2015年普通高等学校招生全国统一考试北京卷(数学理)Word版含答案
- 格式:doc
- 大小:1.03 MB
- 文档页数:10
数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2015年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)使用地区:河南、山西、河北、江西本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足1+z1z-=i ,则|z|= ( )A .1BCD .2 2.sin 20cos10cos160sin10︒︒︒︒-=( )A.BC .12-D .123.设命题:p n ∃∈Ν,22n n >,则⌝p 为( )A .2nn n ∀∈N 2,> B .2nn n ∃∈N 2,≤ C .2n n n ∀∈N 2,≤D .=2n n n ∃∈N 2,4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.3125.已知00()M x y ,是双曲线2212 xC y -=:上的一点,F 1,F 2是C 的两个焦点.若120MF MF <,则0y 的取值范围是( )A.( B.( C.( D.( 6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛 7.设D 为ABC △所在平面内一点,=3BC CD ,则( )A .1433AD AB AC =-+B .1433AD AB AC =-C .4133AD AB AC =+D .4133AD AB AC =-8.函数=cos(+)x f x ωϕ()的部分图象如图所示,则f x ()的单调递减区间为( )A .13π,π+44k k k -∈Z (),B .132π,2π+44k k k -∈Z (),C .13,+44k k k -∈Z (),D .132,2+44k k k -∈Z (),9.执行如图所示的程序框图,如果输入的0.01t =,则输出 的n =( )A .5B .6C .7D .810.25()x x y ++的展开式中,52x y 的系数为( )A .10B .20C .30D .6011.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .812.设函数()()21x f x e x ax a =--+,其中a<1,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是( )A .3[)21,e -B .43[,)23e -C .3[,)234e D .3[,)21e--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共21页)数学试卷 第5页(共21页) 数学试卷 第6页(共21页)第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.若函数()=(ln f x x x 为偶函数,则a =________.14.一个圆经过椭圆22=1164x y +的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.15.若x ,y 满足约束条件10,0,40,x x y x y -⎧⎪-⎨⎪+-⎩≥≤≤则y x 的最大值为________.16.在平面四边形ABCD 中,==75=A B C ∠∠∠︒,=2BC ,则AB 的取值范围是________.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)n S 为数列{}n a 的前n 项和.已知0n a >,2n n n +2=4+3a a S .(Ⅰ)求{}n a 的通项公式; (Ⅱ)设n n n+11=b a a ,求数列{}n b 的前n 项和.18.(本小题满分12分)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (Ⅰ)证明:平面AEC ⊥平面AFC ; (Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z(单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中i ωω=8i i=1ω∑(Ⅰ)根据散点图判断,y a bx =+与y c =+y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x ,y 的关系为z=0.2y -x .根据(Ⅱ)的结果回答下列问题:(i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11()u v ,,22(,)u v ,…,(,)n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为121()(),()nii i nii uu v v v u uu βαβ==--==--∑∑.20.(本小题满分12分)在直角坐标系xOy 中,曲线24C y x :=与直线)0(l y kx a a >:=+交于M ,N 两点.(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.21.(本小题满分12分)已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示m ,n 中的最小值,设函数()min{(),()}h x f x g x =(0)x >,讨论()h x 零点的个数.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 是O 的直径,AC 是O 的切线,BC 交O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是O 的切线; (Ⅱ)若OA ,求∠ACB 的大小.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线1C :x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()π4θρ=∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积.24.(本小题满分10分)选修4—5:不等式选讲已知函数12f x =|||x |x a -+-(),0a >. (Ⅰ)当=1a 时,求不等式1f x >()的解集;(Ⅱ)若f x ()的图象与x 轴围成的三角形面积大于6,求a 的取值范围.1sin20cos10cos20sin10sin302+==,故选10<数学试卷第7页(共21页)数学试卷第8页(共21页)数学试卷第9页(共21页)数学试卷 第10页(共21页)数学试卷 第11页(共21页)数学试卷 第12页(共21页)2exy,AB 的取值范围是(62,62)-+.11111111=235572123n b n n ⎡⎤⎛⎫⎛⎫⎛⎫++-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦=AC FG G=,⊥平面AFC⊂平面AEC3数学试卷第13页(共21页)数学试卷第14页(共21页)数学试卷第15页(共21页)数学试卷 第16页(共21页)数学试卷 第17页(共21页)数学试卷 第18页(共21页)60(Ⅰ)连接AE 90, 90,90,∴DE 是圆1AE =,CE BE ,212x -,解得∴60ACB ∠=.90,可得1sin45=2.数学试卷 第19页(共21页) 数学试卷 第20页(共21页) 数学试卷 第21页(共21页)(Ⅱ)化简函数()f x 的解析式,求得它的图像与x 轴围成的三角形的三个顶点的坐标,从而求得()f x 的图像与x 轴围成的三角形面积;再根据()f x 的图像与x 轴围成的三角形面积大于6,从而求得a 的取值范围.【考点】含绝对值不等式解法,分段函数,一元二次不等式解法.。
2015年普通高等学校招生全国统一考试(北京卷)理科数学试题答案与解析1.解析()2i 2i 2i i 12i -=-=+.故选A.2.解析不等式组表示的可行域如图所示因此,可知目标函数在()0,1处取得最大值2.故选D.3.解析运行程序的过程如下:0s =,2t =,0x =,2y =,1k =;2s =-,2t =,2x =-,2y =,2k =;4s =-,0t =,4x =-,0y =,3k =;结束.所以输出的结果为()4,0-.故选B.4.解析根据面面平行的性质,若两个面平行,则一个平面内的任意一条直线与另一个平面平行;根据面面平行的判定,若一个平面的两条相交直线分别平行另一个平面.才能推出面面平行,所以“//m β”是“//αβ”的必要而不充分条件.故选B.5.解析三视图对应的立体图形如图所示,12222ABC S =⨯⨯=△,AC BC==,1122ACP BCP S S===△△,AP BP ==ABP △是以AB 为底的等腰三角形,高122ABP S=⨯=△综上所述,表面积22S =+=+故选C.PCBA6.解析依题意,{}n a 是等差数列,若120a a +>,并不能推出230a a +>;故选项A 不正确.对于B 选项,若130a a +<,并不能推出120a a +<;故选项B 不正确.对于C 选项,若120a a <<,则210d a a =->,()()22213222a a a a a d a d -=--+=()2222220a a d d --=>,因此2a >C 正确.对于D 选项,若10a <,则()()221230a a a a d --=-…,并不能推出()()21230a a a a -->.故选C.7.解析函数不等式的求解,利用函数图像求解不等式.在同一坐标系中画出()y f x =及()2log 1y x =+的图像,如图所示.可知()()2log 1f x x +…的解集为(]1,1-.故选C.8.解析通过图像逐一研究.对于A 选项,由图可得,乙图纵坐标的最大值大于5,故选项A 不正确;对于B 选项,由图可得,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故选项B 不正确;对于C 选项,由图可得,甲车以80km /h 的速度行驶,其“燃油效率”为10km /L ,若甲车行驶1小时,消耗8升汽油,故选项C 不正确;对于选项D ,对于机动车最高限速80km /h ,相同条件下,丙车比乙车更省油.故选D.9.解析()52x +展开式的通项公式()515C 2,0,1,2,,5r r rr T x r -+== ,3x 的系数为325C 240=.10.解析依题意,双曲线()22210x y a a-=>的渐近线方程为x y a =±,则1a -=,得3a =. 11.解析极坐标中的点π2,3⎛⎫⎪⎝⎭对应直角坐标系中的点为(,极坐标方程()cos 6ρθθ=对应的直角坐标系方程为60x -=,根据点到直线的距离公式13612d +-==. 12.解析在ABC △中,sin 22sin cos sin sin A A A C C =,由正弦定理得sin sin A aC c=,由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因此sin 24321sin 64A C =⨯⨯=. 13.解析在ABC △中,点M 满足2AM MC = ,点N 满足BN NC =,则()111111323226MN MC CN AC CB AC AB AC AB AC =+=+=+-=- ,因此12x =,16y =-.CB14.解析(1)若1a =,()()()21,1,412, 1.x x f x x x x ⎧-<⎪=⎨--⎪⎩….函数()f x 的值域为[)1,-+∞,因此()f x 的最小值为1-. (2)依题意,函数()21x y a x =-<至多有一个零点.若函数()f x 恰有两个零点,则有两种情形:① 函数2xy a =-在(),1-∞上无零点,则0a …或2a …,当0a …时,函数()()()42f x x a x a =--在[)1,+∞上无零点; 当2a …时,函数()()()42f x x a x a =--在[)1,+∞上有两个零点, 故2a …;② 函数2xy a =-在(),1-∞上有1个零点,则02a <<,此时函数()()()42f x x a x a =--在[)1,+∞上恰有一个零点,故121a a <⎧⎨⎩…,解得112a <…. 综上,若函数()f x 恰有两个零点,则实数a 的取值范围是[)1,12,2⎡⎫+∞⎪⎢⎣⎭.15.解析(1)()1cos cos 222222x x x f x x x -==+-=πsin 42x ⎛⎫+-⎪⎝⎭,函数()f x 的最小正周期2πT =.(2)当π0x -剎?时,3πππ444x -+剟,π1sin 42x ⎛⎫-+ ⎪⎝⎭剟,函数()f x 在区间[]π,0-的最小值为1--. 16. 解析(1)设甲的康复事件为ξ,则()3147P ξ=…,即甲的康复时间不少于14天的概率为37. (2)设乙的康复事件为η,集合{}10,11,12,13,14,15,16A =,{}12,13,14,15,16,17,25B =,则选取病人的基本事件空间为(){},,A B ξηξη∈∈,共49个基本事件,其中符合题意的基本事件为:()13,12,()14,12,()14,13,()15,12,()15,13,()15,14,()16,12,()16,13,()16,14,()16,15,共10个,从而()1049P ξη>=.(3)可以看出A 组7个连续的正整数,B 组为12至17共6个连续的正整数和a ,从而11a =或18时,两组离散程度相同,即方差相等.17. 解析(1)因为AEF △为等边三角形,O 为EF 的中点,所以AO EF ⊥,又因为平面AEF ⊥平面EFCB ,平面AEF 平面EFCB =EF ,AO ⊂平面AEF ,所以AO ⊥平面EFCB ,所以AO BE ⊥.(2)取BC 的中点为D ,连接OD ,因为四边形EBCF 是等腰梯形,所以OD EF ⊥. 以O 为原点OE ,OD ,OA ,为x ,y ,z 轴建立直角坐标系,如图所示,则()A ,(),0,0E a,)()2,0B a -,所以(),03A E a a =,)()2,0BE a a =--,设平面AEF 的法向量为m ,显然()0,1,0=m ,设平面ABE 的法向量为(),,x y z =n ,则有00AE BE ⎧⋅=⎪⎨⋅=⎪⎩n n,即())0220ax a x a y ⎧-=⎪⎨-+-=⎪⎩,所以)1,1=-n .所以二面角F AE B --的余弦值的绝对值为cos ,⋅==m n m n m n ,又因为二面角F AE B --为钝二面角,则二面角F AE B --的余弦值为5-. (3)由(1)知AO BE ⊥,若BE ⊥平面A O C ,只需BE OC ⊥即可,由(2)知)()2,0BE a a =--,)()2,0OC a =--,0BE OC ⋅= ,得()()222320a a ----=,解得2a =(舍)或43a =. 18. 解析(1)由题可知函数()f x 的定义域是()1,1-,则()221f x x'=-,()02f '=,()00f =,从而曲线()y f x =在点()()0,0f 处的切线方程为2y x =.(2)构造辅助函数证明不等式.设()()323x g x f x x ⎛⎫=-+ ⎪⎝⎭,则()00g =,()()4222222111x g x x x x '=-+=--,当()0,1x ∈时,()0g x '>,即()g x 在()0,1上单调递增,从而()()00g x g >=,即()323x f x x ⎛⎫>+ ⎪⎝⎭对任意()0,1x ∈恒成立.(3)构造函数()()31ln ,0,113x x P x k x x x ⎛⎫+=-+∈ ⎪-⎝⎭,又()00P =,若()0P x >对()0,1x ∀∈恒成立,则()00P '…,又()()()4222212111k x P x k x x x --'=-+=--,即()020P k '=-…,得2k …,又当2k =时,()323x f x x ⎛⎫>+ ⎪⎝⎭对()0,1x ∈恒成立,因此k 的最大值为2.19. 解析(1)因为2c e a ==,所以2b a =,又点()0,1P 在椭圆C :()222210x y a b a b +=>>上,则1b =,a =C 的方程为2212x y +=,直线PA 的方程:11n y x m -=+,令0y =,可得1mx n =-,所以点M 的坐标是,01m n ⎛⎫⎪-⎝⎭. (2)点B 与A 关于x 轴对称,所以(),B m n -,直线PB 的方程:11n y x m--=+,令0y =,所以可得1m x n =+,则,01m N n ⎛⎫⎪+⎝⎭,因为OQM ONQ ∠=∠, 所以tan tan OQM ONQ ∠=∠,所以OM OQ OQ ON=,即2OQ OM ON =, 因为2222111m m m OQ OM ON n n n ==⋅=-+-,又点()(),0A m n m ≠在椭圆C 上,所以2212m n +=,即2212m n -=,所以22222m OQ m ==,得(0,Q .20. 解析(1)6,12,24.(2)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数. 由12,18236,18n n n n n a a a a a +⎧=⎨->⎩…,可归纳证明对任意n k …,n a 是3的倍数.如果1k =,则M 的所有元素都是3的倍数;如果1k >,因为12k k a a -=或1236k k a a -=-,所以12k a -是3的倍数,或1236k a --是3的倍数,于是1k a -是3的倍数.类似可得,2k a -,…,1a 都是3的倍数.从而对任意1n …,n a 是3的倍数,因此M 的所有元素都是3的倍数.综上,若集合M 存在一个元素是3的倍数,则M 的所有元素都是3的倍数.(3)由136a …,*1a ∈N ,11112,18236,18n n n n n a a a a a ----⎧=⎨->⎩…,可归纳证明()362,3,n a n = ….因为1a 是正整数,112112,18236,18a a a a a ⎧=⎨->⎩…,所以2a 是2的倍数.从而当3n …时,n a 是4的倍数.如果1a 是3的倍数,由(2)知对所有正整数n ,n a 是3的倍数,因此当3n …时,{}12,24,36n a ∈,这时,M 中的元素的个数不超过5.如果1a 不是3的倍数,由(2)知,对所有的正整数n ,n a 不是3的倍数,因此当3n …时,{}4,8,16,20,28,32n a ∈,这时M 的元素的个数不超过8.当11a =时,{}1,2,4,8,16,20,28,32M =有8个元素. 综上可知,集合M 的元素个数的最大值为8.。
2015年普通高等学校招生全国统一考试(北京)卷一.选择题:共8小题,每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.复数()2i i -=( )(A )12i + (B )12i - (C )12i -+ (D )12i -- 2.若,x y 满足010x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为( )(A )0 (B )1 (C )32 (D )2 3.执行如图所示的程序框图,输出的结果为( ) (A )()2,2- (B )()4,0- (C )()4,4- (D )()0,8-4.设,αβ是两个不同的平面,m 是直线且m α⊂,“//m β”是“//αβ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件5.某三棱锥的三视图如图所示,则该三棱锥的表面积是( )(A)2+ (B)4+(C)2+ (D )56.设{}n a 是等差数列,下列结论中正确的是( ) (A )若120a a +>,则230a a +> (B )若130a a +<,则120a a +<(C )若120a a <<,则2a > (D )若10a <,则()()21230a a a a -->7.如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x ≥+的解集是( )(A ){}|10x x -<≤ (B ){}|11x x -≤≤(C ){}|11x x -<≤ (D ){}|12x x -<≤8.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同俯视图侧(左)视图速度下的燃油效率情况。
下列叙述中正确的是( )(A )消耗1升汽油,乙车最多可行驶5千米(B )以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多(C )甲车以80千米/小时的速度行驶1小时,消耗10升汽油(D )某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油二.填空题:共6题,每小题5分,共30分。
2015 年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共 5 页, 150 分.考试时长 120 分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共 40 分)一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选出符合题目要求的一项.1.复数i 2 iA . 1 2i B. 1 2i C. 1 2ix y ≤ 0 ,2.若 x , y 满足 x y ≤ 1,则 z x 2 y 的最大值为x≥ 0 ,3A.0B.1 C. D.2 23.执行如图所示的程序框图,输出的结果为A.2,2B.4,0C.4, 4D. 1 2i D.0,8开始x=1,y=1 ,k=0 s=x-y, t=x+yx=s, y=tk=k+1否k≥ 3是输出 (x, y)结束4.设,是两个不同的平面,m是直线且m?m∥”是“∥”的.“A .充分而不必要条件B.必要而不充分条件5.某三棱锥的三视图如图所示,则该三棱锥的表面积是1211正(主)视图侧( 左 )视图俯视图A.25 B . 45C.2 25D. 5 6.设a n是等差数列 . 下列结论中正确的是A .若 a1a20 ,则 a2a30B.若 a1a30 ,则 a1a20C.若 0 a1a2,则 a2a1a3D.若 a10 ,则a2a1a2a3 0 7.如图,函数f x 的图像为折线ACB ,则不等式 f x ≥ log2x 1 的解集是y2CAO Bx-12A .x | 1x ≤ 0B .x | 1≤x≤1C.x | 1x≤ 1D.x | 1 x≤28.汽车的“燃油效率”是指汽车每消耗1 升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况 . 下列叙述中正确的是5.某三棱锥的三视图如图所示,则该三棱锥的表面积是1211正(主)视图侧( 左 )视图俯视图A.25 B . 45C.2 25D. 5 6.设a n是等差数列 . 下列结论中正确的是A .若 a1a20 ,则 a2a30B.若 a1a30 ,则 a1a20C.若 0 a1a2,则 a2a1a3D.若 a10 ,则a2a1a2a3 0 7.如图,函数f x 的图像为折线ACB ,则不等式 f x ≥ log2x 1 的解集是y2CAO Bx-12A .x | 1x ≤ 0B .x | 1≤x≤1C.x | 1x≤ 1D.x | 1 x≤28.汽车的“燃油效率”是指汽车每消耗1 升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况 . 下列叙述中正确的是5.某三棱锥的三视图如图所示,则该三棱锥的表面积是1211正(主)视图侧( 左 )视图俯视图A.25 B . 45C.2 25D. 5 6.设a n是等差数列 . 下列结论中正确的是A .若 a1a20 ,则 a2a30B.若 a1a30 ,则 a1a20C.若 0 a1a2,则 a2a1a3D.若 a10 ,则a2a1a2a3 0 7.如图,函数f x 的图像为折线ACB ,则不等式 f x ≥ log2x 1 的解集是y2CAO Bx-12A .x | 1x ≤ 0B .x | 1≤x≤1C.x | 1x≤ 1D.x | 1 x≤28.汽车的“燃油效率”是指汽车每消耗1 升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况 . 下列叙述中正确的是5.某三棱锥的三视图如图所示,则该三棱锥的表面积是1211正(主)视图侧( 左 )视图俯视图A.25 B . 45C.2 25D. 5 6.设a n是等差数列 . 下列结论中正确的是A .若 a1a20 ,则 a2a30B.若 a1a30 ,则 a1a20C.若 0 a1a2,则 a2a1a3D.若 a10 ,则a2a1a2a3 0 7.如图,函数f x 的图像为折线ACB ,则不等式 f x ≥ log2x 1 的解集是y2CAO Bx-12A .x | 1x ≤ 0B .x | 1≤x≤1C.x | 1x≤ 1D.x | 1 x≤28.汽车的“燃油效率”是指汽车每消耗1 升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况 . 下列叙述中正确的是5.某三棱锥的三视图如图所示,则该三棱锥的表面积是1211正(主)视图侧( 左 )视图俯视图A.25 B . 45C.2 25D. 5 6.设a n是等差数列 . 下列结论中正确的是A .若 a1a20 ,则 a2a30B.若 a1a30 ,则 a1a20C.若 0 a1a2,则 a2a1a3D.若 a10 ,则a2a1a2a3 0 7.如图,函数f x 的图像为折线ACB ,则不等式 f x ≥ log2x 1 的解集是y2CAO Bx-12A .x | 1x ≤ 0B .x | 1≤x≤1C.x | 1x≤ 1D.x | 1 x≤28.汽车的“燃油效率”是指汽车每消耗1 升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况 . 下列叙述中正确的是5.某三棱锥的三视图如图所示,则该三棱锥的表面积是1211正(主)视图侧( 左 )视图俯视图A.25 B . 45C.2 25D. 5 6.设a n是等差数列 . 下列结论中正确的是A .若 a1a20 ,则 a2a30B.若 a1a30 ,则 a1a20C.若 0 a1a2,则 a2a1a3D.若 a10 ,则a2a1a2a3 0 7.如图,函数f x 的图像为折线ACB ,则不等式 f x ≥ log2x 1 的解集是y2CAO Bx-12A .x | 1x ≤ 0B .x | 1≤x≤1C.x | 1x≤ 1D.x | 1 x≤28.汽车的“燃油效率”是指汽车每消耗1 升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况 . 下列叙述中正确的是5.某三棱锥的三视图如图所示,则该三棱锥的表面积是1211正(主)视图侧( 左 )视图俯视图A.25 B . 45C.2 25D. 5 6.设a n是等差数列 . 下列结论中正确的是A .若 a1a20 ,则 a2a30B.若 a1a30 ,则 a1a20C.若 0 a1a2,则 a2a1a3D.若 a10 ,则a2a1a2a3 0 7.如图,函数f x 的图像为折线ACB ,则不等式 f x ≥ log2x 1 的解集是y2CAO Bx-12A .x | 1x ≤ 0B .x | 1≤x≤1C.x | 1x≤ 1D.x | 1 x≤28.汽车的“燃油效率”是指汽车每消耗1 升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况 . 下列叙述中正确的是5.某三棱锥的三视图如图所示,则该三棱锥的表面积是1211正(主)视图侧( 左 )视图俯视图A.25 B . 45C.2 25D. 5 6.设a n是等差数列 . 下列结论中正确的是A .若 a1a20 ,则 a2a30B.若 a1a30 ,则 a1a20C.若 0 a1a2,则 a2a1a3D.若 a10 ,则a2a1a2a3 0 7.如图,函数f x 的图像为折线ACB ,则不等式 f x ≥ log2x 1 的解集是y2CAO Bx-12A .x | 1x ≤ 0B .x | 1≤x≤1C.x | 1x≤ 1D.x | 1 x≤28.汽车的“燃油效率”是指汽车每消耗1 升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况 . 下列叙述中正确的是5.某三棱锥的三视图如图所示,则该三棱锥的表面积是1211正(主)视图侧( 左 )视图俯视图A.25 B . 45C.2 25D. 5 6.设a n是等差数列 . 下列结论中正确的是A .若 a1a20 ,则 a2a30B.若 a1a30 ,则 a1a20C.若 0 a1a2,则 a2a1a3D.若 a10 ,则a2a1a2a3 0 7.如图,函数f x 的图像为折线ACB ,则不等式 f x ≥ log2x 1 的解集是y2CAO Bx-12A .x | 1x ≤ 0B .x | 1≤x≤1C.x | 1x≤ 1D.x | 1 x≤28.汽车的“燃油效率”是指汽车每消耗1 升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况 . 下列叙述中正确的是。
绝密★启用前 2015年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)使用地区:河南、山西、河北、江西本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足1+z1z-=i ,则|z|=( ) A .1B .2C .3D .2 2.sin20cos10cos160sin10︒︒︒︒-=( )A .32-B .32C .12-D .123.设命题:p n ∃∈Ν,22n n >,则⌝p 为( )A .2n n n ∀∈N 2,>B .2n n n ∃∈N 2,≤C .2n n n ∀∈N 2,≤D .=2n n n ∃∈N 2,4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.3125.已知00()M x y ,是双曲线2212x C y -=:上的一点,F 1,F 2是C 的两个焦点.若120MF MF <,则0y 的取值范围是( )A .33()33-, B .33()66-, C .2222()33-, D .2323()33-, 6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛 7.设D 为ABC △所在平面内一点,=3BC CD ,则( )A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =-8.函数=cos(+)x f x ωϕ()的部分图象如图所示,则f x ()的单调递减区间为( )A .13π,π+44k k k -∈Z (),B .132π,2π+44k k k -∈Z (),C .13,+44k k k -∈Z (),D .132,2+44k k k -∈Z (),9.执行如图所示的程序框图,如果输入的0.01t =,则输出 的n =( )A .5B .6C .7D .810.25()x x y ++的展开式中,52x y 的系数为( )A .10B .20C .30D .6011.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .812.设函数()()21x f x e x ax a =--+,其中a<1,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是( )--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________A .3[)21,e-B .43[,)23e -C .3[,)234e D .3[,)21e第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.若函数2()=()ln f x x a x x ++为偶函数,则a =________. 14.一个圆经过椭圆22=1164x y+的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.15.若x ,y 满足约束条件10,0,40,x x y x y -⎧⎪-⎨⎪+-⎩≥≤≤则y x 的最大值为________.16.在平面四边形ABCD 中,==75=A B C ∠∠∠︒,=2BC ,则AB 的取值范围是________. 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)n S 为数列{}n a 的前n 项和.已知0n a >,2n n n +2=4+3a a S .(Ⅰ)求{}n a 的通项公式;(Ⅱ)设n n n+11=b a a ,求数列{}n b 的前n 项和.18.(本小题满分12分)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (Ⅰ)证明:平面AEC ⊥平面AFC ; (Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z(单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyω28i=1()ixx -∑28i=1()iωω∑-8i=1()()iiy x x y-∑-8i=1()()ii y y ωω--∑46.65636.8289.8 1.6 1 469108.8表中i ω=i x ,ω=188i i=1ω∑(Ⅰ)根据散点图判断,y a bx =+与y c d x =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x ,y 的关系为z=0.2y -x .根据(Ⅱ)的结果回答下列问题:(i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11()u v ,,22(,)u v ,…,(,)n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为121()(),()nii i nii uu v v v u uu βαβ==--==--∑∑.20.(本小题满分12分)在直角坐标系xOy 中,曲线24C y x :=与直线)0(l y kx a a >:=+交于M ,N 两点.(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.21.(本小题满分12分)已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示m ,n 中的最小值,设函数()min{(),()}h x f x g x =(0)x >,讨论()h x 零点的个数.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 是O 的直径,AC 是O 的切线,BC 交O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是O 的切线; (Ⅱ)若OA =3CE ,求∠ACB 的大小.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线1C :x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()π4θρ=∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积.24.(本小题满分10分)选修4—5:不等式选讲已知函数12f x =|||x |x a -+-(),0a >. (Ⅰ)当=1a 时,求不等式1f x >()的解集;(Ⅱ)若f x ()的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 2015年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】A 【解析】由1=i 1z z+-,得1i (1i)(1i)=i 1i (1i)(1i)z -+-+-===++-,故1z =,故选C . 【提示】先化简复数,再求模即可. 【考点】复数的运算. 2.【答案】D【解析】原式1sin 20cos10cos20sin10sin302=+==,故选D . 【提示】直接利用诱导公式以及两角和的正弦函数,化简求解即可. 【考点】三角函数的运算. 3.【答案】C【解析】命题的否定是:22n n n ∀∈≤N ,.【提示】根据特称命题的否定是全称命题即可得到结论. 【考点】命题. 4.【答案】A【解析】根据独立重复试验公式可得,该同学通过测试的概率为2233C 0.60.40.6=0.648.⨯+【提示】判断该同学投篮投中是独立重复试验,然后求解概率即可.【考点】概率. 5.【答案】A【解析】由题知12(F F ,,220012x y -=,所以222120000000(3,)(3,)331MF MF x y xy x y y =-----=+-=-<,解得0y <<,故选A . 【提示】利用向量的数量积公式,结合双曲线方程,即可确定0y 的取值范围. 【考点】双曲线. 6.【答案】B【解析】设圆锥底面半径为r ,则116238,43r r ⨯⨯=⇒=所以米堆的体积为 2111632035,4339⎛⎫⨯⨯⨯⨯= ⎪⎝⎭故堆放的米约为320 1.6222,9÷≈故选B . 【考点】圆锥体积.【提示】根据圆锥的体积公式计算出对应的体积即可. 7.【答案】A【解析】由题知1114()3333AD AC CD AC BC AC AC AB AB AC =+=+=+-=-+【提示】将向量AD 利用向量的三角形法则首先表示为AC CD +,然后结合已知表示为AC AC ,的形式.【考点】向量运算. 8.【答案】D【解析】由五点作图知,1π42,53π42ωϕωϕ⎧+=⎪⎪⎨⎪+=⎪⎩解得ππ,4ωϕ==,所以π()cos π,4f x x ⎛⎫=+ ⎪⎝⎭令2ππ2ππ,,4k x k k π<+<+∈Z 解得1322,,44k x k k -<<+∈Z故()f x 的单调递减区间为132,2,44k k k ⎛⎫-+∈ ⎪⎝⎭Z ,故选D .【提示】由周期求出ω,由五点法作图求出ϕ,可得()f x 的解析式,再根据余弦函数的单调性,求得()f x 的减区间. 【考点】三角函数运算. 9.【答案】C【解析】执行第1次,0.01,1,t S ==10,0.5,2n m === 0.5,0.25,2mS S m m =-===1,0.50.01n S t ==>=,是,循环,执行第2次, 0.25,0.125,2mS S m m =-===2,0.250.01n S t ==>=,是,循环,执行第3次,0.125,0.0625,2mS S m m =-===3,0.1250.01n S t ==>=,是,循环,执行第4次,0.0625,0.03125,2mS S m m =-===4,0.06250.01n S t ==>=,是,循环,执行第5次,0.03125,0.015625,2mS S m m =-===5,0.031250.01n S t ==>=,是,循环,执行第6次,0.015625,0.0078125,2mS S m m =-===6,0.0156250.01n S t ==>=,是,循环,执行第7次,0.0078125,S S m =-=2mm =0.00390625=, 7,0.00781250.01n S t ==>=,否,输出7,n =故选C .【提示】由题意依次计算,当7,0.00781250.01,n S t ==>=停止由此可得结论. 【考点】程序框图. 10.【答案】C【解析】在25()x x y ++的五个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y ,故52x y 的系数为212532C C C 30,=故选C .【提示】利用展开式的通项进行分析,即可得出结论. 【考点】二项式展开式. 11.【答案】B【解析】由正视图和俯视图知,该几何体是半球和半个圆柱的组合体,圆柱和球的半径都是r ,圆柱的高为2r ,其表面积为222214ππ2π225π41620π2r r r r r r r r ⨯+⨯++⨯=+=+,解得r=2,故选B .【提示】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可. 【考点】空间几何体的表面积. 12.【答案】D【解析】设()()e 21,,xg x x y ax a =-=-由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()e (21)xg'x x =+,所以当12x <-时,'()0g x <,当12x >-,()0,g'x >所以当12x =-时,12min [()]2e g x -=-.当0x =时(0)1g =-,(1)e 0g =>,直线y ax a =-恒过(1,0)且斜率a ,故(0)1a g ->=-,且1(1)3e g a a --=-≥--,解得312ea ≤<,故选D .【提示】设()()e 21,,xg x x y ax a =-=-,问题转化为存在唯一的整数0x 使得0()g x 在直线y ax a =-的下方,由导数可得函数的极值,数形结合可得(0)1a g ->=-且1(1)3e g a a --=-≥--,解关于a 的不等式组可得.【考点】带参函数.第Ⅱ卷二、填空题 13.【答案】1【解析】由题知ln(y x =是奇函数,所以22ln(ln(ln()ln 0x x a x x a +-=+-==,解得 1.a =【提示】由题意可得,()()f x f x -=,代入根据对数的运算性质即可求解 【考点】函数奇偶性.14.【答案】2232524x y ⎛⎫±+= ⎪⎝⎭【解析】设圆心为(,0)a ,则半径为4a -,则222(4)2,a a -=+解得32a =±, 故圆的标准方程为2232524x y ⎛⎫±+= ⎪⎝⎭.【提示】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程. 【考点】圆的标准方程. 15.【答案】3【解析】做出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点(1,3)与原点连线的斜率最大,故yx的最大值3.【提示】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定y x的最大值.【考点】线性规划问题.16.【答案】【解析】如下图所示:延长BACD ,交于点E ,则可知在△ADE 中,105DAE ∠=︒,45ADE ∠=︒,30,E ∠=︒∴设12AD x =,2AE x =,4DE x =,CD m =,2BC =,sin151m ⎫∴+︒=⎪⎪⎝⎭⇒m +=∴04x <<,而2AB m x +-,2x∴AB的取值范围是.【提示】如图所示,延长BACD ,交于点,设12AD x =,2AE x =,4DE x =,CD m =m +=AB 的取值范围. 【考点】平面几何问题. 三.解答题17.【答案】(Ⅰ)21n + (Ⅱ)11646n -+ 【解析】(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3,当2n ≥时,221122n n n n a a a a --+--=14343n n S S -+--=4n a ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{}n a 是首项为3,公差为2的等差数列,所以n a =21n +; (Ⅱ)由(1)知,1111(21)(23)22123n b n n n n ⎛⎫==- ⎪++++⎝⎭,所以数列{}n b 前n 项和为121111111=235572123n b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫+++-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦=11646n -+. 【提示】(Ⅰ)根据数列的递推关系,利用作差法即可求{}n a 的通项公式:(Ⅱ)求出11n n n b a a +=,利用裂项法即可求数列{}n b 的前n 项和.【考点】数列前n 项和与第n 项的关系,等差数列定义与通项公式. 18.【答案】(Ⅰ)答案见解析 【解析】(Ⅰ)连接BD ,设,BDAC G =连接EG FG EF ,,,在菱形ABCD 中,不妨设1GB =,由∠ABC=120°,可得AG GC ==由BE ⊥平面ABCD ,AB BC =,可知AE EC =, 又∵AE EC ⊥,∴EG EG AC =⊥,在Rt EBG △中,可得BE,故DF =在Rt FDG △中,可得FG =在直角梯形BDEF 中,由2BD =,BE,2DF =,可得2EF =, ∴222EG FG EF +=, ∴EG FG ⊥, ∵ACFG G =,∴EG ⊥平面AFC , ∵EG ⊂平面AEC , ∴平面AFC ⊥平面AEC .(Ⅱ)如图,以G 为坐标原点,分别以,GB GC 的方向为x 轴,y 轴正方向,||GB 为单位长度,建立空间直角坐标系G xyz -,由(Ⅰ)可得0,A (,(E,2F ⎛- ⎝⎭,C ,∴AE =,1,CF ⎛=- ⎝⎭.故cos ,3||||AE CFAE CF AE CF <>==-,所以直线AE 与CF .【提示】(Ⅰ)连接BD ,设BD AC G =,连接EG EF FG ,,,运用线面垂直的判定定理得到EG ⊥平面AFC ,再由面面垂直的判定定理,即可得到.(Ⅱ)以G 为坐标原点,分别以GB GC ,为x 轴,y 轴,GB 为单位长度,建立空间直角坐标系G xyz -,求得AE F C ,,,的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.【考点】空间垂直判定与性质,异面直线所成角的计算.19.【答案】(Ⅰ)答案见解析 (Ⅱ)答案见解析 (Ⅲ)(i )66.32 (ii )46.24【解析】(Ⅰ)由散点图可以判断,y c =+y 关于年宣传费用x 的回归方程类型.(Ⅱ)令w =先建立y 关于w 的线性回归方程,由于81821()()108.8=68,16()iii ii w w yy d w w ==--==-∑∑ ∴56368 6.8100.6.==c y d w -⨯=-∴y 关于w 的线性回归方程为=100.6+68y w ,y ∴关于x 的回归方程为y (Ⅲ)(i )由(Ⅱ)知,当49x =时,年销量y的预报值576.6y =, 年利润z 的预报值=576.60.249=66.32z ⨯-(ii )根据(Ⅱ)的结果知,年利润z 的预报值20.12z x =x +--,∴13.66.8,2=即46.24x =,z 取得最大值,故宣传费用为46.24千元时,年利润的预保值最大.【提示】(Ⅰ)根据散点图,即可判断出.(Ⅱ)先建立中间量w =y 关于w 的线性回归方程,根据公式求出w ,问题得以解决.(Ⅲ)(Ⅰ)年宣传费49x =时,代入到回归方程,计算即可. (ii )求出预报值得方程,根据函数的性质,即可求出.【考点】线性回归方程求法,利用回归方程进行预报预测. 20.【答案】0y a --=0y a ++=(Ⅱ)答案见解析【解析】(Ⅰ)由题设可得)Ma ,()N a -,或()M a-,)N a .∵12yx '=,故24x y =在x =C在)a 处的切线方程为y a x -=-0y a --=,故24x y =在x =-处的导数值为,C 在()a -处的切线方程为y a x -=+,0y a ++=0y a --=0y a ++=. (Ⅱ)存在符合题意的点,证明如下:设(0,)P b 为符合题意得点,11(,)M x y ,22(,)N x y ,直线PM PN ,的斜率分别为12k k ,.将y kx a =+代入C 得方程整理得2440x kx a --=.∴12124,4x x k x x a +==-.∴1212121212122()()()=y b y b kx x a b x x k a b k k x x x x a--+-+++=+. 当b a =-时,有12k k + =0,则直线PM 的倾斜角与直线PN 的倾斜角互补,故OPM OPN ∠=∠,所以(0,)P a -符合题意.【提示】(Ⅰ)求出C在)a 处的切线方程,故24x y =在x =-即可求出方程.(Ⅱ)存在符合条件的点(0,)P b ,11(,)M x y,22(,)N x y ,直线PM PN ,的斜率分别为12k k ,直线方程与抛物线方程联立化为2440x kx a --=,利用根与系数的关系,斜率计算公式可得12()=k a b k k a++=即可证明. 【考点】抛物线的切线,直线与抛物线位置关系. 21.【答案】(Ⅰ)34a =- (Ⅱ)答案见解析【解析】(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=,即3002010430x ax x a ⎧++=⎪⎨⎪+=⎩,解得013,24x a ==-,因此,当34a =-时,x 轴是曲线()y f x =的切线. (Ⅱ)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =≤<, ∴()h x 在(1,)+∞无零点. 当1x =时,若54a ≥-,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h f g g ===,故1x =是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数.(ⅰ)若3a ≤-或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a ≤-时,()f x 在(0,1)有一个零点;当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x在⎛ ⎝单调递减,在⎫⎪⎪⎭单调递增,故当x =()f x取的最小值,最小值为14f =.①若0f >,即304x -<<,()f x 在(0,1)无零点.②若0f =,即34a =-,则()f x 在(0,1)有唯一零点;③若0f <,即334a -<<-,由于1(0)4f =,5(1)4f a =+,所以当5344a -<<-时, ()f x 在(0,1)有两个零点;当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 有一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.【提示】(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=解出即可. (Ⅱ)对x 分类讨论:当(1,)x ∈+∞时,()ln 0g x x =-<,可得函数(1)min{(1),(1)}(1)0h f g g ===,即可得出零点的个数.当1x =时,对a 分类讨论利用导数研究其单调性极值即可得出.【考点】利用导数研究曲线的切线,分段函数的零点. 22.【答案】(Ⅰ)答案见解析 (Ⅱ)60ACB ∠=【解析】(Ⅰ)连接AE ,由已知得,AE BC AC AB ⊥⊥,,在Rt AEC △中,由已知得DE DC =,∴DEC DCE ∠=∠,连接OE ,OBE OEB ∠=∠, ∵90ACB ABC ∠+∠=, ∴90DEC OEB ∠+∠=,∴90OED ∠=,∴DE 是圆O 的切线.(Ⅱ)设1CE AE x ==,,由已知得AB =,BE =,由射影定理可得,2AE CE BE =,∴2x =x = ∴60ACB ∠=.【提示】(Ⅰ)连接AE 和OE ,由三角形和圆的知识易得90OED ∠=,可得DE 是O 的切线.(Ⅱ)设1CE AE x ==,,由射影定理可得关于x的方程2x =,解方程可得x 值,可得所求角度.【考点】圆的切线判定与性质,圆周角定理,直角三角形射影定理. 23.【答案】(Ⅰ)22cos 4sin 40ρρθρθ--+= (Ⅱ)12【解析】(Ⅰ)因为cos ,sin x y ρθρθ==, ∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(Ⅱ)将=4θπ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=2ρ12=MN ρρ-,因为2C 的半径为1,则2C MN △的面积111sin 45=22⨯.【提示】(Ⅰ)由条件根据cos sin x y ρθρθ==,求得12C C ,的极坐标方程.(Ⅱ)把直线3C 的极坐标方程代入22cos 4sin 40ρρθρθ--+=,求得12ρρ,的值,从而求出2C MN △的面积.【考点】直角坐标方程与极坐标互化,直线与圆的位置关系.24.【答案】(Ⅰ)22.3x x ⎧⎫<<⎨⎬⎩⎭(Ⅱ)(2)+∞,【解析】(Ⅰ)当1a =时,不等式()1f x >化为1211x x +-->,等价于11221x x x ≤⎧⎨--+->⎩或111221x x x -<<⎧⎨++->⎩或11221x x x ≥⎧⎨+-+>⎩,解得223x <<,∴不等式()1f x >的解集为22.3x x ⎧⎫<<⎨⎬⎩⎭(Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21,03a A -⎛⎫⎪⎝⎭,(21,0)B a +,(,+1)C a a ,所以ABC △的面积为22(1)3a +, 由题设得22(1)63a +>,解得2a >,所以a 的取值范围为(2)+∞,. 【提示】(Ⅰ)当1a =时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数()f x 的解析式,求得它的图像与x 轴围成的三角形的三个顶点的坐标,从而求得()f x 的图像与x 轴围成的三角形面积;再根据()f x 的图像与x 轴围成的三角形面积大于6,从而求得a 的取值范围.【考点】含绝对值不等式解法,分段函数,一元二次不等式解法.。
绝密★启封并使用完毕前试题类型:A2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足1+z1-z=i ,则|z |=A .1B . 2C . 3D .22.sin 20°cos 10°-cos 160°sin 10°= A .-32 B .32 C .-12 D .123.设命题P :∃n ∈N ,n 2>2n ,则¬P 为A .∀n ∈N , n 2>2nB .∃n ∈N , n 2≤2nC .∀n ∈N , n 2≤2nD .∃n ∈N , n 2=2n4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为A .0.648B .0.432C .0.36D .0.3125.已知M (x 0,y 0)是双曲线C :x 22-y 2=1 上的一点,F 1、F 2是C 上的两个焦点,若MF 1→·MF 2→<0 ,则y 0的取值范围是A .⎝⎛⎭⎫-33,33 B .⎝⎛⎭⎫-36,36 C .⎝⎛⎭⎫-223,223 D .⎝⎛⎭⎫-233,2336.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有 A .14斛 B .22斛 C .36斛 D .66斛7.设D 为△ABC 所在平面内一点BC →=3CD →,则A .AD →=-13AB →+43AC → B .AD →=13AB →-43AC → C .AD →=43AB →+13AC → D .AD →=43AB →-13AC →8.函数f (x )=cos (ωx +φ)的部分图像如图所示,则f (x )的单调递减区间为A .⎝⎛⎭⎫k π-14,k π+34 (k ∈Z )B .⎝⎛⎭⎫2k π-14,2k π+34 (k ∈Z )C .⎝⎛⎭⎫k -14,k +34 (k ∈Z )D .⎝⎛⎭⎫2k -14,2k +34 (k ∈Z )9.执行右面的程序框图,如果输入的t =0.01,则输出的n =A .5B .6C .7D .810.(x 2+x +y )5的展开式中,x 5y 2的系数为A .10B .20C .30D .60 (第11题图)11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =A .1B .2C .4D .812.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0,使得f (x 0)<0,则a 的取值范围是A .⎣⎡⎭⎫-32e ,1B . ⎣⎡⎭⎫-32e ,34C . ⎣⎡⎭⎫32e ,34D . ⎣⎡⎭⎫32e ,1第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分13.若函数f (x )=xln (x +a +x 2)为偶函数,则a =______.2rr正视图俯视图r2r14.一个圆经过椭圆 x 216+y 24=1 的三个顶点,且圆心在x 轴上,则该圆的标准方程为 .15.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0 (1)x -y ≤0 (2)x +y -4≤0 (3),则 yx的最大值为 .16.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 .三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +4.(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =1a n a n +1 ,求数列{b n }的前n 项和.18.如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.19.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.ABCFED36 38 34 40 42 44 46 48 50 52 54 56年宣传费/千元表中w 1 =x 1, ,w - =18∑x +11w 1(Ⅰ)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z =0.2y -x .根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2),……,(u n v n ),其回归线v =αβ+u 的斜率和截距的最小二乘估计分别为:β=∑i =1n(u i -u -)(v i -v -) ∑i =1n(u i -u -)2α=v --βu -20.(本小题满分12分)在直角坐标系xoy 中,曲线C :y =x 24与直线y =kx +a (a >0)交于M ,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.21.(本小题满分12分)已知函数f (x )=x 3+ax +14,g (x )=-lnx .(Ⅰ)当a 为何值时,x 轴为曲线y =f (x ) 的切线;(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )} (x >0),讨论h (x )零点的个数.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做第一个题目计分,做答时,请用2B22.(本题满分10分)选修4-1:几何证明选讲 如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是⊙O 的切线;(Ⅱ)若OA =3CE ,求∠ACB 的大小.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求C 1,C 2的极坐标方程;(Ⅱ)若直线C 3的极坐标方程为 θ=π4 (ρ∈R ),设C 2与C 3的交点为M 、N ,求△C 2MN 的面积.24.(本小题满分10分)选修4—5:不等式选讲 已知函数f (x )=|x +1|-2|x -a |,a >0.(Ⅰ)当a =1时,求不等式f (x )>1的解集;(Ⅱ)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围.。
2015年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 设复数z 满足1+z1z-=i ,则|z |=(A )1 (B )2 (C )3 (D )2(2)sin 20°cos 10°-cos 160°sin 10°=(A )32-(B )32 (C )12- (D )12(3)设命题P :∃n ∈N ,2n >2n ,则⌝P 为(A )∀n ∈N , 2n >2n (B )∃ n ∈N , 2n ≤2n (C )∀n ∈N , 2n ≤2n (D )∃ n ∈N , 2n =2n(4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为 (A )0.648 (B )0.432 (C )0.36 (D )0.312 (5)已知M (x 0,y 0)是双曲线C :=1 上的一点,F 1、F 2是C 的两个焦点,若12MF MF ⋅<0,则y 0的取值范围是(A )(-33,33) (B )(-36,36) (C )(223-,223) (D )(233-,233) (6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(A )14斛 (B )22斛 (C )36斛 (D )66斛 (7)设D 为ABC 所在平面内一点,3BC CD =,则(A ) 1433AD AB AC =-+ (B ) 1433AD AB AC =- (C ) 4133AD AB AC =+ (D ) 4133AD AB AC =-(8)函数f (x )=cos (ωx+ϕ)的部分图像如图所示, 则f (x )的单调递减区间为A .(k π﹣,k π+,),k ∈z B .(2k π﹣,2k π+),k ∈z C .(k ﹣,k+),k ∈zD . (,2k+),k ∈z(9)执行右面的程序框图,如果输入的t =0.01,则输出的n =(A )5 (B )6 (C )7 (D )8(10)25()x x y ++的展开式中,52x y 的系数为(A )10 (B )20 (C )30 (D )60(11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何 体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的 表面积为16 + 20π,则r =(A )1 (B )2 (C )4 (D )812.设函数f (x )=e x (2x -1)-ax +a ,其中a 1,若存在 唯一的整数x 0,使得f (x 0)0,则a 的取值范围是( )A .[32e -,1) B . [33,24e -) C . [33,24e ) D . [32e,1)二、填空题:本大题共4小题,每小题5分 (13)若函数f (x )=xln (x +2a x +)为偶函数,则a = . (14)一个圆经过椭圆=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 ______________________ .(15)若x ,y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则y x 的最大值为 .(16)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 ______________________ .三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分) S n 为数列{a n }的前n 项和.已知a n >0,2243n n n a a S +=+ (Ⅰ)求{a n }的通项公式;(Ⅱ)设 11n n n b a a +=,求数列}的前n 项和.(18) (本小题满分12分)如图,四边形ABCD 为菱形,∠ABC =120°E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(Ⅰ)证明:平面AEC ⊥平面AFC ;(Ⅱ)求直线AE 与直线CF 所成角的余弦值.(19) (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyw821()ii x x =-∑821()ii w w =-∑81()()iii x x y y =--∑ 81()()i ii w w yy =--∑46.6 563 6.8289.8 1.6 1469 108.8表中i i w x =8118i i w w ==∑(Ⅰ)根据散点图判断,y =a +bx 与y =c +x y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2)…….. (u n v n ),其回归线v =αβ+u 的斜率和截距的最小二乘估计分别为:121()(),()niii nii u u v v v u u u βαβ==--==--∑∑A B C F E D(20)(本小题满分12分)在直角坐标系xoy 中,曲线C :y =24x 与直线y =kx +a (a >0)交于M ,N 两点.(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.(21)(本小题满分12分)已知函数f (x )=31,()ln 4x ax g x x ++=- .(Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线;(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数}{()min (),()(0)h x f x g x x => ,讨论h (x )零点的个数.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目计分. (22)(本题满分10分)选修4-1:几何证明选讲 如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是⊙O 的切线; (Ⅱ)若OA= CE ,求∠ACB 的大小.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1C : x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求△C 2MN 的面积 .(24)(本小题满分10分)选修4—5:不等式选讲 已知函数=|x +1|-2|x -a |,a >0.(Ⅰ)当a =1时,求不等式f (x )>1的解集;(Ⅱ)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围.2015年普通高等学校招生全国统一考试(新课标I )理科数学答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
数学试卷 第1页(共18页)数学试卷 第2页(共18页)数学试卷 第3页(共18页)绝密★启用前2015年普通高等学校招生全国统一考试(北京卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数i(2i)-=( )A .12i +B .12i -C .12i -+D .12i -- 2.若x ,y 满足010x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y =+的最大值为( )A .0B .1C .32D .2 3.执行如图所示的程序框图,输出的结果为( )A .(22)-,B .(40)-,C .(44)--,D .(08)-,4.设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件5.某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+ B.4C.2+D .5 6.设{}n a 是等差数列.下列结论中正确的是( )A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则2a >D .若10a <,则2123()()0a a a a -->7.如图,函数()f x 的图像为折线ACB ,则不等式2()log (1)f x x +≥的解集是A .{|10}x x -<≤B .{|11}x x -≤≤C .{|11}x x -<≤D .{|12}x x -<≤8.汽车的“燃油效率”是指汽车每消耗1汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中的横线上.9.在52x +()的展开式中,3x 的系数为________(用数字作答). 10.已知双曲线22210x y a a-=>()0y +=,则a =________. 11.在极坐标系中,点π23()‚到直线cos 6ρθθ=()的距离为________. 12.在ABC △中,4a =,5b =,6c =,则sin 2sin AC=________.13.在ABC △中,点M ,N 满足2AM MC =,BN NC =.若MN xAB yAC =+,则x =_______;y =_______.14.设函数2 14()(2) 1.x a x f x x a x a x ⎧-<=⎨--⎩()≥‚‚‚ ①若1a =,则()f x 的最小值为__________;②若()f x 恰有2个零点,则实数a 的取值范围是__________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2()cos222x x x f x . (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间[π0]-,上的最小值.俯视图侧(左)视图--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共18页)数学试卷 第5页(共18页)数学试卷 第6页(共18页)16.(本小题满分13分)A ,B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A 组:10,11,12,13,14,15,16B 组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立.从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果25a =,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a 为何值时,A ,B 两组病人康复时间的方差相等?(结论不要求证明)17.(本小题满分14分)如图,在四棱锥A EFCB -中,AEF △为等边三角形,平面AEF ⊥平面EFCB ,EF BC ∥,4BC =,2EF a =,60EBC FCB ∠=∠=︒,O 为EF 的中点.(Ⅰ)求证:AO BE ⊥;(Ⅱ)求二面角F AE B --的余弦值; (Ⅲ)若BE ⊥平面AOC ,求a 的值.18.(本小题满分13分)已知函数1()ln1xf x x+=-. (Ⅰ)求曲线()y f x =在点(0(0))f ,处的切线方程;(Ⅱ)求证:当(01)x ∈,时,3()2()3x f x x >+;(Ⅲ)设实数k 使得3()()3xf x k x >+对(01)x ∈,恒成立,求k 的最大值.19.(本小题满分14分)已知椭圆22221(0) x ya b a bC +=>>:,点(01)P ,和点()A m n ,(0)m ≠都在椭圆C 上,直线PA 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.20.(本小题满分13分)已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n nn a a a a a +⎧=⎨-⎩, ≤,,>,12n =(,,)…. 记集合*{|}n M a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.O FECBA数学试卷 第7页(共18页)数学试卷 第8页(共18页)数学试卷 第9页(共18页)2015年普通高等学校招生全国统一考试(北京卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】2i(2i)2i i 12i -=-=+,故选A .【提示】利用复数得运算法则解答. 【考点】复数代数形式的乘除运算 2.【答案】D 【解析】如图,当01x y ==,,max 2z =,故选D .【提示】作出题中不等式组表示的平面区域,再将目标函数2z x y =+对应的直线进行平移,即可求出z 取得的最大值. 【考点】简单线性规划 3.【答案】B【解析】依题意得:02021s t x y k =====,,,,, 2222240403s t x y k s t x y k =-==-===-==-==,,,,,,,,结束,输出(4)-,故选B .【提示】模拟执行程序框图,依次写出每次循环得到x y k ,,的值,当3k =时满足条件3k ≥,退出循环,输出(4)-. 【考点】程序框图4.【答案】B 【解析】m β∥不能推出αβ∥,因为αβ、可能相交,只要m 和αβ、相交即可得到m β∥;而αβ∥,m α⊂∴m β、没有公共点,∴m β∥,即αβ∥能得到m β∥,∴“m β∥”是“αβ∥”的必要不充分条件,故选B .【提示】m β∥并得不到αβ∥,根据面面平行得判定定理,只有α内得两相交直线都平行于β,而αβ∥,并且m α⊂,显然能得到m β∥,这样即可找出正确选项. 【考点】必要条件,充分条件与充要条件得判断 5.【答案】C【解析】由三视图知,OA ⊥面ABC,AB AC == E 为BC 中点,211EA EC EB OA ====,,, ∴AE BC BC OA ⊥⊥,12222ABC S =⨯⨯=△,112OAC OAB S S ===△△,122BCO S =⨯=△∴2S =+C .【提示】根据三视图可判断直观图为:PA ⊥面ABC ,AB AC =,E 为BC 中点,211EA EC EB OA ====,,,BC AEO ⊥面,AC OE =特点,计算边长,求解面积. 【考点】由三视图求面积,体积 6.【答案】C【解析】∵若120a a +>,则120a d +>,2312320a a a d d d +=+>>,时,结论成立,即A 不正确;若120a a +<,则120a d +<,2312320a a a d d d +=+<<,时,结论成立,即B 不正确;{}n a 是等差数列,120a a <<,∴1322a aa +=>C 正确;若10a <,则22123)()(0a a a a d ---<=,即D 不正确.故选C .【提示】对选项分别进行判断,即可得出结论.【考点】等差数列的性质 7.【答案】C【解析】由题可知:由已知()f x 的图象,在此坐标系内作出2log (1)y x =+的图象,如图满足不等式2()log (1)f x x ≥+的x 范围是11x -<≤;所以不等式2()log (1)f x x ≥+的解集是(]1,1-,故选C .【提示】在已知坐标系内作出2log (1)y x =+的图象,利用数形结合得到不等式的解集. 【考点】指数函数和对数函数不等式的解法 8.【答案】D【解析】由图可知,对乙车存在一个速度,使燃油效率高于5,所以A 错;由图知,当以40km/h 的速度行驶时,甲车燃油效率最高,行驶相同路程时,耗油最少,B 错;甲车以80km/h 行驶1小时耗油8升,故C 错;在限速80km/h ,相同情况下,丙车燃油效率较乙车高,所以乙车更省油,故选D . 【提示】根据汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,分别判断各个选项即可.【考点】函数的图象与图象变化第Ⅱ卷二、填空题 9.【答案】40【解析】5(2)x +的展开式的通项公式为:5152r r rr T C x -+=,当3r =时,系数为3255424402C ⨯=⨯=.数学试卷 第10页(共18页)数学试卷 第11页(共18页)数学试卷 第12页(共18页)故答案为40.【提示】写出二项式定理展开式的通项公式,利用x 的指数为3,求出r ,然后求解所求数值.【考点】二项式定理的应用 10.【答案】3【解析】双曲线2221x y a -=的渐近线方程为,所以x y a =±,解得1aa =. 【提示】运用双曲线的渐近线方程为x y a =±,结合条件可得1aa 的值.【考点】双曲线的简单性质 11.【答案】1【解析】点π2,3P ⎛⎫⎪⎝⎭化为P,直线方程为660x x =⇒+-=,所以点到直线方程的距离为212d ===. 【提示】化为直角坐标,再利用点到直线的距离公式距离公式即可得出. 【考点】简单曲线的极坐标方程 12.【答案】1【解析】在ABC △中,4a =,5b =,6c =,1625361cos =58C +-=⨯,2536163cos =2564A +-=⨯⨯,∴sin 8C =,sin 4A =,∴222sin 22sin cos 24253616901sin sin 263090A A A a b c a C C c bc +-+-===⨯==g . 【提示】利用余弦定理求出cos cos C A ,,即可得出结论. 【考点】余弦定理,二倍角的正弦,正弦定理 13.【答案】12x =【解析】由已知得到111111()323226MN MC CN AC CB AC AB AC AB AC =+=+=+-=-uuu r uuu r uuu r uuu r uu r uuu r uu u r uuu r uu u r uuu r ,所以1126x y ==-,.【提示】首先利用向量的三角形法则,将所求用向量AB AC uu u r uuu r、表示,然后利用平面向量基本定理得到值.【考点】平面向量的基本定理及其意义 14.【答案】min ()1f x =-[)1,12,2a ⎡⎫∈+∞⎪⎢⎣⎭【解析】①当1a =时,21,1()4(1)(2),1x x f x x x x ⎧-<=⎨--≥⎩,当1x <时,1()1f x -<<,当1x ≥时,min 311()41222f x f ⎛⎫⎛⎫==⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭,所以min ()1f x =-;②当0a ≤时,()f x 没有两个零点,当01a <<时,1x <时,220log 0x aa x -=⇒=<,()f x 有一个零点;而1x ≥时,12()0,2f x x a x a =⇒==;当21a ≥,即12a ≥时,()f x 恰有两个零点,所以当112a ≤<时,()f x 恰有两个零点;当12a ≤<时,1x <时,220log 1x aa x -=⇒=<,()f x 有一个零点;而1x ≥时,1()0f x x a =⇒=,22x a =,()f x 有两个零点, 此时()f x 有三个零点;当2a ≥时,1x <时,无零点;1x ≥时,有两个零点,此时()f x 有两个零点.综上所述[)1,12,2a ⎡⎫∈+∞⎪⎢⎣⎭.【提示】分别求出分段的函数的最小值,即可得到函数的最小值;分情况讨论,求出符合()f x 有两个零点的并集.【考点】函数的零点,分段函数的应用三、解答题15.【答案】(Ⅰ)2πT = (Ⅱ)12--【解析】(Ⅰ)()cos )f x x x -x x =πsin()42x =+-,则周期2π2π1T==. (Ⅱ)∵π0x -≤≤,∴3πππ444x -≤+≤,∴π1sin()42x -≤+≤,∴1()0f x -≤≤,∴()f x 在区间[π0]-,上的最小值为1--. 【提示】(Ⅰ)运用二倍角公式和两角和的正弦公式,化简()f x ,再由正弦喊话说的周期,即可得到所求(Ⅱ)由x 的范围,可得π4x +的范围,再由正弦函数的图象和性质,即可求得最小值. 【考点】两角和与差的正弦函数,三角函数的周期性及其求法,三角函数的最值 16.【答案】(Ⅰ)37(Ⅱ)1049(Ⅲ)11a =或18a =【解析】(Ⅰ)记甲康复时间不小于14天为事件A .则3()7P A =,所以甲康复时间不小于14天的概率为37.(Ⅱ)记甲的康复时间比乙的康复时间长为事件B .16y =-所以()7749P B==⨯.(Ⅲ)由于A组为公差为1的等差数列,所以当11a=或18a=时,B组也为公差为1的等差数列,所以方差一定相等,而方差相等的方程是关于a的一个一元二次方程,故最多有两个解,所以只有11a=或18a=两个值.【提示】(Ⅰ)事件等价于“甲是A组的第5或第6或第7个人”,由概率公式可得.(Ⅱ)设“甲的康复时间比乙的康复时间长”为事件B,列出基本时间空间表,由表即可求得()P B.(Ⅲ)由方差的公式可得.【考点】古典概型及其概率公式,概率的加法公式和方差17.【答案】(Ⅰ)见解析(Ⅱ)5-(Ⅲ)2a=【解析】(Ⅰ)证明:AEF∵△为等边三角形,O为EF中点,AO EF∴⊥又∵平面AEF⊥平面EFCB,平面AEF I平面EFCB EF=,AO∴⊥平面EFCB,AO BE∴⊥.(Ⅱ)以O为原点建立如图坐标系:∴(,0,0)E a,(,0,0)F a-,)A,),0)B a-,()EA a=-uu r,(2),0)EB a a=--uur平面AEF的法向量(0,1,0)m=u r;设平面AEB的法向量(,,)n x y z=r,则00n EA xxn EB⎧⎧=-=⎪⎪⇒⎨⎨+==⎪⎪⎩⎩r uu rgr uu rg,取1,1)n=-r,cos,||||m nm nm n==u r ru r r gu r rg∴又∵二面角F AE B--为钝角,∴二面角F AE B--的余弦值为.(Ⅲ)BE∵⊥平面AOC,BE OC∴⊥,(),0)OC a=--uuu r,2(2)))0BE OC a a a=----=uur uuu rg,解得2a=(舍去)或43a=.【提示】(Ⅰ)根据线面垂直的性质定理即可证明AO BE⊥.(Ⅱ)建立空间坐标系,利用向量法即可求二面角F AE B--的余弦值.(Ⅲ)利用线面垂直的性质,结合向量法即可求a的值.【考点】空间直线和平面垂直的判定以及二面角的求解18.【答案】(Ⅰ)2y x=(Ⅱ)见解析(Ⅲ)k最大值为2【解析】:(Ⅰ)()ln(1)ln(1)f x x x=+--,11()11f xx x-'=-+-1111x x=++-,又()0f x=,所以,切线方程为02(0)y x-=-,即2y x=.(Ⅱ)3322()()2ln(1)ln(1)233F x f x x x x x x x=--=+----,211()2211F x xx x'=+--+-222(1)(1)(1)xx x=-++-22222(1)(1)1x xx-+-=-4221xx=-,又因为01x<<,所以()0F x'>,所以()F x在(0,1)上是增函数,又(0)0F=,故()(0)F x F>,所以3()3xf x k x⎛⎫>+⎪⎝⎭.(Ⅲ)31ln(0,1)13x xk x xx⎛⎫+>+∈⎪-⎝⎭,,设21()ln()0,(0,1)13x xt x k x xx+=-+>∈-,422222()(1)(0,1)11kx kt x k x xx x+-'=-+=∈--,[0,2]k∈,()0t x'≥,函数(x)t是单调递增,()(0)t x t'>显然成立.当2k>时,令()0t x'=()0t x'=,得42(0,1)kx-=∈,()(0)0t x t<=,显然不成立,由此可知k最大值为2.【提示】(Ⅰ)利用函数的导数求在曲线上某点处的切线方程(Ⅱ)构造新函数利用函数的单调性证明命题成立(Ⅲ)对k进行讨论,利用新函数的单调性求参数k的取值范围【考点】切线方程的求法及新函数的单调性的求解证明数学试卷第13页(共18页)数学试卷第14页(共18页)数学试卷第15页(共18页)数学试卷 第16页(共18页)数学试卷 第17页(共18页)数学试卷 第18页(共18页)19.【答案】(Ⅰ)C 的方程为2212x y +=,01m M n ⎛⎫ ⎪-⎝⎭(Ⅱ)存在,点Q的坐标为(【解析】(Ⅰ)由题意知1b =,c a =,又222a b c =+,解得1a b c ===,所以C 的方程为2212x y +=.PA 的斜率1PA n k m-=,所以PA 方程11n y x m -=+, 令0y =,解得1m x n =-,所以,01m M n ⎛⎫⎪-⎝⎭. (Ⅱ)(,)B m n -,同(Ⅰ)可得,01m N n ⎛⎫ ⎪+⎝⎭,1tan QM OQM k ∠=,tan QN ONQ k ∠=,因为OQM ONQ ∠=∠所以1QN QM k k =g ,设(,0)Q t ,则111m m n nt t -+--=即2221m t n =-, 又A 在椭圆C 上,所以2212m n +=,即2221m n =-,所以t =(Q 使得OQM ONQ ∠=∠.【提示】(Ⅰ)根据椭圆的几何性质得出2221b ca abc =⎧⎪⎪=⎨⎪⎪=+⎩求解即可.(Ⅱ)求解得出,01m M n ⎛⎫ ⎪-⎝⎭,,01m N n ⎛⎫ ⎪+⎝⎭,运用图形得出OQM ONQ ∠=∠,故1Q N Q M k k =g , 设(,0)Q t ,代入整理得2221m t n =-,又2212m n +=,则2221m n=-根据m ,n 的关系整体求解.【考点】直线圆锥曲线的方程,位置关系,数形结合的思想的运用,运用代数的方法求解几何问题20.【答案】(Ⅰ)6,1{2,24}M = (Ⅱ)见解析(Ⅲ)集合M 的元素个数的最大值为8【解析】(Ⅰ)若16a =,由于12,18(1,2,)236,18n n n n n a a a n a a +≤⎧==⎨->⎩,{|}n M a n =∈*N . 故集合M 的所有元素为6,12,24,即6,1{2,24}M = (Ⅱ)若存在(1,2,,)i a i n =是3的倍数,设3()i a k k =∈*N ,当18i a ≤时,126i i a a k +==,1i a +也是3的倍数; 当18i a >时,1236636i i a a k +=-=-,1i a +也是3的倍数. 综上,1i a +是3的倍数,依次类推,当n i ≥时,n a 是3的倍数;若存在(2,3,,)i a i n =是3的倍数,设3()i a k k =∈*N ,当118i a -≤时,1322i i a k a -==g ,因为1i a *-∈N ,所以1i a -也是3的倍数;当18i a >时,1363622i i a k a -+⎛⎫==+ ⎪⎝⎭g ,因为1i a -∈*N ,所以1i a -也是3的倍数;. 综上,1i a -是3的倍数,依次类推,当n i <时,n a 是3的倍数;所以原结论成立.(Ⅲ)当11a =时,将11a =代入1218(1,2,)23618n n n n n a a a n a a +≤⎧==⎨->⎩,,, 依次得到2,4,8,16,32,28,20,4,所以当9n ≥时,6n n a a -=,此时{1,2,4,8,16,20,28,32}M =,共8个元素. 由题意,3a 可取的值有14a ,1436a -,1472a -,14108a -共4个元素, 显然,不论1a 为何值,3a 必为4的倍数,所以34(1,2,,9)a k k ==,①当3{4,8,16,20,28,32}a ∈时,{4,8,16,20,28,32}n a ∈(3)n ≥,此时M 最多有8个元素; ②当3{12,24}a ∈时,{12,24}n a ∈(3)n ≥,此时M 最多有4个元素; ③当336a =时,36n a =(3)n ≥,此时M 最多有3个元素;所以集合M 的元素个数的最大值为8.【提示】(Ⅰ)16a =,利用12,18(1,2,)236,18n n n n n a a a n a a +≤⎧==⎨->⎩可求得集合M 的所有元素为6,12,24.(Ⅱ)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,由12,18(1,2,)236,18n n n nn a a a n a a +≤⎧==⎨->⎩,可归纳证明对任意n n k a ≥,是3的倍数. (Ⅲ)分1a 是3的倍数与1a 不是3的倍数讨论,即可求得集合M 的元素个数的最大值. 【考点】数列递推关系的应用,分类讨论思想与等价转化思想及推理,运算能力。
绝密★启封并使用完毕前试题类型:A2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足1+z1-z=i ,则|z |=A .1B . 2C . 3D .22.sin 20°cos 10°-cos 160°sin 10°=A .-32B .32C .-12D .123.设命题P :∃n ∈N ,n 2>2n ,则¬P 为A .∀n ∈N , n 2>2nB .∃n ∈N , n 2≤2nC .∀n ∈N , n 2≤2nD .∃n ∈N , n 2=2n4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为A .0.648B .0.432C .0.36D .0.3125.已知M (x 0,y 0)是双曲线C :x 22-y 2=1 上的一点,F 1、F 2是C 上的两个焦点,若 MF 1→· MF 2→<0 ,则y 0的取值范围是A .⎝⎛⎭⎫-33,33B .⎝⎛⎭⎫-36,36C .⎝⎛⎭⎫-223,223 D .⎝⎛⎭⎫-233,2336.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有 A .14斛 B .22斛 C .36斛 D .66斛7.设D 为△ABC 所在平面内一点BC →=3CD →,则A .AD →=-13AB →+43AC → B .AD →=13AB →-43AC → C .AD →=43AB →+13AC → D .AD →=43AB →-13AC →8.函数f (x )=cos (ωx +φ)的部分图像如图所示,则f (x )的单调递减区间为A .⎝⎛⎭⎫k π-14,k π+34(k ∈Z ) B .⎝⎛⎭⎫2k π-14,2k π+34 (k ∈Z )C .⎝⎛⎭⎫k -14,k +34 (k ∈Z )D .⎝⎛⎭⎫2k -14,2k +34 (k ∈Z )9.执行右面的程序框图,如果输入的t =0.01,则输出的n =A .5B .6C .7D .810.(x 2+x +y )5的展开式中,x 5y 2的系数为A .10B .20C .30D .60 (第11题图)11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =A .1B .2C .4D .812.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0,使得f (x 0)<0,则a 的取值范围是A .⎣⎡⎭⎫-32e ,1B . ⎣⎡⎭⎫-32e ,34C . ⎣⎡⎭⎫32e ,34D . ⎣⎡⎭⎫32e ,12rr正视图俯视图 r2r第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分13.若函数f (x )=xln (x +a +x 2)为偶函数,则a =______.14.一个圆经过椭圆 x 216+y 24=1 的三个顶点,且圆心在x 轴上,则该圆的标准方程为 .15.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0 (1)x -y ≤0 (2)x +y -4≤0 (3) ,则 yx的最大值为 .16.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 .三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +4.(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =1a n a n +1,求数列{b n }的前n 项和.18.如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (1)证明:平面AEC ⊥平面AFC ; (2)求直线AE 与直线CF 所成角的余弦值.A B C F E D19.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w 1 =x 1, ,w - =18∑x +1w 1(Ⅰ)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z =0.2y -x .根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2),……,(u n v n ),其回归线v =αβ+u 的斜率和截距的最小二乘估计分别为:β=∑i =1n(u i -u -)(v i -v -) ∑i =1n(u i -u -)2α=v --βu -年宣传费/千元20.(本小题满分12分)在直角坐标系xoy 中,曲线C :y =x 24与直线y =kx +a (a >0)交于M ,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.21.(本小题满分12分)已知函数f (x )=x 3+ax +14,g (x )=-lnx .(Ⅰ)当a 为何值时,x 轴为曲线y =f (x ) 的切线;(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )} (x >0),讨论h (x )零点的个数.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做第一个题目计分,做答时,请用2B22.(本题满分10分)选修4-1:几何证明选讲 如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是⊙O 的切线; (Ⅱ)若OA =3CE ,求∠ACB 的大小.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求C 1,C 2的极坐标方程;(Ⅱ)若直线C 3的极坐标方程为 θ=π4(ρ∈R ),设C 2与C 3的交点为M 、N ,求△C 2MN 的面积.24.(本小题满分10分)选修4—5:不等式选讲 已知函数f (x )=|x +1|-2|x -a |,a >0.(Ⅰ)当a =1时,求不等式f (x )>1的解集;(Ⅱ)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围.。
2015高考数学全国卷1(完美版)2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z满足1+z1-z=i,则|z|=A.1 B.2 C. 3 D.22.sin20°cos10°-cos160°sin10°=A.-32B.32C.-12D.1 23.设命题P:∃n∈N,n2>2n,则¬P为A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2nA .14斛B .22斛C .36斛D .66斛7.设D 为△ABC 所在平面内一点BC→=3CD →,则 A .AD →=-13AB →+43AC → B .AD →=13AB →-43AC → C .AD →=43AB →+13AC → D .AD →=43AB →-13AC →8.函数f (x )=cos (ωx +φ)的部分图像如图所示,则f (x )的单调递减区间为A .⎝⎛⎭⎪⎪⎫k π-14,k π+34 (k ∈Z ) B .⎝⎛⎭⎪⎪⎫2k π-14,2k π+34 (k ∈Z )C .⎝⎛⎭⎪⎪⎫k -14,k +34 (k ∈Z ) D .⎝ ⎛⎭⎪⎪⎫2k -14,2k +34 (k ∈Z )9.执行右面的程序框图,如果输入的t =0.01,则输出的n =A .5B .6C .7D .810.(x 2+x +y )5的展开式中,x 5y 2的系数为A .10B .20C .30D .60 (第11题图) 11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =A .1B .2C .4D .82rr正视图俯视图r 2r12.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0,使得f (x 0)<0,则a 的取值范围是 A .⎣⎢⎢⎡⎭⎪⎪⎫-32e ,1 B . ⎣⎢⎢⎡⎭⎪⎪⎫-32e ,34 C . ⎣⎢⎢⎡⎭⎪⎪⎫32e ,34 D . ⎣⎢⎢⎡⎭⎪⎪⎫32e ,1第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分13.若函数f (x )=xln (x +a +x 2)为偶函数,则a =______.14.一个圆经过椭圆 x 216+y 24=1 的三个顶点,且圆心在x 轴上,则该圆的标准方程为 .15.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0 (1)x -y ≤0 (2)x +y -4≤0 (3) ,则 yx 的最大值为 .16.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 .三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)S n 为数列{a n }的前n 项和.已知a n >0,a 2n+2a n =4S n +4.(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =1a n a n +1,求数列{b n }的前n 项和.18.如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (1)证明:平面AEC ⊥平面AFC ; (2)求直线AE 与直线CF 所成角的余弦值.19.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.A B C F ED 36 38 34 40 42 44 46 48 50 52 54 56年表中w1 =x1,,w-=18∑x+11w1(Ⅰ)根据散点图判断,y=a+bx与y=c+d x哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利率z与x、y的关系为z=0.2y -x.根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1v1),(u2v2),……,(u n v n),其回归线v=αβ+u的斜率和截距的最小二乘估计分别为:β=∑i =1n(u i -u -)(v i -v -) ∑i =1n(u i -u -)2α=v --βu -20.(本小题满分12分)在直角坐标系xoy 中,曲线C :y =x 24与直线y =kx+a (a >0)交于M ,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.21.(本小题满分12分)已知函数f (x )=x 3+ax +14,g (x )=-lnx . (Ⅰ)当a 为何值时,x 轴为曲线y =f (x ) 的切线;(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )} (x >0),讨论h (x )零点的个数.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做第一个题目计分,做答时,请用2B铅笔在答题卡上将所选题号后的方框涂黑..22.(本题满分10分)选修4-1如图,AB是⊙O的直径,AC是⊙交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE(Ⅱ)若OA=3CE,求∠ACB的大小.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,直线C1:x=-2,圆C2:(x -1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=π4(ρ∈R),设C2与C3的交点为M、N,求△C2MN的面积.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x+1|-2|x-a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围.。
2015年高考北京市理科数学真题一、选择题 1.复数()i 2i -=( )A .12i +B .12i -C .12i -+D .12i --2.若x ,y 满足010x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y =+的最大值为( )A .0B .1C .32D .2 3.执行如图所示的程序框图,输出的结果为( )A .()22-,B .()40-,C .()44--,D .()08-,4.设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A .2+B .4+C .2+D .56.设{}n a 是等差数列. 下列结论中正确的是( )A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则2a >D .若10a <,则()()21230a a a a -->7.如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是( )A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤8.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油 二、填空题9.在()52x +的展开式中,3x 的系数为.(用数字作答)10.已知双曲线()22210x y a a-=>0y +=,则a =. 11.在极坐标系中,点π23⎛⎫ ⎪⎝⎭‚到直线()cos 6ρθθ=的距离为.12.在ABC △中,4a =,5b =,6c =,则sin 2sin AC=. 13.在ABC △中,点M ,N 满足2AM MC =,BN NC =.若MN xAB y AC =+,则x = ;y =.14.设函数()()()2142 1.x a x f x x a x a x ⎧-<⎪=⎨--⎪⎩‚‚‚≥①若1a =,则()f x 的最小值为;②若()f x 恰有2个零点,则实数a 的取值范围是 .三、解答题15.已知函数2()cos 222x x xf x .(Ⅰ) 求()f x 的最小正周期; (Ⅱ) 求()f x 在区间[π0]-,上的最小值.16.A ,B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A 组:10,11,12,13,14,15,16B 组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立,从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙.(Ⅰ) 求甲的康复时间不少于14天的概率;如果25a =,求甲的康复时间比乙的康复时间长的概率;(Ⅲ) 当a 为何值时,A ,B 两组病人康复时间的方差相等?(结论不要求证明)17.如图,在四棱锥A EFCB -中,AEF △为等边三角形,平面平AEF ⊥面EFCB ,EF BC ∥,4BC =,2EF a =,60EBC FCB ∠=∠=︒,O 为EF 的中点. (Ⅰ) 求证:AO BE ⊥;(Ⅱ) 求二面角F AE B --的余弦值; (Ⅲ) 若BE ⊥平面AOC ,求a 的值.18.已知函数()1ln1xf x x+=-. (Ⅰ)求曲线()y f x =在点()()00f ,处的切线方程;(Ⅱ)求证:当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝⎭; (Ⅲ)设实数k 使得()33x f x k x ⎛⎫>+ ⎪⎝⎭对()01x ∈,恒成立,求k 的最大值.19.已知椭圆C :()222210x y a b a b+=>>,点()01P ,和点()A m n ,()0m ≠都在椭圆C 上,直线PA 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.20.已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,()12n =,,….记集合{}*|nM a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.2015年高考北京市理科数学真题一、选择题 1.答案:A 解析过程: 原式=2i-i 2=1+2i 2.答案:D 解析过程:如图∆ABC 所表示的区域为不等式组表示的平面区域,易知点A(0,1)为目标函数取得最大值的最优解,即Z max =0+2×1=2 3.答案:B 解析过程: 据框图可得:s =0,t =2,x =0,y =2,k =1; s =−2,t =2,x =−2,y =2,k =2; s =−4,t =0,x =−4,y =0,k =3此时,满足判断框内的条件,故输出的结果为B4.答案:B 解析过程:显然由m β∥推不出αβ∥,但αβ∥能推出m β∥,故选B 5.解析过程:直观图如图:在ABC ∆内过点A 作BC 的垂线交BC 于点D , 连接PD ,12ABC S BC AD ∆=⨯⨯12222=⨯⨯=,12PAB PAC S S PA AC ∆∆==⨯⨯155122=⨯⨯=, 又因为5AC =,1PC =,所以6PB PC ==PD =12PCB S BC PD ∆=⨯⨯122=⨯=所以,表面积2222S =+⨯+=+C6.答案:C解析过程:可使用特值法。
绝密★启用前2015年普通高等学校招生全国统一考试理科数学(北京卷)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.复数【A 】 A .B .C .D .2.若,满足则的最大值为【D 】A .0B .1C .D .23.执行如图所示的程序框图,输出的结果为【B 】A .B .C .D .()i 2i -=12i +12i -12i -+12i --x y 010x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥,2z x y =+32()22-,()40-,()44--,()08-,4.设,是两个不同的平面,是直线且.“”是“”的【B 】A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.某三棱锥的三视图如图所示,则该三棱锥的表面积是【C 】A .B .C .D .5 6.设是等差数列. 下列结论中正确的是【C 】αβm m α⊂m β∥αβ∥俯视图侧(左)视图24+2+{}n aA .若,则B .若,则C .若,则D .若,则 7.如图,函数的图像为折线,则不等式的解集是【C 】A .B .C .D .8.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是【D 】A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.120a a +>230a a +>130a a +<120a a +<120a a <<2a >10a <()()21230a a a a -->()f x ACB ()()2log 1f x x +≥{}|10x x -<≤{}|11x x -≤≤{}|11x x -<≤{}|12x x -<≤9.在的展开式中,的系数为 40 .(用数字作答)10.已知双曲线,则 .11.在极坐标系中,点到直线的距离为1 .12.在中,,,,则1.13.在中,点,满足,.若,则;.14.设函数①若,则的最小值为1;①若恰有2个零点,则实数的取值范围是 ≤ a <1 或 a ≥ 2 .三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程) 15.(本小题13分)已知函数.(①) 求的最小正周期; (①) 求在区间上的最小值.解:(I )因为所以的最小正周期为2()52x +3x ()22210x y a a-=>0y +=a =π23⎛⎫ ⎪⎝⎭‚()cos6ρθθ=ABC △4a =5b =6c =sin 2sin AC=ABC △M N 2AM MC =BN NC=MN x AB y AC =+x =12y =16()()()2142 1.x a x f x x a x a x ⎧-<⎪=⎨--⎪⎩‚‚‚≥1a =()f x ()f x a 122()cos 222x x xf x =()f x ()f x [π0]-,()sin cos )22f x x x =--sin()4x π=+()f x π(Ⅱ)因为,所以当,即时,取得最小值。
绝密★启用前2015年普通高等学校招生全国统一考试(全国新课标卷2)数学(理科)使用地区:海南、宁夏、黑龙江、吉林、辽宁、新疆、云南、内蒙古、青海、贵州、甘肃、广西、西藏本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共24题,共150分,共6页.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{2,1,0,1,2}A =--,{|(1)(2)0}B x x x =-+<,则AB =( )A .{1,0}A =-B .{0,1}C .{1,0,1}-D .{0,1,2} 2.若a 为实数,且(2i)(2i)4i a a +-=-,则a =( )A .1-B .0C .1D .23.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关4.已知等比数列{}n a 满足13a =,135a a a ++=21,则357a a a ++=( )A .21B .42C .63D .845.设函数211log (2),1,()2, 1,x x x f x x -+-⎧=⎨⎩<≥则2(2)(log 12)f f -+=( ) A .3B .6C .9D .126.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18B .17C .16D .157.过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( )A .26B .8C .46D .108.如图所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A .0B .2C .4D .149.已知A ,B 是球O 的球面上两点,∠AOB =90°, C 为该球面上的动点.若三棱锥O-ABC 体积的 最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π10.如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则()y f x =的图象大致为( )ABCD11.已知A ,B 为双曲线E 的左、右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A .5B .2C .3D .2 12.设函数'()f x 是奇函数()()f x x ∈R 的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.14.若x ,y 满足约束条件10,20,220,x y x y x y -+⎧⎪-⎨⎪+-⎩≥≤≤则z x y =+的最大值为________.15.4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =________. 16.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)ABC △中,D 是BC 上的点,AD 平分BAC ∠,ABD △面积是ADC △面积的2倍.(Ⅰ)求sin sin BC∠∠;(Ⅱ)若1AD =,22DC =,求BD 和AC 的长. 18.(本小题满分12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分 低于70分 70分到89分 不低于90分 满意度等级 不满意 满意 非常满意记事件C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.19.(本小题满分12分)如图,长方体1111ABCD A B C D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B ,11D C 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值.20.(本小题满分12分)已知椭圆222 9(0)C x y m m +=>:,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,请说明理由.21.(本小题满分12分)设函数2()mx f x e x mx =+-.(Ⅰ)证明:()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增;(Ⅱ)若对于任意12,[1,1]x x ∈-,都有12()()1f x f x e --≤,求m 的取值范围.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,O 为等腰三角形ABC 内一点,⊙O 与ABC △的底边BC 交于M ,N 两点,与底边上的高AD 交于点G ,且与AB ,AC 分别相切于E ,F 两点. (Ⅰ)证明:EF BC ∥;(Ⅱ)若AG 等于⊙O 的半径,且23AE MN ==,求四边形EBCF 的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠),其中0πα≤<.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,3:23cos C ρθ=. (Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求||AB 最大值.24.(本小题满分10分)选修4—5:不等式选讲设a ,b ,c ,d 均为正数,且a b c d +=+,证明: (Ⅰ)若ab cd >,则a b c d +>+; (Ⅱ)a b c d +>+是||||a b c d -<-的充要条件.2015年普通高等学校招生全国统一考试(全国新课标卷2)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】由已知得{|21}B x x =-<<,故,}10{AB -=,故选A .【提示】解一元二次不等式,求出集合B ,然后进行交集的运算即可. 【考点】集合的交集运算和一元二次方程求根. 2.【答案】B【解析】由已知得24+(4)i 4i a -=-,所以40a =,244a -=-,解得0a =,故选B .【提示】首先将坐标展开,然后利用复数相等解之. 【考点】复数的四则运算. 3.【答案】D【解析】解:A .从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A 正确;B .2004~2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B 正确;C .从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C 正确;D .2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D 错误. 故选:D【提示】A .从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A 正确;B .从2007年开始二氧化硫排放量变少,故B 正确;C .从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C 正确;D .2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D 错误. 【考点】柱形图信息的获得. 4.【答案】B【解析】设等比数列公比为q ,则24111++21a a q a q =,又因为13a =,所以42+60q q -=,解得22q =,所以2357135++(++)42a a a a a a q ==,故选B .【提示】由已知,13a =,135++21a a a =,利用等比数列的通项公式可求q ,然后在代入等比数列通项公式即可求.【考点】等比数列通项公式和性质.5.【答案】C【解析】由已知得2(2)1+log 43f -==,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)+(log 12)9f f -=.【提示】先求2(2)1+log (2+2)1+23f -===,再由对数恒等式,求得2(log 12)6f =,进而得到所求和.【考点】函数定义域以及指数对数的运算. 6.【答案】D【解析】由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,设正方体棱长为a ,则11133111326A A B D V a a -=⨯=,故剩余几何体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为15.故选D .【提示】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【考点】几何图形的三视图. 7.【答案】C【解析】由已知得321143AB k -==--,2+7341CB k ==-,所以1AB CB k k =-,所以AB CB ⊥,即ABC △为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)+(+2)25x y -=,令0x =,得2y =±,所以||MN =,故选C .【提示】设圆的方程为22+++0x y Dx Ey F =,代入点的坐标,求出D ,E ,F ,令0x =,即可得出结论.【考点】直线与圆的相交,距离的计算. 8.【答案】B【解析】程序在执行过程中,a ,b 的值依次为14a =,18b =;4b =;10a =;6a =;2a =;2b =,此时2a b ==程序结束,输出a 的值为2,故选B .【提示】由循环结构的特点,先判断,再执行,分别计算出当前的a ,b 的值,即可得到结论.【考点】程序框图. 9.【答案】C【解析】如图所示,当点C 位于垂直面AOB 的直径端点时,三棱锥O ABC -体积最大,设球O 的半径为R ,此时23--11136326O ABC C ABC V V R R R ==⨯⨯==,故R =6,则球O 的表面积为:24π144πS R ==,选C .【提示】当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,利用三棱锥O ABC -体积的最大值为36,求出半径,即可求出球O 的表面积.【考点】球面的表面积和锥体的体积. 10.【答案】B【解析】由已知得,当点P 在BC 边上运动时,即π04x ≤≤时,P A +PBtan x ; 当点P在CD边上运动时,即π3π44x ≤≤,π2x ≠时,+PA P B =当π2x =时,+PA PB = 当点P 在AD 边上运动时,3ππ4x ≤≤时,P A +PB=tan +P A P x B =, 从点P 的运动过程可以看出轨迹关于直线π2x =对称,且ππ42f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,且轨迹非线型,故选B .【提示】根据函数图像关系,利用排除法进行求解即可. 【考点】动点的函数图像. 11.【答案】D【解析】设双曲线方程为22221(00)x y a b a b-=>>,,如图所示,||||AB BM =,120ABM ∠=︒,过点M 作MN x ⊥轴,垂足为N ,在Rt BMN △中,||BN a =,||MN =,故点M 的坐标为(2)M a ,代入双曲线方程得2222a b c a ==-,即222c a =,所以e 故选D .【提示】设M 在双曲线22221x ya b -=的左支上,由题意可得M的坐标为(2)M a ,代入双曲线方程可得a b =,再由离心率公式即可得到所求值. 【考点】双曲线离心率. 12.【答案】A 【解析】记函数()()f x g x x =,则2()()()xf x f x g x x'-'=,因为当0x >时,()()0xf x f x '-<,故当0x >时,()0g x '<,所以()g x 在(,+)∞0单调递减,又因为函数()f x ()x ∈R 是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞单调递增,且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞-,故选A .【提示】由已知当0x >时总有()()0xf x f x '-<成立,可判断函数()()f x g x x=为减函数,由已知()f x 是定义在R 上的奇函数,可证明()g x 为(,0)(0,+)-∞∞上的偶函数,根据函数()g x 在(0,+)∞上的单调性和奇偶性,模拟()g x 的图像,而不等式()0f x >等价于()0x g x >,数形结合解不等式组即可.【考点】奇函数,导数,定义域的求解.第Ⅱ卷二、填空题 13.【答案】12【解析】因为向量+a b λ与+2a b 平行,所以+(+2)a b k a b λ=,则12k k λ=⎧⎨=⎩,,所以12λ=.【提示】利用向量平行即共线的条件,得到向量+a b λ与+2a b 之间的关系,利用向量相等解析【考点】平面向量的基本定理.14.【答案】32【解析】画出可行域,如图所示,将目标函数变形为+y x z =,当z 取最大时,直线+y x z=的纵截距最大,故将直线尽可能地向上平移到11,2D ⎛⎫⎪⎝⎭,则+z x y =的最大值为32.【提示】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y 轴的截距最大值【考点】线性规划问题的最值求解. 15.【答案】3【解析】由已知得4234(1+)1+4+6+4+x x x x x =,故4(+)(1+)a x x 的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为4+4+1+6+132a a =,解得3a =. 【提示】给展开式中的x 分别赋值1,1-,可得两个等式,两式相减,再除以2得到答案.【考点】排列组合. 16.【答案】1n-【解析】由已知得111n n n n n a S S S S +++=-=,两边同时除以+1n n S S ,得+1111n nS S -=-,故数列1n S ⎧⎫⎨⎬⎩⎭是以1-为首项,1-为公差的等差数列,则11(1)n n n S =---=-,所以1n S n =-. 【提示】通过111n n n n n a S S S S +++=-=,并变形可得数列1n S ⎧⎫⎨⎬⎩⎭是以首项和公差均为1-的等差数列,进而可得结论. 【考点】数列的求和运算. 三、解答题 17.【答案】(Ⅰ)12(Ⅱ)BD =1AC =【解析】(Ⅰ)1sin 2ABD S AB AD BAD =∠△,1sin 2ADC S AC AD CAD =∠△. 因为2ABD ADC S S =△△,BAD CAD ∠=∠, 所以2AB AC =. 由正弦定理得:sin 1sin 2B AC C AB ∠==∠.(Ⅱ)因为:ABD ADC S S BD DC ==△△所以BD =.在ABD △和ADC △,由余弦定理知:222+2cos AB AD BD AD BD ADB =-∠,222+2cos AC AD DC AD DC ADC =-∠,故22222+23++26AB AC AD BD DC == 由(Ⅰ)知2AB AC =, 所以1AC =.【提示】(Ⅰ)过A 作AE BC ⊥于E ,由已知及面积公式可得2BD DC =,由AD 平分BAC ∠及正弦定理可得sin sin AD BAD B BD ⨯∠∠=,sin sin AD DAC C DC ⨯∠∠=,从而得解sin sin BC∠∠.(Ⅱ)由(Ⅰ)可求BD =D 作DM AB ⊥于M ,作DN AC ⊥于N ,由AD平分BAC ∠,可求2AB AC =,利用余弦定理即可解得BD 和AC 的长. 【考点】正弦定理,余弦定理. 18.【答案】(Ⅰ)见解析 (Ⅱ)0.48【解析】(Ⅰ)两地区用户满意度评分的茎叶图如下:通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散. (Ⅱ)记1AC 表示事件:“A 地区用户满意度等级为满意或不满意”; 记2A C 表示事件:“A 地区用户满意度等级为非常满意”; 记1B C 表示事件:“B 地区用户满意度等级为不满意”; 记2B C 表示事件:“B 地区用户满意度等级为满意”.则1A C 与1B C 独立,2A C 与2B C 独立,1B C 与2B C 互斥,1122B A B A C C C C C =,112211221122()()()+()()()+()()B A B A B A B A B A B A P C P C C C C P C C P C C P C P C P C P C ===由所给数据的1A C ,2A C ,1B C ,2B C 发生的概率分别为1620,420,1020,820,故116()20A P C =,24()20A P C =,110()20B P C =,28()20B PC =,101684()+202020200.48P C =⨯⨯=.【提示】(Ⅰ)根据茎叶图的画法,以及有关茎叶图的知识,比较即可; (Ⅱ)根据概率的互斥和对立,以及概率的运算公式,计算即可. 【考点】茎叶图,古典概型的相关运算. 19.【答案】(Ⅰ)见如图(Ⅱ)15【解析】(Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作EM AB ⊥,垂足为M ,则14AM A E ==,18EM AA ==.因为EHGF 为正方形,所以10EH EF BC ===.于是6MH ==,所以10AH =.以D 为坐标原点,DA 的方向为x 轴正方向,建立如图示空间直角坐标系D xyz -, 则(10,0,0)A ,(10,10,0)H ,(10,4,8)E ,(0,4,8)F .(0,6,8)HE =-,(10,0,0)FE =. 设(,,)n x y z =是平面EHGF 的法向量,则00n FE n HE ⎧=⎪⎨=⎪⎩,即1006+80x y z =⎧⎨-=⎩,所以可取(0,4,3)n =又(10,4,8)AF -=.故||45sin |cos ,|=15||||n AF n AF n AF θ==.所以AF 与平面EHGF . 【提示】(Ⅰ)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(Ⅱ)分别以直线DA ,DC ,DD 1为x ,y ,z 轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A ,H ,E ,F 几点的坐标.设平面EFGH 的法向量为(,,)n x y z =,根据n FE n HE ⎧=⎪⎨=⎪⎩即可求出法向量n ,AF 坐标可以求出,可设直线AF 与平面EFGH 所成角为θ,由sin |cos ,|n AF θ=即可求得直线AF 与平面α所成角的正弦值. 【考点】线面平行、相交,线面夹角的求解. 20.【答案】(Ⅰ)见解析 (Ⅱ)能4【解析】(Ⅰ)设直线l :+(00)y kx b k b =≠≠,,11(,)A x y ,22(,)B x y (,)M M M x y .将+y kx b =代入2229+x y m =得2222(+9)+2+0k x kbx b m -=.故122+2+9M x x kb x k -==,29++9M M by kx b k ==, 于是直线OM 的斜率9M OM M y k x k==-,9OM k k =-.所以直线OM 的斜率与l 的斜率的乘积为定值.(Ⅱ)四边形OAPB 能为平行四边形.因为直线l 过点,3m m ⎛⎫⎪⎝⎭,所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠.由(Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . 由22299+y x k xy m⎧=-⎪⎨⎪=⎩得22229+81P k m x k =,即P x = 将点,3m m ⎛⎫⎪⎝⎭的坐标代入l 的方程得(3)3m k b -=,因此()233+9M kk m x k -=()四边形OAPB 为平行四边形且当且仅当线段AB 与线段OP 互相平分,即2P M x x =, 于是()2323+9k k m k =-(),解得14k =-2k =因为0i k>,3i k ≠,12i =,, 所以当l 的斜率为4OAPB 为平行四边形.【提示】(Ⅰ)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(Ⅱ)四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x =,建立方程关系即可得到结论.【考点】直线的点斜式方程,平行四边形的判定. 21.【答案】(Ⅰ)见解析 (Ⅱ)(1,1)-【解析】(Ⅰ)因为2()e mx f x x mx =+-,所以()e 2mx f x m x m '=+-,2()e +20mxf x m ''=≥在R 上恒成立, 所以()e 2mxf x m x m '=+-在R 上单调递增,而(0)0f '=,所以0x >时,()0f x '>; 所以0x <时,()0f x '<.所以()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(Ⅱ)由(Ⅰ)知min ()(0)1f x f ==,当0m =时,2()1+f x x =, 此时()f x 在[]1,1-上的最大值是2. 所以此时12()()|e 1f x f x -≤-|成立.当0m ≠时,(1)e +1+m f m --=,(1)e +1mf m =-,令()(1)(1)e e 2m mg m f f m -=--=--在R 上单调递增,而(0)0g =,所以0m >时,()0g m >,即(1)(1)f f >-, 0m <时,()0g m <,即(1)(1)f f <-.当0m >时,12|()()|(1)1e e 101mf x f x f m m -≤-=-≤-⇒<<,当0m <时,12|()()|(1)1e +e ()e 110m mf x f x f m m m ---≤--=≤--≤-⇒-<<.所以,综上所述m 的取值范围是(1,1)-.【提示】(Ⅰ)利用()0f x '≥说明函数为增函数,利用()0f x '≤说明函数为减函数.注意参数m 的讨论;(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[]1,0-单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m 的取值范围. 【考点】导数的运算,单调性的判别,分类讨论,运算求解能力. 22.【答案】(Ⅰ)见解析【解析】(Ⅰ)由于ABC △是等腰三角形,AD BC ⊥, 所以AD 是CAB ∠的平分线.又因为O 分别与AB ,AC 相切于点E ,F ,故AD EF ⊥. 所以EF BC ∥.(Ⅱ)由(Ⅰ)知,AE AF =,AD EF ⊥, 故AD 是EF 的垂直平分线,又EF 为O 的弦, 所以O 在AD 上.连接OE ,OM ,则OE AE ⊥. 由AG 等于O 的半径的2AO OE =,所以30OAE ∠︒=,因此△ABC 和△AEF 都是等边三角形.因为AE = 所以4AO =,2OE =.因为2OE OM ==,12DM MN == 所以1OD =.于是5AD =,AB =.所以四边形EBCF的面积为221122⨯-⨯=⎝⎭(.【提示】(Ⅰ)通过AD 是CAB ∠的角平分线及圆O 分别与AB .AC 相切于点E 、F ,利用相似的性质即得结论;(Ⅱ)通过(Ⅰ)知AD 是EF 的垂直平分线,连结OE 、OM ,则OE AE ⊥,利用ABC AEF S S -△△计算即可.【考点】等腰三角形,线线平行的判别,运算求解能力,面积的求解 23.【答案】(Ⅰ)(0,0)32⎫⎪⎪⎝⎭(Ⅱ)4【解析】(Ⅰ)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C的直角坐标方程为22+0x y -=.联立2222+20+0x y y x y ⎧-=⎪⎨-=⎪⎩,解得00x y =⎧⎨=⎩或32x y ⎧=⎪⎪⎨⎪=⎪⎩.所以2C 与3C 交点的直角坐标为(0,0)和32⎫⎪⎪⎝⎭.(Ⅱ)曲线1C 的极坐标方程为θα=(0)ρρ∈≠R ,,其中0πα≤<. 因此A 的极坐标为(2sin ,)αα,B的极坐标为,)αα.所以π|||2sin |4sin 3AB ααα⎛⎫=-=- ⎪⎝⎭.当5π6α=时,||AB 取得最大值,最大值为4. 【提示】(Ⅰ)由曲线C 2:2sin ρθ=,化为22sin ρρθ=,把222s n +i x y y ρρθ⎧=⎨=⎩代入可得直角坐标方程.同理,由C 3:ρθ=,可得直角坐标方程,联立解出可得C 2与C 3交点的直角坐标. (Ⅱ)由曲线1C 的参数方程,消去参数t ,化为普通方程:tan y x α=,其中0πα≤<,其极坐标方程为:θα=(0)ρρ∈≠R ,,利用|||2sin |AB αα=-即可得出. 【考点】极坐标与参数方程,求解交点坐标,最大值的求解24.【答案】(Ⅰ)见解析 (Ⅱ)见解析【解析】(Ⅰ)因为2+a b =2+c d = 由题设++a b c d =,ab cd >得22>>(Ⅱ)(ⅰ)若||||a b c d -<-则22()()a b c d -<-,即22(+)4(+)4a b ab c d cd -<-.因为++a b c d =,所以ab cd >.>(ⅱ)22>,即2++a b c d >. 因为++a b c d =,所以ab cd >,于是2222()(+)4(+)4()a b a b ab c d cd c d -=-<-=-因此||||a b c d -<-.||||a b c d-<-的充要条件.【提示】(Ⅰ)运用不等式的性质,结合条件a,b,c,d均为正数,且++a b c d=,ab cd>,即可得证;(Ⅱ)从两方面证,>证得||||a b c d-<-,②若||||a b c d-<-,证>【考点】不等式的证明和判定,充分、必要条件.。
2015年北京市高考数学试卷(理科)一、选择题(每小题5分,共40分)1.(5分)(2015•北京)复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i2.(5分)(2015•北京)若x,y满足,则z=x+2y的最大值为()A.0B.1C.D.23.(5分)(2015•北京)执行如图所示的程序框图,输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)4.(5分)(2015•北京)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分不要条件D.既不充分也不必要条件5.(5分)(2015•北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.56.(5分)(2015•北京)设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则若a1+a2<0,D.若a1<0,则(a2﹣a1)(a2﹣a3)>0C.若若0<a1<a2,则a27.(5分)(2015•北京)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0} B.{x|﹣1≤x≤1} C.{x|﹣1<x≤1} D.{x|﹣1<x≤2}8.(5分)(2015•北京)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油二、填空题(每小题5分,共30分)9.(5分)(2015•北京)在(2+x)5的展开式中,x3的系数为(用数字作答)10.(5分)(2015•北京)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a=.11.(5分)(2015•北京)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为.12.(5分)(2015•北京)在△ABC中,a=4,b=5,c=6,则=.13.(5分)(2015•北京)在△ABC中,点M,N满足=2,=,若=x+y,则x=,y=.14.(5分)(2015•北京)设函数f(x)=,①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.三、解答题(共6小题,共80分)15.(13分)(2015•北京)已知函数f(x)=sin cos﹣sin.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣π,0]上的最小值.16.(13分)(2015•北京)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组;12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果a=25,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)17.(14分)(2015•北京)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE.(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若BE⊥平面AOC,求a的值.18.(13分)(2015•北京)已知函数f(x)=ln,(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求证,当x∈(0,1)时,f(x);(Ⅲ)设实数k使得f(x)对x∈(0,1)恒成立,求k的最大值.19.(14分)(2015•北京)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(Ⅰ)求椭圆C的方程,并求点M的坐标(用m,n表示);(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标,若不存在,说明理由.20.(13分)(2015•北京)已知数列{a n}满足:a1∈N*,a1≤36,且a n+1=(n=1,2,…),记集合M={a n|n∈N*}.(Ⅰ)若a1=6,写出集合M的所有元素;(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;(Ⅲ)求集合M的元素个数的最大值.2015年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共40分)1.(5分)(2015•北京)复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则解答.解答:解:原式=2i﹣i2=2i﹣(﹣1)=1+2i;故选:A.点评:本题考查了复数的运算;关键是熟记运算法则.注意i2=﹣1.2.(5分)(2015•北京)若x,y满足,则z=x+2y的最大值为()A.0B.1C.D.2考点:简单线性规划.专题:不等式的解法及应用.分析:作出题中不等式组表示的平面区域,再将目标函数z=x+2y对应的直线进行平移,即可求出z取得最大值.解答:解:作出不等式组表示的平面区域,得到如图的三角形及其内部阴影部分,由解得A(,),目标函数z=x+2y,将直线z=x+2y进行平移,当l经过点A时,目标函数z达到最大值∴z最大值==故选:C.点评:本题给出二元一次不等式组,求目标函数z=x+2y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.3.(5分)(2015•北京)执行如图所示的程序框图,输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的x,y,k的值,当k=3时满足条件k≥3,退出循环,输出(﹣4,0).解答:解:模拟执行程序框图,可得x=1,y=1,k=0s=0,i=2x=0,y=2,k=1不满足条件k≥3,s=﹣2,i=2,x=﹣2,y=2,k=2不满足条件k≥3,s=﹣4,i=0,x=﹣4,y=0,k=3满足条件k≥3,退出循环,输出(﹣4,0),故选:B.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的x,y,k的值是解题的关键,属于基础题.4.(5分)(2015•北京)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分不要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:m∥β并得不到α∥β,根据面面平行的判定定理,只有α内的两相交直线都平行于β,而α∥β,并且m⊂α,显然能得到m∥β,这样即可找出正确选项.解答:解:m⊂α,m∥β得不到α∥β,因为α,β可能相交,只要m和α,β的交线平行即可得到m∥β;α∥β,m⊂α,∴m和β没有公共点,∴m∥β,即α∥β能得到m∥β;∴“m∥β”是“α∥β”的必要不充分条件.故选B.点评:考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念.5.(5分)(2015•北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.5考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:根据三视图可判断直观图为:A⊥面ABC,AC=AB,E为BC中点,EA=2,EA=EB=1,OA=1,:BC⊥面AEO,AC=,OE=判断几何体的各个面的特点,计算边长,求解面积.解答:解:根据三视图可判断直观图为:OA⊥面ABC,AC=AB,E为BC中点,EA=2,EC=EB=1,OA=1,∴可得AE⊥BC,BC⊥OA,运用直线平面的垂直得出:BC⊥面AEO,AC=,OE=∴S△ABC=2×2=2,S△OAC=S△OAB=×1=.S△BCO=2×=.故该三棱锥的表面积是2,故选:C.点评:本题考查了空间几何体的三视图的运用,空间想象能力,计算能力,关键是恢复直观图,得出几何体的性质.6.(5分)(2015•北京)设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则若a1+a2<0,D.若a1<0,则(a2﹣a1)(a2﹣a3)>0C.若若0<a1<a2,则a2考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:对选项分别进行判断,即可得出结论.解答:解:若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A不正确;若a1+a2<0,则2a1+d<0,a2+a3=2a1+3d<2d,d<0时,结论成立,即B不正确;{a n}是等差数列,0<a1<a2,2a2=a1+a3>2,∴a2>,即C正确;若a1<0,则(a2﹣a1)(a2﹣a3)=﹣d2<0,即D不正确.故选:C.点评:本题考查等差数列的通项,考查学生的计算能力,比较基础.7.(5分)(2015•北京)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0} B.{x|﹣1≤x≤1} C.{x|﹣1<x≤1} D.{x|﹣1<x≤2}考点:指、对数不等式的解法.专题:不等式的解法及应用.分析:在已知坐标系内作出y=log2(x+1)的图象,利用数形结合得到不等式的解集.解答:解:由已知f(x)的图象,在此坐标系内作出y=log2(x+1)的图象,如图满足不等式f(x)≥log2(x+1)的x范围是﹣1<x≤1;所以不等式f(x)≥log2(x+1)的解集是{x|﹣1<x≤1};故选C.点评:本题考查了数形结合求不等式的解集;用到了图象的平移.8.(5分)(2015•北京)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油考点:函数的图象与图象变化.专题:创新题型;函数的性质及应用.分析:根据汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,分别判断各个选项即可.解答:解:对于选项A,消耗1升汽油,乙车行驶的距离比5小的很多,故A错误;对于选项B,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,故B错误,对于选项C,甲车以80千米/小时的速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,故C错误,对于选项D,因为在速度低于80千米/小时,丙的燃油效率高于乙的燃油效率,故D正确.点评:本题考查了函数图象的识别,关键掌握题意,属于基础题.二、填空题(每小题5分,共30分)9.(5分)(2015•北京)在(2+x)5的展开式中,x3的系数为40(用数字作答)考点:二项式定理的应用.专题:二项式定理.分析:写出二项式定理展开式的通项公式,利用x的指数为3,求出r,然后求解所求数值.解答:解:(2+x)5的展开式的通项公式为:T r+1=25﹣r x r,所求x3的系数为:=40.故答案为:40.点评:本题考查二项式定理的应用,二项式系数的求法,考查计算能力.10.(5分)(2015•北京)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a=.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:运用双曲线的渐近线方程为y=±,结合条件可得=,即可得到a的值.解答:解:双曲线﹣y2=1的渐近线方程为y=±,由题意可得=,解得a=.故答案为:.点评:本题考查双曲线的方程和性质,主要考查双曲线的渐近线方程的求法,属于基础题.11.(5分)(2015•北京)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为1.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:化为直角坐标,再利用点到直线的距离公式距离公式即可得出.解答:解:点P(2,)化为P.直线ρ(cosθ+sinθ)=6化为.∴点P到直线的距离d==1.故答案为:1.点评:本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.12.(5分)(2015•北京)在△ABC中,a=4,b=5,c=6,则=1.考点:余弦定理;二倍角的正弦;正弦定理.专题:计算题;解三角形.分析:利用余弦定理求出cosC,cosA,即可得出结论.解答:解:∵△ABC中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.点评:本题考查余弦定理,考查学生的计算能力,比较基础.13.(5分)(2015•北京)在△ABC中,点M,N满足=2,=,若=x+y,则x=,y=﹣.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:首先利用向量的三角形法则,将所求用向量表示,然后利用平面向量基本定理得到x,y值.解答:解:由已知得到===;由平面向量基本定理,得到x=,y=;故答案为:.点评:本题考查了平面向量基本定理的运用,一个向量用一组基底表示,存在唯一的实数对(x,y)使,向量等式成立.14.(5分)(2015•北京)设函数f(x)=,①若a=1,则f(x)的最小值为﹣1;②若f(x)恰有2个零点,则实数a的取值范围是≤a<1或a≥2.考点:函数的零点;分段函数的应用.专题:创新题型;函数的性质及应用.分析:①分别求出分段的函数的最小值,即可得到函数的最小值;②分别设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a),分两种情况讨论,即可求出a的范围.解答:解:①当a=1时,f(x)=,当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,当1<x<时,函数单调递减,当x>时,函数单调递增,故当x=时,f(x)min=f()=﹣1,②设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)若在x<1时,h(x)=与x轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤时,即a≥2时,g(x)的两个交点为x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.点评:本题考查了分段函数的问题,以及函数的零点问题,培养了学生的转化能力和运算能力以及分类能力,属于中档题.三、解答题(共6小题,共80分)15.(13分)(2015•北京)已知函数f(x)=sin cos﹣sin.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣π,0]上的最小值.考点:两角和与差的正弦函数;三角函数的周期性及其求法;三角函数的最值.专题:计算题;三角函数的求值;三角函数的图像与性质.分析:(Ⅰ)运用二倍角公式和两角和的正弦公式,化简f(x),再由正弦喊话说的周期,即可得到所求;(Ⅱ)由x的范围,可得x+的范围,再由正弦函数的图象和性质,即可求得最小值.解答:解:(Ⅰ)f(x)=sin cos﹣sin=sinx﹣(1﹣cosx)=sinxcos+cosxsin﹣=sin(x+)﹣,则f(x)的最小正周期为2π;(Ⅱ)由﹣π≤x≤0,可得﹣≤x+≤,即有﹣1,则当x=﹣时,sin(x+)取得最小值﹣1,则有f(x)在区间[﹣π,0]上的最小值为﹣1﹣.点评:本题考查二倍角公式和两角和的正弦公式,同时考查正弦函数的周期和值域,考查运算能力,属于中档题.16.(13分)(2015•北京)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组;12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果a=25,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)考点:极差、方差与标准差;古典概型及其概率计算公式.专题:概率与统计.分析:设事件A i为“甲是A组的第i个人”,事件B i为“乙是B组的第i个人”,由题意可知P(A i)=P(B i)=,i=1,2,••,7(Ⅰ)事件等价于“甲是A组的第5或第6或第7个人”,由概率公式可得;(Ⅱ)设事件“甲的康复时间比乙的康复时间长”C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6,易得P(C)=10P(A4B1),易得答案;(Ⅲ)由方差的公式可得.解答:解:设事件A i为“甲是A组的第i个人”,事件B i为“乙是B组的第i个人”,由题意可知P(A i)=P(B i)=,i=1,2,••,7(Ⅰ)事件“甲的康复时间不少于14天”等价于“甲是A组的第5或第6或第7个人”∴甲的康复时间不少于14天的概率P(A5∪A6∪A7)=P(A5)+P(A6)+P(A7)=;(Ⅱ)设事件C为“甲的康复时间比乙的康复时间长”,则C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6,∴P(C)=P(A4B1)+P(A5B1)+P(A6B1)P+(A7B1)+P(A5B2)+P(A6B2)+P(A7B2)+P(A7B3)+P(A6B6)+P(A7B6)=10P(A4B1)=10P(A4)P(B1)=(Ⅲ)当a为11或18时,A,B两组病人康复时间的方差相等.点评:本题考查古典概型及其概率公式,涉及概率的加法公式和方差,属基础题.17.(14分)(2015•北京)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE.(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若BE⊥平面AOC,求a的值.考点:二面角的平面角及求法;直线与平面垂直的判定;直线与平面垂直的性质.专题:空间位置关系与距离;空间角.分析:(Ⅰ)根据线面垂直的性质定理即可证明AO⊥BE.(Ⅱ)建立空间坐标系,利用向量法即可求二面角F﹣AE﹣B的余弦值;(Ⅲ)利用线面垂直的性质,结合向量法即可求a的值解答:证明:(Ⅰ)∵△AEF为等边三角形,O为EF的中点,∴AO⊥EF,∵平面AEF⊥平面EFCB,AO⊂平面AEF,∴AO⊥平面EFCB∴AO⊥BE.(Ⅱ)取BC的中点G,连接OG,∵EFCB是等腰梯形,∴OG⊥EF,由(Ⅰ)知AO⊥平面EFCB,∵OG⊂平面EFCB,∴OA⊥OG,建立如图的空间坐标系,则OE=a,BG=2,GH=a,BH=2﹣a,EH=BHtan60°=,则E(a,0,0),A(0,0,a),B(2,,0),=(﹣a,0,a),=(a﹣2,﹣,0),设平面AEB的法向量为=(x,y,z),则,即,令z=1,则x=,y=﹣1,即=(,﹣1,1),平面AEF的法向量为,则cos<>==即二面角F﹣AE﹣B的余弦值为;(Ⅲ)若BE⊥平面AOC,则BE⊥OC,即=0,∵=(a﹣2,﹣,0),=(﹣2,,0),∴=﹣2(a﹣2)﹣3(a﹣2)2=0,解得a=.点评:本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.18.(13分)(2015•北京)已知函数f(x)=ln,(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求证,当x∈(0,1)时,f(x);(Ⅲ)设实数k使得f(x)对x∈(0,1)恒成立,求k的最大值.考点:利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(1)利用函数的导数求在曲线上某点处的切线方程.(2)构造新函数利用函数的单调性证明命题成立.(3)对k进行讨论,利用新函数的单调性求参数k的取值范围.解答:解答:(1)因为f(x)=ln(1+x)﹣ln(1﹣x)所以又因为f(0)=0,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x.(2)证明:令g(x)=f(x)﹣2(x+),则g'(x)=f'(x)﹣2(1+x2)=,因为g'(x)>0(0<x<1),所以g(x)在区间(0,1)上单调递增.所以g(x)>g(0)=0,x∈(0,1),即当x∈(0,1)时,f(x)>2(x+).(3)由(2)知,当k≤2时,f(x)>对x∈(0,1)恒成立.当k>2时,令h(x)=f(x)﹣,则h'(x)=f'(x)﹣k(1+x2)=,所以当时,h'(x)<0,因此h(x)在区间(0,)上单调递减.当时,h(x)<h(0)=0,即f(x)<.所以当k>2时,f(x)>并非对x∈(0,1)恒成立.综上所知,k的最大值为2.点评:本题主要考查切线方程的求法及新函数的单调性的求解证明.在高考中属常考题型,难度适中.19.(14分)(2015•北京)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(Ⅰ)求椭圆C的方程,并求点M的坐标(用m,n表示);(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标,若不存在,说明理由.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:创新题型;圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:(I)根据椭圆的几何性质得出求解即可.(II)求解得出M(,0),N(,0),运用图形得出tan∠OQM=tan∠ONQ,=,求解即可得出即y Q2=x M•x N,+n2,根据m,m的关系整体求解.解答:解:(Ⅰ)由题意得出解得:a=,b=1,c=1∴+y2=1,∵P(0,1)和点A(m,n),﹣1<n<1∴PA的方程为:y﹣1=x,y=0时,x M=∴M(,0)(II)∵点B与点A关于x轴对称,点A(m,n)(m≠0)∴点B(m,﹣n)(m≠0)∵直线PB交x轴于点N,∴N(,0),∵存在点Q,使得∠OQM=∠ONQ,Q(0,y Q),∴tan∠OQM=tan∠ONQ,∴=,即y Q2=x M•x N,+n2=1y Q2==2,∴y Q=,故y轴上存在点Q,使得∠OQM=∠ONQ,Q(0,)或Q(0,﹣)点评:本题考查了直线圆锥曲线的方程,位置关系,数形结合的思想的运用,运用代数的方法求解几何问题,难度较大,属于难题.20.(13分)(2015•北京)已知数列{a n}满足:a1∈N*,a1≤36,且a n+1=(n=1,2,…),记集合M={a n|n∈N*}.(Ⅰ)若a1=6,写出集合M的所有元素;(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;(Ⅲ)求集合M的元素个数的最大值.考点:数列递推式.专题:创新题型;点列、递归数列与数学归纳法.分析:(Ⅰ)a1=6,利用a n+1=可求得集合M的所有元素为6,12,24;(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设a k是3的倍数,由a n+1=(n=1,2,…),可归纳证明对任意n≥k,a n是3的倍数;(Ⅲ)分a1是3的倍数与a1不是3的倍数讨论,即可求得集合M的元素个数的最大值.解答:解:(Ⅰ)若a1=6,由于a n+1=(n=1,2,…),M={a n|n∈N*}.故集合M的所有元素为6,12,24;(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设a k是3的倍数,由a n+1=(n=1,2,…),可归纳证明对任意n≥k,a n是3的倍数.如果k=1,M的所有元素都是3的倍数;如果k>1,因为a k=2a k﹣1,或a k=2a k﹣1﹣36,所以2a k﹣1是3的倍数;于是a k﹣1是3的倍数;类似可得,a k﹣2,…,a1都是3的倍数;从而对任意n≥1,a n是3的倍数;综上,若集合M存在一个元素是3的倍数,则集合M的所有元素都是3的倍数(Ⅲ)对a1≤36,a n=(n=1,2,…),可归纳证明对任意n≥k,a n<36(n=2,3,…)因为a1是正整数,a2=,所以a2是2的倍数.从而当n≥3时,a n是2的倍数.如果a1是3的倍数,由(Ⅱ)知,对所有正整数n,a n是3的倍数.因此当n≥3时,a n∈{12,24,36},这时M的元素个数不超过5.如果a1不是3的倍数,由(Ⅱ)知,对所有正整数n,a n不是3的倍数.因此当n≥3时,a n∈{4,8,16,20,28,32},这时M的元素个数不超过8.当a1=1时,M={1,2,4,8,16,20,28,32},有8个元素.综上可知,集合M的元素个数的最大值为8.点评:本题考查数列递推关系的应用,突出考查分类讨论思想与等价转化思想及推理、运算能力,属于难题.。
2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足1+z1-z=i ,则|z |=A .1B . 2C . 3D .22.sin 20°cos 10°-cos 160°sin 10°=A .-32B .32C .-12D .123.设命题P :∃n ∈N ,n 2>2n ,则¬P 为A .∀n ∈N , n 2>2nB .∃n ∈N , n 2≤2nC .∀n ∈N , n 2≤2nD .∃n ∈N , n 2=2n4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为A .0.648B .0.432C .0.36D .0.3125.已知M (x 0,y 0)是双曲线C :x 22-y 2=1 上的一点,F 1、F 2是C 上的两个焦点,若 MF 1→· MF 2→<0 ,则y 0的取值范围是A .⎝⎛⎭⎫-33,33B .⎝⎛⎭⎫-36,36C .⎝⎛⎭⎫-223,223 D .⎝⎛⎭⎫-233,2336.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有 A .14斛 B .22斛 C .36斛 D .66斛7.设D 为△ABC 所在平面内一点BC →=3CD →,则A .AD →=-13AB →+43AC → B .AD →=13AB →-43AC → C .AD →=43AB →+13AC → D .AD →=43AB →-13AC →8.函数f (x )=cos (ωx +φ)的部分图像如图所示,则f (x )的单调递减区间为A .⎝⎛⎭⎫k π-14,k π+34 (k ∈Z )B .⎝⎛⎭⎫2k π-14,2k π+34 (k ∈Z )C .⎝⎛⎭⎫k -14,k +34 (k ∈Z )D .⎝⎛⎭⎫2k -14,2k +34 (k ∈Z )9.执行右面的程序框图,如果输入的t =0.01,则输出的n =A .5B .6C .7D .810.(x 2+x +y )5的展开式中,x 5y 2的系数为A .10B .20C .30D .60 (第11题图)11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =A .1B .2C .4D .812.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0,使得f (x 0)<0,则a 的取值范围是A .⎣⎡⎭⎫-32e ,1B . ⎣⎡⎭⎫-32e ,34C . ⎣⎡⎭⎫32e ,34D . ⎣⎡⎭⎫32e ,12rr正视图俯视图 r2r第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分13.若函数f (x )=xln (x +a +x 2)为偶函数,则a =______.14.一个圆经过椭圆 x 216+y 24=1 的三个顶点,且圆心在x 轴上,则该圆的标准方程为 .15.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0 (1)x -y ≤0 (2)x +y -4≤0 (3) ,则 yx的最大值为 .16.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 .三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +4.(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =1a n a n +1,求数列{b n }的前n 项和.18.如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (1)证明:平面AEC ⊥平面AFC ; (2)求直线AE 与直线CF 所成角的余弦值.A B C F E D19.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w 1 =x 1, ,w - =18∑x +1w 1(Ⅰ)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z =0.2y -x .根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2),……,(u n v n ),其回归线v =αβ+u 的斜率和截距的最小二乘估计分别为:β=∑i =1n(u i -u -)(v i -v -) ∑i =1n(u i -u -)2α=v --βu -年宣传费/千元20.(本小题满分12分)在直角坐标系xoy 中,曲线C :y =x 24与直线y =kx +a (a >0)交于M ,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.21.(本小题满分12分)已知函数f (x )=x 3+ax +14,g (x )=-lnx .(Ⅰ)当a 为何值时,x 轴为曲线y =f (x ) 的切线;(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )} (x >0),讨论h (x )零点的个数.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑..22.(本题满分10分)选修4-1:几何证明选讲 如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是⊙O 的切线; (Ⅱ)若OA =3CE ,求∠ACB 的大小.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求C 1,C 2的极坐标方程;(Ⅱ)若直线C 3的极坐标方程为 θ=π4(ρ∈R ),设C 2与C 3的交点为M 、N ,求△C 2MN 的面积.24.(本小题满分10分)选修4—5:不等式选讲 已知函数f (x )=|x +1|-2|x -a |,a >0.(Ⅰ)当a =1时,求不等式f (x )>1的解集;(Ⅱ)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围.。
2015年北京高考数学(理科)
本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.
第一部分(选择题共40分)
一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.复数()i 2i -= A .12i +
B .12i -
C .12i -+
D .12i --
2.若x ,y 满足010x y x y x -⎧⎪
+⎨⎪⎩≤,≤,≥,则2z x y =+的最大值为
A .0
B .1
C .
32
D .2
3.执行如图所示的程序框图,输出的结果为 A .()22-,
B .()40-,
C .()44--,
D .()
08-,
开始
x =1,y =1,k =0
s =x -y ,t =x +y x =s ,y =t
k =k +1
k ≥3输出(x ,y )
结束
是否
4.设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件
D .既不充分也不必要条件
5.某三棱锥的三视图如图所示,则该三棱锥的表面积是
正(主)视图
11俯视图
侧(左)视图
21
A
.2+ B
.4 C
.2+ D .5 6.设{}n a 是等差数列. 下列结论中正确的是
A .若120a a +>,则230a a +>
B .若130a a +<,则120a a +<
C .若120a a <<
,则2a > D .若10a <,则()()21230a a a a --> 7.如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是
A B O
x
y -1
2
2C
A .{}|10x x -<≤
B .{}|11x x -≤≤
C .{}|11x x -<≤
D .{}|12x x -<≤
8.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下
的燃油效率情况. 下列叙述中正确的是
A .消耗1升汽油,乙车最多可行驶5千米
B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油
第二部分(非选择题 共110分)
二、填空题共6小题,每小题5分,共30分. 9.在()5
2x +的展开式中,3x 的系数为
.(用数字作答)
10.已知双曲线()2
2210x y a a
-=>0y +=,则a =
.
11.在极坐标系中,点π23⎛
⎫ ⎪⎝
⎭‚到直线()
cos 6ρθθ+=的距离为
.
12.在ABC △中,4a =,5b =,6c =,则
sin 2sin A
C
= .
13.在ABC △中,点M ,N 满足2AM MC =,BN NC =.若MN xAB y AC =+,则x =
;
y =
.
14.设函数()()()2142 1.x a x f x x a x a x ⎧-<⎪
=⎨--⎪⎩
‚‚‚≥
①若1a =,则()f x 的最小值为
;
②若()f x 恰有2个零点,则实数a 的取值范围是 .
三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程) 15.(本小题13分)
已知函数2()cos 222
x x x
f x =.
(Ⅰ) 求()f x 的最小正周期;
(Ⅱ) 求()f x 在区间[π0]-,上的最小值.
16.(本小题13分)
A ,
B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下: A 组:10,11,12,13,14,15,16 B 组:12,13,15,16,17,14,a
假设所有病人的康复时间互相独立,从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙.
(Ⅰ) 求甲的康复时间不少于14天的概率;
(Ⅱ) 如果25a =,求甲的康复时间比乙的康复时间长的概率;
(Ⅲ) 当a 为何值时,A ,B 两组病人康复时间的方差相等?(结论不要求证明)
17.(本小题14分)
如图,在四棱锥A EFCB -中,AEF △为等边三角形,平面AEF ⊥平面EFCB ,EF BC ∥,4BC =,
2EF a =,60EBC FCB ∠=∠=︒,O 为EF 的中点.
(Ⅰ) 求证:AO BE ⊥;
(Ⅱ) 求二面角F AE B --的余弦值; (Ⅲ) 若BE ⊥平面AOC ,求a 的值.
O F
E
C
B
A
18.(本小题13分) 已知函数()1ln
1x
f x x
+=-.
(Ⅰ)求曲线()y f x =在点()()00f ,处的切线方程; (Ⅱ)求证:当()01x ∈,
时,()323x f x x ⎛⎫
>+ ⎪⎝
⎭; (Ⅲ)设实数k 使得()33x f x k x ⎛⎫
>+ ⎪⎝⎭
对()01x ∈,
恒成立,求k 的最大值.
19.(本小题14分)
已知椭圆C :()222210x y a b a b +=>>
,点()01P ,
和点()A m n ,()0m ≠都在椭圆C 上,直线PA 交x 轴于点M .
(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);
(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.
20.(本小题13分)
已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n n
n a a a a a +⎧=⎨->⎩,≤,
,()12n =,,
…. 记集合{}*|n M a n =∈N .
(Ⅰ)若16a =,写出集合M 的所有元素;
(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.
(考生务必将答案答在答题卡上,在试卷上作答无效)。