空间向量与立体几何(角度问题)教学设计
- 格式:doc
- 大小:318.50 KB
- 文档页数:7
空间向量与立体几何教案一、教学目标1. 理解空间向量的概念,掌握空间向量的基本运算规则。
2. 能够运用空间向量描述和解决立体几何问题。
3. 培养学生的空间想象能力和逻辑思维能力。
二、教学内容1. 空间向量的概念及其表示方法。
2. 空间向量的加法、减法、数乘和点乘运算。
3. 空间向量与立体几何的相互应用。
三、教学重点与难点1. 空间向量的概念及其表示方法。
2. 空间向量的加法、减法、数乘和点乘运算的规则。
3. 运用空间向量解决立体几何问题。
四、教学方法与手段1. 采用讲解、示例、练习相结合的方法进行教学。
2. 使用多媒体课件、模型等教学辅助工具,帮助学生直观理解空间向量与立体几何的概念和运算。
五、教学安排1. 第一课时:空间向量的概念及其表示方法。
2. 第二课时:空间向量的加法、减法、数乘运算。
3. 第三课时:空间向量的点乘运算。
4. 第四课时:空间向量在立体几何中的应用(一)。
5. 第五课时:空间向量在立体几何中的应用(二)。
【导入新课】通过复习相关基础知识,引导学生回顾平面几何中的向量概念和运算规则,为新课的学习做好铺垫。
【知识讲解】1. 空间向量的概念及其表示方法。
讲解空间向量的定义,举例说明空间向量的表示方法,如用箭头表示、用坐标表示等。
2. 空间向量的加法、减法、数乘运算。
讲解空间向量的加法、减法、数乘运算的规则,并通过示例进行演示。
3. 空间向量的点乘运算。
讲解空间向量的点乘运算的定义和计算方法,并通过示例进行演示。
【课堂练习】针对本节课所学内容,设计一些练习题,让学生在课堂上进行练习,巩固所学知识。
【拓展与应用】1. 运用空间向量描述和解决立体几何问题。
通过示例,讲解如何运用空间向量描述和解决立体几何问题,如求解空间中的距离、角度等。
2. 空间向量在立体几何中的应用。
通过示例,讲解空间向量在立体几何中的应用,如几何体的体积、表面积等计算。
【小结】【作业布置】布置一些有关空间向量与立体几何的练习题,让学生课后巩固所学知识。
教学单元设计:空间向量与立体几何1. 单元概述1.1 单元目标本单元旨在通过空间向量与立体几何的研究,使学生掌握空间向量的基本概念、运算规则及其在立体几何中的应用。
通过本单元的研究,学生应能熟练运用空间向量解决立体几何中的相关问题,提高空间想象能力和解决问题的能力。
1.2 单元内容本单元共包括以下几个主要内容:1. 空间向量的基本概念及表示方法2. 空间向量的线性运算3. 空间向量的数量积与夹角4. 空间向量的坐标运算5. 空间向量在立体几何中的应用2. 教学目标2.1 知识与技能1. 掌握空间向量的基本概念及其表示方法2. 掌握空间向量的线性运算规则3. 掌握空间向量的数量积与夹角计算4. 掌握空间向量的坐标运算方法5. 能够运用空间向量解决立体几何中的相关问题2.2 过程与方法1. 通过实例分析,培养学生的空间想象力2. 运用图形演示和数学证明,提高学生的问题解决能力3. 培养学生运用空间向量解决实际问题的能力2.3 情感态度与价值观1. 培养学生对数学学科的兴趣和热情2. 培养学生克服困难的意志和团队协作精神3. 引导学生认识数学在实际生活中的应用价值3. 教学重点与难点3.1 教学重点1. 空间向量的基本概念及其表示方法2. 空间向量的线性运算规则3. 空间向量的数量积与夹角计算4. 空间向量的坐标运算方法5. 空间向量在立体几何中的应用3.2 教学难点1. 空间向量的数量积与夹角计算2. 空间向量的坐标运算方法3. 空间向量在立体几何中的应用4. 教学策略与方法4.1 教学策略1. 采用问题驱动的教学模式,引导学生主动探究2. 利用图形演示和数学证明,帮助学生直观理解3. 提供丰富的练题,巩固所学知识4. 注重个体差异,因材施教4.2 教学方法1. 讲授法:讲解空间向量的基本概念、运算规则及应用2. 案例分析法:分析实际问题,引导学生运用空间向量解决问题3. 小组讨论法:分组讨论,培养学生的团队协作能力4. 练法:提供课后练,巩固所学知识5. 教学评价5.1 评价目标1. 学生对空间向量基本概念的理解程度2. 学生掌握空间向量运算规则的程度3. 学生运用空间向量解决立体几何问题的能力5.2 评价方法1. 课堂问答:检查学生对空间向量基本概念的理解2. 课后作业:检验学生对空间向量运算规则的掌握3. 小组项目:评估学生运用空间向量解决立体几何问题的能力4. 期末考试:全面考核学生在本单元的研究成果6. 教学计划6.1 课时安排本单元共需安排12课时,具体分配如下:1. 空间向量的基本概念及表示方法(2课时)2. 空间向量的线性运算(3课时)3. 空间向量的数量积与夹角(2课时)4. 空间向量的坐标运算(3课时)5. 空间向量在立体几何中的应用(2课时)6.2 教学活动安排1. 第1-2课时:介绍空间向量的基本概念及表示方法2. 第3-5课时:讲解空间向量的线性运算规则3. 第6-7课时:讲解空间向量的数量积与夹角计算4. 第8-10课时:讲解空间向量的坐标运算方法5. 第11-12课时:应用空间向量解决立体几何中的相关问题7. 教学资源1. 教材:选用权威、系统的数学教材,如《高等数学》等2. 辅助教材:提供相关的辅导书、教辅材料,以丰富教学内容3. 网络资源:利用网络平台,提供相关教学视频、课件、题等资源4. 几何画板:利用几何画板软件,直观演示空间向量的运算和立体几何问题8. 教学反思在教学过程中,教师应不断反思教学方法、教学内容和学生研究情况,根据实际情况调整教学策略,以提高教学效果。
空间向量在立体几何中的应用教学设计一、教学目标1.知识目标:了解空间向量的概念和性质,掌握空间向量的基本运算法则。
2.能力目标:能够应用空间向量的知识解决立体几何中的问题,如线段长度、向量共线、线段垂直等。
3.情感目标:培养学生的观察力和分析问题的能力,增强解决问题的自信心。
二、教学重点与难点1.教学重点:空间向量的概念和运算法则。
2.教学难点:将空间向量的知识应用到立体几何问题中。
三、教学准备白板、黑板笔、投影仪、屏幕、计算器等。
四、教学过程Step 1 引入1.教师出示两个立方体模型并提问:你们能用线段表示两个立方体顶点之间的距离吗?2.引出空间向量的概念,并与平面向量进行比较,说明二者的区别。
Step 2 理论讲解1.教师通过投影仪将空间向量的定义、表示和性质呈现给学生,学生做好笔记。
2.教师讲解空间向量的基本运算法则,例如加法、数乘和点乘,并通过具体的例题演示计算过程。
Step 3 实例分析1. 教师出示一道题目:“已知直线l: $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$,过直线l上一点A(2,3,4),作与直线垂直的平面,并找出平面与原点O(0,0,0)的距离。
”2.请学生先思考如何解决这个问题,然后汇报自己的解题思路。
3.教师引导学生运用空间向量的知识来解答问题,并逐步给予提示。
4.学生进行计算,分组讨论和交流思路。
Step 4 拓展应用1.教师设计一道拓展题:“已知线段AB与线段CD的中点E重合,向量BD的坐标为(1,2,3),向量CE的坐标为(4,5,6),求向量AD的坐标。
”2.学生尝试解答,提出自己的解题思路。
3.教师引导学生应用向量共线的性质来解答问题,并逐步给予提示。
4.学生进行计算,分组讨论和交流思路。
Step 5 总结与归纳1.教师引导学生回顾本节课的学习内容,总结空间向量的基本性质和运算法则。
2.学生通过小组合作的方式归纳学习过程中的思考和解题方法。
《解决立体几何中空间角的向量(坐标)方法》(第一课时教案)一、教材分析1、在教材中的地位与作用立体几何中的向量方法被安排在新课标《数学》选修2–1的第三章第二节,主要讨论的是用空间向量处理立体几何问题。
在此之前安排了空间向量及其运算这一节,将向量由二维拓展为三维,为学生学习本节知识作了必要的铺垫。
立体几何中的向量方法既是前面内容的延展与深化,又是代数与几何知识的交汇点,产生了一种解决几何问题的新视角,为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具。
同时它也体现了新课程标准中提出的“注重提高学生的数学思维能力”的课程基本理念。
2、新、旧教材对比分析在前一个版本的教材中,空间向量是在第二册(下B)的第九章的第5、6节出现,而不是以一章的形式出现,并且对于直线的方向向量和平面的法向量只是以概念的形式提出,没有专门作一节来进行重点讨论,所以现行的新课标教材更加重视向量的作用,这样就使得相关的知识体系更加完整,有利于学生的学习。
其次,新课标教材在提出这些概念之前都是以思考和探究的形式出现,教材中还配备了多个图型,不仅激发了学生学习的兴趣,而且增强了感性效果,更好地帮助学生理解这两个抽象的概念。
可见,新教材的编写者们在处理向量的概念上贯彻了“淡化形式,注重实质”这一新的教学理念。
二、学情分析基础知识方面:学生之前经过了第一轮复习,对必修2第一章《几间几何体》,第二章《点、直线、平面之间的位置关系》,必修2第二章《平面向量》,选修2-1第三章《空间向量与立体几何》的相关内容有了进一步的认识与理解,对空间图形有比较完整的认识,具有一定的空间想象能力、几何直观能力,了解并基本能判断空间中点、直线、平面之间的位置关系,能全面把握几何体特征,知道立体几何中的向量方法可以解决三维空间中图形的位置关系与度量问题.认知水平与能力方面:学生已经具备初步的抽象概括能力、空间想象能力、逻辑思维能力,简单的知识融合能力和一定的知识综合应用能力,能在教师的引导下,通过自主学习、合作交流解决一些空间中图形的位置关系与度量问题.任教班级学情:我班学生有较好的学习习惯,基础知识较为扎实,但是对平面的法向量与线面角、二面角的平面角之间的关系不很明确,如何选择恰当的位置建立空间直角坐标系不熟练,要准确计算某些特殊点的坐标有困难。
空间向量与立体几何第一章:空间向量基础1.1 向量的定义与表示介绍向量的概念,理解向量是有大小和方向的量。
学习如何用坐标表示空间中的向量,包括二维和三维空间中的向量。
1.2 向量的加法和数乘学习向量的加法运算,掌握三角形法则和平行四边形法则。
学习向量的数乘运算,理解数乘对向量大小和方向的影响。
1.3 向量的长度和方向学习向量的长度(模)的定义和计算方法。
学习向量的方向,理解余弦定理在向量夹角计算中的应用。
1.4 向量垂直与向量积学习向量垂直的概念,掌握向量垂直的判定方法。
学习向量积的定义和计算方法,理解向量积的几何意义。
第二章:立体几何基础2.1 平面和直线学习平面的定义和表示方法,掌握平面的基本性质。
学习直线的定义和表示方法,掌握直线的性质和判定方法。
2.2 点、线、面的位置关系学习点、线、面之间的位置关系,包括点在线上、点在面上、线在面上的判定。
学习线与线、线与面、面与面之间的位置关系。
2.3 空间角的计算学习空间角的定义和计算方法,包括二面角和平面角的计算。
学习空间角的性质和应用,理解空间角在立体几何中的重要性。
2.4 立体几何中的定理和公式学习立体几何中的重要定理和公式,如欧拉公式、施瓦茨公式等。
学会运用定理和公式解决立体几何问题。
后续章节待补充。
空间向量与立体几何第六章:空间向量的应用6.1 向量在几何中的应用学习利用向量解决几何问题,如计算线段长度、向量夹角、向量垂直等。
掌握向量在三角形和平面几何中的应用。
6.2 向量在物理中的应用引入物理中的向量概念,如速度、加速度、力等。
学习利用向量解决物理问题,如计算物体的运动轨迹、速度变化等。
6.3 向量在坐标变换中的应用学习坐标变换的基本概念,如平移、旋转等。
掌握利用向量进行坐标变换的方法和应用。
第七章:立体几何中的特殊形状7.1 柱体和锥体学习柱体和锥体的定义和性质,包括圆柱、圆锥、棱柱、棱锥等。
掌握计算柱体和锥体的体积、表面积等方法。
7.2 球体学习球体的定义和性质,掌握球体的方程和参数。
空间向量与立体几何:教学设计1. 课程概述本课程旨在帮助学生深入理解空间向量与立体几何的基本概念,方法和技能。
通过本课程的学习,学生将能够熟练运用空间向量解决立体几何问题,提高空间想象能力和解题能力。
2. 教学目标2.1 知识与技能1. 掌握空间向量的基本概念,如向量的定义,模长,方向等。
2. 学会空间向量的线性运算,如加法,减法,数乘和标量积。
3. 熟悉空间向量在立体几何中的应用,如计算距离,角和体积等。
2.2 过程与方法1. 培养学生的空间想象力,能够将实际问题转化为向量问题。
2. 培养学生运用向量方法解决立体几何问题的能力。
3. 培养学生通过向量分析,发现和解决几何问题的思维习惯。
2.3 情感态度与价值观1. 培养学生对数学的兴趣和热情,感受数学的美。
2. 培养学生克服困难,解决问题的勇气和信心。
3. 教学内容3.1 空间向量基本概念1. 向量的定义2. 向量的模长3. 向量的方向3.2 空间向量的线性运算1. 向量加法2. 向量减法3. 数乘向量4. 标量积3.3 空间向量在立体几何中的应用1. 计算距离2. 计算角3. 计算体积4. 教学方法采用讲授,讨论,练习和实验等多种教学方法,以帮助学生更好地理解和掌握空间向量与立体几何的知识。
5. 教学评价通过课堂表现,作业,小测和期末考试等方式,评价学生在知识,技能和情感态度方面的进步。
6. 教学计划第一周:空间向量基本概念1. 向量的定义2. 向量的模长3. 向量的方向第二周:空间向量的线性运算1. 向量加法2. 向量减法3. 数乘向量4. 标量积第三周:空间向量在立体几何中的应用1. 计算距离2. 计算角3. 计算体积第四周:综合练习与复习1. 课堂练习2. 小组讨论3. 期末考试复习7. 教学资源1. 教材:空间向量与立体几何2. 课件:PowerPoint3. 练习题:纸质和在线4. 视频:教学视频和动画8. 教学建议1. 鼓励学生在课堂上积极提问,培养问题意识。
空间向量与立体几何:教学设计介绍本文档旨在设计一份关于空间向量与立体几何的教学计划。
通过简单的策略和避免法律复杂性的原则,我们将提供一个独立决策的教学方案。
目标- 帮助学生理解空间向量和立体几何的基本概念和原理- 培养学生分析和解决空间向量和立体几何问题的能力- 激发学生对空间向量和立体几何应用的兴趣教学内容1. 空间向量基础知识- 介绍空间向量的定义和表示方法- 讲解空间向量的加法、减法和数量乘法运算- 演示空间向量的共线性和共面性判断方法2. 空间向量的应用- 探讨空间向量在物理力学、工程力学和几何问题中的应用- 引导学生分析并解决与空间向量相关的实际问题3. 立体几何基础知识- 介绍立体几何的基本概念,如点、线、面、体等- 讲解立体几何中的平行、垂直、重合等关系- 演示立体几何中的平面交线、直线交线等问题4. 立体几何的应用- 探讨立体几何在建筑设计、计算机图形学和机械制图中的应用- 引导学生分析并解决与立体几何相关的实际问题教学方法- 授课讲解:通过讲解理论知识,帮助学生建立起对空间向量和立体几何的基本理解。
- 实例演示:通过实际案例和示例,展示空间向量和立体几何在实际问题中的应用。
- 小组讨论:组织学生进行小组讨论,共同解决一些空间向量和立体几何问题,培养他们的合作和分析能力。
- 实践操作:引导学生进行实践操作,使用计算工具或绘图软件解决空间向量和立体几何问题。
教学评估- 课堂练习:通过课堂练习,检验学生对空间向量和立体几何的掌握程度。
- 作业任务:布置作业任务,要求学生独立解决一些空间向量和立体几何问题。
- 课堂讨论:组织学生进行课堂讨论,评价他们的分析和解决问题的能力。
结束语通过本教学设计,我们将帮助学生建立对空间向量和立体几何的基本理解和应用能力。
同时,培养他们的分析和解决问题的能力,激发他们对空间向量和立体几何的兴趣和热情。
立体几何与空间向量教学策划引言立体几何与空间向量是高中数学中的重要内容,对学生的几何思维能力和空间想象力有着重要的培养作用。
本文档旨在提供一份立体几何与空间向量教学策划,帮助教师们在教学过程中更好地引导学生掌握相关知识和技能。
教学目标1. 掌握立体几何的基本概念和性质,能够分析和解决与立体几何相关的问题。
2. 理解空间向量的概念和运算法则,能够应用空间向量解决实际问题。
3. 培养学生的几何思维能力和空间想象力,提高其解决问题的能力和创造力。
教学内容立体几何1. 空间中点、线、面的概念及性质。
2. 空间中直线与平面的位置关系。
3. 空间中直线与直线的位置关系。
4. 空间中平面与平面的位置关系。
5. 空间中多面体的概念、性质和分类。
6. 空间中圆锥、圆台、球的概念、性质和相关计算。
空间向量1. 空间向量的定义和表示。
2. 空间向量的加法和减法运算。
3. 空间向量的数量积和向量积。
4. 空间向量的应用,如平面的垂直、平行判定等。
教学策略1. 注重理论与实践相结合,通过生动的实例和实际问题引导学生理解和掌握立体几何与空间向量的概念和性质。
2. 采用启发式教学方法,引导学生主动思考和探索,培养其解决问题的能力和创造力。
3. 创设情境,将立体几何和空间向量的知识与实际应用相结合,提高学生的学习兴趣和动机。
4. 引导学生进行小组合作学习,通过讨论和合作解决问题,培养他们的团队合作能力和交流能力。
5. 提供适当的练习和习题,巩固学生的基本概念和运算技能,培养他们的独立思考和解决问题的能力。
教学评估1. 针对学生的理论知识和应用能力,设计合理的课堂测验和作业,及时发现和纠正学生的错误和不足。
2. 利用小组合作学习和讨论的形式,观察和评估学生的团队合作能力和交流能力。
3. 设计开放性问题和探究性任务,评估学生的解决问题的能力和创造力。
4. 定期进行教学反思和评估,根据学生的反馈和表现调整教学策略和方法。
结束语本文档提供了一份立体几何与空间向量教学策划,通过合理的教学目标、内容、策略和评估,帮助教师们更好地进行教学工作,培养学生的几何思维能力和空间想象力,提高他们的解决问题的能力和创造力。
空间向量与立体几何(角度问题)教学设计空间向量与立体几何(角度问题)教学设计一、学习目标:1.能借助空间几何体内的位置关系求空间的夹角;2.能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。
3、探究题型,掌握解法。
二、重难点:向量法在立体几何中求空间的夹角应用。
探究题型,掌握解法。
三、学情分析:本节内容是高考热点问题,需要学生做到非常熟练。
在平时的学习中,学生已经对该几类问题有所认识,本堂课重点在于让学生体会空间角度与向量角度之间的差异,培养学生养成良好的答题习惯。
四、教学过程本节课为高三复习课,所以从开始直奔主题,从回顾旧知开始直接进入例题讲解、课堂练习、方法提炼、课堂小结,重点在于提炼解决类型题的方法并配合相应例题进行巩固,提高课堂效率。
设计意图我们都已经学过空间向量,在空间中如何将点线面的位置量化?回顾旧知,让学生理解空间坐标系的作用在于量化点线面位置①点→空间直角坐标系下点的坐标②线→直线的方向向量③面→平面上一的一点、平面的法向量直线的方向向量→直线上任意两点坐标之差平面的法向量→①设;②找;③列;④求。
所谓平面的法向量,就是指所在的直线与的向量,显然一个平面的法向量有多个,它们是向量.明确点、线、面如何用空间直角坐标系里的坐标进行标示明确方向向量与平面法向量的求法,回顾旧知识。
因为在后续问题中,求已知平面的法向量会多次出现,在此再次回顾法向量为何能确定一个平面,让学生加深对平面法向量的认识。
在空间中,给定一个点A和一个向量a,那么以向量a为法向量且经过点A的平面是.二:几个空间角的范围(1)异面直线所成的角θ:0<θ≤π2;(2)直线与平面所成的角θ:0≤θ≤π2;(3)二面角θ:0≤θ≤π.回顾空间角的范围,先从范围的角度与向量与向量的夹角范围进行比较,强调两者的不同三、利用向量求空间角1.两条异面直线所成角的求法设两条异面直线a,b的方向向量为a,b,其夹角为θ,则cosφ=|cosθ|=(其中φ为异面直线a,b所成的角).2.直线和平面所成的角的求法如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,两向量e与n的夹角为θ,则有sinφ=|cosθ|= .3.求二面角的大小(1)如图①,AB、CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=.结合图像,让学生更直观地了解到线面所成的角与直线方向向量同平面法向量之间所成的角存在的区别与联系,从而找到适当的方法进行调整结合图像,让学生更直观地了解到二面角与直线方向向量同平面法向量之(2)如图②③,n1,n2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的小大θ=.求空间角:设直线l1,l2的方向向量分别为a,b,平面α、β的法向量分别为n,m.①异面直线l1与l2所成的角为θ,则cosθ=|a·b||a||b|.②直线l1与平面α所成的角为θ,则sinθ=|a·n||a||n|.③平面α与平面β所成的二面角为θ,则|cosθ|=|n·m||n||m|.、间所成的角存在的区别与联系,从而找到适当的方法进行调整通过之前的对比,分析清楚空间角与向量角之间存在的差异后,找寻适当的方法去解决差异,从而统一解题方法。
,a b>;θ=<>;n)所成的角sin cos,a n⑶二面角:锐二面角θ:cos cos ,m n θ=<>,其中,m n 为两个面的法向量。
活动三:合作学习、探究新知(18分钟)利用向量知识求线线角,线面角,二面角的大小。
一、异面线所成角:例1、如图所示的正方体中,已知与为四等分点,求异面直线与的夹角的余弦值?方法小结:1、异面直线a 、b 所成的角:在空间中任取一点O ,过点O 分别引/a ∥a ,/b ∥b ,则/a ,/b 所成的锐角(或直角)叫做两条异面直线所成的角。
两条异面直线所成角的范围:(0,]2π。
2、求法:①传统法:把两条异面直线中的一条放入一个平面,另一条与这个平面有交点,过这个交点在平面内作第一条的平行线,则这两条直线所成的角为两条异面直线所成的角。
然后解三角形得到。
②向量法:在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>。
3、利用向量求异面直线所成的角的步骤为:(1)确定空间两条直线的方向向量;(2)求两个向量夹角的余弦值;(3)确定线线角与向量夹角的关系;当向量夹角为锐角时,即为两直线的夹角;当向量夹角为钝角时,两直线的夹角为向量夹角的补角。
练习:中,,现将沿着平面的法向量平移到的位置,已知BC=CA=C,取、的中点、,求B与A所成的角的余弦值。
二、直线与平面所成的角:例2:如图,在正方体ABCD-中,求与平面所成的角。
方法小结:1、直线a 与平面α所成角:斜线与平面所成的角就是斜线与它在平面内的射影所成的锐角。
直线与平面所成角的范围为:[0,]2π。
2、求法:①求斜线与平面所成的角关键是找到斜线在平面内的射影,即确定过斜线上一点向平面所作垂线的垂足,这时经常要用面面垂直来确定垂足的位置。
若垂足的位置难以确定,可考虑用三棱锥体积等量来求出斜线上一点到平面的距离。
立体几何与空间向量的教学设计单元1. 简介本教学设计单元将重点介绍立体几何和空间向量的基本概念和应用。
通过理论讲解、实际案例和问题解决,旨在帮助学生全面理解和掌握立体几何和空间向量的知识,培养其空间思维能力和解决实际问题的能力。
2. 教学目标- 理解立体几何的基本概念,包括点、线、面、体等几何要素。
- 掌握立体几何的基本性质和定理,如平行面的性质、垂直平面的性质等。
- 理解空间向量的概念和性质,包括向量的表示、向量的加减、数量积和向量积等。
- 运用立体几何和空间向量的知识解决实际问题,如计算物体的体积、确定平面与直线的关系等。
3. 教学内容与安排3.1 立体几何的基本概念与性质- 点、线、面、体的定义和特点- 平行面、垂直平面的性质- 点与平面的关系及交点的性质3.2 空间向量的基本概念与运算- 向量的定义和表示- 向量的加法和减法- 向量的数量积和向量积3.3 立体几何与空间向量的应用- 计算物体的体积和表面积- 确定平面与直线的关系- 解决实际问题,如寻找最短路径、确定物体的位置等4. 教学方法- 理论讲解:通过教师讲解和演示,介绍立体几何和空间向量的基本概念和性质。
- 实践操作:组织学生进行实际操作,如测量物体的体积、绘制向量图等,加深对概念的理解和应用能力的培养。
- 问题解决:提供一系列具体问题,引导学生运用所学知识解决实际问题,培养解决问题的能力。
5. 教学评估- 完成作业:布置相关习题作业,检查学生对立体几何和空间向量的掌握情况。
- 实际操作:评估学生在实际操作中的准确性和独立解决问题的能力。
- 综合评估:通过小测验、课堂讨论和项目展示等多种形式,综合评估学生的学习成果。
6. 学习资源- 教科书:选择适合教学内容的教科书,提供学生参考和拓展阅读。
- 多媒体资源:利用投影仪、电脑等多媒体设备展示示意图、案例分析等辅助教学内容。
- 实验器材:准备测量工具、计算器等实验器材,帮助学生进行实践操作。
教学设计:立体几何与空间向量单元1. 单元概述本单元主要围绕立体几何与空间向量展开,旨在帮助学生深入理解三维空间中的几何形态,以及向量在几何学中的应用。
学生将通过对立体几何图形的学习,掌握空间中点、线、面的基本性质和运算规律,进而运用空间向量解决实际问题。
2. 单元目标1. 理解立体几何的基本概念,掌握空间中点、线、面的性质及运算。
2. 掌握空间向量的基本概念和运算规律,能够运用向量解决立体几何问题。
3. 培养学生的空间想象能力和抽象思维能力,提高解决问题的能力。
3. 教学内容3.1 立体几何1. 空间点、线、面的基本性质2. 立体图形的分类及性质3. 空间中的平行、垂直关系4. 立体图形的度量3.2 空间向量1. 向量的定义及表示2. 向量的基本运算3. 向量与立体几何的关系4. 向量的应用4. 教学方法1. 采用问题驱动的教学模式,引导学生主动探究、发现和解决问题。
2. 利用多媒体教学资源,如立体模型、动画等,辅助学生直观地理解立体几何图形及空间向量。
3. 组织小组讨论与合作交流,培养学生的团队协作能力和沟通能力。
4. 结合实际案例,让学生感受数学与生活的紧密联系,提高学习的兴趣和积极性。
5. 教学评估1. 课堂问答:通过提问、回答等方式,了解学生对课堂内容的掌握情况。
2. 作业批改:检查学生作业完成情况,巩固所学知识。
3. 单元测试:评估学生对本单元知识的整体掌握程度。
4. 小组讨论报告:评估学生在团队合作中的表现及对知识的运用能力。
6. 教学资源1. 教材:立体几何与空间向量相关教材。
2. 多媒体教学资源:立体模型、动画、案例等。
3. 网络资源:相关学术文章、教学视频等。
7. 教学安排本单元共安排10课时,具体安排如下:1. 第1-3课时:立体几何基本概念及点、线、面的性质。
2. 第4-6课时:立体图形的分类及性质,空间中的平行、垂直关系。
3. 第7-9课时:立体图形的度量,空间向量的定义及表示。
空间向量与立体几何教案一、教学目标1. 让学生掌握空间向量的基本概念,理解空间向量的几何表示和运算规则。
2. 培养学生运用空间向量解决立体几何问题的能力,提高空间想象和思维能力。
3. 通过对空间向量与立体几何的学习,激发学生对数学的兴趣,培养学生的创新意识和实践能力。
二、教学内容1. 空间向量的基本概念及几何表示2. 空间向量的线性运算(加法、减法、数乘、共线向量、平行向量)3. 空间向量的数量积(定义、性质、运算规则、几何意义)4. 空间向量的垂直与平行(垂直的判断、平行的判断、垂直与平行的应用)5. 空间向量在立体几何中的应用(线线、线面、面面间的位置关系)三、教学方法1. 采用讲授法,系统地讲解空间向量与立体几何的基本概念、性质和运算规则。
2. 运用案例分析法,引导学生通过具体例子学会运用空间向量解决立体几何问题。
3. 利用多媒体技术,展示空间向量的几何形象,增强学生的空间想象力。
4. 开展小组讨论与合作交流,培养学生的团队协作能力和表达能力。
四、教学环境1. 教室环境:宽敞、明亮,教学设备齐全,包括黑板、投影仪、计算机等。
2. 学习资源:教材、辅导资料、网络资源等。
3. 实践场地:学校机房、实验室等。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业完成情况:检查学生作业的完成质量,评估学生对知识点的掌握程度。
3. 考试成绩:定期进行测验,检验学生对空间向量与立体几何知识的掌握情况。
4. 实践能力:评估学生在实践活动中运用空间向量解决立体几何问题的能力。
5. 学生自评与互评:鼓励学生自我总结,互相交流学习经验,提高学习效果。
六、教学重点与难点教学重点:1. 空间向量的基本概念及几何表示。
2. 空间向量的线性运算规则。
3. 空间向量的数量积的定义和性质。
4. 空间向量的垂直与平行判断。
5. 空间向量在立体几何中的应用。
教学难点:1. 空间向量的数量积的运算规则。
教学设计:立体几何与空间向量单元一、教学目标本单元的教学目标是让学生掌握立体几何和空间向量的基本概念和计算方法,培养学生的几何思维和空间想象能力,并能运用所学知识解决实际问题。
二、教学内容本单元的教学内容包括以下几个方面:1. 立体几何的基本概念:点、直线、平面、多面体等;2. 空间向量的基本概念:向量的表示、加法、减法、数量积、叉乘等;3. 立体几何与空间向量的关系:空间中的直线和平面的方程、直线与平面的位置关系等;4. 立体几何和空间向量在实际问题中的应用:如计算体积、解决几何问题等。
三、教学方法在教学过程中,我们将采用以下教学方法:1. 讲授法:通过讲解理论知识,引导学生理解立体几何和空间向量的基本概念和计算方法;2. 实例法:通过实际例子,展示立体几何和空间向量在实际问题中的应用;3. 练习法:通过练习题,巩固学生的计算能力和问题解决能力;4. 探究法:引导学生主动参与学习,发现问题、解决问题,培养学生的探究精神和创新能力。
四、教学步骤本单元的教学步骤如下:1. 引入:通过一个生活实例引入立体几何和空间向量的概念,激发学生的学习兴趣;2. 理论讲解:讲解立体几何和空间向量的基本概念和计算方法,包括点、直线、平面、向量的表示、加法、减法、数量积、叉乘等;3. 实例分析:通过实际问题分析,展示立体几何和空间向量在实际问题中的应用;4. 练习训练:布置一些练习题,让学生进行计算和问题解决训练;5. 总结归纳:引导学生总结所学知识,归纳出立体几何和空间向量的重要概念和计算方法;6. 拓展应用:引导学生运用所学知识解决更复杂的实际问题,拓展应用能力;7. 综合评价:通过考试或项目作业,对学生的学习效果进行综合评价。
五、教学资源本单元的教学资源包括以下几种:1. 教科书:提供基本理论知识和例题;2. 讲义:总结归纳重点内容,方便学生复习;3. 练习题:用于训练学生的计算能力和问题解决能力;4. 多媒体课件:辅助教学,展示立体几何和空间向量的图形和计算过程;5. 实物模型:用于展示立体几何的形状和结构。
立体几何中的向量方法【教学目标】1.在学习了方向向量的基础上理解平面的法向量的概念,为进一步运用打好基础;2.学会由直线的方向向量和平面的法向量的关系及向量的运算来判断或证明直线、平面的位置关系;3.学会运用直线的方向向量、平面的法向量及向量的运算来解决关于直线、平面的夹角及距离的问题(主要是关于角的问题);4.能初步利用向量知识解决相关的实际问题及综合问题。
【教学重点】向量运算在立体几何证明与计算中的应用.【教学难点】在运用向量知识解决立体几何问题时的向量问题的转化与恰当的运算方式.【教学过程】一、双基回眸前面我们已经学习了空间向量的基本知识,并利用空间向量初步解决了一些立体几何问题,已初步感受到空间向量在解决立体几何问题中的重要作用,并从中体会到了向量运算的强大作用。
这一节,我们将全面地探究向量在立体几何中的运用,较系统地总结出立体几何的向量方法。
为此,首先简单回顾一下相关的基本知识和方法:1.直线l的方向向量的含义:.2.向量的特殊关系及夹角(最后的填空是用坐标表示)(1)a//b⇔⇔;(2)a⊥b⇔⇔;(3)a·a== ;(4)cos<a,b>== 。
二、创设情景前面,我们主要是利用向量的运算解决了立体几何中关于直线的问题,如:两直线垂直问题;两直线的夹角问题;特殊线段的长的问题等等……若再加入平面,会出现更多的的问题,如:线面、面面的位置关系问题;线面的夹角问题;二面角的问题等等……而且都是立体几何中的重要问题,这些问题用向量的知识怎样来解决呢?直线可由其方向向量确定并由其来解决相关的问题,平面又由怎样的向量来确定呢?——这些问题就是我们将要探究或解决的主要问题……三、合作探究同学们都知道:垂直于同一条直线的两个平面。
由此我们应该会想象出怎样的向量可确定平面的方向了……下面请同学们合作探究一下这方面的知识和方法:(一).平面的法向量:。
(二).直线、平面的几种重要的位置关系的充要条件:请同学们根据直线的方向向量和平面的法向量的几何意义直观地得出直线、平面的几种特殊的位置关系的充要条件(用直线的方向向量或平面的法向量来表达)设直线l , m的方向向量分别为,,平面α,β的法向量分别为,,则:l∥m⇔⇔;l⊥m⇔⇔;l∥α⇔⇔;l⊥α⇔⇔;α∥β⇔ ⇔ ;α⊥β⇔ ⇔ 。
1.4.2 用空间向量研究距离、夹角问题 第2课时 用空间向量研究夹角问题本节课选自《2019人教A 版高中数学选择性必修第一册》第一章《空间向量与立体几何》,本节课主要学习运用空间向量解决计算空间角问题。
在向量坐标化的基础上,将空间中线线角、线面角及二面角问题,首先转化为向量语言,进而运用向量的坐标表示,从而实现运用空间向量解决空间角问题,为学生学习立体几何提供了新的方法和新的观点,为培养学生思维提供了更广阔的空间。
1.教学重点:理解运用向量方法求空间角的原理2.教学难点:掌握运用空间向量求空间角的方法多媒体一、情境导学地球绕太阳公转的轨道平面称为“黄道面”,黄道面与地球赤道面交角(二面角的平面角)为23°26'.黄道面与天球相交的大圆为“黄道”.黄道及其附近的南北宽9°以内的区域称为黄道带,太阳及大多数行星在天球上的位置常在黄道带内.黄道带内有十二个星座,称为“黄道十二宫”.从春分(节气)点起,每30°便是一宫,并冠以星座名,如白羊座、狮子座、双子座等等,这便是星座的由来.问题:空间角包括哪些角?求解空间角常用的方法有哪些?答案:线线角、线面角、二面角; 传统方法和向量法.二、探究新知1.利用向量方法求两异面直线所成角若两异面直线l1,l2所成角为θ,它们的方向向量分别为a,b,则有cos θ=|cos<a,b>|=|a·b||a||b|.特别提醒:不要将两异面直线所成的角与其方向向量的夹角等同起来,因为两异面直线所成角的范围是(0,π2],而两个向量夹角的范围是[0,π],事实上,两异面直线所成的角与其方向向量的夹角是相等或互补的关系.3.二面角α-l-β中,平面α的一个法向量为n1=(√32,−12,−√2),平面β的一个法向量是n2=(0,12,√2),那么二面角α-l-β的大小等于() A.120° B.150° C.30°或150° D.60°或120°解析:设所求二面角的大小为θ,则|cos θ|=|n1·n2||n1||n2|=√32,所以θ=30°或150°.答案:C例1.如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E,F分别是棱AB,BB1的中点,试求直线EF和BC1所成的角.思路分析:建立空间直角坐标系,求出直线EF和BC1的方向向量的坐标,求它们的夹角即得直线EF和BC1所成的角.解:分别以直线BA,BC,BB1为x,y,z轴,建立空间直角坐标系(如右图).设AB=1,则B(0,0,0),E(12,0,0),F(0,0,12),C1(0,1,1),所以EF⃗⃗⃗⃗⃗ =(−12,0,12),BC1⃗⃗⃗⃗⃗⃗⃗ =(0,1,1).于是cos<BC1⃗⃗⃗⃗⃗⃗⃗ ,EF⃗⃗⃗⃗⃗ >=BC1⃗⃗⃗⃗⃗⃗⃗⃗ ·EF⃗⃗⃗⃗⃗|BC1⃗⃗⃗⃗⃗⃗⃗⃗ ||EF⃗⃗⃗⃗⃗ |=12√22×√2=12,所以直线EF和BC1所成角的大小为60°.1.利用空间向量求两异面直线所成角的步骤.(1)建立适当的空间直角坐标系.(2)求出两条异面直线的方向向量的坐标.(3)利用向量的夹角公式求出两直线方向向量的夹角.(4)结合异面直线所成角的范围得到两异面直线所成角.2.求两条异面直线所成的角的两个关注点.(1)余弦值非负:两条异面直线所成角的余弦值一定为非负值,而对应的方向向量的夹角可能为钝角.(2)范围:异面直线所成角的范围是(0,π2],故两直线方向向量夹角的余弦值为负时,应取其绝对值.跟踪训练1 如图,在正四棱柱ABCD-A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为 .解析:以D 为坐标原点,DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系Dxyz ,设AB=1.则B (1,1,0),A 1(1,0,2),A (1,0,0),D 1(0,0,2),A 1B ⃗⃗⃗⃗⃗⃗⃗ =(0,1,-2), AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,2), cos <A 1B ⃗⃗⃗⃗⃗⃗⃗ ,AD 1⃗⃗⃗⃗⃗⃗⃗ >=A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ·AD 1⃗⃗⃗⃗⃗⃗⃗⃗ |A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ||AD 1⃗⃗⃗⃗⃗⃗⃗⃗ |=−4√5×√5=-45,故异面直线A 1B 与AD 1所成角的余弦值为45. 答案:45例2.如图所示,四棱锥P-ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(1)证明MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.思路分析:(1)线面平行的判定定理⇒MN ∥平面PAB.(2)利用空间向量计算平面PMN 与AN 方向向量的夹角⇒直线AN 与平面PMN 所成角的正弦值.(1)证明:由已知得AM=23AD=2.如图,取BP 的中点T ,连接AT ,TN , 由N 为PC 的中点知TN ∥BC ,TN=12BC=2. 又AD ∥BC ,故TN ∥AM 且TN =AM , 所以四边形AMNT 为平行四边形, 于是MN ∥AT.因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB.(2)解:如图,取BC 的中点E ,连接AE.由AB=AC 得AE ⊥BC ,从而AE ⊥AD ,且AE=√AB 2−BE 2=√AB 2−(BC 2) 2=√5.以A 为坐标原点,AE ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系A-xyz. 由题意知P (0,0,4),M (0,2,0),C (√5,2,0),N √52,1,2,PM ⃗⃗⃗⃗⃗⃗ =(0,2,-4),PN⃗⃗⃗⃗⃗⃗ =√52,1,-2,AN⃗⃗⃗⃗⃗⃗ =√52,1,2.设n =(x ,y ,z )为平面PMN 的法向量,则{n ·PM⃗⃗⃗⃗⃗⃗ =0,n ·PN⃗⃗⃗⃗⃗⃗ =0,即{2y −4z =0,√52x +y −2z =0,可取n =(0,2,1).于是|cos <n ,AN ⃗⃗⃗⃗⃗⃗ >|=|n·AN ⃗⃗⃗⃗⃗⃗||n||AN ⃗⃗⃗⃗⃗⃗ |=8√525. 所以直线AN 与平面PMN 所成角的正弦值为8√525.若直线l 与平面α的夹角为θ,利用法向量计算θ的步骤如下:跟踪训练2 在棱长为1的正方体ABCD-A 1B 1C 1D 1中,E 为CC 1的中点,则直线A 1B 与平面BDE 所成的角为( )A.π6B.π3C.π2D.56π解析:以D 为原点建立空间直角坐标系,可求得平面BDE 的法向量n =(1,-1,2),而BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,-1,1),所以cos θ=1+22√3=√32,则θ=30°,故直线A 1B 与平面BDE 成60°角. 答案:B例3. 如图,在正方体ABEF-DCE'F'中,M ,N 分别为AC ,BF 的中点,求平面MNA 与平面MNB 所成锐二面角的余弦值.思路分析:有两种思路,一是先根据二面角平面角的定义,在图形中作出二面角的平面角,然后利用向量方法求出夹角从而得到所成二面角的大小;另一种是直接求出两个面的法向量,通过法向量的夹角求得二面角的大小.解:设正方体棱长为1.以B 为坐标原点,BA ,BE ,BC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系B-xyz ,则M (12,0,12),N (12,12,0),A (1,0,0),B (0,0,0). (方法1)取MN 的中点G ,连接BG ,AG ,则G (12,14,14). 因为△AMN ,△BMN 为等腰三角形,所以AG ⊥MN ,BG ⊥MN , 故∠AGB 为二面角的平面角或其补角.又因为GA⃗⃗⃗⃗⃗ =(12,−14,−14) ,GB ⃗⃗⃗⃗⃗ =(−12,−14,−14) ,所以cos <GA ⃗⃗⃗⃗⃗ ,GB ⃗⃗⃗⃗⃗ >=GA ⃗⃗⃗⃗⃗ ·GB⃗⃗⃗⃗⃗ |GA ⃗⃗⃗⃗⃗ ||GB ⃗⃗⃗⃗⃗ |=−18√38×√38=-13 , 故所求两平面所成锐二面角的余弦值为13.(方法2)设平面AMN 的法向量n 1=(x ,y ,z ).由于AM ⃗⃗⃗⃗⃗⃗ =(−12,0,12),AN ⃗⃗⃗⃗⃗⃗ =(−12,12,0), 则{n 1·AM⃗⃗⃗⃗⃗⃗ =0,n 1·AN ⃗⃗⃗⃗⃗⃗ =0,即{−12x +12z =0,−12x +12y =0,令x=1,解得y=1,z=1,于是n 1=(1,1,1).同理可求得平面BMN 的一个法向量n 2=(1,-1,-1), 所以cos <n 1,n 2>=n 1·n 2|n 1||n 2|=−1√3×√3=-13, 故所求两平面所成锐二面角的余弦值为13.利用平面的法向量求二面角利用向量方法求二面角的大小时,多采用法向量法,即求出两个面的法向量,然后通过法向量的夹角来得到二面角的大小,但利用这种方法求解时,要注意结合图形观察分析,确定二面角是锐角还是钝角,不能将两个法向量的夹角与二面角的大小完全等同起来. 跟踪训练3 如图,在直三棱柱ABC-A 1B 1C 1中,AA 1=BC=AB=2,AB ⊥BC ,求二面角B 1-A 1C-C 1的大小.解:如图,建立空间直角坐标系.则A (2,0,0),C (0,2,0),A 1(2,0,2),B 1(0,0,2),C 1(0,2,2),即BM ⃗⃗⃗⃗⃗⃗ =(1,1,0)是平面A 1C 1C 的一个法向量.设平面A 1B 1C 的一个法向量是n=(x ,y ,z ),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(-2,2,-2), A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,0,0), 所以n ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-2x=0,n ·A 1C ⃗⃗⃗⃗⃗⃗⃗ =-2x+2y-2z=0, 令z=1,解得x=0,y=1,故n =(0,1,1).设法向量n 与BM⃗⃗⃗⃗⃗⃗ 的夹角为φ, 二面角B 1-A 1C-C 1的大小为θ,显然θ为锐角. 因为cos θ=|cos φ|=|n·BM⃗⃗⃗⃗⃗⃗⃗ ||n||BM⃗⃗⃗⃗⃗⃗⃗ |=12,解得θ=π3,所以二面角B 1-A 1C-C 1的大小为π3.金题典例 如图,四棱柱ABCD-A 1B 1C 1D 1的所有棱长都相等,AC ∩BD=O ,A 1C 1∩B 1D 1=O 1,四边形ACC 1A 1和四边形BDD 1B 1均为矩形.(1)证明:O 1O ⊥底面ABCD.(2)若∠CBA=60°,求二面角C 1-OB 1-D 的余弦值.(1)证明因为四边形ACC 1A 1和四边形BDD 1B 1均为矩形,所以CC 1⊥AC ,DD 1⊥BD ,又CC 1∥DD 1∥OO 1,所以OO 1⊥AC ,OO 1⊥BD ,因为AC ∩BD=O ,所以O 1O ⊥底面ABCD.(2)解:因为四棱柱的所有棱长都相等,所以四边形ABCD 为菱形, AC ⊥BD.又O 1O ⊥底面ABCD ,所以OB ,OC ,OO 1两两垂直.如图,以O 为原点,OB ,OC ,OO 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系.设棱长为2,因为∠CBA=60°,所以OB=√3,OC=1, 所以O (0,0,0),B 1(√3,0,2),C 1(0,1,2),平面BDD 1B 1的一个法向量为n =(0,1,0),设平面OC 1B 1的法向量为m =(x ,y ,z ),则由m ⊥OB 1⃗⃗⃗⃗⃗⃗⃗⃗ ,m ⊥OC 1⃗⃗⃗⃗⃗⃗⃗ ,所以{√3x +2z =0,y +2z =0,取z=-√3,则x=2,y=2√3,所以m =(2,2√3,-√3),所以|cos <m ,n >|=|m·n|m||n||=2√3√19=2√5719. 由图形可知二面角C 1-OB 1-D 的大小为锐角, 所以二面角C 1-OB 1-D 的余弦值为2√5719. 延伸探究1 本例条件不变,求二面角B-A 1C-D 的余弦值.解:建立如图所示的空间直角坐标系.设棱长为2, 则A 1(0,-1,2),B (√3,0,0),C (0,1,0),D (-√3,0,0). 所以BC ⃗⃗⃗⃗⃗ =(-√3,1,0),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,2,-2),CD ⃗⃗⃗⃗⃗ =(-√3,-1,0).设平面A 1BC 的法向量为n 1=(x 1,y 1,z 1),则{n 1·A 1C ⃗⃗⃗⃗⃗⃗⃗ =0,n 1·BC ⃗⃗⃗⃗⃗ =0,即{2y 1−2z 1=0,−√3x 1+y 1=0,取x 1=√3 ,则y 1=z 1=3,故n 1=(√3,3,3).设平面A 1CD 的法向量为n 2=(x 2,y 2,z 2), 则{n 2·A 1C ⃗⃗⃗⃗⃗⃗⃗ =0,n 2·CD⃗⃗⃗⃗⃗ =0,即{2y 2−2z 2=0,−√3x 2−y 2=0,取x 2=√3,则y 2=z 2=-3,故n 2=(√3,-3,-3).所以|cos <n 1,n 2>|=|n 1·n 2|n 1||n 2||=57.由图形可知二面角B-A 1C-D 的大小为钝角,所以二面角B-A 1C-D 的余弦值为-57.延伸探究2 本例四棱柱中,∠CBA=60°改为∠CBA=90°,设E ,F 分别是棱BC ,CD 的中点,求平面AB 1E 与平面AD 1F 所成锐二面角的余弦值.解:以A 为坐标原点建立空间直角坐标系,如图所示,设此棱柱的棱长为1,则A (0,0,0),B 1(1,0,1),E 1,12 ,0 ,D 1(0,1,1),F12 ,1,0 ,AE ⃗⃗⃗⃗⃗ = 1,12,0,AB 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,1),AF ⃗⃗⃗⃗⃗ =12,1,0,AD 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,1).设平面AB 1E 的法向量为n 1=(x 1,y 1,z 1),则{n 1·AB 1⃗⃗⃗⃗⃗⃗⃗ =0,n 1·AE ⃗⃗⃗⃗⃗ =0,即{x 1+z 1=0,x 1+12y 1=0,令y 1=2,则x 1=-1,z 1=1, 所以n 1=(-1,2,1).设平面AD 1F 的法向量为n 2=(x 2,y 2,z 2). 则{n 2·AD 1⃗⃗⃗⃗⃗⃗⃗ =0,n 2·AF ⃗⃗⃗⃗⃗ =0,即{y 2+z 2=0,12x 2+y 2=0. 令x 2=2,则y 2=-1,z 2=1.所以n 2=(2,-1,1).所以平面AB 1E 与平面AD 1F 所成锐二面角的余弦值为cos <n 1,n 2>=|n 1·n 2||n 1||n 2|=3√6×√6=12. 向量法求二面角(或其某个三角函数值)的四个步骤 (1)建立适当的坐标系,写出相应点的坐标;三、达标检测1.平面α的斜线l 与它在这个平面上射影l'的方向向量分别为a =(1,0,1),b =(0,1,1),则斜线l 与平面α所成的角为( ) A.30°B.45°C.60°D.90° 解析: l 与α所成的角即为a 与b 所成的角(或其补角),因为cos <a ,b >=a·b |a||b|=12,所以<a ,b >=60°. 答案:C2.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos <m ,n >=- 12,则l 与α所成的角为( )A.30°B.60°C.120°D.150°解析:由已知得直线l 和平面α法向量所夹锐角为60°,因此l 与α所成的角为30°. 答案:A3.在正方体ABCD-A 1B 1C 1D 1中,M 、N 分别为棱BC 和棱CC 1的中点,则异面直线AC 和MN 所成的角为( ) A.30°B.45°C.90°D.60°解析以D 为原点,分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,设正方体ABCD-A 1B 1C 1D 1中棱长为2,∵M 、N 分别为棱BC 和棱CC 1的中点,∴M (1,2,0),N (0,2,1),A (2,0,0),C (0,2,0),MN⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),AC ⃗⃗⃗⃗⃗ =(-2,2,0), 设异面直线AC 和MN 所成的角为θ,.cos θ=|MN⃗⃗⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ ||MN ⃗⃗⃗⃗⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗ |=2√2×2√2=12,则又θ是锐角,∴θ=60°∴异面直线AC 和MN 所成的角为60°,故选D.答案D4.在三棱锥P-ABC 中,AB ⊥BC ,AB=BC=12PA ,点O ,D 分别是AC ,PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值为 .解析:以O 为原点,射线OA ,OB ,OP 为x ,y ,z 轴建立空间直角坐标系,如图,设AB=a ,则OP=√72a,OD⃗⃗⃗⃗⃗⃗ =(−√24a,0,√144a),可求得平面PBC 的法向量为n =(−1,−1,√17),所以cos <OD ⃗⃗⃗⃗⃗⃗ ,n >=OD ⃗⃗⃗⃗⃗⃗ ·n |OD ⃗⃗⃗⃗⃗⃗ ||n|=√21030,设OD ⃗⃗⃗⃗⃗⃗ 与面PBC 的角为θ,则sin θ=√21030. 答案:√210305.如图,四棱锥P-ABCD 中,PB ⊥底面ABCD ,CD ⊥PD ,底面ABCD 为直角梯形,AD ∥BC ,AB ⊥BC ,AB=AD=PB=3.点E 在棱PA 上,且PE=2EA.求二面角A-BE-D 的余弦值.解:以B 为原点,以直线BC ,BA ,BP 分别为x ,y ,z 轴建立如图所示的空间直角坐标系.设平面EBD 的一个法向量为n 1=(x ,y ,1),因为BE⃗⃗⃗⃗⃗ =(0,2,1),BD ⃗⃗⃗⃗⃗⃗ =(3,3,0), 由{n 1·BE ⃗⃗⃗⃗⃗ =0,n 1·BD ⃗⃗⃗⃗⃗⃗ =0,得{2y +1=0,3x +3y =0.所以{x =12,y =−12.教学中主要突出了几个方面:一是进一步突出运用向量法解决立体几何问题的基本程序,发展学生的数学建模思想和逻辑推理能力。
空间向量与立体几何第一章:空间向量基础1.1 向量的定义与表示了解向量的概念,掌握向量的几何表示和代数表示。
学习向量的长度和方向,掌握向量的模和单位向量。
1.2 向量的运算学习向量的加法、减法和数乘运算。
掌握向量加法和减法的几何意义,理解数乘向量的意义。
1.3 向量的坐标表示学习空间直角坐标系,了解向量的坐标表示方法。
掌握向量坐标的加法和数乘运算,理解向量坐标的几何意义。
第二章:立体几何基础2.1 平面立体几何学习平面的基本性质,掌握平面方程和点到平面的距离公式。
学习直线与平面的位置关系,了解线面平行、线面相交和线面垂直的判定条件。
2.2 空间立体几何学习空间几何体的基本性质,包括点、线、面的位置关系。
掌握空间几何体的体积和表面积计算公式,了解空间几何体的对称性。
第三章:空间向量在立体几何中的应用3.1 空间向量与直线的位置关系学习利用空间向量判断直线与直线、直线与平面的位置关系。
掌握向量夹角的概念,学习利用向量夹角判断直线与直线的夹角。
3.2 空间向量与平面的位置关系学习利用空间向量判断平面与平面的位置关系。
掌握平面法向量的概念,学习利用平面法向量求解平面方程。
3.3 空间向量与空间几何体的位置关系学习利用空间向量判断空间几何体与空间几何体的位置关系。
掌握空间几何体的体积和表面积计算方法,学习利用空间向量求解空间几何体的体积和表面积。
第四章:空间向量的线性运算与立体几何4.1 空间向量的线性组合学习空间向量的线性组合,掌握线性组合的运算规律。
理解线性组合在立体几何中的应用,包括线性组合与空间几何体的关系。
4.2 空间向量的线性相关与线性无关学习空间向量的线性相关和线性无关的概念。
掌握判断空间向量线性相关和线性无关的方法,理解线性相关和线性无关在立体几何中的应用。
4.3 空间向量的基底与坐标表示学习空间向量的基底概念,掌握基底的选取方法。
学习空间向量的坐标表示方法,理解坐标表示在立体几何中的应用。
空间向量与立体几何教案教案:空间向量与立体几何一、教学目标:1.知识与能力目标:掌握空间向量的基本概念和运算法则,并能够运用空间向量解决立体几何问题。
2.过程与方法目标:培养学生的观察能力和逻辑思维能力,通过实例分析和综合运用,激发学生对数学的兴趣和学习积极性。
3.情感态度目标:培养学生的合作学习精神,增强学生对数学的自信心和探究精神。
二、教学重点难点:1.教学重点:空间向量的概念、性质及运算法则。
2.教学难点:如何灵活应用空间向量解决立体几何问题。
三、教学方法:1.教师讲授与学生合作探究相结合的方法。
2.案例分析和综合运用的方法。
四、教学过程:第一节空间向量的概念和性质(40分钟)1.通过引入空间向量的概念,让学生了解空间向量的定义,并掌握向量的表示方法。
2.解释向量的性质,如向量的加法、数乘、共线和共面性质。
3.设计一些简单的例题进行讲解,引导学生掌握和理解空间向量的性质。
第二节空间向量的运算法则(40分钟)1.通过实例引导,让学生掌握向量的加法、减法、数量积和向量积的运算法则。
2.类比二维向量,在立体几何实例中引入空间向量运算,帮助学生理解和应用空间向量运算。
第三节空间向量在立体几何中的应用(40分钟)1.通过立体几何实例,引导学生运用空间向量解决立体几何问题。
2.给学生创设情境,让学生在小组合作的形式下,互相讨论和解决立体几何问题。
3.设计不同难度的立体几何问题,让学生进行综合运用,提高解决问题的能力。
第四节拓展课程与归纳总结(40分钟)1.设计拓展课程,引导学生发现和探究空间向量在其他学科中的应用,如物理、工程等领域。
2.巩固和总结空间向量的知识点,通过小测验和思维导图等方式,让学生检验和反思自己的学习效果。
五、教学资源准备:1.多媒体教学设备和教学课件。
2.各类立体几何教具和实物模型。
3.教科书及参考资料。
六、教学评价与反思:1.课堂提问与讨论,根据学生的回答和互动评价学生的理解和能力。
空间向量与立体几何
(角度问题)教学设计 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
空间向量与立体几何(角度问题)教学设计
一、学习目标:
1.能借助空间几何体内的位置关系求空间的夹角;
2.能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。
3、探究题型,掌握解法。
二、重难点:向量法在立体几何中求空间的夹角应用。
探究题型,掌握解法。
三、学情分析:
本节内容是高考热点问题,需要学生做到非常熟练。
在平时的学习中,学生已经对该几类问题有所认识,本堂课重点在于让学生体会空间角度与向量角度之间的差异,培养学生养成良好的答题习惯。
四、教学过程
本节课为高三复习课,所以从开始直奔主题,从回顾旧知开始直接进入例题讲解、课堂练习、方法提炼、课堂小结,重点在于提炼解决类型题的方法
教师总结规律两个面内与棱l垂直的直线,则二面角的大小
θ=.
(2)如图②③,n1,n2分别是二面角α-l
-β的两个半平面α,β的法向量,则二面角
的小大θ=
.
求空间角:设直线l1,l2的方向向量分别
为a,b,平面α、β的法向量分别为n,m.
①异面直线l1与l2所成的角为θ,则cosθ
=
|a·b|
|a||b|.
②直线l1与平面α所成的角为θ,则sinθ
=
|a·n|
|a||n|.
③平面α与平面β所成的二面角为θ,则
|cosθ|=
|n·m|
|n||m|.、
结合图像,让学生更
直观地了解到二面角与直
线方向向量同平面法向量
之间所成的角存在的区别
与联系,从而找到适当的
方法进行调整
通过之前的对比,分
析清楚空间角与向量角之
间存在的差异后,找寻适
当的方法去解决差异,从
而统一解题方法。
典例剖析例1
分析
与讲
解。
例一:直棱柱ABC-A’B’C’中,AC=3,BC=4,
AB=5,AC=CC’
(1)求异面直线AC’与B’C所成角的余弦值;
(2)求AC’与面AA’B’B所成角的余弦值;
通过该例题,梳理清
晰的分析步骤与良好的答
题习惯,培养学生良好的
解题思路,做到该拿的分
拿到手。
同时利用空间向
量的方法解决异面直线所
成的角以及线面角的问题
例二:如图,四棱锥P-ABCD中,底面ABCD
为平行四边形,∠DAB=60°,AB=2AD,PD⊥
面ABCD。
(1)证明:PA⊥BD;
(2)若PD=AD求二面角A-PB-C的余弦值。
通过该例题,强化对异面
直线所成角的认识,并复
习二面角余弦值的求法。
该题在建系求坐标的时候
设置了一定难度,以培养
学生准确建系,正确求坐
标的习惯。
本题是高考题的改编,
随堂练练习一:
如图,已知P在正方体ABCD-A’B’C’D’的面对角线D’B 上,且∠PDA=60°
求DP与CC’所成角的大小;
求DP与平面AA’D’D所成角的大小。
习
消减了难度,但是让学生
初步体会通过已知条件利用方程思想去求坐标。
通过简单的课堂练习,巩固今天的复习内容,培养
学生正确的答题习惯。
B
C
A
A
B C D E B'
A'
C'
P
D
C
A
B
D'。