其中{a n}是等比数列,且a2=,a5=﹣,b n=(1﹣a n).(Ⅰ)求{b n}的通项公式;(Ⅱ)设{b n}的前n项和为S n,求证:S n≥+.考点:数列的求和;等比数列的性质.专题:等差数列与等比数列.分析:(Ⅰ)利用a3=可得公比q,进而可得a n的表达式,计算可得结论;(Ⅱ)通过计算可得S n=+,对n分奇、偶数讨论即可.解答:(Ⅰ)解:∵a3==,∴q=﹣,∴a n=a2•q n﹣2=•=,∴b n=;(Ⅱ)证明:S n=b1+b2+…+b n=﹣=﹣•=+,当n为奇数时,S n=+(1+)>+;当n为偶数时,S n=+(1﹣)≥+×=+;综上:S n≥+.点评:本题考查等比数列的性质,通项公式及求和公式,考查分类讨论的思想,注意解题方法的积累,属于中档题.18.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出500件,量其内径尺寸,结果如表:甲厂:分组在△ACD中,∵M为AC中点,DM⊥AC,∴AD=CD.∠ADC=120°,∴,∴.在等腰直角△PAB中,PA=AB=4,PB=,∴,∴,∴MN∥PD.又MN⊄平面PDC,PD⊂平面PDC,∴MN∥平面PDC.(Ⅲ)∵∠BAD=∠BAC+∠CAD=90°,∴AB⊥AD,分别以AB,AD,AP为x轴,y轴,z轴建立如图的空间直角坐标系,∴B(4,0,0),C,,P(0,0,4).由(Ⅱ)可知,为平面PAC的法向量.,.设平面PBC的一个法向量为,则,即,令z=3,得x=3,,则平面PBC的一个法向量为,设二面角A﹣PC﹣B的大小为θ,则.所以二面角A﹣PC﹣B余弦值为.点评:熟练掌握正三角形的性质、线面垂直的判定与性质定理、平行线分线段成比例在三角形中的逆定理应用、通过建立空间直角坐标系并利用两个平面的法向量的夹角得到二面角的平面角是解题的关键.20.如图,已知椭圆C中心在原点,焦点在x轴上,F1,F2分别为左右焦点,椭圆的短轴长为2,过F2的直线与椭圆C交于A,B两点,三角形F1BF2面积的最大值为(a>1).(Ⅰ)求椭圆C的方程(用a表示);(Ⅱ)求三角形F1AB面积的最大值.考点:直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)确定c=,即可求椭圆C的方程(用a表示);(Ⅱ)设直线方程,代入椭圆方程,求出三角形F1AB面积,分类讨论,即可求出最大值.解答:解:(Ⅰ)由题意,椭圆的上顶点为(0,1),下顶点为(0,﹣1),当B与上(或下)顶点重合时,三角形F1BF2面积最大S==,∴c=,∴椭圆C的方程为;(Ⅱ)三角形F1AB面积S==c•AB•sinα(α为F2B与x轴正向所成的角)设F2(c,0),A(x1,y1),B(x2,y2),AB:y=k(x﹣c),代入椭圆方程可得(1+a2k2)x2﹣2a2k2cx+a2k2c2﹣a2=0,∴x1+x2=,x1x2=∴AB=|x1﹣x2|=,∴S=c•AB•sinα=,a时,S≤=a;1<a<时,S≤=.点评:本题考查椭圆的方程和性质,主要考查椭圆的方程的运用,联立直线方程,运用韦达定理,同时考查求最值,属于中档题.21.已知函数f(x)=e x﹣ax2+(a﹣e+1)x﹣1,(e=2.71828…是自然对数的底数,a为常数).(Ⅰ)当a=0时,求f(x)的单调区间;(Ⅱ)若函数g(x)=f(x)﹣x•f′(x)在区间;(Ⅲ)假设函数f(x)在区间(0,1)上有零点;即存在x∈(0,1),使得e x﹣ax2+(a﹣e+1)x﹣1=0;即,记;①若h(x)<1,∴,即:;由于x∈(0,1),有x2﹣x<0;即证e x﹣x2+(2﹣e)x﹣1>0在x∈(0,1)恒成立;令H(x)=e x﹣x2+(2﹣e)x﹣1,x∈(0,1);H′(x)=e x﹣2x+2﹣e,H″=e x﹣2;当x∈(0,ln2),H″(x)<0,当x∈(ln2,1),H″(x)>0;∴当x∈(0,ln2),H′(x)单调递减,x∈(ln2,1),H′(x)单调递增;而H′(0)=1﹣0+2﹣e>0,H′(1)=e﹣2+2﹣e=0,H′(ln2)=e ln2﹣2ln2+2﹣e=4﹣e﹣2ln2<0;故在(0,ln2)上存在唯一的实数x0使得H′(x0)=0;所以,在(0,x0)上H(x)单调递增,在(x0,1)上H(x)单调递减;而H(0)=0,H(1)=0;故H(x)>0在(0,1)成立;即成立;②若h(x)>e﹣2;∴,即;由于x∈(0,1),有x2﹣x<0;即证e x+(e﹣2)x2﹣x﹣1<0在x∈(0,1)恒成立;令H(x)=e x﹣(e﹣2)x2﹣x﹣1,H′(x)=e x﹣2(e﹣2)x﹣1,H″(x)=e x﹣2(e﹣2);当x∈(0,ln2(e﹣2)),H″(x)<0,H′(x)单调递减;当x∈(ln2(e﹣2),1),H″(x)>0,H′(x)单调递增;而H′(0)=0,H′(1)=3﹣e>0;∴在(ln2(e﹣2),1)上存在唯一的实数x0使得H′(x0)=0;所以,在(0,x0)上H(x)单调递减,在(x0,1)上H(x)单调递增;又H(0)=0,H(1)=0;故H(x)<0在(0,1)成立,即成立.由①②可得,a∈(e﹣2,1)时,h(x)存在零点.点评:考查根据函数导数符号求函数单调区间的方法,函数导数符号和函数单调性的关系,函数单调性定义的运用,会正确求导,会求二阶导数并能运用二阶导数,函数零点的概念,以及掌握本题在证明函数存在零点时用到的方法.请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.选修4-1:几何证明选讲22.如图,⊙O内切于△ABC的边于D,E,F,AB=AC,连接AD交⊙O于点H,直线HF 交BC的延长线于点G.(1)求证:圆心O在直线AD上.(2)求证:点C是线段GD的中点.考点:圆的切线的性质定理的证明.专题:证明题.分析:(1)根据题意,易得CD=BD,又由△ABC是等腰三角形,即AD是∠CAB的角分线,即可证明;(2)连接DF,由(I)知,DH是⊙O的直径,结合圆切线的性质,易得CG=CF=CD,即可证明.解答:证明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CF=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分线∴圆心O在直线AD上.(II)连接DF,由(I)知,DH是⊙O的直径,∴∠HFD=90°,∴∠FDH+∠FHD=90°又∵∠G+∠FHD=90°∴∠FDH=∠G∵⊙O与AC相切于点F∴∠AFH=∠GFC=∠FDH∴∠GFC=∠G∴CG=CF=CD∴点C是线段GD的中点.点评:本题利用了切线的性质,四边形的内角和为360度及圆周角定理求解.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C2的参数方程为(β为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.(1)求C1和C2的极坐标方程;(2)已知射线l1:θ=α(0<α<),将l1逆时针旋转得到l2:θ=α+,且l1与C1交于O,P两点,l2与C2交于O,Q两点,求|OP|•|OQ|取最大值时点P的极坐标.考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)先将参数方程转化为普通方程,然后利用极坐标方程和普通方程之间的关系进行转化即可;(2)设极坐标方程,结合三角函数的最值性质进行求解即可.解答:解:(1)曲线C1的直角坐标方程为(x﹣2)2+y2=4,所以C1极坐标方程为ρ=4cosθ,曲线C2的直角坐标方程为x2+(y﹣1)2=4,所以C2极坐标方程为ρ=4sinθ(2)设点P极点坐标(ρ1,4cosα),即ρ1=4cosα,点Q极坐标为(ρ2,4sin(α+)),即ρ2=4sin(α+),则|OP||OQ|=ρ1ρ1=4cosα•4sin(α+)=16cosα(sinα+cosα)=8sin(2α+)+4∵α∈(0,),∴2α+∈(,),当2α+=,即α=时,|OP|•|OQ|取最大值,此时P极点坐标(2,).点评:本题主要考查参数方程,极坐标方程和普通方程的转化,将参数方程和极坐标方程转化为普通方程是解决参数方程的基本方法.选修4-5:不等式选讲24.已知a和b是任意非零实数.(1)求的最小值.(2)若不等式|2a+b|+|2a﹣b|≥|a|(|2+x|+|2﹣x|)恒成立,求实数x的取值范围.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:(1)由条件利用绝对值三角不等式求得的最小值.(2)由条件利用绝对值三角不等式|2+x|+|2﹣x|≤4,再根据绝对值的意义可得|2+x|+|2﹣x|≥4,从而得到|2+x|+|2﹣x|=4,由此利用绝对值的意义求得x的范围.解答:解:(1)∵=||+||=|2+|+|2﹣|≥|(2+)+(2﹣)|=4,所以的最小值为4.(2)∵|2a+b|+|2a﹣b|≥|2a+b+2a﹣b|=4|a|,不等式|a+b|+|a﹣b|≥|a|(|2+x|+|2﹣x|)恒成立,∴4|a||≥|a|(|2+x|+|2﹣x|),即|2+x|+|2﹣x|≤4.而|2+x|+|2﹣x|表示数轴上的x对应点到﹣2、2对应点的距离之和,它的最小值为4,故|2+x|+|2﹣x|=4,∴﹣2≤x≤2,即实数x的取值范围为:.点评:本题主要考查绝对值的意义,绝对值不等式的解法,绝对值三角不等式,函数的恒成立问题,体现了等价转化的数学思想,属于基础题.。
大连市 2017 年高三第一次模拟考试数学(理科)能力测试第Ⅰ卷(共60 分)一、选择题:本大题共12 个小题 ,每题 5 分 ,共 60 分 .在每题给出的四个选项中,只有一项是切合题目要求的 .1.已知复数 z 1 2i ,则 z z( )A . 5B . 5 4iC . -3D . 3 4i2.已知会合 A{ x | x22x 3 0}, B{ x |1x 0},则 AB ()xA . { x |1 x 3}B . { x | 1 x 3}C . { x | 1 x 0或 0x 3} D . { x | 1 x 0或1 x 3}3.设 a, b 均为实数,则“ a | b |”是“ a 3b 3 ”的()A .充足不用要条件B . 必需不充足条件C .充要条件D . 既不充足也不用要条件4.若点 P 为抛物线 C : x21y 上的动点, F 为抛物线 C 的焦点,则 | PF |的最小值为2( )A . 2 1C.1D .1B .4825.已知数列 { a n } 知足 a n 1a n 2 , a 15 ,则 | a 1 | | a 2 || a 6 | ()A . 9B15 .C.18D . 30x y 3 06.在平面内的动点 ( x, y) 知足不等式x y 1 0 ,则 z 2 xy 的最大值是()y 0A . 6B . 4C. 2D . 07.某几何体的三视图以下图,则其体积为()A . 47 4 8B .C.D .33315,则 n 的最小值8.将一枚硬币连续投掷n 次,若使得起码有一次正面向上的概率不小于16为( )A . 4B . 5C. 6 D . 79.运转以下图的程序框图,则输出结果为()115 C.323A .B .2D .841610.若方程 2sin(2 x)m 在 x [0, ] 上有两个不相等的实数解 x 1 , x 2 ,则 x 1 x 26 2( )A .B . C.23D .24311.已知向量 OA (3,1) , OB ( 1,3) , OC mOA nOB (m 0, n 0) ,若m n[1,2] ,则 |OC | 的取值范围是()A . [5,2 5] B . [ 5,2 10) C. (5, 10)D . [ 5,2 10]12.已知定义在 R 上的函数 f ( x)e x mx 2 m(m 0) ,当 x 1 x 2 1 时,不等式f ( x1 ) f (0) f ( x2 ) f (1) 恒成立,则实数x1的取值范围是()A .( ,0) B.(0,1) C. (1,1) D.(1, ) 2 2第Ⅱ卷(共90 分)二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)13.现将 5 张连号的电影票分给甲乙等 5 个人,每人一张,且甲乙分得的电影票连号,则共有种不一样的分法(用数字作答).14.函数f ( x) e x sin x 的图象在点(0, f (0))处的切线方程是.15.我国古代数学专著《孙子算法》中有“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”假如此物数目在100 至 200 之间,那么这个数是.x2 y21(a 0, b 0) 的焦点 F 且与一条渐近线垂直的直线与两条渐近线16.过双曲线b2a2订交于 A, B 两点,若 BF 2FA ,则双曲线的离心率为.三、解答题(本大题共 6 小题,共70 分 .解答应写出文字说明、证明过程或演算步骤.)17. 已知点P( 3,1) ,Q(cos x,sin x),O为坐标原点,函数 f ( x) OP QP.(1)求函数f (x)的最小值及此时x的值;(2)若A为ABC 的内角, f ( A) 4,BC 3,求ABC 的周长的最大值.18.某手机厂商推出一次智好手机,现对 500 名该手机使用者( 200 名女性, 300 名男性)进行检查,敌手机进行打分,打分的频数散布表以下:(1)达成以下频次散布直方图,并比较女性用户和男性用户评分的方差大小(不计算详细值,给出结论即可);(2)依据评分的不一样,运用分层抽样从男性用户中抽取20 名用户,在这20 名用户中,从评分不低于80 分的用户中随意取 3 名用户,求 3 名用户评分小于90 分的人数的散布列和期望.19. 如图,在四棱锥P ABCD 中,底面 ABCD 为正方形, PA底面ABCD,AD AP ,E为棱 PD中点.(1)求证:PD 平面 ABE ;(2)若F为AB中点,PM PC(0 1),试确立的值,使二面角 P FM B 的余弦值为3. 320. 已知点P是长轴长为2 2x2 y21(a b 0) 上异于极点的一个动点,的椭圆 Q:b2a2O 为坐标原点, A 为椭圆的右极点,点M 为线段 PA 的中点,且直线 PA 与 OM 的斜率之积恒为1 . 2(1)求椭圆Q的方程;(2)设过左焦点F1且不与坐标轴垂直的直线l交椭圆于C , D两点,线段CD的垂直均分线与 x 轴交于点G,点G横坐标的取值范围是[ 1,0) ,求 | CD |的最小值. 421. 已知函数f ( x) (x 2)e x a( x 2)2 (x 0) .(1)若f ( x)是(0,)的单一递加函数,务实数 a 的取值范围;(2)当a1) 时,求证:函数 f (x) 有最小值,并求函数 f ( x) 最小值的取值范围. (0,4请考生在22、 23 两题中任选一题作答,假如多做,则按所做的第一题记分.22.选修 4-4:坐标系与参数方程已知在平面直角坐标系xOy 中,以坐标原点O 为极点,以x 轴正半轴为极轴,成立极坐标x2 5t 15系,曲线 C1的极坐标方程为4cos ,直线 l 的参数方程为( t 为参数).5 ty 15(1)求曲线C1的直角坐标方程及直线l 的一般方程;(2)若曲线C2的参数方程为x 2cos,Q 为y sin(为参数),曲线 C1上点P的极角为4曲线 C2上的动点,求PQ的中点M到直线l距离的最大值. 23.选修 4-5:不等式选讲已知 a 0, b 0 ,函数 f ( x) | x a | | 2x b | 的最小值为 1. (1)求证:2a b 2 ;(2)若a 2b tab 恒成立,务实数t的最大值.2017 年大连市高三一模测试数学(理科)参照答案与评分标准一.选择题(1)A ;( 2)D ;( 3)A ;( 4)D;( 5)C;( 6)A ;( 7)D ;( 8)A ;(9)B ;( 10) C;( 11)B;( 12)D .二.填空题(13) 48;( 14)y x ;(15) 128 ;(16)23 .3三.解答题(17)解:( I )∵OP ( 3,1),QP ( 3 cos x,1 sin x) ,∴ f (x) 3 3 cos x 1 sin x 4 2sin( x ) ,3∴当 x62k (k Z ) 时, f (x) 获得最小值2.(2) ∵f ( A)=4,∴A 2,32又∵ BC 3,∴ a2 b2 c2 2bc cos ,∴ 9 (b c)2 bc.3(b c)2 3(b c) 29 ,.bc4 ,∴ 4∴ b c 2 3 ,当且仅当b=c取等号,∴三角形周长最大值为 3 23.(18)解:(Ⅰ)女性用户和男性用户的频次散布直方图分别以下左、右图:由图可得女性用户的颠簸小,男性用户的颠簸大.(Ⅱ)运用分层抽样从男性用户中抽取20 名用户,评分不低于 80 分有 6 人,此中评分小于90 分的人数为 4 ,从 6 人人任取 3 人,记评分小于 90 分的人数为 X ,则 X 取值为 1,2,3 ,P( XC 41C 22 1 2)C 42 C 21 3 C 43C 22 11); P(XC 63; P(X 3)C 63.C 63555因此 X 的散布列为X123P131555EX43 2或EX1 6 32.65 5 5(19)解: (I) 证明:∵ PA 底面 ABCD , AB 底面 ABCD ,∴ PA AB ,又∵底面 ABCD 为矩形,∴ AB AD ,PAAD A , PA平面 PAD , AD 平面PAD ,∴ AB 平面 PAD ,又 PD 平面 PAD ,∴ AB PD ,AD AP ,E 为PD 中点,∴ AEPD ,AE ABA ,AE 平面 ABE , AB 平面 ABE ,∴ PD平面 ABE .(II) 以 A 为原点,以 AB, AD, AP 为 x, y, z 轴正方向,成立空间直角坐标系 ABDP ,令|AB| 2 ,则 A(0,0,0) , B(2,0,0) , P(0,0,2) , C (2,2,0) , E(0,1,1), F (1,0,0) , PF(1,0, 2) ,PC (2,2, 2),PM (2 ,2 , 2 ),M(2 ,2 ,2 2 )设平面 PFM 的法向量 m ( x1 , y1, z1 ) ,m PF =0 x 2z 0,即2 x 2,m PM =0 y 2 z 0m (2, 1,1)设平面 BFM 的法向量n ( x2 , y2 , z2 ) ,n BF =0,n FM =0x 0, n (0, 1, )即1 x2 y 22 2 z 0m n 1 3 1| cos m,n |2 2,解得.| m || n |6 1 3 2 (20)解:(Ⅰ)∵椭圆 Q 的长轴长为 2 2 ,∴ a 2 .设 P( x0 , y0 ) ,y0∵直线 PA 与 OM 的斜率之积恒为 1 ,∴ 2 y0 1 ,2 x0 2 x0 222∴x02 2,∴ b 1,y02 1故椭圆的方程为x2 y 2 1.2(Ⅱ ) 设直线 l 方程为y (k x1 ) (k ,代入x2 y2 1 有2(1 2k 2 ) x2 4k 2 x 2k2 2 0 ,设 A(x1, y1 ), B( x2 , y2 ) ,AB中点 N ( x0 , y0 ) ,∴ (x14k22, x1x22k 2 2 x2 )2k 1 2k2.1∴ x0 1 2k 2, y0 k ( x0 1)k ( x1 x2 )1 2k22k2 2 1∴ CD 的垂直均分线方程为y y0 1( x x0 ) ,k令 y 0 ,得 x G x0 ky0 1 12 4k 2 2∵ x G [ 1,0) ,∴ 1 1 1 ,∴ 0 k 2 1 .4 4 2 4k2 2 2|CD| 1 k2 | x2 x1 | 1 k 2 16k 4 4(2k2 1)(2k 2 2)2k 2 12 2[1+ 1 ] 3 2 ,2 2(2k 2 1) 2| CD |min 3 2.2(21)解:(Ⅰ) f x e x (x 2)e x 2ax 4a∵函数(f ( 0,+ )x) 在区间上单一递加,f x 0在( 0,+ )上恒成立 . ∴e x (x 2)e x 2ax 4a 0 ,∴ a (1 x) e x ,2x 4令 g( x) (1 x)e x , g ( x) [(1 x)e x e x ](2 x 4) 2(1 x) e x e x ( 2x2 2x 2) 0 ,2x 4 (2 x 4)2 (2 x 4) 2∴g( x) g(0) 1,∴ a 1 .4 4(Ⅱ) f x x e x 2a 0 ∴ y=f x 在(0,+ )上单一递加又 f 0 =4 a 1 0 f 1 =6 a 0 ∴存在 t ( 0,1 )使 f t =0∴ x (0,t)时, f x 0, x ( t,+ )时, f x 0当 x=t时, f min x =f t = (t -2)e t +a(t 2)2且有 f t =e t(t-1)+2a(t 2) 0 ,∴a= e t (1 t ) .2(t 2)由(Ⅰ)知 a=g(t)= et(1t) 在t (0, ) 上单一递减,2(t 2)g(0)= 1, g(1)=0 ,且 0 a1,∴ t (0,1) .4 4∴ f min x =f t=(t-2)e t+ e t (1 t)(t 2) 2et ( t2t 2) ,2(t 2) 2f t = e t( t 2t 1) 0 ,2∴ f (1) f (t ) f (0) , ef (t) 1 ,∴ f (x) 的最小值的取值范围是 ( e, 1) .(22)解:(Ⅰ)由 C : x 2y 2 4x 0, l : x 2y 30 .1(Ⅱ) P(22, ), 直角坐标为 (2, 2) ,4 1Q(2cos ,sin ),M(1 cos ,1 ) , l : x2 y3 0 .sin2M 到 l 的距离 d|1 cos2 sin3|10| sin(4 ) |,55进而最大值为 10.5(23)解:(Ⅰ)法一: f ( x) | x a || 2x b | = | x a | | x b | | x b|,b | | ( x a) (xb) | a b 且 | x b | 2 2 ∵ | x a | | x0,b2b 2 22b∴ f (x)af ( x) 的最小值为 a,当 x时取等号,即,222b1, 2a b 2 .∴ a2b法二:∵ a,23x a b, x a∴ f (x)| x a | | 2x b | = x a b, a x b ,b23x a b, x2明显 f (x) 在 (, b ] 上单一递减, f ( x) 在 [ b,) 上单一递加,2 2∴ f (x) 的最小值为 f ( b) ab ,2 2∴ ab 1, 2a b 2 .2(Ⅱ)∵ a 2b tab 恒成立,∴a2b t 恒成立,aba 2b 1 2 ( 1 2)(2 a b) 11(1 4 2a2b ) 1 (1 4 2 2a 2b ) 9ab b a b a2 2 ba2b a 2 当 a b 2 时,a 2b获得最小值 9 ,∴93 ab92t ,即实数 t 的最大值为 .222017 年大连市高三一模测试数学(理科)参照答案与评分标准说明:一、本解答给出了一种或几种解法供参照,假如考生的解法与本解答不一样,可依据试题的主要考察内容对比评分标准制定相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,假如后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超出该部分正确解答应得分数的一半;假如后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数,选择题和填空题不给中间分.一.选择题(1)A ;( 2)D ;( 3)A ;( 4)D;( 5)C;( 6)A ;( 7)D ;( 8)A ;(9)B ;( 10) C;( 11)B;( 12)D .二.填空题(13) 48;( 14)y x ;(15) 128 ;(16)2 3.3三.解答题(17) (本小题满分12 分)解:( I )∵OP ( 3,1),QP ( 3 cos x,1 sin x) , 3 分∴ f ( x) 3 3 cos x 1 sin x 4 2sin( x ) , 5 分3∴当 x62k (k Z ) 时, f (x) 获得最小值2. 6 分2,7 分(2) ∵f ( A)=4,∴A32bc cos 2又∵ BC 3,∴ a2 b2 c2 ,∴ 9 (b c)2 bc.9 分3(b c) 2 3(b c)29 ,.10 分bc ,∴4 4∴ b c 2 3 ,当且仅当 b=c 取等号,∴三角形周长最大值为 3 2 3 . 12 分(18)( 本小题满分12 分 )解:(Ⅰ)女性用户和男性用户的频次散布直方图分别以下左、右图:频次频次组距组距O 50 60 70 80 90 100 评分O 50 60 70 80 90 100 评分12 分,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4 分由图可得女性用户的颠簸小,男性用户的颠簸大. ,,,,,,,,,,,,,, 6 分(Ⅱ)运用分层抽样从男性用户中抽取20 名用户,评分不低于80 分有 6 人,此中评分小于90分的人数为 4 ,从 6 人人任取 3 人,记评分小于 90 分的人数为 X ,则 X 取值为 1,2,3 ,C41C22 1 C42 C21 3 C43C22 1P(X 1) ; P(X 2)C63 ; P(X 3)C63. 9分C63 5 5 5因此 X 的散布列为X 1 2 3P 1 3 15 5 5EX 4 3 2或 EX 1 6 3 2.12分6 5 5 5(19)( 本小题满分12 分)解: (I) 证明:∵ PA⊥底面 ABCD , AB 底面 ABCD ,∴ PA⊥AB ,又∵底面ABCD 为矩形,∴ AB⊥ AD, PA∩AD =A, PA 平面 PAD , AD 平面 PAD,∴ AB ⊥平面 PAD,又 PD 平面 PAD ,∴ AB⊥PD , AD=AP , E 为 PD 中点,∴ AE⊥ PD , AE∩AB =A,AE 平面 ABE, AB平面ABE,∴ PD⊥平面ABE. 6 分(II) 以A为原点,以AB, AD, AP为x, y, z轴正方向,成立空间直角坐标系 A BDP ,令|AB| 2,则 A(0,0,0) , B(2,0,0) , P(0,0,2) , C (2,2,0) , E(0,1,1) , F (1,0,0) , PF (1,0, 2) ,PC (2,2, 2), PM (2 ,2 , 2 ),M(2 ,2 ,2 2 )设平面 PFM 的法向量mm PF =0 x 2z 0( x1 , y1, z1 ) ,,即x 2 y 2 z,m PM =0 2 0m (2, 1,1)设平面BFM 的法向量n ( x2 , y2, z2 ) ,n BF =0,即n FM =0x 0, n (0, 1, ) 2 x1 2y 2 z2 0| cosm n 1 3 1 m,n |2 2,解得.| m || n | 6 3 21(20) (本小题满分 12 分)解:(Ⅰ)∵椭圆 Q 的长轴长为 2 2 ,∴ a 2 .P(x0 , y0 ) ,∵PA 与OM 的1设直线斜率之积恒为,2y0∴ 2 y0 1,,,,,,,,,,,,,,,,, 2 分x0 2 x0 2 22∴ x02 y02 1,∴ b 1,2故椭圆的方程为x2y 2 1.,,,,,,,,,,,,,,,, 4 分2(Ⅱ ) 设直线l 方程为 y (k x1 ) (k ,代入x2 y2 1 有2(1 2k 2 ) x2 4k2 x 2k 2 2 0 ,,,,,,,,,,,,, 5 分设 A(x1, y1 ), B(x2 , y2 ) ,AB中点 N ( x0 , y0 ) ,∴ ( x1 x2 )4k22, x1 x22k 2 2.,,,,,,,,,,,,, 6 分1 2k 1 2k 2∴ x0 1( x1 x2 )12k 2 2 , y0 k( x0 1) k 2 ,,,,,,,, 7 分2 2k 1 2k∴ CD 的垂直均分线方程为y y0 1(x x0 ) ,k令 y 0 ,得 x G x0 ky0 1 1,,,,,,,,,,,, 9 分2 4k2 2∵ x G [ 1 ,0) ,∴ 1 1 1 ,∴ 0 k2 1 . ,,,,,, 10 分4 4 2 4k2 2 2|CD | 1 k 2 | x2 x1 | 1 k 2 16k 4 4(2k2 1)(2k 2 2)2k 2 12 2[1+ 1 ] 3 2 ,2 2(2k 2 1) 2|CD |min 3 2. ,,,,,,,,,,,,,,,,,,,,,, 12 分2(21)(本小题满分12 分)解:(Ⅰ) f x e x(x 2)e x2ax 4a 1 分函数(fx)在区间( 0,+ )上单一递加, f x 0在( 0,+ )上恒成立. ∴ e x (x 2)e x 2ax 4a 0 ,∴ a (1 x)e x , 2 分2 x 4令 g( x) (1 x)e x , g ( x) [(1 x)e x e x ](2 x 4) 2(1 x) e x e x ( 2x2 2x 2) 0 ,2x 4 (2 x 4)2 (2 x 4) 2∴g( x) g(0) 1,∴ a 1 . 4 分4 4(Ⅱ) f x x e x 2a 0 ∴ y=f x 在(0,+ )上单一递加又 f 0 =4 a 1 0 f 1 =6 a 0 ∴存在 t ( 0,1 )使 f t =0∴ x (0,t)时, f x 0, x ( t,+ )时, f x 0当 x=t时, f min x =f t = (t -2)e t +a(t 2)2 ,,,,,,,,,, 6 分且有 f t =e t(t-1)+2a(t 2) 0 ,∴a= e t (1 t ).,,,,,,,, 6 分2(t 2)由(Ⅰ)知 a=g(t)= et(1t) 在t (0, ) 上单一递减,2(t 2)g(0)= 1, g(1)=0 ,且 0 a1,∴ t (0,1) . , , , , , , ,,,, , , , , 8 分4 4∴ f min x =f t =(t-2)e t + et(1t) (t 2) 2 e t ( t2 t2),,,,,,,, 10 分2(t 2) 2f t = e t ( t2 t 1) 0 ,,,,,,,,,,,,,,,,,,,,,, 11 分2∴ f (1) f (t ) f (0) , e f (t) 1 ,∴ f (x) 的最小值的取值范围是( e, 1) .,,,,,,,,,,,,,,, 12 分.(22)(本小题满分 10 分)解:(Ⅰ)由C1: x2 y2 4x 0, ,,,,,,,,,,,,,,, 2 分l : x 2 y 3 0 . ,,,,,,,,,,,,,,,,,,,, 5 分(Ⅱ) P(2 2, ),直角坐标为(2,2,), , , , , , , , , , ,,,6分4 1sin ) , l : xQ (2cos ,sin ),M(1 cos ,1 2 y 3 0.,, 8 分2M 到 l 的距离 d |1 cos 2 sin3|10| sin()|,,9 分554进而最大值为10 ,,,,,,,,,,,,,,,10.5分(23) (本小题满分 10 分)解:(Ⅰ)法一:f ( x )||| 2| = | a| |b| b| , |2 分x ax bxxx, ,22∵ | x a | | xb| |( x a) ( xb) | a b且 | x b| 0 ,2 2 2 2∴ f (x)ab b时 取 等 号 , 即 f ( x) 的 最 小 值 为 ab, , ,4 分2 , 当 x 22b 1, 2a b2 .,,,,5 分∴ a2b法二:∵a,23x a b, x a∴ f ( x)| x a | | 2x b | = x a b, a xb,,,,,,3 分b23x a b, x2明显 f ( x) 在 (, b] 上单一递减, f ( x) 在 [ b,) 上单一递加,22∴ f ( x) 的最小值为 f ( b)a b ,, ,,,,4 分b22∴ a1, 2a b 2 .,,,,,,,,,5 分2tab 恒 成 立 , ∴a 2b( Ⅱ ) ∵ a2b t 恒 成 立 ,, ,, , , 7 分aba 2b 12 (1 2)(2 a b) 1 1(1 4 2a 2b )ab ba b a2 2 b a1(142 2a 2b9 , , , ,, , , ,,,,,, ,, , 9 分 当2 b a ) 2a b 2 时, a2b获得最小值 9 ,∴93 ab92t ,即实数 t 的最大值为 .,,,,,,,,,,,,,,,5 分22。
2017-2018学年度上学期期末考试高三年级数学科(理科)试卷第I卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知是虚数单位,则复数--一的虚部是()1-iA. -1B. 1C.D.【答案】Bfl - i? 2i 21(1 + i) 2 + 2i (1+护【解析】因为,所以的虚部是,故选1- i 1 - i 十1) 2 1 - jB.2. 设集合J - I ;,[• = •:.•::.二上,则()A. I'- I IB.C.:丨|D.【答案】C【解析】•••集合=「:/::• j•.•集合• - ■故选C43. 若:=.,且为第二象限角,则站;()4 3 4 3A. B. ——C. 一D.3 4 3 斗【答案】B4 3 sina 3【解析】因为■■■••■■■■:■=-,且为第二象限角,所以n =, ,故选B.5 5 COSOL44. 已知向量与的夹角为,,仃=〉,叮;;•】|- ()A. .. -B. 2C. ..D. 4【答案】B- 一, ]【解析】因为厂二所以口I,「:| =〔•::•:= I • —:- i = - i, ■■■. : h|--.4 -■ - I■- ' -:-',故选 B.5.某四棱锥的三视图如图所示,则该四棱锥的外接球半径为()4主轴【答案】B【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力, 属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,做题时不但要注意三视图的三要素“高平齐,长对正, 宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响 6. 已知数列 的前••项和■■- -ii-''卜:[,若 ,则()A. '-1''-1■ , B. I 「巴「巴 C.::■, D. 宀一[「些【答案】D【解析】由卜J ,得\ | -:八「卜:」: 两式相减可得,L 是以 为 公差的等差数列,;■- 是递减数列,:;・」「—.,故选D.■ x 十 y-2 < 07.若凡y 满足约束条件 x-2y-2 < 0 ,则z = x-y 的最大值是() ,2x-y + 2 > 0A. -2B. 0C. 2D. 4 【答案】CA. 1B.2C.D.2 2【解析】由三视图可知, 该四棱锥是底面为边长为的正方形,一条长为 的 侧棱与底面垂直,将该棱锥补成棱长为 I 的正方体,则棱锥的外接球就是正方体的外接球, 正方体外接球的直径就是正方体的对角线,即,故选B.当直线X X 「经过点上;时,直线的截距最小 最大,所以, 的最大值为;:-厂-::故选C. 【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题 •求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线) ;(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最 后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8. 把四个不同的小球放入三个分别标有 1〜3号的盒子中,不允许有空盒子的放法有( ) A. 12 种 B. 24 种 C. 36 种 D. 48 种 【答案】C【解析】从•个球中选出 个组成复合元素有 种方法,再把■■个元素(包括复合元素) 放入:个不同的盒子中有种放法,所以四个不同的小球放入三个分别标有1? 3号的盒子中,不允许有空盒子的放法有故选C.兀兀9. 已知函数 ,现将 的图象向左平移 个单位,再将所得图象上各点的A. | - IB. I'- l|C. 卜D. I "|【答案】A横坐标缩短为原来的倍,纵坐标不变,得到函数.7 - 的图象,【解析】将函数f(x) = 2sin(2x + 71向左平移 兀一个单位,可得对应的函数解析式7t 71*2、.,再将所得图象上各点的横坐标缩短为原来的631倍,纵坐J—■0 < 4x < -3E- 1 -二':故选A 点睛:本题主要考查了三角函数的图象变换及三角函数性质,属于基础题;图象的伸缩变换 的规律:(1把函数的图像向左平移h ;h 小个单位长度,则所得图像对应的解析式为■- :..:•、||'|,遵循“左加右减”;(2)把函数e 图像上点的纵坐标保持不变,横坐标变 为原来的°)倍(tn > 0),那么所得图像对应的解析式为 y = f (—x ).2 p 210. 已知椭圆—i 的左右焦点分别为、,过 的直线 与过 的直线 交于点,设点32的坐标 ,若〕,则下列结论中不正确的是()2 2X : V :X ; V :7,也対A.B.C. 山:小上::;::’1D. — —:3232 3 2【答案】A【解析】由题意可得椭圆的半焦距C - -.3-2 — 1,且由1_ _可知点Pix _,.y _.i 在以线段「一二为直径的圆上,则:•:,+ y 二1 ................... ,故A 不正确 3 2662故选A11. 某班有三个小组,甲、乙、丙三人分属不同的小组•某次数学考试成绩公布情况如下 :甲和三人中的第3小组那位不一样,丙比三人中第 1小组的那位的成绩低,三人中第 3小组的 那位比乙分数高.若甲、乙、丙三人按数学成绩由高到低排列,正确的是( )A.甲、乙、丙B. 甲、丙、乙C.乙、甲、丙 D. 丙、甲、乙【答案】B【解析】甲和三人中的第 ■■小组那位不一样,说明甲不在第 :小组;三人中第■■小组那位比乙分标不变,得到的图象对应的函数解析式为兀 nt r 兀:;:三二;,贝U 1:: ..7T数高,说明乙不在第3组,说明丙在第3组,又第3组成绩低于第1组,大于乙,这时可得乙为第2组,甲为第1组,那么成绩从高到低为:甲、丙、乙,故选 B.12. 已知函数ire :「心::」在处取得极大值,则实数的取值范围是()1 1A. : 一:B. - IC. ] : I--'D. ! ]. .•:【答案】D【解析】由题意得函数匚;:的定义域为:门.・八,M il?.- .:■,■. I .1•:' ||..:■■:.若:;I在丨处取极大值,则:;N在:::I |递增,在门.-:递减,则I;在〕.-:恒成立,11KX 一、故;] 在」.•"恒成立x-11lnx 1---- lnx令,:、I :,贝UW x—1 J hfx)= ---------------- <0(x-1)2•••上「在1 上为减函数lnx 1■/ 二=.-=i x-JX-l L IX• •• 故选D点睛:本题考查函数极值问题,转化到不等式恒成立问题.不等式恒成立问题常见方法:①分离参数沦心恒成立(匚上” 1:;」二可)或亡i' -':恒成立(即可);②数形结合乜- I:•::-图象在】:-£汽-上方即可);③讨论最值丄「或:1 ' 恒成立;④分类讨论参数.第n卷二、填空题(本大题共4小题,每题5分,共20分,把答案填在答卷纸的相应位置上)13. 已知实数x满足5x_1l0Jx= S x,则玄=____________ .【答案】4【解析】由:.:i■■.■■■■■" = ;■",得= 即,解得-〉• J |;,即,故答案为.4 4 14. 如图是一个算法的流程图,则输出的a的值是___________ .当输入I:-,第一次循环,:.-:「一-:;第二次循环,「-」「:•::第三次循环,"::上?;第四次循环,J 八•「:;第五次循环,;| ?止「,结束循环输出3 -,故答案为•【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题•解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构 还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的 试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可 15.已知双曲线的两个焦点为 卜:,J 」:、•. ,渐近线为y = ; j :,则双曲线的标准方程 为 ___________ .2 2【答案】二丄I8 2【解析】•••双曲线的两个焦点为 . 、 ,焦点在 轴上•••渐近线b 1a 2T :■十:'二丁.■?' = : J'''二x 2 y 2【解析】执行程序框图, 【答案】11•••双曲线的方程为-一I8 2.•. ; I , • ; 故答案为二一匚I8 2点睛:求双曲线的标准方程的基本方法是待定系数法•具体过程是先定形,再定量,即先确 定双曲线标准方程的形式,然后再根据,,及渐近线之间的关系,求出,的值.s s16.等比数列 的前.•项和记为 ,若 -,则工3nS2n【答案】.al (!-Q2T ,)1—□ 【解析】设等比数列 的首项为,公比为..,%S3n ] -q q 2" I q 114 14 I 2 十丨 7 ““宀 t7,故答案为.九引(1 占 q 1' 12+133三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17. ■..■■I"'中,角「-.I ,;.的对边分别为•::■」•,.6 (1)求的值;2(2)若■■- =,■-, 边上的高为,求 •的值.,兀L【答案】⑴.;(2).【解析】试题分析:(1)由\:二— ',根据两角和的正弦公式可得::s '_兀4而可得tanA = $,进而可得心=亍(2)结合(1),由面积相等可得bc=-,由余弦定理可得::I :' - ■.,配方后可其求得 ''='试题解析:(1)T 、I 门| I :二1,•.的i 「= •. r飞3 1厂2 1 兀4 (2)由已知, .•,•.••,.•• h -:-2¥3 23318. 甲、乙两名同学准备参加考试,在正式考试之前进行了十次模拟测试,测试成绩如下: 甲:137, 121 , 131 , 120, 129, 119, 132, 123, 125, 133 乙:110, 130, 147, 127, 146, 114, 126, 110, 144, 146(1)画出甲、乙两人成绩的茎叶图,求出甲同学成绩的平均数和方差,并根据茎叶图,写出甲、乙两位同学平均成绩以及两位同学成绩的中位数的大小关系的结论:(2)规定成绩超过127为“良好”,现在老师分别从甲、乙两人成绩中各随机选出一个,求选出成绩“良好”的个数的分布列和数学期望.(注:方差,其中为「•、的平均数)n. -【答案】(1)答案见解析;(2)答案见解析.【解析】试题分析:(1)根据根据所给数据,利用茎叶图的作法可得茎叶图,根据茎叶图可得甲乙两人成绩的中位数,根据平均值公式可得甲乙两人的平均成绩根据方差公式可得甲的方程;:」=['.,比较两人的成绩的中位数及平均成绩即可的结果;(2).的可能取值为0, 1 , 2, 分别求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得■的数学期望..试题解析:(1)茎叶图如图7*---------------------------------- ---------------------- H91)00 495 3 1 011673 J 1 71)146 67 4乙的均值为:,中位数为.;甲的平均值为•,中位数为I",甲的方差为•,所以甲的中位数大于乙的中位数,甲的平均成绩小于乙的平均成绩;(2)由已知,〔的可能取值为0, 1, 2,分布列为:牛=.」,y',1心;=二:=.【方法点睛】本题主要考查茎叶图的画法、方差与平均值的求法、中位数的定义以及离散型随机变量的分布列与数学期望,属于中档题•求解该离散型随机变量的分布列与数学期望,首项要理解问题的关键,其次要准确无误的随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.19. 如图,在底面是菱形的四棱锥点3.7?中,上"I平面冷二,仝—£严,.',点二.F分别为二一;二:的中点,设直线与平面交于点.(1)已知平面:丄「.Ti平面2…;I ,求证:沁;(2)求直线.与平面所成角的正弦值.【答案】⑴证明见解析;(2)【解析】试题分析:(1)由三角形中位线定理可得几:-记门,利用线面平行的判定定理可得•平面,在根据线面平行的性质定理可得;(2)由勾股定理可得」丄:,•/平面-■■.:?■,由此可以点为原点,直线二0分别为轴建立空间直角坐标系,利用两直线垂直数量积为零列出方程组,分别求出直线..的方向向量与平面的法向量,利用空间向量夹角余弦公式•试题解析:(1 )••*汎心,.:平面,:平面.•.迅1平面比D,「■-平面,平面T'l 平面;一1•••_山71.(2)V底面是菱形,为的中点. •••£/ I - ■■■■ .■- :•」I八门•/ 平面,则以点为原点,直线Fmm分别为轴建立如图所示空间直角坐标系则 c :./)</ :叵寫;m•••二卯;.広「门,「丨「,'- I ' :!设平面「:-[的法向量为•】.-,有.- y I -门::得门:I ■., 7- t ::设直线•.与平面所成角为则「一•直线..与平面二二所成角的正弦值为'■.【方法点晴】本题主要考查线面平行的性质与判定以及利用空间向量求线面角,属于难题•空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3 )设出相应平面的法向量,禾U用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离•20. 已知直线■■" 与抛物线i :!::交于宀1;两点.(1)若--L',求…的值;(2)以.为边作矩形.沁•二?,若矩形二;的外接圆圆心为,求矩形.沁•二?的面积.【答案】⑴;(2)30.【解析】试题分析:(1)1: J:;- 5与厂心联立得y". <■ + ■:,设■■- '■■■■! I ■,根据韦达定理可得:结合2S:=二可列出关于•的方程,从而可得结果;(2)设弦.的中点为⑴,设圆心二-, nt比+力>'M -111 1 -m则•,讥=2-1------------ 2= - 1 厂由| ■■: - .--n得,可得「『一〔,根据点到直线距离公式可得厂;=-,根据弦2 2长公式可得:•.,从而可得矩形的面积.试题解析:(1 —心与厂心联立得- "Ju :.•: g 丄OB, A OA- OB = 02-1----------- 2= - 1• I • : _ .:丨-• •丨川-!2__2-•面积为|.-3| - |匚二-匸21. 已知函数ir ■ ;?■?'.:' >■2:.■<.:■:■-二':三(1)时,求在上的单调区间;(2)且,均恒成立,求实数的取值范围x-1【答案】(1)单调增区间是,单调减区间是;(2) .【解析】试题分析:(1)根据,对求导,再令,再根据定义域,求得在-上是单调递减函数,由,即可求出在上的单调区间;(2)通过时,化简不等式,时,化简不等式,'::-I时,在◎十⑴;上单调递增,^ - I符合题意;时,时,都出现矛盾结果;得到的集合.试题解析:(1) 时,.U-Hz,设-当•时,,则在上是单调递减函数,即在x-上是单调递减函数,= 0 I v 兀丘2 时,v 0 ;0 vx < I 时,f(x) > 0•••在上的单调增区间是,单调减区间是;加+ 1 (2) I 时,二J」::二: .<1 .< 「,即二山’■■■'■ ■- ■■■■ 1 时,.■: 1 .■::,即二2a+l;X… ,(2)设弦.的中点为,则———:, ,设圆心.,禾U用函数的导数, 通过导函数的符号,判断单调性,推出,•卩-「I=二,• :口■....y :在a :. - .■ I 上单调递增•••瓷;L 时,;:;「:.:■ I : : ; —r I 时, '•:-::—■・.■:; ■■- I 时,•二 I I' ,” ■■:':■ - ] ■时,;c :、::匚•在:I. -' - |,上单调递减,.•.当—;::w 十.;时,.:.;、.::■ I : :■,与 时, 矛盾;舍::■ ■-1时,设一.1为―I 和0中的最大值,当一 I•- 「时, f •:匚 •在•上单调递减•••当-■■■ ■- < I 时,:「丨::■,与「:.一:| 时,矛盾;舍 综上,点睛:通过导数证明不等式或研究不等式恒成立问题的基本思路是:以导函数和不等式为基 础,单调性为主线,最(极)值为助手,从数形结合、分类讨论等多视角进行探究,经常是 把不等式问题转化为判断函数的单调性、求函数的最值,利用最值得出相应结论,其中分类 讨论是经常用到的数学思想方法. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分 •做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑•X = —Ai + tcn^fx. (为参数,匸兰:且a# ;),以原点°为极点,兀轴正半轴为极轴建立极坐标系,曲线 直线与曲线交于•两点,且占」沁. (1)求的大小;(2)过-分别作 的垂线与 轴交于两点,求"疝| . 【答案】⑴;(2)4.【解析】试题分析:(1)根据加减消元法可得直线直角坐标方程,根据极坐标极径含义可得 I|AB|到直线•的距离,根据点到直线距离公式可解得的大小(2)根据投影可得:,即得I■:: - I 时, :l I.结果试题解析:( 1 )由已知,直线I 的方程为:“.、:「■,「,T |二;l ,亠,匚亠 |3lanct +"口 J |AB| 、到直线啲距离为3,则,解之得.“ii 、-Jinn%卜】 -T:::.;・:且 ,—■:=2 6、 |AB| (2)cos30D23.已知函数•:、:, E(1) 当 时,解不等式 「宀―(2) 若存在■,使;-n 1 k ■成立,求 的取值范围论,去掉式中的绝对值符号,解相应的不等式,最后取并即可;(2)由:- ■<-则可得 ' -〕 ,求出 的取值范围.试题解析:(1)由已知 「— - I1 1时,解得 ,则;ZZ■时,解得、# 口;贝y ■ r 9 9 •时,解得 ,则z2 19综上:解集为■卡“ > Y2 T(2)v \:;|....- |/.-■< 严■ l ;|- ::■■■ ■:.••• 山卜 I- :-1当且仅当:「且卜宀丨:十1时等号成立•4• :•,解之得 或 ,•的取值范围为 p 、w -⑴]【解析】试题分(1)当三-时,原不等式可化为:、-:■-,通过对 取值范围的【答案】。
2017-2018学年辽宁省高三(上)第二次质检数学试卷(理科)一、选择题(本大题共12小题,每小题5分,每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={﹣1,0,1},B={x|x=|a+1|,a∈A},则A∩B=()A.{0} B.{1} C.{0,1} D.{0,1,2}2.(5分)一个物体的运动方程为s=1﹣t+t2其中s的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是()A.7米/秒B.6米/秒C.5米/秒D.8米/秒3.(5分)函数的零点为1,则实数a的值为()A.﹣2 B.C.D.24.(5分)设f(x)=x﹣sinx,则f(x)()A.既是奇函数又是减函数 B.既是奇函数又是增函数C.是有零点的减函数 D.是没有零点的奇函数5.(5分)已知f(x)是定义在R上的奇函数,当x>0时,f(x)=2x﹣3,那么f(﹣2)的值是()A.B.C.1 D.﹣16.(5分)下列选项中,说法正确的是()A.命题“∃x∈R,x2﹣x≤0”的否定是“∃x∈R,x2﹣x>0”B.命题“p∨q为真”是命题“p∧q为真”的充分不必要条件C.命题“若am2≤bm2,则a≤b”是假命题D.命题“在△ABC中,若sinA<,则A<”的逆否命题为真命题7.(5分)定积分dx的值为()A.2﹣e B.﹣e C.e D.2+e8.(5分)已知函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,若g(x)=.则g′(1)=()A.B.﹣ C.﹣ D.29.(5分)若关于x的不等式ax﹣b>0的解集是(﹣∞,﹣2),关于x的不等式>0的解集为()A.(﹣2,0)∪(1,+∞)B.(﹣∞,0)∪(1,2) C.(﹣∞,﹣2)∪(0,1)D.(﹣∞,1)∪(2,+∞)10.(5分)若向量=(cosα,sinα),=(cosβ,sinβ),则一定满足()A.的夹角等于α﹣βB.()⊥()C.∥D.⊥11.(5分)将函数f(x)=sin(2x﹣)的图象上所有的点向左平移个单位(纵坐标不变),则所得图象的解析式是()A.y=﹣cos2x B.y=cos2x C.y=sin(2x﹣)D.y=sin(2x+)12.(5分)函数f(x)=x﹣1﹣2sinπx的所有零点之和等于()A.4 B.5 C.6 D.7二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)已知tanx=3,则= .14.(5分)如图,圆O:x2+y2=内的余弦函数y=cosx的图象与x轴围成的区域记为M(图中阴影部分),随机向圆内投一个点A,则点A落在区域M内的概率是.15.(5分)若实数x,y满足,则目标函数z=的最大值是.16.(5分)已知定义在R上的函数f(x)满足对于任意的x∈R,都有f(x+9)=f(x)+1,且x∈[0,9)时,f(x)=x+2,则f(2015)的值为.三、解答题(解答应写出文字说明,证明过程或演算步骤,共70分)17.(10分)已知向,满足||=1,||=6,且•(﹣)=2,求:(1)与的夹角;(2)|2﹣|的模.18.(12分)设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+2.(1)求y=f(x)的表达式;(2)求y=f(x)的图象与两坐标轴所围成封闭图形的面积.19.(12分)已知在递增等差数列{a n}中,a1=2,a3是a1和a9的等比中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=,S n为数列{b n}的前n项和,是否存在实数m,使得S n<m对于任意的n∈N+恒成立?若存在,请求实数m的取值范围,若不存在,试说明理由.20.(12分)△ABC中,角A,B,C的对边分别为a,b,c,且bcosC+ccosB=2acosB.(1)求角B的大小;(2)若,求△ABC的面积.21.(12分)已知函数f(x)=sin2x﹣cos2x﹣,(x∈R)(1)当x∈[﹣,]时,求函数f(x)的最小值和最大值;(2)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=,f(C)=0,若向量=(1,sinA)与向量=(2,sinB)共线,求a,b的值.22.(12分)已知函数f(x)=lnx,g(x)=x﹣1.(Ⅰ)求函数y=f(x)图象在x=1处的切线方程;(Ⅱ)证明:f(x)≤g(x);(Ⅲ)若不等式f(x)≤ag(x)对于任意的x∈(1,+∞)均成立,求实数a的取值范围.2017-2018学年辽宁省高三(上)第二次质检数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2015秋•商丘期末)已知集合A={﹣1,0,1},B={x|x=|a+1|,a∈A},则A∩B=()A.{0} B.{1} C.{0,1} D.{0,1,2}【分析】集合B中的自变量属于集合A,把集合A中的元素代入函数求出值域,确定出集合B,注意集合的互异性.【解答】解:∵x=|a+1|,a∈A∴当a=﹣1时,x=0;a=0时,x=1;a=1时,x=2;∴根据集合的互异性可知B={0,1,2},∴A∩B={0,1};故选C.【点评】本题主要考查了交集的运算,注意元素a的讨论.2.(5分)(2009•湖北校级模拟)一个物体的运动方程为s=1﹣t+t2其中s的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是()A.7米/秒B.6米/秒C.5米/秒D.8米/秒【分析】①求出s的导函数s'(t)=2t﹣1②求出s'(3)【解答】解:s'(t)=2t﹣1,s'(3)=2×3﹣1=5.故答案为C【点评】考查求导法则及导数意义3.(5分)(2011•临沂一模)函数的零点为1,则实数a的值为()A.﹣2 B.C.D.2【分析】根据函数的零点为1,即方程f(x)=0的根是1,代入即可求得实数a的值.【解答】解:∵函数的零点为1,即解得a=﹣,故选B.【点评】此题是个基础题.考查函数的零点与方程的根之间的关系,体现了转化的思想.4.(5分)(2015•陕西)设f(x)=x﹣sinx,则f(x)()A.既是奇函数又是减函数 B.既是奇函数又是增函数C.是有零点的减函数 D.是没有零点的奇函数【分析】利用函数的奇偶性的定义判断f(x)为奇函数,再利用导数研究函数的单调性,从而得出结论.【解答】解:由于f(x)=x﹣sinx的定义域为R,且满足f(﹣x)=﹣x+sinx=﹣f(x),可得f(x)为奇函数.再根据f′(x)=1﹣cosx≥0,可得f(x)为增函数,故选:B.【点评】本题主要考查函数的奇偶性的判断方法,利用导数研究函数的单调性,属于基础题.5.(5分)(2016春•通渭县期末)已知f(x)是定义在R上的奇函数,当x>0时,f(x)=2x﹣3,那么f (﹣2)的值是()A.B.C.1 D.﹣1【分析】由f(x)是定义在R上的奇函数,当x>0时,f(x)=2x﹣3,可求得f(2)的值,从而可得f (﹣2)的值.【解答】解:∵x>0时,f(x)=2x﹣3,∴f(2)=22﹣3=1.又f(x)是定义在R上的奇函数,∴f(﹣2)=﹣f(2)=﹣1.故选D.【点评】本题考查函数的奇偶性,着重考查函数奇偶性的概念与应用,属于基础题.6.(5分)(2014秋•辽宁期末)下列选项中,说法正确的是()A.命题“∃x∈R,x2﹣x≤0”的否定是“∃x∈R,x2﹣x>0”B.命题“p∨q为真”是命题“p∧q为真”的充分不必要条件C.命题“若am2≤bm2,则a≤b”是假命题D.命题“在△ABC中,若sinA<,则A<”的逆否命题为真命题【分析】根据特称命题的否定,充要条件的定义,四种命题的关系,逐一分析四个答案是否成立,最后综合讨论结果,可得结论.【解答】解:对于A,命题“∃x∈R,x2﹣x≤0”的否定是“∀x∈R,x2﹣x>0”,故错误;对于B,命题“p∨q为真”是命题“p∧q为真”的必要不充分条件,故错误;对于C,命题“若am2≤bm2,则a≤b”在m=0时,不一定成立,故是假命题,故正确;对于D,“在△ABC中,若sinA<,则A<或A>”为假命题,故其逆否命题也为假命题,故错误;故选:C【点评】本题考查的知识点是命题的真假判断与应用,特称命题的否定,充要条件的定义,四种命题的关系,难度不大,属于基础题.7.(5分)(2014秋•长春校级期末)定积分dx的值为()A.2﹣e B.﹣e C.e D.2+e【分析】根据定积分的计算法则计算即可.【解答】解:dx=(x2﹣e x)|=1﹣e﹣(0﹣1)=2﹣e.故选:A.【点评】本题考查了定积分的计算,关键是求出原函数,属于基础题.8.(5分)(2015秋•高安市校级期末)已知函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,若g(x)=.则g′(1)=()A.B.﹣ C.﹣ D.2【分析】求函数的导数,利用导数的几何意义进行求解即可.【解答】解:∵函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,∴f(1)=1,f′(1)=,∵g(x)=,∴g′(x)=,则g′(1)===,故选:A.【点评】本题主要考查导数的几何意义,以及直线平行的斜率关系,求函数的导数利用导数的几何意义是解决本题的关键,比较基础.9.(5分)(2015秋•长春校级月考)若关于x的不等式ax﹣b>0的解集是(﹣∞,﹣2),关于x的不等式>0的解集为()A.(﹣2,0)∪(1,+∞)B.(﹣∞,0)∪(1,2) C.(﹣∞,﹣2)∪(0,1)D.(﹣∞,1)∪(2,+∞)【分析】由已知得到a<0,并且=﹣2,将所求不等式化简为一次因式积的形式,解不等式.【解答】解:由已知得到a<0,并且=﹣2,所以关于x的不等式>0化简为,即为x(ax+b)(x﹣1)>0,所以解集为(﹣∞,0)∪(1,2);故选:B.【点评】本题考查了分式不等式的解法;由已知得到a的符号以及是解答的关键.10.(5分)(2009秋•英德市校级期末)若向量=(cosα,sinα),=(cosβ,sinβ),则一定满足()A.的夹角等于α﹣βB.()⊥()C.∥D.⊥【分析】此题中的α与β没限制条件,可用排除法排除A,C,D选项,再根据向量垂直检验B选项正确即可.【解答】解:∵角α,β为全体实数,α﹣β也为全体实数,而两向量的夹角θ∈(0,π),故A不对.∵当α=45°,β=30°时,与不平行,也不垂直,故C,D不对.∵==1﹣1=0,∴,故选B.【点评】本题考查了向量的垂直关系并于三角相结合考查向量的摸的运算.是一道好题.11.(5分)(2014秋•长春校级期末)将函数f(x)=sin(2x﹣)的图象上所有的点向左平移个单位(纵坐标不变),则所得图象的解析式是()A.y=﹣cos2x B.y=cos2x C.y=sin(2x﹣)D.y=sin(2x+)【分析】由条件利用函数y=Asin(ωx+φ)的图象变换规律,可得结论.【解答】解:将函数f(x)=sin(2x﹣)的图象上所有的点向左平移个单位,可得y=sin[2(x+)﹣]=sin(2x+)=cos2x的图象,故选:B.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.12.(5分)(2016•呼伦贝尔一模)函数f(x)=x﹣1﹣2sinπx的所有零点之和等于()A.4 B.5 C.6 D.7【分析】由f(x)=x﹣1﹣2sinπx=0得x﹣1=2sinπx,分别作出函数y=x﹣1和y=2sinπx的图象,利用对称性结合数形结合进行求解即可.【解答】解:由f(x)=x﹣1﹣2sinπx=0得x﹣1=2sinπx,分别作出函数y=x﹣1和y=2sinπx的图象如图:则两个函数都关于点(1,0)对称,由图象知,两个函数共有5个交点,其中x=1是一个零点,另外4个零点关于点(1,0)对称,设对称的两个点的横坐标分别为x1,x2,则x1+x2=2×1=2,∴5个交点的横坐标之和为2+2+1=5.故答案为:5.【点评】本题主要考查函数交点个数以及数值的计算,根据函数图象的性质,利用数形结合是解决此类问题的关键,综合性较强,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)(2015秋•长春校级月考)已知tanx=3,则= 2 .【分析】原式分子分母除以cosx,利用同角三角函数间的基本关系化简,将tanx的值代入计算即可求出值.【解答】解:∵tanx=3,∴原式===2.故答案是:2.【点评】此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.14.(5分)(2012•吉林二模)如图,圆O:x2+y2=内的余弦函数y=cosx的图象与x轴围成的区域记为M(图中阴影部分),随机向圆内投一个点A,则点A落在区域M内的概率是.【分析】先利用定积分求出余弦函数y=cosx的图象与x轴围成的区域M的面积,以及圆的面积,再利用几何概型的概率公式求出点A落在区域M内的概率即可.【解答】解:余弦函数y=cosx的图象与x轴围成的区域M的面积为=sinx=sin﹣sin(﹣)=2而圆O:x2+y2=内的面积为π=根据几何概型的概率公式可知点A落在区域M内的概率是=故答案为:【点评】本题主要考查了定积分在求面积的应用,以及几何概型的概率计算,同时考查了计算能力,属于基础题.15.(5分)(2015秋•长春校级月考)若实数x,y满足,则目标函数z=的最大值是 2 .【分析】先画出平面区域,再把目标函数转化为平面区域内的点与定点(﹣1,0)组成连线的斜率;结合图象求出平面区域内的点与定点(﹣1,0)组成连线的斜率的最大值即可得到结论.【解答】解:实数x,y满足,对应的平面区域如图:因为目标函数z=相当于平面区域内的点与定点(﹣1,0)组成连线的斜率;而由图可得,当过点C时,平面区域内的点与定点(﹣1,0)组成连线的斜率最大.联立:可得C(0,2).k pc==2.此时目标函数z=的最大值是:2.故答案为:2.【点评】本题考查线性规划知识的延伸,解决本题的关键在于把目标函数转化为平面区域内的点与定点(﹣1,0)组成连线的斜率.16.(5分)(2015秋•长春校级月考)已知定义在R上的函数f(x)满足对于任意的x∈R,都有f(x+9)=f(x)+1,且x∈[0,9)时,f(x)=x+2,则f(2015)的值为233 .【分析】利用f(x+9)=f(x)+1,逐步化简,结合x∈[0,9)时,f(x)=x+2,可得答案.【解答】解:x∈[0,9)时,f(x)=x+2,∵f(x+9)=f(x)+1,f(2015)=f(2006)+1=f(1997)+2=f(1992)+3=…=f(8)+223=8+2+223=233,故答案为:233.【点评】本题考查抽象函数的应用,考查函数的周期性,属基础题.三、解答题(解答应写出文字说明,证明过程或演算步骤,共70分)17.(10分)(2016春•高安市校级期中)已知向,满足||=1,||=6,且•(﹣)=2,求:(1)与的夹角;(2)|2﹣|的模.【分析】(1)由题意,可根据题中条件求出•,再由数量积公式即可求出与的夹角;(2)先对|2﹣|平方,再将两向量的内积与模代入计算求出模.【解答】解:(1)∵•(﹣)=•﹣2=2,又||=1,||=6∴•=3,即||||cos<,>=3,解得cos<,>=又0≤<,>≤π,所以与的夹角为(2)|2﹣|2=42﹣4•+2=28,∴|2﹣|=2【点评】本题考查平面向量数量积的运算及其定义,解题的关键是根据题设条件解出两向量的内积及掌握平方法求向量的模18.(12分)(2009春•如东县期末)设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+2.(1)求y=f(x)的表达式;(2)求y=f(x)的图象与两坐标轴所围成封闭图形的面积.【分析】(1)根据导函数的解析式设出原函数的解析式,根据有两个相等的实根可得答案.(2)根据定积分的定义可得答案.【解答】解:(1)∵f′(x)=2x+2 设f(x)=x2+2x+c,根据f(x)=0有两等根,得△=4﹣4c=0解得c=1,即f(x)=x2+2x+1;(2)S==.【点评】本题主要考查导数的逆运算和定积分在求面积中的应用.属基础题.19.(12分)(2016•银川校级三模)已知在递增等差数列{a n}中,a1=2,a3是a1和a9的等比中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=,S n为数列{b n}的前n项和,是否存在实数m,使得S n<m对于任意的n∈N+恒成立?若存在,请求实数m的取值范围,若不存在,试说明理由.【分析】(I)利用等差数列与等比数列的通项公式即可得出.(Ⅱ)存在.由于b n==,利用“裂项求和”方法即可得出.【解答】解:(Ⅰ)由{a n}为等差数列,设公差为d,则a n=a1+(n﹣1)d,∵a3是a1和a9的等比中项,∴=a1•a9,即(2+2d)2=2(2+8d),解得d=0(舍)或d=2,∴a n=2+2(n﹣1)=2n.(Ⅱ)存在.b n==,∴数列{b n}的前n项和S n=+…+=,∴存在实数m,使得S n<m对于任意的n∈N+恒成立.【点评】本题考查了等差数列与等比数列的通项公式、“裂项求和”、“放缩法”,考查了推理能力与计算能力,属于中档题.20.(12分)(2016秋•会宁县校级期中)△ABC中,角A,B,C的对边分别为a,b,c,且bcosC+ccosB=2acosB.(1)求角B的大小;(2)若,求△ABC的面积.【分析】(1)利用正弦定理结合两角和差的正弦公式进行化简即可求角B的大小;(2)利用余弦定理求出ac的值,代入三角形的面积公式即可.【解答】解:(1)∵bcosC+c cosB=2acosB.∴由正弦定理得sinBcosC+sinCcosB=2sinAcosBsinA=2sinAcosB,∵sinA>0,∴,∵0<B<π,∴;(2)∵,∴b2=a2+c2﹣2accosB=a2+c2﹣ac=(a+c)2﹣3ac即13=16﹣3ac,解得ac=1,∴.【点评】本题主要考查解三角形的应用,根据正弦定理和余弦定理以及两角和差的正弦公式进行化简是解决本题的关键.21.(12分)(2016•平度市三模)已知函数f(x)=sin2x﹣cos2x﹣,(x∈R)(1)当x∈[﹣,]时,求函数f(x)的最小值和最大值;(2)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=,f(C)=0,若向量=(1,sinA)与向量=(2,sinB)共线,求a,b的值.【分析】(1)利用三角函数的恒等变换化简函数f(x)的解析式,根据变量x的取值范围可求出最小值和最大值;(2)根据C的范围和f(C)=0可求出角C的值,再根据两个向量共线的性质可得sinB﹣2sinA=0,再由正弦定理可得b=2a,最后再由余弦定理得到a与b的等式,解方程组可求出a,b的值.【解答】解:(1)函数f(x)=sin2x﹣cos2x﹣=sin2x﹣cos2x﹣1=sin(2x﹣)﹣1,∵x∈[﹣,]∴2x﹣∈[﹣,]则sin(2x﹣)∈[﹣,1]∴函数f(x)的最小值为﹣﹣1和最大值0;(2)∵f(C)=sin(2C﹣)﹣1=0,即 sin(2C﹣)=1,又∵0<C<π,﹣<2C﹣<,∴2C﹣=,∴C=.∵向量=(1,sinA)与=(2,sinB)共线,∴sinB﹣2sinA=0.由正弦定理,得 b=2a,①∵c=,由余弦定理得3=a2+b2﹣2abcos,②解方程组①②,得 a=1,b=2.【点评】本题主要考查了两角和与差的逆用,以及余弦定理的应用,同时考查了运算求解的能力,属于中档题.22.(12分)(2016春•城关区校级月考)已知函数f(x)=lnx,g(x)=x﹣1.(Ⅰ)求函数y=f(x)图象在x=1处的切线方程;(Ⅱ)证明:f(x)≤g(x);(Ⅲ)若不等式f(x)≤ag(x)对于任意的x∈(1,+∞)均成立,求实数a的取值范围.【分析】(I)利用导数的几何意义可得切线的斜率,即可得出切线的方程.(Ⅱ)设h(x)=f(x)﹣g(x)=lnx﹣x+1,利用导数研究其单调性极值与最值即可得出.(Ⅲ)∀x∈(1,+∞),f(x)>0,g(x)>0.对a分类讨论,利用导数研究其单调性极值与最值即可得出.【解答】解:(Ⅰ)f′(x)=,∴f′(1)=1,又f(1)=0,得切线l:y﹣0=1×(x﹣1),即y=x﹣1.证明:(Ⅱ)设h(x)=f(x)﹣g(x)=lnx﹣x+1,则h′(x)=﹣1,令h′(x)=0,得x=1.∴h(x)≤h(x)max=h(1)=0,即f(x)≤g(x).解:(Ⅲ)∀x∈(1,+∞),f(x)>0,g(x)>0.当a≥1时,f(x)≤g(x)≤ag(x);当a≤0时,f(x)>0,g(x)≤0不满足不等式;当0<a<1时,设u(x)=f(x)﹣ag(x)=lnx﹣a(x﹣1),u′(x)=﹣a,令u′(x)=0,得x=.∴u(x)max=u>u(1)=0.综上所述实数a的取值范围为[1,+∞).【点评】本题考查了利用导数研究其单调性极值与最值、导数的几何意义,考查了分类讨论、推理能力与计算能力,属于难题.。
2017-2018学年度上学期期末考试高三年级数学科(理科)试卷第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. )D.【答案】B所以的虚部是B.2. )【答案】C故选C)B. C.【答案】B为第二象限角,所以故选B.4. 已知向量与的夹角为,则)【答案】B故选B.5. 某四棱锥的三视图如图所示,则该四棱锥的外接球半径为()D.【答案】B的正方形,一条长为侧棱与底面垂的正方体,则棱锥的外接球就是正方体的外接球,正方体外接球,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点. 观察三视图并将其“翻译”成直观图是解题的关键,做题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.6. 已知数列)【答案】D【解析】两式相减可得,D.7. )A. -2B. 0C. 2D. 4【答案】C【解析】,由图可知平移直线当直线经过点时,所以,的最大值为故选C.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8. 把四个不同的小球放入三个分别标有1~3号的盒子中,不允许有空盒子的放法有()A. 12种B. 24种C. 36种D. 48种【答案】C【解析】种方法,(包括复合元素)种放法,所以四个不同的小球放入三个分别标有1〜3号的盒子中,不C.9. 已知函数的图象向左平移再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,的图象,()C.【答案】A为,再将所得图象上各点的横坐标缩短为原来的标不变,得到的图象对应的函数解析式为故选A点睛:本题主要考查了三角函数的图象变换及三角函数性质,属于基础题;图象的伸缩变换的规律:(1则所得图像对应的解析式为(2)把函数10. 已知椭圆、的直线,若)D.【答案】A【解析】由题意可得椭圆的半焦距,且由可知点在以线段为直径的圆上,则.....................A不正确故选A11. 某班有三个小组,甲、乙、丙三人分属不同的小组.某次数学考试成绩公布情况如下:甲和三人中的第3小组那位不一样,丙比三人中第1小组的那位的成绩低,三人中第3小组的那位比乙分数高.若甲、乙、丙三人按数学成绩由高到低排列,正确的是()A. 甲、乙、丙B. 甲、丙、乙C. 乙、甲、丙D. 丙、甲、乙【答案】B数高,说明乙不在第3组,说明丙在第3组,又第3组成绩低于第1组,大于乙,这时可得乙为第2组,甲为第1组,那么成绩从高到低为:甲、丙、乙,故选B.12. 已知函数()B. C. D.【答案】D递减,则在上为减函数故选D点睛:本题考查函数极值问题,转化到不等式恒成立问题.不等式恒成立问题常见方法:①分);②数形结合).第Ⅱ卷二、填空题(本大题共4小题,每题5分,共20分,把答案填在答卷纸的相应位置上)13. 已知实数.14. __________.【答案】11【解析】执行程序框图,当输入第一次循环,第二次循环,第三次循环,第四次循环,第五次循环,【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.15. 、为__________.【解析】∵双曲线的两个焦点为点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确16. 等比数列项和记为.,故答案为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17. 中,角的对边分别为(1(2.【答案】【解析】试题分析:(1,根据两角和的正弦公式可得;(2)结合(1),配方后可其求得试题解析:(1.(218. 甲、乙两名同学准备参加考试,在正式考试之前进行了十次模拟测试,测试成绩如下:甲:137,121,131,120,129,119,132,123,125,133乙:110,130,147,127,146,114,126,110,144,146(1)画出甲、乙两人成绩的茎叶图,求出甲同学成绩的平均数和方差,并根据茎叶图,写出甲、乙两位同学平均成绩以及两位同学成绩的中位数的大小关系的结论:(2)规定成绩超过127为“良好”,现在老师分别从甲、乙两人成绩中各随机选出一个,求【答案】(1)答案见解析;(2)答案见解析.【解析】试题分析:(1)根据根据所给数据,利用茎叶图的作法可得茎叶图,根据茎叶图可(2)0,1,2,.. 试题解析:(1)茎叶图如图以甲的中位数大于乙的中位数,甲的平均成绩小于乙的平均成绩;(20,1,2,分布列为:【方法点睛】本题主要考查茎叶图的画法、方差与平均值的求法、中位数的定义以及离散型随机变量的分布列与数学期望,属于中档题. 求解该离散型随机变量的分布列与数学期望,首项要理解问题的关键,其次要准确无误的随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.19. 中,,(1,求证:(2)求直线.【答案】(1)证明见解析;【解析】试题分析:(1)由三角形中位线定理可得利用线面平行的判定定理可得(2),,由此可以点为原点,直线量夹角余弦公式.试题解析:(1(2)∵底面是菱形,,则以点的法向量为,有得,则,设直线与平面所成角为∴直线与平面所成角的正弦值为【方法点晴】本题主要考查线面平行的性质与判定以及利用空间向量求线面角,属于难题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.20. 已知直线与抛物线.(1(2,若矩形的外接圆圆心为.【答案】(2)30.【解析】试题分析:(1),可列出关于从而可得结果;(2),从而可得矩形.试题解析:(1)与,∴,满足题意.(2∴,,∴∴面积为21. 已知函数(1(2均恒成立,求实数.【答案】(1)单调增区间是,单调减区间是【解析】试题分析:(1)上是单调递减函数,由(2简不等式,化简不等式,利用函数的导数,通过导函数的符号,时,在上单调递增,试题解析:(1上是单调递减函数,(2;时,在上单调递增点睛:通过导数证明不等式或研究不等式恒成立问题的基本思路是:以导函数和不等式为基础,单调性为主线,最(极)值为助手,从数形结合、分类讨论等多视角进行探究,经常是把不等式问题转化为判断函数的单调性、求函数的最值,利用最值得出相应结论,其中分类讨论是经常用到的数学思想方法.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.22.为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.已知直线两点,且(1(2轴交于【答案】(2)4.【解析】试题分析:(12)根据投影可得得结果试题解析:(1323. 已知函数(1(2)若存在成立,求.【答案】【解析】试题分析:(1)当时,原不等式可化为论,去掉式中的绝对值符号,解相应的不等式,最后取并即可;(2)由试题解析:(1)由已知时,解得;则(2.,解之得。
2017年辽宁省大连市高三双基测试数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)已知集合A={x |x 2﹣3x ﹣10<0,x ∈N *},B={2x <16},则A ∩B=()A .{﹣1,0,1,2,3}B .{1,2,3,4}C .{1,2,3}D .{1}2.(5分)若i 为复数单位,复数z=在复平面内对应的点在直线x +2y +5=0上,则实数a 的值为()A .4 B .3 C .2 D .13.(5分)命题“∀x ∈[1,2],x 2﹣a ≤0”为真命题的一个充分不必要条件是()A .a ≥4 B .a ≤4 C .a ≥5 D .a ≤54.(5分)已知函数f (x )=,则f (f (9))的值为()A .﹣ B .﹣9 9 C C .D .95.(5分)在空间直角坐标系O ﹣xyz 中,一个四面体的顶点坐标分别是(1,0,2),(1,2,0),(1,2,1),(0,2,2),若正视图以yOz 平面为投射面,则该四面体左(侧)视图面积为()A .B .1 C .2 D .46.(5分)若双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线的离心率为()A .2 B .C .D .7.(5分)若实数x ,y 满足约束条件,则目标函数z=3x +y 的最大值为()A .6 B .C .D .﹣18.(5分)(2x ﹣)n 的展开式的各个二项式系数之和为64,则在(2x ﹣)n的展开式中,常数项为(的展开式中,常数项为( )A.﹣120 B.120 120 C C.﹣60 D.609.(5分)若正整数N除以正整m后的余数为n,则记为N=n(modm),例如10=4(mod6).如图程序框图的算法源于我国古代《孙子算经》中的“孙子定律”的某一环节,执行该框图,输入a=2,b=3,c=5,则输出的N=()A.6 B.9 C.12 D.2110.(5分)已知过抛物线y 2=4x焦点F的直线l交抛物线于A、B两点(点A在第一象限),若=3,则直线l的方程为(的方程为( )A.x﹣2y﹣1=0 1=0 B B.2x﹣y﹣2=0 2=0 C C.x﹣y﹣1=0 D.x﹣y﹣=0 11.(5分)已知等差数列分)已知等差数列{{a n}的公差d≠0,且a3,a5,a15成等比数列,若a1=3,S n为数列a n的前n项和,则a n•S n的最小值为(的最小值为( )A.0 B.﹣3 3 C C.﹣20 D.912.(5分)已知函数f(x)=x2e2x+m|x|e x+1(m∈R)有四个零点,则m的取值范围为(范围为( )A.(﹣∞,﹣e﹣)B.(﹣∞,e+)C.(﹣e﹣,﹣2)D.(﹣∞,﹣)二、填空题(本小题共4小题,每小题5分,共20分)13.(5分)等差数列分)等差数列{{a n}的前n项和为S n,且满足a4+a10=20,则S13=.14.(5分)已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000颗黄豆,数得落在阴影部分的黄豆数为600颗,则可以估计出阴影部分的面积约为.15.(5分)已知平面内三个单位向量,,,<,>=60°,若=m+n,则m+n的最大值是的最大值是 .16.(5分)已知正方体ABCD﹣A1B1C1D1的棱长为1,过正方体ABCD﹣A1B1C1D1的取值范围是 .的对角线BD1的截面面积为S,则S的取值范围是三、解答题(本题共70分)17.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,且满足cos2B ﹣cos2C﹣sin2A=sinAsinB.(1)求角C;(2)向量=(sinA,cosB),=(cosx,sinx),若函数f(x)=•的图象关于直线x=对称,求角A,B.18.(12分)为了增强中小学生运动健身意识,某校举办中小学生体育运动知识竞赛,学校根据男女比例从男生中随机抽取120人,女生中随机抽取100人,进行成绩统计分析,其中成绩在80分以上为优秀,根据样本统计数据分别制作了男生成绩频数分布表以及女生成绩频率分布直方图如图:男生成绩:分数段[50,60](60,70](70,80](80,90](90,100]频数910215723女生成绩:(如图)(1)根据以上数据完成下列2×2列联表优秀非优秀合计男生a b女生c d合计根据此数据你认为能否有99.9%以上的把握认为体育运动知识竞赛是否优秀与性别有关?参考公式:K 2=,(n=a+b+c+d).P(K2≥k0)0.050.0250.0100.0050.001 k0 2.841 5.024 6.6357.87910.828(2)以样本中的频率作为概率,学校在全校成绩优秀的学生中随机抽取3人参加全市体育运动知识竞赛.(i)在其中2人为男生的条件下,求另1人为女生的概率;(ii)设3人中女生人数为随机变量X,求X的分布列与数学期望.19.(12分)如图,已知长方形ABCD中,AB=2AD,M为DC的中点,将△ADM 沿AM折起,使得平面ADM⊥平面ABCM.(1)求证:AD⊥BM;(2)若=2,求二面角E﹣AM﹣D的正弦值.20.(12分)已知函数f(x)=ln(x﹣1)+(a∈R).(1)若函数f(x)在区间(1,4)上单调递增,求a的取值范围;(2)若函数y=f(x)的图象与直线4x﹣3y﹣2=0相切,求a的值.21.(12分)已知椭圆E:+=1(a>b>0)的左焦点F1与抛物线y2=﹣4x 的焦点重合,椭圆E的离心率为,过点M(m,0)(m>)做斜率存在且不为0的直线l,交椭圆E于A,C两点,点P(,0),且•为定值.(1)求椭圆E的方程;求四边形ABCD面积的两点,求四边形(2)过点M且垂直于l的直线与椭圆E交于B,D两点,最小值.[选修4-4:坐标系与参数方程选讲]22.(10分)在极坐标系下,点P是曲线ρ=2(0<θ<π)上的动点,A(2,0),线段AP的中点为Q,以极点为原点,极轴为x轴正半轴建立平面直角坐标系.(1)求点Q的轨迹C的直角坐标方程;处的切线斜率的取值范围是[[﹣,﹣],求点M横(2)若轨迹C上的点M处的切线斜率的取值范围是坐标的取值范围.[选修4-5:不等式选讲]23.设函数f(x)=|x+4|.(1)若y=f(2x+a)+f(2x﹣a)最小值为4,求a的值;(2)求不等式f(x)>1﹣x的解集.2017年辽宁省大连市高三双基测试数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)已知集合A={x |x 2﹣3x ﹣10<0,x ∈N *},B={2x<16},则A ∩B=( ) A .{﹣1,0,1,2,3} B .{1,2,3,4} C .{1,2,3} D .{1}【解答】解:A={x |x 2﹣3x ﹣10<0,x ∈N *}={x |﹣2<x <5,x ∈N *}={1,2,3,4},B={2x<16}={x |x <4}, 则A ∩B={1,2,3}, 故选:C .2.(5分)若i 为复数单位,复数z=在复平面内对应的点在直线x +2y +5=0上,则实数a 的值为(的值为( ) A .4 B .3 C .2 D .1 【解答】解:复数z===﹣i ﹣a 在复平面内对应的点(﹣a ,﹣1)在直线x +2y +5=0上, ∴﹣a ﹣2+5=0, 解得a=3. 故选:B .3.(5分)命题“∀x ∈[1,2],x 2﹣a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4 B .a ≤4 C .a ≥5 D .a ≤5【解答】解:命题“∀x ∈[1,2],x 2﹣a ≤0”为真命题,可化为∀x ∈[1,2],a ≥x 2,恒成立 即只需a ≥(x 2)max =4,即“∀x ∈[1,2],x 2﹣a ≤0”为真命题的充要条件为a ≥4, 而要找的一个充分不必要条件即为集合而要找的一个充分不必要条件即为集合{{a |a ≥4}的真子集,由选择项可知C 符合题意. 故选C4.(5分)已知函数f(x)=,则f(f(9))的值为()的值为( )A.﹣ B.﹣9 9 C C.D.9【解答】解:∵函数f(x)=,∴f(9)=,f(f(9))=f()==.故选:C.5.(5分)在空间直角坐标系O﹣xyz中,一个四面体的顶点坐标分别是(1,0,2),(1,2,0),(1,2,1),(0,2,2),若正视图以yOz平面为投射面,则该四面体左(侧)视图面积为(四面体左(侧)视图面积为( )A.B.1 C.2 D.4【解答】解:若正视图以yOz平面为投射面,则该四面体左(侧)视图为三角形,底高分别为1,2,面积为1,故选C.6.(5分)若双曲线﹣=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=1相切,则双曲线的离心率为(切,则双曲线的离心率为( )A.2 B.C.D.【解答】解:双曲线﹣=1(a>0,b>0)的渐近线方程为y=x,圆(x﹣2)2+y2=1的圆心为(2,0),半径为1,则由圆心到直线的距离为1,可得=1,解得a=b,c===a,则有e==.故选C.7.(5分)若实数x,y满足约束条件,则目标函数z=3x+y的最大值为()A.6 B.C.D.﹣1【解答】解:由约束条件得如图所示的三角形区域,三个顶点坐标为A(2,0),解得B(,),C(0,﹣1)将三个代入z=3x+y得z的值分别为6,,﹣1,直线z=3x+y过点A (2,0)时,z取得最大值为6;故选:A.8.(5分)(2x﹣)n的展开式的各个二项式系数之和为64,则在(2x﹣)n的展开式中,常数项为(的展开式中,常数项为( )A.﹣120 B.120 120 C C.﹣60 D.60【解答】解:由题意可得2n=64,求得,求得 n=6,故(2x﹣)n展开式的通项公式为T r+1=(﹣1)r•(2)6﹣r x6﹣r,令6﹣r=0,求得,求得 r=4,得展开式的常数项为=60,故选:D .9.(5分)若正整数N 除以正整m 后的余数为n ,则记为N=n (modm ),例如10=4(mod6).如图程序框图的算法源于我国古代《孙子算经》中的“孙子定律”的某一环节,执行该框图,输入a=2,b=3,c=5,则输出的N=( )A .6 B .9 C .12 D .21【解答】解:模拟运行程序,可得程序的作用是先求2,3的最小公倍数,再除以5,余数为1,故N=6, 故选A .10.(5分)已知过抛物线y 2=4x 焦点F 的直线l 交抛物线于A 、B 两点(点A 在第一象限),若=3,则直线l 的方程为(的方程为( )A .x ﹣2y ﹣1=0 1=0 B B .2x ﹣y ﹣2=0 2=0 C C .x ﹣y ﹣1=0 D .x ﹣y ﹣=0【解答】解:作出抛物线的准线l :x=﹣1,设A 、B 在l 上的射影分别是C 、D , 连接AC 、BD ,过B 作BE ⊥AC 于E . ∵=3,∴设AF=3m ,BF=m ,由点A 、B 分别在抛物线上,结合抛物线的定义,得AC=3m ,BD=m .因此,Rt △ABE 中,cos ∠BAE=,得∠BAE=60°所以,直线AB 的倾斜角∠AFx=60°, 得直线AB 的斜率k=tan60°k=tan60°==.则直线l 的方程为:y=,即x ﹣y ﹣=0,故选:D .11.(5分)已知等差数列分)已知等差数列{{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 1=3,S n 为数列a n 的前n 项和,则a n •S n 的最小值为(的最小值为() A .0 B .﹣3 3 C C .﹣20 D .9【解答】解:∵等差数列解:∵等差数列{{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,a 1=3, ∴(3+4d )2=(3+2d )(3+14d ), 解得d=﹣2或d=0,当d=0时,a n =3,S n =3n ,a n S n =9n , 当n=1时,a n •S n 取最小值9;当d=﹣2时,a n =3+(n ﹣1)(﹣2)=5﹣2n , S n =3n +=4n ﹣n 2,a n •S n =(5﹣2n )(4n ﹣n2)=2n 3﹣13n 2+20n , 设f (n )=2n 3﹣13n 2+20n ,则fʹ(n )=6n 2﹣26n +20=6(n ﹣)2﹣,∴当n=3时,a n •S n 取最小值:2×27﹣13×9+20×3=﹣3. 综上,a n •S n 取最小值为﹣3. 故选:B .12.(5分)已知函数f (x )=x 2e 2x+m |x |e x+1(m ∈R )有四个零点,则m 的取值范围为(范围为( )A.(﹣∞,﹣e﹣)B.(﹣∞,e+)C.(﹣e﹣,﹣2)D.(﹣∞,﹣)【解答】解:令y=xe x,则y'=(1+x)ex,由y'=0,得x=﹣1,当x∈(﹣∞,﹣1)时,y'<0,函数y单调递减,当x∈(﹣1,+∞)时,y'>0,函数y单调递增.作出y=xe x图象,利用图象变换得f(x)=|xe x|图象(如图10),令f(x)=t,则关于t方程h(t)=t 2+mt+1=0两根分别在时(如图11),满足g(x)=﹣1的x有4个,由,解得m<﹣e﹣.故选:A.二、填空题(本小题共4小题,每小题5分,共20分)13.(5分)等差数列分)等差数列{{a n}的前n项和为S n,且满足a4+a10=20,则S13=130.【解答】解:∵等差数列解:∵等差数列{{a n}的前n项和为S n,且满足a4+a10=20,∴S13=(a1+a13)=(a4+a10)==130.故答案为:130.14.(5分)已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000颗黄豆,数得落在阴影部分的黄豆数为600颗,则可以估计出阴影部分的面积约为36.【解答】解:设图中阴影部分的面积为S,由题意可得=,解得S=36故答案为:3615.(5分)已知平面内三个单位向量,,,<,>=60°,若=m+n,则m+n的最大值是的最大值是 .【解答】解:由已知条件=m+n,两边平方可得1=m 2+mn+n2=(m+n)2﹣mn,∴(m+n)2﹣1=mn,根据向量加法的平行四边形法则,判断出m,n>0,∴(m+n)2﹣1=mn≤(m+n)2,∴,则m+n≤,即m+n的最大值为.故答案为:16.(5分)已知正方体ABCD﹣A1B1C1D1的棱长为1,过正方体ABCD﹣A1B1C1D1的对角线BD1的截面面积为S,则S的取值范围是的取值范围是 [] .【解答】解:由图可知,当M、N分别为AA1、CC1的中点时,截面面积最小为;当截面为ABC1D1时,截面面积最大为.∴S 的取值范围是的取值范围是[[].故答案为:故答案为:[[].三、解答题(本题共70分)17.(12分)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足cos 2B ﹣cos 2C ﹣sin 2A=sinAsinB . (1)求角C ;(2)向量=(sinA ,cosB ),=(cosx ,sinx ),若函数f (x )=•的图象关于直线x=对称,求角A ,B .【解答】解:(1)△ABC 中,cos 2B ﹣cos 2C ﹣sin 2A=sinAsinB , ∴(1﹣sin 2B )﹣(1﹣sin 2C )﹣sin 2A=sinAsinB , ∴sin 2C ﹣sin 2B ﹣sin 2A=sinAsinB , ∴c 2﹣b 2﹣a 2=ab , ∴cosC===﹣,又C ∈(0,π), ∴C=;(2)向量=(sinA ,cosB ),=(cosx ,sinx ),∴函数f (x )=•=sinAcosx +cosBsinx ; 又f (x )的图象关于直线x=对称,∴f (+x )=f (﹣x ),∴sinAcos (+x )+cosBsin (+x )=sinAcos (﹣x )+cosBsin (﹣x ),∴sinA[cos(+x)﹣cos(﹣x)]+cosB[sin(+x)﹣sin(﹣x)]=0,∴﹣2sinAsin sinx+2cosBcos sinx=0,∴2sinx(﹣sinAsin+cosBcos)=0;又sinx≠0,∴sinAsin﹣cosBcos=0,又B=﹣A,∴sinAsin﹣cos(﹣A)cos=0,∴sinA﹣cosA=0,∴sin(A﹣)=0,∴sin(A﹣)=0;又A∈(0,),∴A﹣∈(﹣,),∴A﹣=0,∴A=;∴B=﹣A=.18.(12分)为了增强中小学生运动健身意识,某校举办中小学生体育运动知识竞赛,学校根据男女比例从男生中随机抽取120人,女生中随机抽取100人,进行成绩统计分析,其中成绩在80分以上为优秀,根据样本统计数据分别制作了男生成绩频数分布表以及女生成绩频率分布直方图如图:男生成绩:分数段[50,60](60,70](70,80](80,90](90,100]频数910215723女生成绩:(如图)(1)根据以上数据完成下列2×2列联表优秀非优秀合计男生a b120女生c d100合计120100220根据此数据你认为能否有99.9%以上的把握认为体育运动知识竞赛是否优秀与性别有关?参考公式:K 2=,(n=a+b+c+d).P(K2≥k0)0.050.0250.0100.0050.001 k0 2.841 5.024 6.6357.87910.828(2)以样本中的频率作为概率,学校在全校成绩优秀的学生中随机抽取3人参加全市体育运动知识竞赛.(i)在其中2人为男生的条件下,求另1人为女生的概率;(ii)设3人中女生人数为随机变量X,求X的分布列与数学期望.【解答】解:(1)由题意,K 2=≈15.64>10.828,∴有99.9%以上的把握认为体育运动知识竞赛是否优秀与性别有关;(2)(i)在其中2人为男生的条件下,另1人为女生的概率为=(ii)设3人中女生人数为随机变量X,X=0,1,2,3,则因为所取总体数量较多,抽取3名学生可以看出3次独立重复实验,于是X服从二项分布B(3,).所以得分布列为:ξ0123P数学期望EX=3×=1.19.(12分)如图,已知长方形ABCD中,AB=2AD,M为DC的中点,将△ADM 沿AM折起,使得平面ADM⊥平面ABCM.(1)求证:AD⊥BM;(2)若=2,求二面角E﹣AM﹣D的正弦值.【解答】证明:(1)长方形ABCD中,设AB=2,AD=1,M为DC的中点则AM=BM=,∴AM 2+BM2=AB2,∴BM⊥AM∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM⊂平面ABCM∴BM⊥平面ADM∵AD⊂平面ADM,∴AD⊥BM.解:(2)建立如图所示的直角坐标系,∵=2,设AB=2,AD=1,∴A(,0,0),M(﹣,0,0),B(﹣,,0),D(0,0,),则平面AMD的一个法向量=(0,1,0),=(,,),=(﹣,0,0),设AME的一个法向量=(x,y,z),则,取y=1,得=(0,1,﹣4),设二面角E﹣AM﹣D的平面角为θ,则cosθ==,sinθ==,∴二面角E﹣AM﹣D的正弦值为.20.(12分)已知函数f(x)=ln(x﹣1)+(a∈R).(1)若函数f(x)在区间(1,4)上单调递增,求a的取值范围;(2)若函数y=f(x)的图象与直线4x﹣3y﹣2=0相切,求a的值.【解答】解:(1)函数f(x)=ln(x﹣1)+,则fʹ(x)=,∵函数f(x)在区间(1,4)上单调递增,∴在x∈(1,4)上恒成立.即a≥在x∈(1,4)上恒成立.令g(x)=,则gʹ(x)=.当x∈(1,3)时,gʹ(x)>0,当x∈(3,4)时,gʹ(x)<0.∴g(x)在(1,3)上为增函数,在(3,4)上为减函数,∴g(x)max=g(3)=﹣8.则a≥﹣8;(2)设切点坐标为(x0,y0),则fʹ(x0)=,①则,②f(x0)=,③联立①,②,③得,即.令g(x)=,gʹ(x)=,令h(x)=8x2﹣19x+17,△<0,∴h(x)>0恒成立,∴gʹ(x)>0在(1,+∞)上恒成立,即g(x)在(1,+∞)上为增函数,∵g (2)=0,∴x 0=2,a=3.21.(12分)已知椭圆E :+=1(a >b >0)的左焦点F 1与抛物线y 2=﹣4x的焦点重合,椭圆E 的离心率为,过点M (m ,0)(m >)做斜率存在且不为0的直线l ,交椭圆E 于A ,C 两点,点P (,0),且•为定值.(1)求椭圆E 的方程;(2)过点M 且垂直于l 的直线与椭圆E 交于B ,D 两点,两点,求四边形求四边形ABCD 面积的最小值.【解答】解:(1)抛物线y 2=﹣4x 的焦点为(﹣1,0),∴F 1(1,0),∴c=1,又,a 2=b 2+c 2,解得c=1=b ,a 2=2. ∴椭圆E 的方程为:+y 2=1.(2)设直线l 的方程为:ty +m=x ,A (x 1,y 1),C (x 2,y 2). 联立,化为:(t 2+2)y 2+2tmy +m 2﹣2=0.△>0,∴y 1+y 2=,y 1•y 2=.•=+y 1y 2=+y 1•y 2=(y 1+y 2)+(t 2+1)y 1•y 2+=+(t 2+1)+=为定值.∴=,化为:3m 2﹣5m +2=0,,解得m=1.∴M (1,0). ∴y 1+y 2=,y 1•y 2=.∴|AC |===,把代换t可得:可得:||BD|=.∴S四边形ABCD=|AC|•|BD|=××=,令t 2+1=k>1,则f(k)====≥,当=,即k=2,t=±1时取等号.∴四边形ABCD面积的最小值为.[选修4-4:坐标系与参数方程选讲]22.(10分)在极坐标系下,点P是曲线ρ=2(0<θ<π)上的动点,A(2,0),线段AP的中点为Q,以极点为原点,极轴为x轴正半轴建立平面直角坐标系.(1)求点Q的轨迹C的直角坐标方程;(2)若轨迹C上的点M处的切线斜率的取值范围是处的切线斜率的取值范围是[[﹣,﹣],求点M横坐标的取值范围.【解答】解:(1)曲线ρ=2(0<θ<π),即ρ2=4,(0<θ<π),化为直角坐标方程:x2+y2=4(0<y≤2).设线段AP的中点Q(x,y),A(xʹ,yʹ),则,y=,解得xʹ=2x﹣2,yʹ=2y.∵(xʹ)2+(yʹ)2=4,∴(2x﹣2)2+(2y)2=4,化为:(x﹣1)2+y2=1.由yʹ∈(0,2],可得0<2y≤2,解得0<y≤1.∴点Q的轨迹C的直角坐标方程:(x﹣1)2+y2=1(0<y≤1).(2)轨迹C的方程为:y==,设M(x0,y0).yʹ==,∵迹C上的点M处的切线斜率的取值范围是处的切线斜率的取值范围是[[﹣,﹣],∴≤≤,解得:≤x 0≤.∴点M 横坐标的取值范围是.[选修4-5:不等式选讲] 23.设函数f (x )=|x +4|.(1)若y=f (2x +a )+f (2x ﹣a )最小值为4,求a 的值; (2)求不等式f (x )>1﹣x 的解集. 【解答】解:(1)由题意,函数f (x )=|x +4|.那么y=f (2x +a )+f (2x ﹣a )=|2x +a +4|+|2x ﹣a +4|≥|2x +a ﹣4﹣(2x ﹣a +4)|=|2a | ∵最小值为4,即,即||2a |=3, ∴a=(2)函数f (x )=|x +4|=∴不等式f (x )>1﹣x 等价于,解得:x >﹣2或x <﹣10故得不等式f (x )>1﹣x 的解集为的解集为{{x |x >﹣2或x <﹣10}.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:lP A'ABl C PA B D运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为的最小值为M FEACB P2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。
2017-2018学年度上学期期末考试高三年级数学科(理科)试卷第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. )D.【答案】B所以的虚部是B.2. )【答案】C故选C)B. C.【答案】B为第二象限角,所以故选B.4. 已知向量与的夹角为,则)【答案】B故选B.5. 某四棱锥的三视图如图所示,则该四棱锥的外接球半径为()D.【答案】B的正方形,一条长为侧棱与底面垂的正方体,则棱锥的外接球就是正方体的外接球,正方体外接球,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点. 观察三视图并将其“翻译”成直观图是解题的关键,做题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.6. 已知数列)【答案】D【解析】两式相减可得,D.7. )A. -2B. 0C. 2D. 4【答案】C【解析】,由图可知平移直线当直线经过点时,所以,的最大值为故选C.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8. 把四个不同的小球放入三个分别标有1~3号的盒子中,不允许有空盒子的放法有()A. 12种B. 24种C. 36种D. 48种【答案】C【解析】种方法,(包括复合元素)种放法,所以四个不同的小球放入三个分别标有1〜3号的盒子中,不C.9. 已知函数的图象向左平移再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,的图象,()C.【答案】A为,再将所得图象上各点的横坐标缩短为原来的标不变,得到的图象对应的函数解析式为故选A点睛:本题主要考查了三角函数的图象变换及三角函数性质,属于基础题;图象的伸缩变换的规律:(1则所得图像对应的解析式为(2)把函数10. 已知椭圆、的直线,若)D.【答案】A【解析】由题意可得椭圆的半焦距,且由可知点在以线段为直径的圆上,则.....................A不正确故选A11. 某班有三个小组,甲、乙、丙三人分属不同的小组.某次数学考试成绩公布情况如下:甲和三人中的第3小组那位不一样,丙比三人中第1小组的那位的成绩低,三人中第3小组的那位比乙分数高.若甲、乙、丙三人按数学成绩由高到低排列,正确的是()A. 甲、乙、丙B. 甲、丙、乙C. 乙、甲、丙D. 丙、甲、乙【答案】B数高,说明乙不在第3组,说明丙在第3组,又第3组成绩低于第1组,大于乙,这时可得乙为第2组,甲为第1组,那么成绩从高到低为:甲、丙、乙,故选B.12. 已知函数()B. C. D.【答案】D递减,则在上为减函数故选D点睛:本题考查函数极值问题,转化到不等式恒成立问题.不等式恒成立问题常见方法:①分);②数形结合).第Ⅱ卷二、填空题(本大题共4小题,每题5分,共20分,把答案填在答卷纸的相应位置上)13. 已知实数.14. __________.【答案】11【解析】执行程序框图,当输入第一次循环,第二次循环,第三次循环,第四次循环,第五次循环,【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.15. 、为__________.【解析】∵双曲线的两个焦点为点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确16. 等比数列项和记为.,故答案为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17. 中,角的对边分别为(1(2.【答案】【解析】试题分析:(1,根据两角和的正弦公式可得;(2)结合(1),配方后可其求得试题解析:(1.(218. 甲、乙两名同学准备参加考试,在正式考试之前进行了十次模拟测试,测试成绩如下:甲:137,121,131,120,129,119,132,123,125,133乙:110,130,147,127,146,114,126,110,144,146(1)画出甲、乙两人成绩的茎叶图,求出甲同学成绩的平均数和方差,并根据茎叶图,写出甲、乙两位同学平均成绩以及两位同学成绩的中位数的大小关系的结论:(2)规定成绩超过127为“良好”,现在老师分别从甲、乙两人成绩中各随机选出一个,求【答案】(1)答案见解析;(2)答案见解析.【解析】试题分析:(1)根据根据所给数据,利用茎叶图的作法可得茎叶图,根据茎叶图可(2)0,1,2,.. 试题解析:(1)茎叶图如图以甲的中位数大于乙的中位数,甲的平均成绩小于乙的平均成绩;(20,1,2,分布列为:【方法点睛】本题主要考查茎叶图的画法、方差与平均值的求法、中位数的定义以及离散型随机变量的分布列与数学期望,属于中档题. 求解该离散型随机变量的分布列与数学期望,首项要理解问题的关键,其次要准确无误的随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.19. 中,,(1,求证:(2)求直线.【答案】(1)证明见解析;【解析】试题分析:(1)由三角形中位线定理可得利用线面平行的判定定理可得(2),,由此可以点为原点,直线量夹角余弦公式.试题解析:(1(2)∵底面是菱形,,则以点的法向量为,有得,则,设直线与平面所成角为∴直线与平面所成角的正弦值为【方法点晴】本题主要考查线面平行的性质与判定以及利用空间向量求线面角,属于难题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.20. 已知直线与抛物线.(1(2,若矩形的外接圆圆心为.【答案】(2)30.【解析】试题分析:(1),可列出关于从而可得结果;(2),从而可得矩形.试题解析:(1)与,∴,满足题意.(2∴,,∴∴面积为21. 已知函数(1(2均恒成立,求实数.【答案】(1)单调增区间是,单调减区间是【解析】试题分析:(1)上是单调递减函数,由(2简不等式,化简不等式,利用函数的导数,通过导函数的符号,时,在上单调递增,试题解析:(1上是单调递减函数,(2;时,在上单调递增点睛:通过导数证明不等式或研究不等式恒成立问题的基本思路是:以导函数和不等式为基础,单调性为主线,最(极)值为助手,从数形结合、分类讨论等多视角进行探究,经常是把不等式问题转化为判断函数的单调性、求函数的最值,利用最值得出相应结论,其中分类讨论是经常用到的数学思想方法.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.22.为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.已知直线两点,且(1(2轴交于【答案】(2)4.【解析】试题分析:(12)根据投影可得得结果试题解析:(1323. 已知函数(1(2)若存在成立,求.【答案】【解析】试题分析:(1)当时,原不等式可化为论,去掉式中的绝对值符号,解相应的不等式,最后取并即可;(2)由试题解析:(1)由已知时,解得;则(2.,解之得。
2017年大连市高三一模测试数 学(理科)说明:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷第22题~第24题为选考题,其它题为必考题.2.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 参考公式:锥体体积公式13V Sh =,其中S 为底面面积,h 为高. 球的表面积公式:24R S π=,其中R 为半径.一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.集合{}12≥=x x A ,则∁R A =( )A. (-∞,0]B. (-∞,0)C. [0,+∞)D. (0,+∞)2.复数311iz +=(i 是虚数单位),则z 的共轭复数为( ) A.1-i B.1+i C.i 2121+ D. i 2121-3.某学校礼堂有30排座位,每排有20个座位.一次心理讲座时礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的30名学生.这里运用的抽样方法是( )A.抽签法B.随机数表法C.系统抽样4.向量a =)1,(m ,b =)1,(n ,则1=nm是a //b 的( )A. 充分而不必要条件B.C. 充分必要条件D.5.若角α的终边过点)2,1(-,则)2cos(απ-的值为( ) A.53 B.53- C.55 D.55- 6.执行如图所示的程序框图,若输入]2,0[π∈x ,则输出y 的取值范围是( ) A.[0,1] B. [-1,1] C. [-22,1] D. [-1,22] 7.4个人站成一列,重新站队时各人都不站在原来的位置,共有( )种不同的站法.A. 6个B. 9个C.12 个D. 18个 8.在区间[-1,1]内随机取两个实数y x ,,则满足12-≥x y 的概率是( ) A. 92B. 97 C. 61 D.65 9. 函数)40)(3sin()(<<-=ωπωx x f 图象的一条对称轴方程是125π=x ,将函数)(x f 的图象沿x 轴向左平移6π得到函数)(x g 的图象,则函数)(x g 的解析式是( ) A. ()g x =x 2sin B. ()g x =)sin(62π-xC. ()g x =)sin(654π-x D. ()g x =)sin(3054π-x10.已知双曲线:C )(014222>=-b b y x 的一条渐近线方程为x y 26=,21,F F 分别为双曲线C 的左右焦点,P 为双曲线C 上的一点,1:3:21=PF PF ,+的值是( ) A. 4 B. 26 C. 210 D.5106 11.若x ∈R ,用[]x 表示不超过x 的最大整数(如[ 1.5]2,[5.1]5-=-=).设{}[]x x x =-,则对函数{}x x f =)(,下列说法中正确的个数是( ) ①定义域为R ,值域[0,1) ②它是以1为周期的周期函数③若方程k kx x f +=)(有三个不同的根,则实数k 的取值范围是1111(,][,)3443-- ④若121n x x n <+≤≤(n Z)Î,则12f(x )f (x )£A. 1B.2C. 3D. 412.已知212+==x x g e x f x ln )(,)(,对R,(0,)a b ∀∈∃∈+∞,使得()()f a g b =,则b a -的最小值为( )A. 11ln 22+B. 11ln 22-12 D. 2124e -第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题: 本大题共4小题,每小题5分,共20分.13.如图是一个几何体的三视图,根据图中的数据,该几何体的表面积为 .14.焦点在x 轴的椭圆()x y a a a +=>+2221041,则它的离心率的取值范围为 . 15.设ABC ∆内角C B A ,,的对边分别为c b a ,,,且满足,53cos cos a C b B c =- 则=CBtan tan .16.如图,在棱柱111ABC A B C -的侧棱11A A B B 和上各有一个动点P 、Q ,且满足1A P BQ =,M 是棱CA 上的 动点,则111M ABPQABC A B C M ABPQV V V ----的最大值是 .1APB C AQ1CM1B (第16题图)(第13题图)三.解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)等差数列{}n a 的前n 项和n S ,等比数列{}n b 的公比21,有153=S ,3211=+b a ,6422=+b a . (Ⅰ)求数列{}n a ,{}n b 的通项公式n n b a ,; (Ⅱ)求数列{}n n b a ⋅的前n 项和n T .18.(本小题满分12分)为了调查某厂数万名工人独立生产某种产品的能力,随机抽查了m 位工人某天独立生产该产品的数量,产品数量的分组区间为)15,10[,),25,20[),20,15[),30,25[)35,30[,频率分布直方图如图所示,已知独立生产的产品数量在)25,20[之间的工人有6位. (Ⅰ)求m ;(Ⅱ)工厂规定:若独立生产能力当日不小于25,则该工人当选今日“生产之星”. 若将这天独立生产该产品数量的频率视为概率,随机从全厂工人中抽取3人, 这3人中当日“生产之星”人数为X ,求X 的分布列及数学期望)(X E .(第18题图)19.(本小题满分12分)如图,四棱锥ABCD P -,底面ABCD 为直角梯形,AD BC //,CD BC ⊥,AD CD BC 21==,APB ∆是等腰直角三角形,,90o =∠APB H 是AB 中点, PD PC =.(Ⅰ)证明:⊥PH 平面ABCD ;(Ⅱ)求平面PCD 与平面PBC 所成锐二面角的余弦值.20. (本小题满分12分)已知过抛物线2:4C x y =的焦点F 直线与C 交于,A B 两点.HAB CPD(第19题图)(Ⅰ)求线段AB 中点Q 的轨迹方程;(Ⅱ)动点P 是抛物线C 上异于,A B 的任意一点,直线,PA PB 与抛物线C 的准线l 分别交于点,M N ,求⋅的值.21.(本小题满分12分). f(x)=2cosx 12x +-(Ⅰ)求证: x 0,f(x)0≥≥;(Ⅱ)若不等式2cos sin +-≥x x e ax 对任意的0≥x 恒成立,求实数a 的取值范围.请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22.选修4-1:几何证明选讲(本小题满分10分)如图,以R t △ABC 直角边AC 上一点O 为圆心OC 为半径的⊙O 与AC 另一个交点E ,D 为斜边AB 上一点,且OD=OC ,2AD AE AC =⋅.(Ⅰ)证明AB 是⊙O 的切线; (Ⅱ)若8DE OB ⋅=,求⊙O 的半径.23. 选修4-4:极坐标与参数方程选讲(本小题满分10分) 在直角坐标系xOy 中,直线1C 的参数方程为t t y t x (,2,1⎩⎨⎧+=+=为参数),以该直角坐标系的原点(第22题图)DEABOCO 为极点,x 轴的正半轴为极轴的极坐标系下,圆2C 的方程为θθρsin 32cos 2+-=.(Ⅰ)求直线1C 的普通方程和圆2C 的圆心的极坐标; (Ⅱ)设直线1C 和圆2C 的交点为A 、B ,求弦AB 的长.24. 选修4-5:不等式选讲(本小题满分10分) 设不等式)(32*∈<-+-N a a x x 的解集为A ,且32A,A 2蜗.(Ⅰ)求a 的值;(Ⅱ)求函数()2f x x a x =++-的最小值.2017年大连市高三一模测试 数学(理科)参考答案与评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一.选择题1.B2.D3.C4.A5.A6.C7.B8.D9.A 10.C 11.C 12.A 二.填空题 13.π3314.(,0215.4116.21三.解答题 17. 解:(Ⅰ)设{}n a 公差为d ,所以⎪⎩⎪⎨⎧=++=+=+,,,6232511111b d a b a d a解得,,,213211===b d a ………………4分所以.)(,n n n b n a 2113=-= ………………6分 (Ⅱ)由(Ⅰ)知⨯+⨯+⨯=82152122)(n S 321)(+n n n n ))(())((211321431-+-+⋅⋅⋅- ①①21⨯得+⨯+⨯=3221521221)()(n S 121132143+-+-+⋅⋅⋅n n n n ))(())(( ②……8分①-②得1322113212121321221+--+⋅⋅⋅++⨯+⨯=n n n n S ))((])()()[( 1121132112114131+-----+=n n n ))((])([, ………………10分整理得52153++-=n n n S ))((. ………………12分18.解:(Ⅰ)由频率分布直方图可得产品数量在)25,20[之间的频率为0.3, 所以,.306=m即.20=m ………………4分 (Ⅱ)由频率分布直方图可得产品数量不小于25的频率为0.4,所以三人中每人是“生产之星”的概率都是,52 ………………6分X 的取值为0,1,2,3,由题知X~),,(523B()(),()(),()(),()()p X p X C p X C p X =====⨯⨯===⨯====3123223332723540151255512523362823551255125所以X 的分布列为………………10分所以)(X E =56. ………………12分19.证明:(Ⅰ)取CD 中点G ,连接,PG HG 。
2016年辽宁省大连市高三双基测试数学试卷(理科)一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={2,4,6,8,10},集合A,B满足∁U(A∪B)={8,10},A∩∁U B={2},则集合B=()A.{4,6}B.{4}C.{6}D.Φ2.已知复数z=1+i,则z4=()A.﹣4i B.4i C.﹣4 D.43.已知函数f(x)定义域为R,则命题p:“函数f(x)为偶函数”是命题q:“∃x0∈R,f (x0)=f(﹣x0)”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.执行如图的程序框图,输出的C的值为()A.3 B.5 C.8 D.135.已知互不重合的直线a,b,互不重合的平面α,β,给出下列四个命题,错误的命题是()A.若a∥α,a∥β,α∩β=b,则a∥b B.若α⊥β,a⊥α,b⊥β则a⊥bC.若α⊥β,α⊥γ,β∩γ=a,则a⊥αD.若α∥β,a∥α,则a∥β6.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱B.钱C.钱D.钱7.△ABC中,AB=2,AC=3,∠B=60°,则cosC=()A.B.C.D.8.已知点(x,y)满足不等式组,则z=x﹣2y的最大值为()A.﹣7 B.﹣1 C.1 D.29.若抛物线y2=4x上一点P到其焦点F的距离为2,O为坐标原点,则△OFP的面积为()A.B.1 C.D.210.已知直线y=x+m和圆x2+y2=1交于A、B两点,O为坐标原点,若,则实数m=()A.±1 B.C.D.11.在区间[0,π]上随机地取两个数x、y,则事件“y≤sinx”发生的概率为()A.B.C. D.12.函数f(x)是定义在(0,+∞)上的单调函数,且对定义域内的任意x,均有f(f(x)﹣lnx﹣x3)=2,则f(e)=()A.e3+1 B.e3+2 C.e3+e+1 D.e3+e+2二.填空题(本大题共4小题,每小题5分,共20分)13.双曲线x2﹣2y2=1的渐近线方程为.14.的展开式中,x4项的系数为(用数字作答).15.数列{a n}前n项和,则a n=.16.如图,在小正方形边长为1的网格中画出了某多面体的三视图,则该多面体的外接球表面积为.三.解答题(本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)经过点(,﹣2),(,2),且在区间(,),上为单调函数.(Ⅰ)求ω,φ的值;(Ⅱ)设a n=nf()(n∈N*),求数列{a n}的前30项和S30.18.2015年“双十一”当天,甲、乙两大电商进行了打折促销活动,某公司分别调查了当天在甲、乙电商购物的1000名消费者的消费金额,得到了消费金额的频数分布表如下:甲电商:[0,1)[1,2)[2,3)[3,4)[4,5]消费金额(单位:千元)频数50 200 350 300 100乙电商:[0,1)[1,2)[2,3)[3,4)[4,5]消费金额(单位:千元)频数250 300 150 100 200 (Ⅰ)根据频数分布表,完成下列频率分布直方图,并根据频率分布直方图比较消费者在甲、乙电商消费金额的中位数的大小以及方差的大小(其中方差大小给出判断即可,不必说明理由);(Ⅱ)(ⅰ)根据上述数据,估计“双十一”当天在甲电商购物的大量的消费者中,消费金额小于3千元的概率;(ⅱ)现从“双十一”当天在甲电商购物的大量的消费者中任意调查5位,记消费金额小于3千元的人数为X,试求出X的期望和方差.19.如图,四棱锥P﹣ABCD中,底面ABCD是边长为3的菱形,∠ABC=60°.PA⊥面ABCD,且PA=3.F在棱PA上,且AF=1,E在棱PD上.(Ⅰ)若CE∥面BDF,求PE:ED的值;(Ⅱ)求二面角B﹣DF﹣A的大小.20.已知椭圆C:=1(a>b>0)的左焦点分别为F1(﹣c,0),F2(c,0),过F2作垂直于x轴的直线l交椭圆C于A、B两点,满足|AF2|=c.(1)求椭圆C的离心率;(2)M、N是椭圆C短轴的两个端点,设点P是椭圆C上一点(异于椭圆C的顶点),直线MP、NP分别和x轴相交于R、Q两点,O为坐标原点,若|OR|•|OQ|=4,求椭圆C的方程.21.设函数(x∈R,实数a∈[0,+∞),e=2.71828…是自然对数的底数,).(Ⅰ)若f(x)≥0在x∈R上恒成立,求实数a的取值范围;(Ⅱ)若e x≥lnx+m对任意x>0恒成立,求证:实数m的最大值大于2.3.[选修4-1:几何证明选讲](共1小题,满分10分)22.如图,AB是⊙O的直径,DA⊥AB,CB⊥AB,DO⊥CO(Ⅰ)求证:CD是⊙O的切线;(Ⅱ)设CD与⊙O的公共点为E,点E到AB的距离为2,求+的值.[选修4-4:坐标系与参数方程](共1小题,满分0分)23.在平面直角坐标系xOy中,曲线C1:(φ为参数,实数a>0),曲线C2:(φ为参数,实数b>0).在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α(ρ≥0,0≤α≤)与C1交于O、A两点,与C2交于O、B两点.当α=0时,|OA|=1;当α=时,|OB|=2.(Ⅰ)求a,b的值;(Ⅱ)求2|OA|2+|OA|•|OB|的最大值.[选修4-5:不等式选讲](共1小题,满分0分)24.设函数f(x)=|2x+a|+|x﹣|(x∈R,实数a<0).(Ⅰ)若f(0)>,求实数a的取值范围;(Ⅱ)求证:f(x)≥.2016年辽宁省大连市高三双基测试数学试卷(理科)参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={2,4,6,8,10},集合A,B满足∁U(A∪B)={8,10},A∩∁U B={2},则集合B=()A.{4,6}B.{4}C.{6}D.Φ【考点】交、并、补集的混合运算.【分析】由A与B并集的补集得到元素8,10不属于B,再由A与B补集的交集得到元素2不属于B,即可得出B,【解答】解:∵全集U={2,4,6,8,10},∁U(A∪B)={8,10},∴A∪B={2,4,6},又∵A∩{∁U B}={2},∴B={4,6}.故选:A.2.已知复数z=1+i,则z4=()A.﹣4i B.4i C.﹣4 D.4【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:∵z=1+i,∴z2=(1+i)2=2i,则z4=(2i)2=﹣4.故选:C.3.已知函数f(x)定义域为R,则命题p:“函数f(x)为偶函数”是命题q:“∃x0∈R,f (x0)=f(﹣x0)”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据函数奇偶性的定义结合充分条件和必要条件的定义进行判断即可.【解答】解:若函数f(x)为偶函数,则∀x∈R,f(﹣x)=f(x),则∃x0∈R,f(x0)=f (﹣x0)成立,则充分性成立,若f(x)=x2,﹣1≤x≤2,满足f(﹣1)=f(1),但函数f(x)不是偶函数,故必要性不成立,即p是q的充分不必要条件,故选:A.4.执行如图的程序框图,输出的C的值为()A.3 B.5 C.8 D.13【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算变量C的值并输出,模拟程序的运行,对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:模拟执行程序,可得A=1,B=1,k=3满足条件k≤5,C=2,A=1,B=2,k=4满足条件k≤5,C=3,A=2,B=3,k=5满足条件k≤5,C=5,A=3,B=5,k=6不满足条件k≤5,退出循环,输出C的值为5.故选:B.5.已知互不重合的直线a,b,互不重合的平面α,β,给出下列四个命题,错误的命题是()A.若a∥α,a∥β,α∩β=b,则a∥b B.若α⊥β,a⊥α,b⊥β则a⊥bC.若α⊥β,α⊥γ,β∩γ=a,则a⊥αD.若α∥β,a∥α,则a∥β【考点】空间中直线与平面之间的位置关系.【分析】由线线平行的性质定理能判断A的正误;由面面垂直和线面垂直的性质定理能判断B的正误;由线面垂直的判定定理能判断C的正误;在D中,a∥β或a⊂β.【解答】解:由互不重合的直线a,b,互不重合的平面α,β,知:在A中,由于α∩β=b,a∥α,a∥β,过直线a作与α、β都相交的平面γ,记α∩γ=d,β∩γ=c,则a∥d且a∥c,∴d∥c.又d⊂α,α∩β=b,∴d∥b.∴a∥b.故A正确;在B中,若α⊥β,a⊥α,b⊥β,则由面面垂直和线面垂直的性质得a⊥b,故B正确;在C中,若α⊥β,α⊥γ,β∩γ=a,则由线面垂直的判定定理得a⊥α,故C正确;在D中,若α∥β,a∥α,则a∥β或a⊂β,故D错误.故选:D.6.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱 B.钱C.钱D.钱【考点】等差数列的通项公式.【分析】依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,由题意求得a=﹣6d,结合a﹣2d+a﹣d+a+a+d+a+2d=5a=5求得a=1,则答案可求.【解答】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,∴a=1,则a﹣2d=a﹣2×=.故选:B.7.△ABC中,AB=2,AC=3,∠B=60°,则cosC=()A.B.C.D.【考点】正弦定理.【分析】由已知及正弦定理可得sinC==,又AB<AC,利用大边对大角可得C为锐角,根据同角三角函数基本关系式即可求得cosC得值.【解答】解:∵AB=2,AC=3,∠B=60°,∴由正弦定理可得:sinC===,又∵AB<AC,C为锐角,∴cosC==.故选:D.8.已知点(x,y)满足不等式组,则z=x﹣2y的最大值为()A.﹣7 B.﹣1 C.1 D.2【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=x﹣2y,得y=,平移直线y=,由图象可知当直线y=经过点B时,直线y=的截距最小,此时z最大,由,解得,即B(5,2),此时z max=5﹣2×2=1.故选:C.9.若抛物线y2=4x上一点P到其焦点F的距离为2,O为坐标原点,则△OFP的面积为()A.B.1 C.D.2【考点】抛物线的简单性质.【分析】利用抛物线的定义,求出P的坐标,然后求出三角形的面积.【解答】解:由抛物线定义,|PF|=x P+1=2,所以x P=1,|y P|=2,所以,△PFO的面积S=|y P|==1.故选:B10.已知直线y=x+m和圆x2+y2=1交于A、B两点,O为坐标原点,若,则实数m=()A.±1 B.C.D.【考点】直线与圆的位置关系;平面向量数量积的运算.【分析】联立,得2x2+2mx+m2﹣1=0,由此利用根的判别式、韦达定理、向量的数量积能求出m.【解答】解:联立,得2x2+2mx+m2﹣1=0,∵直线y=x+m和圆x2+y2=1交于A、B两点,O为坐标原点,∴△=4m2+8m2﹣8=12m2﹣8>0,解得m>或m<﹣,设A(x1,y1),B(x2,y2),则x1+x2=﹣m,,y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2,=(﹣x1,﹣y1),=(x2﹣x1,y2﹣y1),∵,∴=+y12﹣y1y2=1﹣﹣+m2﹣m2=2﹣m2=,解得m=.故选:C.11.在区间[0,π]上随机地取两个数x、y,则事件“y≤sinx”发生的概率为()A.B.C. D.【考点】几何概型.【分析】确定区域的面积,即可求出事件“y≤sinx”发生的概率.【解答】解:在区间[0,π]上随机地取两个数x、y,构成区域的面积为π2;事件“y≤sinx”发生,区域的面积为=2,∴事件“y≤sinx”发生的概率为.故选:D.12.函数f(x)是定义在(0,+∞)上的单调函数,且对定义域内的任意x,均有f(f(x)﹣lnx﹣x3)=2,则f(e)=()A.e3+1 B.e3+2 C.e3+e+1 D.e3+e+2【考点】函数单调性的性质.【分析】由题意得f(x)﹣lnx﹣x3是定值,令f(x)﹣lnx﹣x3=t,得到lnt+t3+t=2,求出t 的值,从而求出f(x)的表达式,求出f(e)即可.【解答】解:∵函数f(x)对定义域内的任意x,均有f(f(x)﹣lnx﹣x3)=2,则f(x)﹣lnx﹣x3是定值,不妨令f(x)﹣lnx﹣x3=t,则f(t)=lnt+t3+t=2,解得:t=1,∴f(x)=lnx+x3+1,∴f(e)=lne+e3+1=e3+2,故选:B二.填空题(本大题共4小题,每小题5分,共20分)13.双曲线x2﹣2y2=1的渐近线方程为y=±x.【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,求得a,b,由渐近线方程为y=±x,即可得到所求方程.【解答】解:双曲线x2﹣2y2=1即为x2﹣=1,可得a=1,b=,渐近线方程为y=±x,即为y=±x.故答案为:y=±x.14.的展开式中,x4项的系数为﹣15(用数字作答).【考点】二项式系数的性质.【分析】根据二项式(x﹣)10的展开式中通项公式,求出展开式中x4项的系数.【解答】解:(x﹣)10的展开式中的通项为=•(﹣)r•x10﹣2r,T r+1令10﹣2r=4,解得r=3,所以展开式中x4项的系数为•=﹣15.故答案为:﹣15.15.数列{a n}前n项和,则a n=.【考点】数列递推式.【分析】由数列的前n项和求出首项,再由n≥2时,a n=S n﹣S n求得通项公式,验证首项﹣1后可得数列{a n}的通项公式.【解答】解:∵,∴a1=S1=2,=2n﹣2n﹣1=2n﹣1,当n≥2时,a n=S n﹣S n﹣1当n=1时,2n﹣1=1≠a1,∴,故答案为:a n=.16.如图,在小正方形边长为1的网格中画出了某多面体的三视图,则该多面体的外接球表面积为34π.【考点】简单空间图形的三视图;球的体积和表面积.【分析】由三视图知,该几何体是一个侧面与底面垂直的三棱锥,画出直观图,再建立空间直角坐标系,求出三棱锥外接球的球心与半径,从而求出外接球的表面积.【解答】解:由三视图知,该几何体是三棱锥S﹣ABC,且三棱锥的一个侧面SAC与底面ABC垂直,其直观图如图所示;由三视图的数据可得OA=OC=2,OB=OS=4,建立空间直角坐标系O﹣xyz,如图所示;则A(0,﹣2,0),B(4,0,0),C(0,2,0),S(0,0,4),则三棱锥外接球的球心I在平面xOz上,设I(x,0,z);由得,,解得x=z=;∴外接球的半径R=|BI|==,∴该三棱锥外接球的表面积S=4πR2=4π×=34π.故答案为:34π.三.解答题(本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)经过点(,﹣2),(,2),且在区间(,),上为单调函数.(Ⅰ)求ω,φ的值;(Ⅱ)设a n=nf()(n∈N*),求数列{a n}的前30项和S30.【考点】数列的求和;正弦函数的图象.【分析】(Ⅰ)由题可得+φ=2kπ﹣, +φ=2kπ+,(k∈Z),从而解得;(Ⅱ)化简a n=nf()=2nsin(﹣)(n∈N*),而数列{2sin(﹣)}的周期为3;从而可得a3n﹣2+a3n﹣1+a3n=﹣,从而解得.【解答】解:(Ⅰ)由题可得+φ=2kπ﹣, +φ=2kπ+,(k∈Z);解得ω=2,φ=2kπ﹣(k∈Z),∵|φ|<π,∴φ=﹣.(Ⅱ)∵a n=nf()=2nsin(﹣)(n∈N*),而数列{2sin(﹣)}的周期为3;前三项依次为2sin0=0,2sin=,2sin=﹣,∴a3n﹣2+a3n﹣1+a3n=﹣,∴S30=(a1+a2+a3)+…+(a28+a29+a30)=﹣10.18.2015年“双十一”当天,甲、乙两大电商进行了打折促销活动,某公司分别调查了当天在甲、乙电商购物的1000名消费者的消费金额,得到了消费金额的频数分布表如下:甲电商:消费金额(单位:千元)[0,1)[1,2)[2,3)[3,4)[4,5]频数50 200 350 300 100乙电商:消费金额(单位:千元)[0,1)[1,2)[2,3)[3,4)[4,5]频数250 300 150 100 200 (Ⅰ)根据频数分布表,完成下列频率分布直方图,并根据频率分布直方图比较消费者在甲、乙电商消费金额的中位数的大小以及方差的大小(其中方差大小给出判断即可,不必说明理由);(Ⅱ)(ⅰ)根据上述数据,估计“双十一”当天在甲电商购物的大量的消费者中,消费金额小于3千元的概率;(ⅱ)现从“双十一”当天在甲电商购物的大量的消费者中任意调查5位,记消费金额小于3千元的人数为X,试求出X的期望和方差.【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【分析】(Ⅰ)由频数分布表,能作出下列频率分布直方图,并根据频率分布直方图比较消费者在甲、乙电商消费金额的中位数的大小以及方差的大小.(Ⅱ)(i)利用等可能事件概率计算公式求解.(ii)利用二项分布的性质求解.【解答】解:(Ⅰ)频率分布直方图如下图所示,…甲的中位数在区间[2,3]内,乙的中位数在区间[1,2)内,所以甲的中位数大.由频率分布图得甲的方差大.…(Ⅱ)(ⅰ)估计在甲电商购物的消费者中,购物小于3千元的概率为;…(ⅱ)由题可得购物金额小于3千元人数X~B(5,),…∴E(X)==3,D(X)=5××=.…19.如图,四棱锥P﹣ABCD中,底面ABCD是边长为3的菱形,∠ABC=60°.PA⊥面ABCD,且PA=3.F在棱PA上,且AF=1,E在棱PD上.(Ⅰ)若CE∥面BDF,求PE:ED的值;(Ⅱ)求二面角B﹣DF﹣A的大小.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)根据线面平行的性质定理进行推理得到E为PD中点即可求PE:ED的值;(Ⅱ)根据二面角的定义作出二面角的平面角,即可求二面角B﹣DF﹣A的大小.【解答】证明:(Ⅰ)过E作EG∥FD交AP于G,连接CG,连接AC交BD于O,连接FO.∵EG∥FD,EG⊄面BDF,FD⊂面BDF,∴EG∥面BDF,又EG∩CE=E,CE∥面BDF,EG,CE⊂面CGE,∴面CGE∥面BDF,…又CG⊂面CGE,∴CG∥面BDF,又面BDF∩面PAC=FO,CG⊂面PAC,∴FO∥CG.又O为AC中点,∴F为AG中点,∴FG=GP=1,∴E为PD中点,PE:ED=1:1.…(Ⅱ)过点B作BH⊥直线DA交DA延长线于H,过点H作HI⊥直线DF交DF于I,…∵PA⊥面ABCD,∴面PAD⊥面ABCD,∴BH⊥面PAD,由三垂线定理可得DI⊥IB,∴∠BIH是二面角B﹣DF﹣A的平面角.由题易得AH=,BH=,HD=,且=,∴HI=,∴tan∠BIH=×=,…∴二面角B﹣DF﹣A的大小为arcran.…20.已知椭圆C:=1(a>b>0)的左焦点分别为F1(﹣c,0),F2(c,0),过F2作垂直于x轴的直线l交椭圆C于A、B两点,满足|AF2|=c.(1)求椭圆C的离心率;(2)M、N是椭圆C短轴的两个端点,设点P是椭圆C上一点(异于椭圆C的顶点),直线MP、NP分别和x轴相交于R、Q两点,O为坐标原点,若|OR|•|OQ|=4,求椭圆C的方程.【考点】椭圆的简单性质.【分析】(1)令x=c,求得y,由题意可得=c,再由离心率公式,解方程可得e;(2)求出椭圆上下顶点坐标,设P(x o,y o),R(x1,0),Q(x2,0),利用M,P,R三点共线求出R,Q的横坐标,利用P在椭圆上,推出|OR|•|OQ|=a2即可得到a,b的值,进而得到椭圆方程.【解答】解:(1)令x=c,可得y2=b2(1﹣),即有y=±,由题意可得=c,即为6a2﹣6c2=ac,即有6﹣6e2=e,解得e=;(2)由椭圆方程知M(0,b),N(0,﹣b),另设P(x o,y o),R(x1,0),Q(x2,0),由M,P,R三点共线,知=,所以x1=;同理得x2=.|OR|•|OQ|=…①,又P在椭圆上所以+=1,即b2﹣y02=代入①得|OR|•|OQ|=a2=4,即有a=2,又e==,可得c=,b=1,椭圆的方程为+y2=1.21.设函数(x∈R,实数a∈[0,+∞),e=2.71828…是自然对数的底数,).(Ⅰ)若f(x)≥0在x∈R上恒成立,求实数a的取值范围;(Ⅱ)若e x≥lnx+m对任意x>0恒成立,求证:实数m的最大值大于2.3.【考点】利用导数求闭区间上函数的最值.【分析】(Ⅰ)分离参数,构造函数,利用导数求出函数的最值,问题得以解决;(Ⅱ)构造函数设,利用导数求出函数的最值,即可证明.【解答】解:(Ⅰ)∵,f(x)≥0在x∈R上恒成立,∴a≤,设h(x)=,∴h′(x)=,令h′(x)=0,解得x=,当x>,即h′(x)>0,函数单调递增,当x<,即h′(x)<0,函数单调递减,∴h(x)min=h()=,∴0<a≤,故a的取值范围为;(Ⅱ)设,∴,g'(x)>0,可得;g'(x)<0,可得.∴g(x)在(,+∞)上单调递增;在上单调递减.∴g(x)≥g()=,∵,∴>1.6,∴g(x)>2.3.由(Ⅰ)可得e x>x+,∴e x﹣lnx的最小值大于2.3,故若e x≥lnx+m对任意x>0恒成立,则m的最大值一定大于2.3.[选修4-1:几何证明选讲](共1小题,满分10分)22.如图,AB是⊙O的直径,DA⊥AB,CB⊥AB,DO⊥CO(Ⅰ)求证:CD是⊙O的切线;(Ⅱ)设CD与⊙O的公共点为E,点E到AB的距离为2,求+的值.【考点】与圆有关的比例线段.【分析】(Ⅰ)证明CO是∠BCD的平分线,圆心O到CD的距离等于半径,即可证明:CD 是⊙O的切线;(Ⅱ)分类讨论,过E作EF⊥AB交AB于F,过C作CG⊥AD交AD于G,交EF于H,由(Ⅰ)可得DA=DE,CB=CE.在△CGD中,有,即可求+的值.【解答】(Ⅰ)证明:由题可知DA,BC为⊙O的切线.∵∠DOC=90°,∴∠AOD+∠BOC=90°;∵∠OBC=90°,∴∠OCB+∠BOC=90°;∴∠AOD=∠OCB,∴△AOD∽△BCO,∴=,…又∵AO=OB,∴=,∴Rt△OCD∽Rt△BCO,∴∠OCD=∠BCO,∴CO是∠BCD的平分线,∴圆心O到CD的距离等于半径,∴CD是⊙O的切线;…(Ⅱ)解:若DA=CB,显然可得+=1.…若DA≠CB,不妨设DA>CB.过E作EF⊥AB交AB于F,过C作CG⊥AD交AD于G,交EF于H.由(Ⅰ)可得DA=DE,CB=CE.在△CGD中,有,即=,化简得+=1.综上: +=1.…[选修4-4:坐标系与参数方程](共1小题,满分0分)23.在平面直角坐标系xOy中,曲线C1:(φ为参数,实数a>0),曲线C2:(φ为参数,实数b>0).在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α(ρ≥0,0≤α≤)与C1交于O、A两点,与C2交于O、B两点.当α=0时,|OA|=1;当α=时,|OB|=2.(Ⅰ)求a,b的值;(Ⅱ)求2|OA|2+|OA|•|OB|的最大值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(I)由曲线C1:(φ为参数,实数a>0),利用cos2φ+sin2φ=1即可化为普通方程,再利用极坐标与直角坐标互化公式即可得出极坐标方程,进而得出a的值.同理可得b的值.(II)由(I)可得C1,C2的方程分别为ρ=cosθ,ρ=2sinθ.可得2|OA|2+|OA|•|OB|=2cos2θ+2sinθcosθ=+1,利用三角函数的单调性与值域即可得出.【解答】解:(Ⅰ)由曲线C1:(φ为参数,实数a>0),化为普通方程为(x﹣a)2+y2=a2,展开为:x2+y2﹣2ax=0,其极坐标方程为ρ2=2aρcosθ,即ρ=2acosθ,由题意可得当θ=0时,|OA|=ρ=1,∴a=.曲线C2:(φ为参数,实数b>0),化为普通方程为x2+(y﹣b)2=b2,展开可得极坐标方程为ρ=2bsinθ,由题意可得当时,|OB|=ρ=2,∴b=1.(Ⅱ)由(I)可得C1,C2的方程分别为ρ=cosθ,ρ=2sinθ.∴2|OA|2+|OA|•|OB|=2cos2θ+2sinθcosθ=sin2θ+cos2θ+1=+1,∵2θ+∈,∴+1的最大值为+1,当2θ+=时,θ=时取到最大值.[选修4-5:不等式选讲](共1小题,满分0分)24.设函数f(x)=|2x+a|+|x﹣|(x∈R,实数a<0).(Ⅰ)若f(0)>,求实数a的取值范围;(Ⅱ)求证:f(x)≥.【考点】绝对值不等式的解法;分段函数的应用.【分析】(Ⅰ)去掉绝对值号,解关于a的不等式组,求出a的范围即可;(Ⅱ)通过讨论x 的范围,结合基本不等式的性质求出求出f(x)的最小值即可.【解答】(Ⅰ)解:∵a<0,∴f(0)=|a|+|﹣|=﹣a﹣>,即a2+a+1>0,解得a<﹣2或﹣<a<0;(Ⅱ)证明:f(x)=|2x+a|+|x﹣|=,当x≥﹣时,f(x)≥﹣﹣;当<x<﹣时,f(x)>﹣﹣;当x≤时,f(x)≥﹣a﹣,∴f(x)min=﹣﹣≥2=,当且仅当﹣=﹣即a=﹣时取等号,∴f(x)≥.2016年10月17日。
辽宁省大连市2017-2018学年高三上学期期末数学试卷(理科)一、选择题(每题5分,共60分)1.设U=R,M={y|y=2x+1,﹣≤x≤},N={x|y=lg(x2+3x)},则(∁UM)∩N=()A.(﹣∞,﹣3]∪(2,+∞)B.(﹣∞,﹣3)∪(0,+∞) C.(﹣∞,﹣3)∪(2,+∞)D.(﹣∞,0)∪(2,+∞)2.抛物线x2=﹣8y的准线方程是()A.x=B.y=2 C.y=D.y=﹣23.已知动点P,定点M(1,0)和N(3,0),若|PM|﹣|PN|=2,则点P的轨迹是()A.双曲线B.双曲线的一支C.两条射线D.一条射线4.等差数列{an }中,a1+a4+a7=39,a3+a6+a9=27,则数列{an}前9项的和S9等于()A.99 B.66 C.144 D.2975.已知α,β都是锐角,sinα=,cosβ=,则sin(β﹣α)=()A.﹣B.C.﹣D.6.设a,b是两条不同的直线,α,β是两个不同的平面,a⊂α,b⊥β,则α∥β是a⊥b 的()A.充分不必要条件B.必要不充分条件C.充要条件D.即非充分又非必要条件7.在△ABC中,若|+|=|﹣|,AB=2,AC=1,E,F为BC边的三等分点,则•=()A.B.C.D.8.已知点A、B、C、D均在球O上,AB=BC=,AC=3,若三棱锥D﹣ABC体积的最大值为,则球O的表面积为()A.36πB.16πC.12πD.π9.一个几何体的三视图如图所示,则该几何体的体积为()A .B .C .D .10.设m ,n ∈R ,若直线(m+1)x+(n+1)y ﹣2=0与圆(x ﹣1)2+(y ﹣1)2=1相切,则m+n 的取值范围是(A .(﹣∞,2﹣2]∪[2+2,+∞) B .(﹣∞,2]∪[2,+∞)C .[2﹣2,2+2] D .(﹣∞,﹣2]∪[2,+∞)11.已知函数f (x )=asinx ﹣bcosx (a ,b 常数,a ≠0,x ∈R )在x=处取得最小值,则函数y=f (﹣x )是( )A .偶函数且它的图象关于点(π,0)对称B .偶函数且它的图象关于点(,0)对称C .奇函数且它的图象关于点(,0)对称D .奇函数且它的图象关于点(π,0)对称12.已知f (x )为偶函数,且f (x )=f (x ﹣4),在区间[0,2]上,f (x )=,g (x )=()|x|+a ,若F (x )=f (x )﹣g (x )恰好有4个零点,则a 的取值范围是( )A .(2,)B .(2,3)C .(2,]D .(2,3]二、填空题(每题5分,共20分)13.已知等比数列{a n }前n 项和为S n ,a 1+a 2=,a 4+a 5=6,则S 6= .14.椭圆C 的中点在原点,焦点在x 轴上,若椭圆C 的离心率等于,且它的一个顶点恰好是抛物线x 2=8y 的焦点,则椭圆C 的标准方程为 .15.设直线x ﹣3y+m=0(m ≠0)与双曲线=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|PA|=|PB|,则该双曲线的离心率是 . 16.下列命题中:(1)a=4,A=30°,若△ABC 唯一确定,则0<b ≤4.(2)若点(1,1)在圆x 2+y 2+mx ﹣y+4=0外,则m 的取值范围是(﹣5,+∞);(3)若曲线+=1表示双曲线,则k 的取值范围是(1,+∞]∪(﹣∞,﹣4];(4)将函数y=cos (2x ﹣)(x ∈R )的图象向左平移个单位,得到函数y=cos2x 的图象.(5)已知双曲线方程为x 2﹣=1,则过点P (1,1)可以作一条直线l 与双曲线交于A ,B两点,使点P 是线段AB 的中点.正确的是 (填序号)三、解答题(本大题共有6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.已知函数f (x )=|2x ﹣a|+|x+1|. (Ⅰ)当a=1时,解不等式f (x )<3; (Ⅱ)若f (x )的最小值为1,求a 的值.18.已知函数f (x )=2cos 2x+sin (2x ﹣)(1)求函数f (x )的单调增区间;最大值,以及取得最大值时x 的取值集合;(2)已知△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,若f (A )=,b+c=2,求实数a 的取值范围.19.已知数列{a n }中,a 1=1,其前n 项和为S n ,且满足a n =,(n ≥2)(1)求证:数列{}是等差数列;(2)求:前n 项和公式S n ;(3)证明:当n ≥2时,S 1+S 2+S 3+…+S n <.20.如图,在四棱锥P ﹣ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,PD=PA ,已知AB=2DC=10,BD=AD=8.(1)设M 是PC 上的一点,求证:平面MBD ⊥平面PAD ;(2)当三角形PAD 为正三角形时,点M 在线段PC (不含线段端点)上的什么位置时,二面角P ﹣AD ﹣M 的大小为.21.已知F 1,F 2是椭圆=1的两焦点,P 是椭圆在第一象限弧上一点,且满足=1过点P 作倾斜角互补的两条直线PA 、PB 分别交椭圆于A ,B 两点, (1)求点P 坐标;(2)求证:直线AB 的斜率为定值; (3)求△PAB 面积的最大值.22.已知函数f (x )=(1)当a ≥1时,求f (x )在[0,e](e 为自然对数的底数)上的最大值;(2)对任意的正实数a ,问:曲线y=f (x )上是否存在两点P ,Q ,使得△POQ (O 为坐标原点)是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?辽宁省大连市2017-2018学年高三上学期期末数学试卷(理科)参考答案一、选择题(每题5分,共60分)1.设U=R,M={y|y=2x+1,﹣≤x≤},N={x|y=lg(x2+3x)},则(∁UM)∩N=()A.(﹣∞,﹣3]∪(2,+∞)B.(﹣∞,﹣3)∪(0,+∞) C.(﹣∞,﹣3)∪(2,+∞)D.(﹣∞,0)∪(2,+∞)【考点】交、并、补集的混合运算.【分析】由全集U=R,先求出CU M,再由集合N能够求出N∩(∁UM).【解答】解:∵全集U=R,M={y|y=2x+1,﹣≤x≤}=[0,2],∴CUM=(﹣∞,0)∪(2,+∞),∵x2+3x>0,解得x>0或x<﹣3∴集合N=(﹣∞,﹣3)∪(0,+∞)∴N∩(∁UM)=(﹣∞,﹣3)∪(2,+∞)故选C.2.抛物线x2=﹣8y的准线方程是()A.x=B.y=2 C.y=D.y=﹣2【考点】抛物线的简单性质.【分析】由抛物线x2=﹣8y可得:2p=8,即可其准线方程.【解答】解:由抛物线x2=﹣8y可得:2p=8,∴=2,其准线方程是y=2.故选:B.3.已知动点P,定点M(1,0)和N(3,0),若|PM|﹣|PN|=2,则点P的轨迹是()A.双曲线B.双曲线的一支C.两条射线D.一条射线【考点】轨迹方程.【分析】先计算|MN|,从而有|PM|﹣|PN|=|MN|,故可确定点P的轨迹.【解答】解:由题意,|MN|=3﹣1=2∵|PM|﹣|PN|=2∴|PM|﹣|PN|=|MN|∴点P的轨迹是射线NP故选D.4.等差数列{an }中,a1+a4+a7=39,a3+a6+a9=27,则数列{an}前9项的和S9等于()A.99 B.66 C.144 D.297【考点】等差数列的前n项和.【分析】由等差数列的性质可得a4=13,a6=9,可得a4+a6=22,再由等差数列的求和公式和性质可得S9=,代值计算可得.【解答】解:由等差数列的性质可得a1+a7=2a4,a3+a9=2a6,又∵a1+a4+a7=39,a3+a6+a9=27,∴a1+a4+a7=3a4=39,a3+a6+a9=3a6=27,∴a4=13,a6=9,∴a4+a6=22,∴数列{an }前9项的和S9====99故选:A5.已知α,β都是锐角,sinα=,cosβ=,则sin(β﹣α)=()A.﹣B.C.﹣D.【考点】两角和与差的正弦函数.【分析】利用同角三角函数基本关系式可求cosα,sinβ的值,进而利用两角差的正弦函数公式即可计算得解.【解答】解:∵α,β都是锐角,sinα=,cosβ=,∴cosα==,sin=,∴sin(β﹣α)=sinβcosα﹣cosβsinα=﹣=.故选:B.6.设a,b是两条不同的直线,α,β是两个不同的平面,a⊂α,b⊥β,则α∥β是a⊥b 的()A.充分不必要条件B.必要不充分条件C.充要条件D.即非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据面面平行和线面垂直的性质,利用充分条件和必要条件的定义即可得到结论.【解答】解:若a⊥b,∵b⊥β,∴a∥β或a⊂β,此时α∥β或α与β相交,即必要性不成立,若α∥β,∵b⊥β,∴b⊥α,∵a⊂α,∴a⊥b,即充分性成立,故α∥β是a⊥b的充分不必要条件,故选:A.7.在△ABC中,若|+|=|﹣|,AB=2,AC=1,E,F为BC边的三等分点,则•=()A.B.C.D.【考点】平面向量数量积的运算.【分析】运用向量的平方即为模的平方,可得=0,再由向量的三角形法则,以及向量共线的知识,化简即可得到所求.【解答】解:若|+|=|﹣|,则=,即有=0,E,F为BC边的三等分点,则=(+)•(+)=()•()=(+)•(+)=++=×(1+4)+0=.故选B.8.已知点A、B、C、D均在球O上,AB=BC=,AC=3,若三棱锥D﹣ABC体积的最大值为,则球O的表面积为()A.36πB.16πC.12πD.π【考点】球内接多面体.【分析】确定∠BAC=120°,S△ABC=,利用三棱锥D﹣ABC的体积的最大值为,可得D 到平面ABC的最大距离,再利用勾股定理,即可求出球的半径,即可求出球O的表面积.【解答】解:设△ABC的外接圆的半径为r,则∵AB=BC=,AC=3,∴∠ABC=120°,S△ABC=,∴2r==2∵三棱锥D﹣ABC的体积的最大值为,∴D到平面ABC的最大距离为3,设球的半径为R,则R2=3+(3﹣R)2,∴R=2,∴球O的表面积为4πR2=16π.故选:B.9.一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【考点】由三视图求面积、体积.【分析】该几何体可视为正方体截去两个三棱锥,可得其体积.【解答】解:该几何体可视为正方体截去两个三棱锥,如图所示,所以其体积为.故选D.10.设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n 的取值范围是(A.(﹣∞,2﹣2]∪[2+2,+∞)B.(﹣∞,2]∪[2,+∞)C.[2﹣2,2+2] D.(﹣∞,﹣2]∪[2,+∞)【考点】直线与圆的位置关系.【分析】根据题意可得圆心(1,1)到直线(m+1)x+(n+1)y﹣2=0的距离等于半径,整理得mn=m+n+1,由可求得m+n的范围.【解答】解:由直线与圆相切,可得圆心(1,1)到直线(m+1)x+(n+1)y﹣2=0的距离等于半径,即=1,化简可得|m+n|=,整理得mn=m+n+1,由可知,m+n+1≤,解得m+n∈(﹣∞,2﹣2]∪[2+2,+∞),故选:A.11.已知函数f(x)=asinx﹣bcosx(a,b常数,a≠0,x∈R)在x=处取得最小值,则函数y=f(﹣x)是()A.偶函数且它的图象关于点(π,0)对称B.偶函数且它的图象关于点(,0)对称C.奇函数且它的图象关于点(,0)对称D.奇函数且它的图象关于点(π,0)对称【考点】正弦函数的对称性;三角函数中的恒等变换应用.【分析】根据函数f(x)在x=处取得最小值,求得a=b,f(x)=asin(x﹣),可得f(﹣x)=asinx,从而得出结论.【解答】解:由于函数f(x)=asinx﹣bcosx=sin(x+θ)(a,b常数,a≠0,x∈R),根据函数f(x)在x=处取得最小值,则f()=a+b=﹣,∴a=b,∴f(x)=asinx﹣acosx=asin(x﹣),∴f(﹣x)=asin(﹣x﹣)=﹣asinx,故函数f(x)为奇函数且它的图象关于点(π,0)对称,故选:D.12.已知f(x)为偶函数,且f(x)=f(x﹣4),在区间[0,2]上,f(x)=,g(x)=()|x|+a,若F(x)=f(x)﹣g(x)恰好有4个零点,则a的取值范围是()A.(2,)B.(2,3)C.(2,] D.(2,3]【考点】根的存在性及根的个数判断.【分析】由函数f(x)为偶函数且f(x)=f(x﹣4),则f(x)=f(﹣x),函数的周期为4,求得在区间[﹣2,0]上,f (x )的解析式,作出f (x )和g (x )的图象,通过平移,即可得到所求a 的范围.【解答】解:由函数f (x )为偶函数且f (x )=f (x ﹣4), 则f (x )=f (﹣x ),函数的周期为4,则在区间[﹣2,0]上,有f (x )=,分别作出函数y=f (x )在[﹣2,2]的图象, 并左右平移4个单位,8个单位,可得y=f (x )的图象,再作y=g (x )的图象,注意上下平移.当经过A (1,)时,a==2,经过B (3,)时,a=2,5﹣=.则平移可得2<a <时,图象共有4个交点,即f (x )﹣g (x )恰好有4个零点,故选:A .二、填空题(每题5分,共20分)13.已知等比数列{a n }前n 项和为S n ,a 1+a 2=,a 4+a 5=6,则S 6= . 【考点】等比数列的前n 项和.【分析】设等比数列{a n }的公比为q ,运用通项公式,列出方程,解得公比和首项,再由求和公式,即可得到所求值.【解答】解:设等比数列{a n }的公比为q ,由于,即a 1+a 1q=,a 1q 3+a 1q 4=6,两式相除,可得,q=2,a 1=.则S 6==.故答案为:14.椭圆C 的中点在原点,焦点在x 轴上,若椭圆C 的离心率等于,且它的一个顶点恰好是抛物线x 2=8y 的焦点,则椭圆C 的标准方程为.【考点】椭圆的标准方程.【分析】由题意设椭圆C 的标准方程为,a >b >0,由已知得,由此能求出椭圆C 的标准方程.故答案为:.【解答】解:由题意设椭圆C 的标准方程为,a >b >0,∵抛物线x 2=8y 的焦点为F (0,2),∴由已知得,解得a=4,b=2,∴椭圆C 的标准方程为.故答案为:.15.设直线x ﹣3y+m=0(m ≠0)与双曲线=1(a >0,b >0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.【考点】双曲线的简单性质.【分析】先求出A,B的坐标,可得AB中点坐标为(,),利用点P(m,0)满足|PA|=|PB|,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x﹣3y+m=0联立,可得A(,),B(﹣,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=﹣3,∴a=2b,∴=b,∴e==.故答案为:.16.下列命题中:(1)a=4,A=30°,若△ABC唯一确定,则0<b≤4.(2)若点(1,1)在圆x2+y2+mx﹣y+4=0外,则m的取值范围是(﹣5,+∞);(3)若曲线+=1表示双曲线,则k的取值范围是(1,+∞]∪(﹣∞,﹣4];(4)将函数y=cos(2x﹣)(x∈R)的图象向左平移个单位,得到函数y=cos2x的图象.(5)已知双曲线方程为x 2﹣=1,则过点P (1,1)可以作一条直线l 与双曲线交于A ,B两点,使点P 是线段AB 的中点.正确的是 (2),(5) (填序号) 【考点】命题的真假判断与应用.【分析】由正弦定理求得sinB ,举例说明(1)错误;把点的坐标代入圆的方程说明(2)正确;由双曲线的方程可得关于k 的不等式,求得k 值说明(3)错误;由函数图形的平移可得(4)错误;利用点差法求出直线l 的方程说明(5)正确.【解答】解:对于(1),由,得sinB=.当b=8时,sinB=1,B=90°,C=60°,△ABC 唯一确定,故(1)错误;对于(2),点(1,1)在圆x 2+y 2+mx ﹣y+4=0外,则12+12+m ﹣1+4>0,即m >﹣5,故(2)正确;对于(3),若曲线+=1表示双曲线,则(4+k )(1﹣k )<0,解得k >1或k <﹣4,即k 的取值范围是(1,+∞)∪(﹣∞,﹣4),故(3)错误;对于(4),将函数y=cos (2x ﹣)(x ∈R )的图象向左平移个单位,得到函数图象的解析式为y=cos[2(x+)]=cos (2x+),故(4)错误;对于(5),设A (x 1,y 1),B (x 2,y 2),则,,两式作差得:,∴,∴k AB =2,此时直线方程为y ﹣1=2(x ﹣2),即y=2x ﹣3,联立,得2x 2﹣12x+11=0,△=144﹣88=56>0,故(5)正确.∴正确命题的序号是(2),(5). 故答案为:(2),(5).三、解答题(本大题共有6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.已知函数f (x )=|2x ﹣a|+|x+1|.(Ⅰ)当a=1时,解不等式f(x)<3;(Ⅱ)若f(x)的最小值为1,求a的值.【考点】绝对值不等式的解法.【分析】(Ⅰ)当a=1时,求出函数的分段函数形式,然后求解不等式f(x)<3的解集即可;(Ⅱ)利用绝对值的几何意义求出f(x)的最小值的表达式,利用最小值为1,求a的值.【解答】解:(Ⅰ)因为f(x)=|2x﹣1|+|x+1|=;且f(1)=f(﹣1)=3,所以,f(x)<3的解集为{x|﹣1<x<1};…(Ⅱ)|2x﹣a|+|x+1|=|x﹣|+|x+1|+|x﹣|≥|1+|+0=|1+|当且仅当(x+1)(x﹣)≤0且x﹣=0时,取等号.所以|1+|=1,解得a=﹣4或0.…18.已知函数f(x)=2cos2x+sin(2x﹣)(1)求函数f(x)的单调增区间;最大值,以及取得最大值时x的取值集合;(2)已知△ABC中,角A、B、C的对边分别为a,b,c,若f(A)=,b+c=2,求实数a的取值范围.【考点】三角函数的最值;正弦函数的单调性.【分析】(1)化简可得解析式f(x)=sin(2x+)+1,从而可求函数f(x)的单调增区间;函数f(x)的最大值,并写出f(x)取最大值时x的取值集合;(2)由题意,f(A)=sin(2A+)+1=,化简可求得A的值,在△ABC中,根据余弦定理,由b+c=2,知bc≤1,即a2≥1.又由b+c>a得a<2,即可求实数a的取值范围.【解答】解:(1)f(x)=2cos2x+sin(2x﹣)=cos2x+sin2x+1=sin(2x+)+1,2kπ﹣≤2x+≤2kπ+,可得函数f(x)的单调增区间[kπ﹣,kπ+](k∈Z),函数f(x)的最大值为2.当且仅当sin(2x+)=1,即2x+=2kπ+,即x=kπ+(k∈Z)时取到.所以函数最大值为2时x 的取值集合为{x|x=k π+,k ∈Z}.…(2)由题意,f (A )=sin (2A+)+1=,化简得sin (2A+)=.∵A ∈(0,π),∴2A+=,∴A=.在△ABC 中,根据余弦定理,得a 2=b 2+c 2﹣bc=(b+c )2﹣3bc . 由b+c=2,知bc ≤1,即a 2≥1. ∴当b=c=1时,取等号. 又由b+c >a 得a <2.所以a 的取值范围是[1,2 ).…19.已知数列{a n }中,a 1=1,其前n 项和为S n ,且满足a n =,(n ≥2)(1)求证:数列{}是等差数列;(2)求:前n 项和公式S n ;(3)证明:当n ≥2时,S 1+S 2+S 3+…+S n <. 【考点】数列递推式;数列的求和.【分析】(1)当n ≥2时,,S n ﹣1﹣S n =2S n S n ﹣1,由此能证明数列{}是以1为首项,2为公差的等差数列.(2)由=1+(n ﹣1)×2=2n ﹣1,能求出前n 项和公式S n .(3)由==,利用裂项求和法能证明S 1+S 2+S 3+…+S n <.【解答】证明:(1)∵数列{a n }中,a 1=1,其前n 项和为S n ,且满足a n =,(n ≥2)∴当n ≥2时,,S n ﹣1﹣S n =2S n S n ﹣1,∴当n ≥2时,,∴数列{}是以1为首项,2为公差的等差数列.解:(2)由(1)得=1+(n ﹣1)×2=2n ﹣1,∴S n =.证明:(3)由(2)知:当n ≥2时,==,∴S 1+S 2+S 3+…+S n <1+(1﹣)<﹣<.∴S 1+S 2+S 3+…+S n <.20.如图,在四棱锥P ﹣ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,PD=PA ,已知AB=2DC=10,BD=AD=8.(1)设M 是PC 上的一点,求证:平面MBD ⊥平面PAD ;(2)当三角形PAD 为正三角形时,点M 在线段PC (不含线段端点)上的什么位置时,二面角P ﹣AD ﹣M 的大小为.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定.【分析】(1)通过证明BD ⊥平面PAD ,利用直线与平面垂直的判定定理证明平面MBD ⊥平面PAD .(2)以OA 、OE 、OP 为x ,y ,z 轴,建空间直角坐标系,求出点O ,A ,D ,B ,P ,C 的坐标,设(0<λ<1),平面PAD 的法向量可取:,求出平面MAD 的法向量为,利用空间向量的数量积,结合二面角P ﹣AD ﹣M 的大小为.求出.【解答】(本小题满分12分)解:(1)证明:因为BD=AD=8,得BD=8,AD=6,又AB=10, 所以有AD 2+BD 2=AB 2,即AD ⊥BD ,又因为平面PAD ⊥平面ABCD ,且交线为AD ,所以PD ⊥平面PAD , BD ⊂平面BDM ,故平面MBD ⊥平面PAD .(2)由条件可知,三角形PAD 为正三角形,所以取AD 的中点O ,连PO ,则PO 垂直于AD , 由于平面PAD ⊥平面ABCD ,所以PO 垂直于平面ABCD ,过O 点作BD 的平行线,交AB 于点E ,则有OE ⊥AD ,所以分别以OA 、OE 、OP 为x ,y ,z 轴,建空间直角坐标系所以点O (0,0,0),A (3,0,0),D (﹣3,0,0),B (﹣3,8,0),P (0,0,3),由于AB ∥DC 且AB=2DC ,得到C (﹣6,4,0),设(0<λ<1),则有,因为由(1)的证明可知BD ⊥平面PAD ,所以平面PAD 的法向量可取:,设平面MAD 的法向量为,则有,即有由由二面角P ﹣AD ﹣M 的大小为. ==,解得故当M 满足:PM=PC 时符合条件.21.已知F 1,F 2是椭圆=1的两焦点,P 是椭圆在第一象限弧上一点,且满足=1过点P 作倾斜角互补的两条直线PA 、PB 分别交椭圆于A ,B 两点, (1)求点P 坐标;(2)求证:直线AB 的斜率为定值; (3)求△PAB 面积的最大值.【考点】直线与圆锥曲线的关系;平面向量数量积的运算.【分析】(1)求出椭圆的两焦点坐标,设P (x ,y ),(x >0,y >0),由数量积坐标公式和点在椭圆上,列出方程,解出,即可得到P 的坐标;(2)设出直线PA ,PB 的方程,联立椭圆方程,消去y ,得到x 的二次方程,运用韦达定理,即可解得A ,B 的横坐标,再由直线方程,得到纵坐标,再由斜率公式,即可得证;(3)设出直线AB 的方程,联立椭圆方程,消去y ,得到x 的方程,运用韦达定理,以及弦长公式和点到直线的距离公式,再由面积公式,运用基本不等式,即可得到最大值.【解答】(1)解:F 1,F 2是椭圆=1的两焦点,则c==,即有F 1(0,),F 2(0,﹣),设P (x ,y ),(x >0,y >0),则由=1,得x 2+y 2=3,又=1,解得,x=1,y=.则有点P 的坐标为;(2)证明:由题意知,两直线PA 、PB 的斜率必存在,设直线PB 的斜率为k ,则直线PB 的方程为,由于过点P 作倾斜角互补的两条直线PA 、PB ,则直线PA :y ﹣=﹣k (x ﹣1).由,消去y ,得,设A (x A ,y A ),B (x B ,y B ),由韦达定理,得1+x B =,即有,y B =同理可得,y A =,所以为定值.(3)解:由(2)可设直线AB 的方程为,联立方程,得,消去y ,得,由判别式8m 2﹣16(m 2﹣4)>0,得,x 1+x 2=﹣m ,x 1x 2=,|AB|==易知点P 到直线AB 的距离为,所以,当且仅当m=±2时取等号,满足,所以△PAB 面积的最大值为.22.已知函数f (x )=(1)当a ≥1时,求f (x )在[0,e](e 为自然对数的底数)上的最大值;(2)对任意的正实数a ,问:曲线y=f (x )上是否存在两点P ,Q ,使得△POQ (O 为坐标原点)是以O 为直角顶点的直角三角形,且此三角形斜边中点在y 轴上? 【考点】利用导数研究函数的单调性.【分析】(1)当0≤x <e 时,求导函数,可得f (x )在区间[0,e]上的最大值;(2)假设曲线y=f (x )上存在两点P 、Q 满足题设要求,则点P 、Q 只能在y 轴两侧.设P 、Q 的坐标,由此入手能得到对任意给定的正实数a ,曲线y=f (x )上存在两点P 、Q ,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上.【解答】解:(1)∵f(x)=,当0≤x<1时,f′(x)=﹣3x2+2x=﹣3x(x﹣),令f'(x)>0,解得:0≤x<,令f′(x)<0,解得:<x<1,故f(x)在[0,)递增,在(,1)递减,而f()=,∴f(x)在区间[0,1)上的最大值为,1≤x<e时,f(x)=alnx,f′(x)=>0,f(x)在[1,e]递增,f(x)max=f(e)=a≥1,综上f(x)在[0,e]的最大值是a;(2)曲线y=f(x)上存在两点P、Q满足题设要求,则点P,Q只能在y轴的两侧,不妨设P(t,f(t))(t>0),则Q(﹣t,t3+t2),显然t≠1,∵△POQ是以O为直角顶点的直角三角形,∴•=0,即﹣t2+f(t)(t3+t2)=0.(1)是否存在两点P、Q等价于方程(1)是否有解.若0<t<1,则f(t)=﹣t3+t2,代入(1)式得,﹣t2+(﹣t3+t2)(t3+t2)=0,即t4﹣t2+1=0,而此方程无实数解,因此t>1.∴f(t)=alnt,代入(1)式得,﹣t2+(alnt)(t3+t2)=0,即=(t+1)lnt.(*),考察函数在h(x)=(x+1)lnx(x≥1),则h′(x)=lnx++1>0,∴h(x)在[1,+∞)上单调递增,∵t>1,∴h(t)>h(1)=0,当t→+∞时,h(t)→+∞,∴h(t)的取值范围是(0,+∞).∴对于a>0,方程(*)总有解,即方程(1)总有解.因此对任意给定的正实数a,曲线y=f(x)上总存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上.。
2017-2018学年辽宁省大连市高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={1,2},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B的子集共有()A.2个B.4个C.6个D.8个2.复数z=1+ai(a∈R)在复平面对应的点在第一象限,且||=,则z的虚部为()A.2 B.4 C.2i D.4i3.对于直线m,n和平面α,β,能得出α⊥β的一个条件是()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β4.执行如图的程序框图,如果输入x=1,则输出t的值为()A.6 B.8 C.10 D.125.已知{a n}为等差数列,3a4+a8=36,则{a n}的前9项和S9=()A.9 B.17 C.36 D.816.已知函数f(x)=﹣x2﹣x+2,则函数y=f(﹣x)的图象为()A.B.C.D.7.已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3 B.=2x﹣2.4 C.=﹣2x+9.5 D.=﹣0.3x+4.48.如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为()A.64 B.C.16 D.9.D是△ABC所在平面内一点,=λ+μ(λ,μ∈R),则0<λ<1,0<μ<1是点D在△ABC内部(不含边界)的()A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件10.命题p:“∃x0∈[0,],sin2x0+cos2x0>a”是假命题,则实数a的取值范围是()A.a<1 B.a<C.a≥1 D.a≥11.过抛物线C:y2=4x的焦点F的直线l交C于A,B两点,点M(﹣1,2),若•=0,则直线l的斜率k=()A.﹣2 B.﹣1 C.1 D.212.函数f(x)=e ax﹣lnx(a>0)存在零点,则实数a的取值范围是()A.0<a≤B.0<a≤C.a≥D.a≥二、填空题:本大题共4小题,每小题5分,共20分。
I 2018年大连市高三双基测试卷数学(理科)命题人:王 < 手飞.邯汝姣陈威赵文莲*5:i・本试巻分第1 *1远幵疋丿「片U匸遶甘题两邙分•其中第n卷第22題〜第23题为选考题,其它题为盜考是. r2.考生作答时,将签案芻在菸题卡上,在本试汞上#题无效.考试结未后,琴本试电和答题卡一并交炉參考公式:--球的表面积公式:S=4X R,其申R听*-第I稚(选择题共60分人一.选择H(本大题共12小題,每小思5牙•灭60分.在每小题给出旳四个选項中,只有_ 项是符合题目要求的〉.••已知全集U={1,2,3,4,5,6,7,8},集合A={1,3,5,6} ,B={2,5,7} ,>J(CuA)nB«() (D){2,5,7)第1页(理科数学试卷共6页〉(A){2} (B){7)!・已知复数±=吿。
为虔数单位),则x=⑻-*+窃3.已知直线人加,平面a、0、y,则下列条件能推出(A〉/Ua,mU0,a〃pCB)a 〃目,a fl y=/,0门y =加(C"〃a,mUa(D"Ua・af)p=m .y ................................L已知某班一次数学测验男女生成填的茎叶图如图关于该班男女生成绩判斷正确的是(A)男生平均分高,波动大(B)男生平均分高,波动小:(C)男生平均分低,波动大.(D》男生平均分低,波动小9"l〃rn的毘所示,則下列()—g-女97/ 8981 9114789765 101235678842 11124567653 12b T—7321 13 |b863) 14 10) 15 1(C)⑵ 7)5•鲁如图所示,输出的s 是数列㈣的前100頊和,则判惭框中 (A)*<100: 〉(BM>100 ■ (C) *<101 (D) 4>101工 p+lNo6.设实数工,,满吕约束条件2工+ y —1二0,则目标函数z=2z + y 的取lx —Ko值范围为(A)[—8,2] (B)[-8,1] (C)[2 > 4~°°)(D)[l,+8)7. 已知等比效列3・}的前"项和为S.5WN+),且成等差数列,则数列的 公比g 为 ”()(A)l(B) — 1(C)l 或一L(D)28. 2017年12月31日,大连市在星梅湾大桥举行了迎新年烟花晚会,某班班主任老师了解该班甲、乙、丙、丁四位同学是否去现场观頁了该晚会,四位同学回答如下: 甲:我们四人都没有去看. 乙:我们四人有人去看了. 丙:乙和丁至少有一人没有去看. 丁 :我没去看.•后来证实上述四人有两人说真话,阳人说假话. 根据以上信息,判断正确的选项为(>(A)说真话的是乙和丁 (B)说真话的是乙和丙 (C)说真话的是甲和丙(D)说真话的是丙和丁9 •巳知直线2交圆C 于A 、B 两点"不过08心C ・且|AB|=2,则忆•恥=< )(A)丄(B)l (CM (D)2 :、2]0•已知抛物线C :y =2px(/>>0)的焦点为 mF 作直线/交拋物线C 于A 、B 两点•若|AF|=£|BFI=2,则 p=第2页(理科数学试卷共&页)(B)| <C)2(D){11•已知函数只工)"-2云+(aT )=的图象与工抽相切,则实数°所有可能的值之和 为(A)l(A)l (B)2(03(D)6)⑹14兀'012用 0)1()^JKD ■(非选择财共90分〉.衣專色招必才題令堆才题腐押分■第13题〜第21题为必考题,爭道试题考生那必须 作#•第22 JI 〜第23题外堆才題■才生根扔妥現作#・ 二、填空■(本大翱共4小题・毎小題5分・#力另13. (x+2/的展开式中分顼的系数为* _____________14・双曲级G 牙一若8心>0』>0)的一条渐近线方程为> = 2x,则双曲线C 的离心率 为 ・15. fig 数— flina >x4-5/Jcos«?x (a ;>0)的图象在y 轴右侧的第一个量髙点的横坐标为巻•则实tta >« _________ ・16. 巳知关于乂的不笹式&才一2" — 3)ln 马丄二0在工>一1时恒成立,则实数a 的取值集合为 ________ ・三、解答■(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步甌7.(本小题滴分12分〉如图,巳知AABC 中,点D 在边BC 上,2为^BAC 的角平分线,且AB=1,AD=^. AC^2.(I )求器的值(说明理由卄(H )求/MBC 的面积•、第3页(理科数学试卷共6页)•. K* d < • • '••• e • •* •18・(本小題價分12分)随鲁移动支付的普及•中国人的生活方式正悄拔巨变,带智能手机,不带钱包出门理渐成为中国人的新习惯.2017年我国移动支付增长迅猛•据统计•某支付平台2017年移动支付的笔数占总支付笔数的80%.< I)从该支付平台2017年的所有支付中任取10笔,求移动支付笔数的期望和方差, (II )现有500名便用该支付平台的用户,其中300名是城市用户・200名是农村用户・鸿査他们2017年个人移动支付的比例是否达到了80% •得到2X2列联表如下:艰据上表数据•问是否有95%的把握认为2017年个人移动支付比例达到了80%与谈用户是城市用户还是农村用户有关?酣2 = _______ n((id—bc)* ______昭:才一(a+6〉(c+H)(a+c)(6+石0.050 0.010k 3.841 - 6.6359.(本小题满分12分、如图(1)所示,长方形ABCD中,AB=折,BC=1,沿着该长方形对角线BD将ABCD 折起,得到平面BUD,且满足平面BCD丄平面ABD,如图(2)所示.(I)求证:ZADC'H90°$(n)求二面角B-AU-D的余弦值..4页(理科数学试卷共6页)第5贡(理科数学试卷共6页)20.(本小题满分12勺、已知椭圆话+4心皿左朴点分别•点P 为橢 圆C 上一动点•点A 的坐标为(3鼻"的育心率为2•(I )求证:IPF.I-I PA I 的最大值为吧°黑了蔦;,O 为坐标原& *(H )已知动直线律AF,平行,/与椭圆。
2017-2018学年辽宁省大连市高三双基测试数学试卷(理科)一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={2,4,6,8,10},集合A,B满足∁U(A∪B)={8,10},A∩∁U B={2},则集合B=()A.{4,6}B.{4}C.{6}D.Φ2.已知复数z=1+i,则z4=()A.﹣4i B.4i C.﹣4 D.43.已知函数f(x)定义域为R,则p:“函数f(x)为偶函数”是q:“∃x0∈R,f(x0)=f(﹣x0)”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.执行如图的程序框图,输出的C的值为()A.3 B.5 C.8 D.135.已知互不重合的直线a,b,互不重合的平面α,β,给出下列四个,错误的是()A.若a∥α,a∥β,α∩β=b,则a∥b B.若α⊥β,a⊥α,b⊥β则a⊥bC.若α⊥β,α⊥γ,β∩γ=a,则a⊥αD.若α∥β,a∥α,则a∥β6.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱B.钱C.钱D.钱7.△ABC中,AB=2,AC=3,∠B=60°,则cosC=()A.B.C.D.8.已知点(x,y)满足不等式组,则z=x﹣2y的最大值为()A.﹣7 B.﹣1 C.1 D.29.若抛物线y2=4x上一点P到其焦点F的距离为2,O为坐标原点,则△OFP的面积为()A.B.1 C.D.210.已知直线y=x+m和圆x2+y2=1交于A、B两点,O为坐标原点,若,则实数m=()A.±1 B.C.D.11.在区间[0,π]上随机地取两个数x、y,则事件“y≤sinx”发生的概率为()A.B.C. D.12.函数f(x)是定义在(0,+∞)上的单调函数,且对定义域内的任意x,均有f(f(x)﹣lnx﹣x3)=2,则f(e)=()A.e3+1 B.e3+2 C.e3+e+1 D.e3+e+2二.填空题(本大题共4小题,每小题5分,共20分)13.双曲线x2﹣2y2=1的渐近线方程为.14.的展开式中,x4项的系数为(用数字作答).15.数列{a n}前n项和,则a n=.16.如图,在小正方形边长为1的网格中画出了某多面体的三视图,则该多面体的外接球表面积为.三.解答题(本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)经过点(,﹣2),(,2),且在区间(,),上为单调函数.(Ⅰ)求ω,φ的值;(Ⅱ)设a n=nf()(n∈N*),求数列{a n}的前30项和S30.18.2015年“双十一”当天,甲、乙两大电商进行了打折促销活动,某公司分别调查了当天在甲、乙电商购物的1000名消费者的消费金额,得到了消费金额的频数分布表如下:乙电商消费金额的中位数的大小以及方差的大小(其中方差大小给出判断即可,不必说明理由);(Ⅱ)(ⅰ)根据上述数据,估计“双十一”当天在甲电商购物的大量的消费者中,消费金额小于3千元的概率;(ⅱ)现从“双十一”当天在甲电商购物的大量的消费者中任意调查5位,记消费金额小于3千元的人数为X,试求出X的期望和方差.19.如图,四棱锥P﹣ABCD中,底面ABCD是边长为3的菱形,∠ABC=60°.PA⊥面ABCD,且PA=3.F在棱PA上,且AF=1,E在棱PD上.(Ⅰ)若CE∥面BDF,求PE:ED的值;(Ⅱ)求二面角B﹣DF﹣A的大小.20.已知椭圆C :=1(a >b >0)的左焦点分别为F 1(﹣c ,0),F 2(c ,0),过F 2作垂直于x 轴的直线l 交椭圆C 于A 、B 两点,满足|AF 2|=c .(1)求椭圆C 的离心率;(2)M 、N 是椭圆C 短轴的两个端点,设点P 是椭圆C 上一点(异于椭圆C 的顶点),直线MP 、NP 分别和x 轴相交于R 、Q 两点,O 为坐标原点,若|OR |•|OQ |=4,求椭圆C 的方程.21.设函数(x ∈R ,实数a ∈[0,+∞),e=2.71828…是自然对数的底数,).(Ⅰ)若f (x )≥0在x ∈R 上恒成立,求实数a 的取值范围;(Ⅱ)若e x ≥lnx +m 对任意x >0恒成立,求证:实数m 的最大值大于2.3.[选修4-1:几何证明选讲](共1小题,满分10分)22.如图,AB 是⊙O 的直径,DA ⊥AB ,CB ⊥AB ,DO ⊥CO (Ⅰ)求证:CD 是⊙O 的切线;(Ⅱ)设CD 与⊙O 的公共点为E ,点E 到AB 的距离为2,求+的值.[选修4-4:坐标系与参数方程](共1小题,满分0分)23.在平面直角坐标系xOy 中,曲线C 1:(φ为参数,实数a >0),曲线C 2:(φ为参数,实数b >0).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θ=α(ρ≥0,0≤α≤)与C 1交于O 、A 两点,与C 2交于O 、B 两点.当α=0时,|OA |=1;当α=时,|OB |=2.(Ⅰ)求a ,b 的值;(Ⅱ)求2|OA |2+|OA |•|OB |的最大值.[选修4-5:不等式选讲](共1小题,满分0分)24.设函数f (x )=|2x +a |+|x ﹣|(x ∈R ,实数a <0).(Ⅰ)若f (0)>,求实数a 的取值范围;(Ⅱ)求证:f (x )≥.2016年辽宁省大连市高三双基测试数学试卷(理科)参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={2,4,6,8,10},集合A,B满足∁U(A∪B)={8,10},A∩∁U B={2},则集合B=()A.{4,6}B.{4}C.{6}D.Φ【考点】交、并、补集的混合运算.【分析】由A与B并集的补集得到元素8,10不属于B,再由A与B补集的交集得到元素2不属于B,即可得出B,【解答】解:∵全集U={2,4,6,8,10},∁U(A∪B)={8,10},∴A∪B={2,4,6},又∵A∩{∁U B}={2},∴B={4,6}.故选:A.2.已知复数z=1+i,则z4=()A.﹣4i B.4i C.﹣4 D.4【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:∵z=1+i,∴z2=(1+i)2=2i,则z4=(2i)2=﹣4.故选:C.3.已知函数f(x)定义域为R,则p:“函数f(x)为偶函数”是q:“∃x0∈R,f(x0)=f(﹣x0)”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据函数奇偶性的定义结合充分条件和必要条件的定义进行判断即可.【解答】解:若函数f(x)为偶函数,则∀x∈R,f(﹣x)=f(x),则∃x0∈R,f(x0)=f(﹣x0)成立,则充分性成立,若f(x)=x2,﹣1≤x≤2,满足f(﹣1)=f(1),但函数f(x)不是偶函数,故必要性不成立,即p是q的充分不必要条件,故选:A.4.执行如图的程序框图,输出的C的值为()A.3 B.5 C.8 D.13【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算变量C的值并输出,模拟程序的运行,对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:模拟执行程序,可得A=1,B=1,k=3满足条件k≤5,C=2,A=1,B=2,k=4满足条件k≤5,C=3,A=2,B=3,k=5满足条件k≤5,C=5,A=3,B=5,k=6不满足条件k≤5,退出循环,输出C的值为5.故选:B.5.已知互不重合的直线a,b,互不重合的平面α,β,给出下列四个,错误的是()A.若a∥α,a∥β,α∩β=b,则a∥b B.若α⊥β,a⊥α,b⊥β则a⊥bC.若α⊥β,α⊥γ,β∩γ=a,则a⊥αD.若α∥β,a∥α,则a∥β【考点】空间中直线与平面之间的位置关系.【分析】由线线平行的性质定理能判断A的正误;由面面垂直和线面垂直的性质定理能判断B的正误;由线面垂直的判定定理能判断C的正误;在D中,a∥β或a⊂β.【解答】解:由互不重合的直线a,b,互不重合的平面α,β,知:在A中,由于α∩β=b,a∥α,a∥β,过直线a作与α、β都相交的平面γ,记α∩γ=d,β∩γ=c,则a∥d且a∥c,∴d∥c.又d⊂α,α∩β=b,∴d∥b.∴a∥b.故A正确;在B中,若α⊥β,a⊥α,b⊥β,则由面面垂直和线面垂直的性质得a⊥b,故B正确;在C中,若α⊥β,α⊥γ,β∩γ=a,则由线面垂直的判定定理得a⊥α,故C正确;在D中,若α∥β,a∥α,则a∥β或a⊂β,故D错误.故选:D.6.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱B.钱C.钱D.钱【考点】等差数列的通项公式.【分析】依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,由题意求得a=﹣6d,结合a﹣2d+a﹣d+a+a+d+a+2d=5a=5求得a=1,则答案可求.【解答】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,∴a=1,则a﹣2d=a﹣2×=.故选:B.7.△ABC中,AB=2,AC=3,∠B=60°,则cosC=()A.B.C.D.【考点】正弦定理.【分析】由已知及正弦定理可得sinC==,又AB<AC,利用大边对大角可得C为锐角,根据同角三角函数基本关系式即可求得cosC得值.【解答】解:∵AB=2,AC=3,∠B=60°,∴由正弦定理可得:sinC===,又∵AB<AC,C为锐角,∴cosC==.故选:D.8.已知点(x,y)满足不等式组,则z=x﹣2y的最大值为()A.﹣7 B.﹣1 C.1 D.2【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=x﹣2y,得y=,平移直线y=,由图象可知当直线y=经过点B时,直线y=的截距最小,此时z最大,由,解得,即B(5,2),此时z max=5﹣2×2=1.故选:C.9.若抛物线y2=4x上一点P到其焦点F的距离为2,O为坐标原点,则△OFP的面积为()A.B.1 C.D.2【考点】抛物线的简单性质.【分析】利用抛物线的定义,求出P的坐标,然后求出三角形的面积.【解答】解:由抛物线定义,|PF|=x P+1=2,所以x P=1,|y P|=2,所以,△PFO的面积S=|y P|==1.故选:B10.已知直线y=x+m和圆x2+y2=1交于A、B两点,O为坐标原点,若,则实数m=()A.±1 B.C.D.【考点】直线与圆的位置关系;平面向量数量积的运算.【分析】联立,得2x2+2mx+m2﹣1=0,由此利用根的判别式、韦达定理、向量的数量积能求出m.【解答】解:联立,得2x2+2mx+m2﹣1=0,∵直线y=x+m和圆x2+y2=1交于A、B两点,O为坐标原点,∴△=4m2+8m2﹣8=12m2﹣8>0,解得m>或m<﹣,设A(x1,y1),B(x2,y2),则x1+x2=﹣m,,y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2,=(﹣x1,﹣y1),=(x2﹣x1,y2﹣y1),∵,∴=+y12﹣y1y2=1﹣﹣+m2﹣m2=2﹣m2=,解得m=.故选:C.11.在区间[0,π]上随机地取两个数x、y,则事件“y≤sinx”发生的概率为()A.B.C. D.【考点】几何概型.【分析】确定区域的面积,即可求出事件“y≤sinx”发生的概率.【解答】解:在区间[0,π]上随机地取两个数x、y,构成区域的面积为π2;事件“y≤sinx”发生,区域的面积为=2,∴事件“y≤sinx”发生的概率为.故选:D.12.函数f(x)是定义在(0,+∞)上的单调函数,且对定义域内的任意x,均有f(f(x)﹣lnx﹣x3)=2,则f(e)=()A.e3+1 B.e3+2 C.e3+e+1 D.e3+e+2【考点】函数单调性的性质.【分析】由题意得f(x)﹣lnx﹣x3是定值,令f(x)﹣lnx﹣x3=t,得到lnt+t3+t=2,求出t的值,从而求出f(x)的表达式,求出f(e)即可.【解答】解:∵函数f(x)对定义域内的任意x,均有f(f(x)﹣lnx﹣x3)=2,则f(x)﹣lnx﹣x3是定值,不妨令f(x)﹣lnx﹣x3=t,则f(t)=lnt+t3+t=2,解得:t=1,∴f(x)=lnx+x3+1,∴f(e)=lne+e3+1=e3+2,故选:B二.填空题(本大题共4小题,每小题5分,共20分)13.双曲线x2﹣2y2=1的渐近线方程为y=±x.【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,求得a,b,由渐近线方程为y=±x,即可得到所求方程.【解答】解:双曲线x2﹣2y2=1即为x2﹣=1,可得a=1,b=,渐近线方程为y=±x,即为y=±x.故答案为:y=±x.14.的展开式中,x4项的系数为﹣15(用数字作答).【考点】二项式系数的性质.【分析】根据二项式(x﹣)10的展开式中通项公式,求出展开式中x4项的系数.【解答】解:(x﹣)10的展开式中的通项为=•(﹣)r•x10﹣2r,T r+1令10﹣2r=4,解得r=3,所以展开式中x4项的系数为•=﹣15.故答案为:﹣15.15.数列{a n}前n项和,则a n=.【考点】数列递推式.求得通项公式,验证首项后【分析】由数列的前n项和求出首项,再由n≥2时,a n=S n﹣S n﹣1可得数列{a n}的通项公式.【解答】解:∵,∴a1=S1=2,=2n﹣2n﹣1=2n﹣1,当n≥2时,a n=S n﹣S n﹣1当n=1时,2n﹣1=1≠a1,∴,故答案为:a n=.16.如图,在小正方形边长为1的网格中画出了某多面体的三视图,则该多面体的外接球表面积为34π.【考点】简单空间图形的三视图;球的体积和表面积.【分析】由三视图知,该几何体是一个侧面与底面垂直的三棱锥,画出直观图,再建立空间直角坐标系,求出三棱锥外接球的球心与半径,从而求出外接球的表面积.【解答】解:由三视图知,该几何体是三棱锥S﹣ABC,且三棱锥的一个侧面SAC与底面ABC 垂直,其直观图如图所示;由三视图的数据可得OA=OC=2,OB=OS=4,建立空间直角坐标系O﹣xyz,如图所示;则A(0,﹣2,0),B(4,0,0),C(0,2,0),S(0,0,4),则三棱锥外接球的球心I在平面xOz上,设I(x,0,z);由得,,解得x=z=;∴外接球的半径R=|BI|==,∴该三棱锥外接球的表面积S=4πR2=4π×=34π.故答案为:34π.三.解答题(本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)经过点(,﹣2),(,2),且在区间(,),上为单调函数.(Ⅰ)求ω,φ的值;(Ⅱ)设a n=nf()(n∈N*),求数列{a n}的前30项和S30.【考点】数列的求和;正弦函数的图象.【分析】(Ⅰ)由题可得+φ=2kπ﹣, +φ=2kπ+,(k∈Z),从而解得;(Ⅱ)化简a n=nf()=2nsin(﹣)(n∈N*),而数列{2sin(﹣)}的周期为3;从而可得a3n﹣2+a3n﹣1+a3n=﹣,从而解得.【解答】解:(Ⅰ)由题可得+φ=2k π﹣, +φ=2k π+,(k ∈Z );解得ω=2,φ=2k π﹣(k ∈Z ),∵|φ|<π,∴φ=﹣.(Ⅱ)∵a n =nf ()=2nsin (﹣)(n ∈N *),而数列{2sin (﹣)}的周期为3;前三项依次为2sin0=0,2sin=,2sin=﹣,∴a 3n ﹣2+a 3n ﹣1+a 3n =﹣,∴S 30=(a 1+a 2+a 3)+…+(a 28+a 29+a 30)=﹣10.18.2015年“双十一”当天,甲、乙两大电商进行了打折促销活动,某公司分别调查了当天在甲、乙电商购物的1000名消费者的消费金额,得到了消费金额的频数分布表如下:乙电商消费金额的中位数的大小以及方差的大小(其中方差大小给出判断即可,不必说明理由);(Ⅱ)(ⅰ)根据上述数据,估计“双十一”当天在甲电商购物的大量的消费者中,消费金额小于3千元的概率;(ⅱ)现从“双十一”当天在甲电商购物的大量的消费者中任意调查5位,记消费金额小于3千元的人数为X,试求出X的期望和方差.【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【分析】(Ⅰ)由频数分布表,能作出下列频率分布直方图,并根据频率分布直方图比较消费者在甲、乙电商消费金额的中位数的大小以及方差的大小.(Ⅱ)(i)利用等可能事件概率计算公式求解.(ii)利用二项分布的性质求解.【解答】解:(Ⅰ)频率分布直方图如下图所示,…甲的中位数在区间[2,3]内,乙的中位数在区间[1,2)内,所以甲的中位数大.由频率分布图得甲的方差大.…(Ⅱ)(ⅰ)估计在甲电商购物的消费者中,购物小于3千元的概率为;…(ⅱ)由题可得购物金额小于3千元人数X~B(5,),…∴E(X)==3,D(X)=5××=.…19.如图,四棱锥P﹣ABCD中,底面ABCD是边长为3的菱形,∠ABC=60°.PA⊥面ABCD,且PA=3.F在棱PA上,且AF=1,E在棱PD上.(Ⅰ)若CE∥面BDF,求PE:ED的值;(Ⅱ)求二面角B﹣DF﹣A的大小.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)根据线面平行的性质定理进行推理得到E为PD中点即可求PE:ED的值;(Ⅱ)根据二面角的定义作出二面角的平面角,即可求二面角B﹣DF﹣A的大小.【解答】证明:(Ⅰ)过E作EG∥FD交AP于G,连接CG,连接AC交BD于O,连接FO.∵EG∥FD,EG⊄面BDF,FD⊂面BDF,∴EG∥面BDF,又EG∩CE=E,CE∥面BDF,EG,CE⊂面CGE,∴面CGE∥面BDF,…又CG⊂面CGE,∴CG∥面BDF,又面BDF∩面PAC=FO,CG⊂面PAC,∴FO∥CG.又O为AC中点,∴F为AG中点,∴FG=GP=1,∴E为PD中点,PE:ED=1:1.…(Ⅱ)过点B作BH⊥直线DA交DA延长线于H,过点H作HI⊥直线DF交DF于I,…∵PA⊥面ABCD,∴面PAD⊥面ABCD,∴BH⊥面PAD,由三垂线定理可得DI⊥IB,∴∠BIH是二面角B﹣DF﹣A的平面角.由题易得AH=,BH=,HD=,且=,∴HI=,∴tan∠BIH=×=,…∴二面角B﹣DF﹣A的大小为arcran.…20.已知椭圆C:=1(a>b>0)的左焦点分别为F1(﹣c,0),F2(c,0),过F2作垂直于x轴的直线l交椭圆C于A、B两点,满足|AF2|=c.(1)求椭圆C的离心率;(2)M、N是椭圆C短轴的两个端点,设点P是椭圆C上一点(异于椭圆C的顶点),直线MP、NP分别和x轴相交于R、Q两点,O为坐标原点,若|OR|•|OQ|=4,求椭圆C的方程.【考点】椭圆的简单性质.【分析】(1)令x=c,求得y,由题意可得=c,再由离心率公式,解方程可得e;(2)求出椭圆上下顶点坐标,设P(x o,y o),R(x1,0),Q(x2,0),利用M,P,R三点共线求出R,Q的横坐标,利用P在椭圆上,推出|OR|•|OQ|=a2即可得到a,b的值,进而得到椭圆方程.【解答】解:(1)令x=c,可得y2=b2(1﹣),即有y=±,由题意可得=c,即为6a2﹣6c2=ac,即有6﹣6e2=e,解得e=;(2)由椭圆方程知M(0,b),N(0,﹣b),另设P(x o,y o),R(x1,0),Q(x2,0),由M,P,R三点共线,知=,所以x1=;同理得x2=.|OR|•|OQ|=…①,又P在椭圆上所以+=1,即b2﹣y02=代入①得|OR|•|OQ|=a2=4,即有a=2,又e==,可得c=,b=1,椭圆的方程为+y2=1.21.设函数(x∈R,实数a∈[0,+∞),e=2.71828…是自然对数的底数,).(Ⅰ)若f(x)≥0在x∈R上恒成立,求实数a的取值范围;(Ⅱ)若e x≥lnx+m对任意x>0恒成立,求证:实数m的最大值大于2.3.【考点】利用导数求闭区间上函数的最值.【分析】(Ⅰ)分离参数,构造函数,利用导数求出函数的最值,问题得以解决;(Ⅱ)构造函数设,利用导数求出函数的最值,即可证明.【解答】解:(Ⅰ)∵,f(x)≥0在x∈R上恒成立,∴a≤,设h(x)=,∴h′(x)=,令h′(x)=0,解得x=,当x>,即h′(x)>0,函数单调递增,当x<,即h′(x)<0,函数单调递减,∴h(x)min=h()=,∴0<a≤,故a的取值范围为;(Ⅱ)设,∴,g'(x)>0,可得;g'(x)<0,可得.∴g(x)在(,+∞)上单调递增;在上单调递减.∴g(x)≥g()=,∵,∴>1.6,∴g(x)>2.3.由(Ⅰ)可得e x>x+,∴e x﹣lnx的最小值大于2.3,故若e x≥lnx+m对任意x>0恒成立,则m的最大值一定大于2.3.[选修4-1:几何证明选讲](共1小题,满分10分)22.如图,AB是⊙O的直径,DA⊥AB,CB⊥AB,DO⊥CO(Ⅰ)求证:CD是⊙O的切线;(Ⅱ)设CD与⊙O的公共点为E,点E到AB的距离为2,求+的值.【考点】与圆有关的比例线段.【分析】(Ⅰ)证明CO是∠BCD的平分线,圆心O到CD的距离等于半径,即可证明:CD 是⊙O的切线;(Ⅱ)分类讨论,过E作EF⊥AB交AB于F,过C作CG⊥AD交AD于G,交EF于H,由(Ⅰ)可得DA=DE,CB=CE.在△CGD中,有,即可求+的值.【解答】(Ⅰ)证明:由题可知DA,BC为⊙O的切线.∵∠DOC=90°,∴∠AOD+∠BOC=90°;∵∠OBC=90°,∴∠OCB+∠BOC=90°;∴∠AOD=∠OCB,∴△AOD∽△BCO,∴=,…又∵AO=OB,∴=,∴Rt△OCD∽Rt△BCO,∴∠OCD=∠BCO,∴CO是∠BCD的平分线,∴圆心O到CD的距离等于半径,∴CD是⊙O的切线;…(Ⅱ)解:若DA=CB,显然可得+=1.…若DA≠CB,不妨设DA>CB.过E作EF⊥AB交AB于F,过C作CG⊥AD交AD于G,交EF于H.由(Ⅰ)可得DA=DE,CB=CE.在△CGD中,有,即=,化简得+=1.综上: +=1.…[选修4-4:坐标系与参数方程](共1小题,满分0分)23.在平面直角坐标系xOy中,曲线C1:(φ为参数,实数a>0),曲线C2:(φ为参数,实数b>0).在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α(ρ≥0,0≤α≤)与C1交于O、A两点,与C2交于O、B两点.当α=0时,|OA|=1;当α=时,|OB|=2.(Ⅰ)求a,b的值;(Ⅱ)求2|OA|2+|OA|•|OB|的最大值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(I)由曲线C1:(φ为参数,实数a>0),利用cos2φ+sin2φ=1即可化为普通方程,再利用极坐标与直角坐标互化公式即可得出极坐标方程,进而得出a的值.同理可得b的值.(II)由(I)可得C1,C2的方程分别为ρ=cosθ,ρ=2sinθ.可得2|OA|2+|OA|•|OB|=2cos2θ+2sinθcosθ=+1,利用三角函数的单调性与值域即可得出.【解答】解:(Ⅰ)由曲线C1:(φ为参数,实数a>0),化为普通方程为(x﹣a)2+y2=a2,展开为:x2+y2﹣2ax=0,其极坐标方程为ρ2=2aρcosθ,即ρ=2acosθ,由题意可得当θ=0时,|OA|=ρ=1,∴a=.曲线C2:(φ为参数,实数b>0),化为普通方程为x2+(y﹣b)2=b2,展开可得极坐标方程为ρ=2bsinθ,由题意可得当时,|OB|=ρ=2,∴b=1.(Ⅱ)由(I)可得C1,C2的方程分别为ρ=cosθ,ρ=2sinθ.∴2|OA|2+|OA|•|OB|=2cos2θ+2sinθcosθ=sin2θ+cos2θ+1=+1,∵2θ+∈,∴+1的最大值为+1,当2θ+=时,θ=时取到最大值.[选修4-5:不等式选讲](共1小题,满分0分)24.设函数f(x)=|2x+a|+|x﹣|(x∈R,实数a<0).(Ⅰ)若f(0)>,求实数a的取值范围;(Ⅱ)求证:f(x)≥.【考点】绝对值不等式的解法;分段函数的应用.【分析】(Ⅰ)去掉绝对值号,解关于a的不等式组,求出a的范围即可;(Ⅱ)通过讨论x 的范围,结合基本不等式的性质求出求出f(x)的最小值即可.【解答】(Ⅰ)解:∵a<0,∴f(0)=|a|+|﹣|=﹣a﹣>,即a2+a+1>0,解得a<﹣2或﹣<a<0;(Ⅱ)证明:f(x)=|2x+a|+|x﹣|=,当x≥﹣时,f(x)≥﹣﹣;当<x<﹣时,f(x)>﹣﹣;当x≤时,f(x)≥﹣a﹣,∴f(x)min=﹣﹣≥2=,当且仅当﹣=﹣即a=﹣时取等号,∴f(x)≥.2016年10月17日。