Ag纳米颗粒修饰TiO2阵列薄膜的制备及其气敏性能研究
- 格式:pdf
- 大小:577.98 KB
- 文档页数:5
纳米TiO2材料的制备及其光催化性能研究随着经济的发展,人们生活水平的提高,人们逐渐意识到可持续发展的重要。
环境问题已严重影响现代文明的发展,有机污染物具有持久性的特点而长期威胁人类健康,开发和设计仅利用太阳能即可完成对有机污染物降解的新材料将会是解决环境问题的有效方法之一。
纳米TiO2作为一种光催化材料,具有优异的物理和化学性质,因而被广泛应用和重点研究。
本文就纳米TiO2材料的制备及其光催化性能展开探讨。
标签:纳米TiO2;光催化;制备方法;光催化效能引言半导体光催化技术是解决环境污染与能源短缺等问题的有效途径之一。
以二氧化钛为代表的光催化剂在染料敏化太阳能电池、锂离子电池、光伏器件以及光催化领域表现出明显的使用优势.但是TiO2本身的弱可见光吸收、低电导率、高载流子复合速率限制了其在工业生产中的进一步使用。
科技工作者一般通过掺杂、半导体复合、燃料敏化、表界面性质改性等方法提高TiO2的光电化学性能,使其能在生产实践中广泛应用。
1、TiO2材料简介TiO2在自然界中的主要存在形态为金红石、锐钛矿和板钛矿三种晶型,其中金红石是TiO2的高温相,锐钛矿和板钛矿两种形态是TiO2的低温相。
在三种晶型中光催化活性最好的为锐钛矿型TiO2。
锐钛矿型TiO2的禁带宽度为3.2eV 与之对应的激发波长为387nm。
所以,TiO2作为光催化剂在紫外光条件下具有催化活性,在可见光下一般没有活性。
只有对它的结构进行改性,使它的禁带宽度得以缩小,才可以实现材料在可见光条件下的催化降解反应。
改性的方式目前主要有以下几种方法:通过改变晶体内部结构来改变催化剂禁带宽度的离子掺杂方法,通过形成异质结改变能带结构的半导体复合法,提高催化剂对光的吸收能力的表面光敏化法,增大催化剂比表面积使晶粒细化的负载载体法等。
光催化材料中电子e一和空穴h十的浓度会影响有机物的降解速度。
粒径的减小能够使表面原子增加,使光催化剂吸收光的效率显著提高,使其表面e一和h十的浓度增大,从而提高光催化剂的催化活性。
二氧化钛薄膜的制备及其光催化性能研究张新宝;张健;张超;樊震坤;王磊【摘要】二氧化钛(TiO2)是一种宽禁带的半导体材料,作为一种光催化剂,可以起到节约能量且保护环境资源的作用.在光照条件下,价带中的电子通过吸收光子而跃迁到导带,从而产生空穴电子对,电子可以减少空气中的氧气,空穴完全氧化并将被吸附的物质分解成小的无机分子.本文研究了二氧化钛光催化材料的发展,并分析讨论了二氧化钛薄膜光催化原理以及制备工艺.【期刊名称】《山东陶瓷》【年(卷),期】2019(042)003【总页数】4页(P9-12)【关键词】二氧化钛;光催化;溶胶-凝胶法【作者】张新宝;张健;张超;樊震坤;王磊【作者单位】山东硅元新型材料股份有限公司,淄博255086;山东硅元新型材料股份有限公司,淄博255086;山东硅元新型材料股份有限公司,淄博255086;山东硅元新型材料股份有限公司,淄博255086;山东硅元新型材料股份有限公司,淄博255086【正文语种】中文【中图分类】TQ174.75前言随着人类生活环境的恶化,环境污染成为一个亟待解决的问题。
为了严控污染,人们采取了各种方法和手段。
生活环境中主要存在大气污染、水体污染、土壤污染等问题,它们中所产生的有机污染物的危害最为严重,目前主要采用传统生物降解和物理吸收等方法进行处理,但存在净化效率低、资金消耗多等问题。
因此,研究更有效的污染控制技术和方法已成为该领域的一个关键问题。
经过深入研究发现,采用TiO2光催化材料处理废水中的有机污染物具有快速、高效、不污染环境等优点。
TiO2光催化材料不仅可以降解空气和废水中的有机污染物,还具有杀菌,除臭等功能,已成为现阶段广泛使用和有效的新技术[1]。
它不仅可以使用太阳能等可再生能源,还能够对生物进行降解,进而保护环境。
它不仅使我们的生活环境得到了改善,而且这类光催化材料可以长期、循环使用,因此,TiO2光催化材料已经成为近年来的研究热点[2]。
100材料导报2008年5月第22卷专辑XTi02纳米管阵列的制备及复阻抗分析*王红,傅刚,陈环,刘志宇(广州大学物理与电子工程学院,广州510006)摘要采用电化学阳极氧化法在H F酸水溶液中使纯钛表面生成结构致密有序的Ti Q纳米管阵列薄膜,考察了阳极氧化电压和阳极氧化时间对Ti02纳米管阵列形貌的影响,讨论了Ti02纳米管的形成机理。
采用复阻抗谱方法,测量了获得的Ti02纳米管阵列薄膜在不同湿度下的电阻一电抗曲线和相位角一频率曲线,由此分析得到,试样的等效电路由2个R C并联回路串联而成,并拟合出等效电路各元件的参数值,说明T i Q纳米管阵列薄膜表面对湿度变化有较好的响应。
关键词阳极氧化T i02纳米管阵列湿度复阻抗分析中图分类号:0646.5;T M934.73文献标识码:APr epar at i on a nd C om pl e x I m pedance A nal ys i s of T i t ani um O xi de N anot ube A r r a ys W A N G H ong,FU G ang,C H E N H uan,L I U Zhi yu(Physi c s and E l ect r oni c E ngi ne er i ng Inst i t ut e,G uangzhou U ni ver s i t y,G ua ngz hou510006)A bst r act F i l m s of hi gh l y or der e d t i tani a na not ube-ar r ays ar e pr e par ed o n t i t ani u m f oi ls us i ng anodi za t i onm et h od i n hyd r of l uo r i c aci d sol u t i ons.T he ef f ect s of anodi za t i on vol t age and anodi za t i on t i m e o n t he m or phol ogy of t he nanot ube ar r a ys ar e st udi e d,and t he m echani s m of t u be f or m a t i on i s di scus sed.T he com pl ex i m pedance sp ect r os cop y(C I S)a nal yse o n sa m pl e s unde r di f f er ent hum i di t y condi t i ons ar e car r i ed ou t t o st udy t he m i cr os copi c s t r uc t ur e andconduc t ance m echani s mof t he Ti02na not ubes.U si ng t he equi va l ent ci rcui t app r oac h,t he t i tani a nanot ube ar r a ys ca n be m odel ed as t w o R Ccir cui ts i n ser i es。
TiO2纳米粒子的制备及光催化性能研究一、实验目的1. 了解TiO2纳米多相光催化剂的催化原理及其应用;2. 掌握纳米金属氧化物粒子粉体的制备方法;3. 掌握多相光催化反应的催化活性评价方法;4. 了解分析催化剂结构及性能之间关系的方法。
二、仪器与药品四氯化钛(TiCl4)、钛酸四丁酯[Ti(0Bu)4]、罗丹明B盐酸、硝酸、无水乙醇、去离子水、磁力搅拌器、烘箱、控温马弗炉、低速离心机、分光光度计烧杯、离心试管、容量瓶、移液管三、实验原理1. TiO2纳米粒子的制备反应原理本实验采用有机和无机两种钛盐前体来制备TiO2纳米粒子(1) .以钛酸四丁酯Ti(0Bu)4为前体通过溶胶-凝胶法制备TiO2纳米粒子以钛醇盐Ti(OR)4( R为-C2H5, -C3H7, -C4H9等烷基)为原料,在有机介质中通过水解、缩合反应得到溶胶,进一步缩聚制得凝胶,凝胶经陈化、干燥、煅烧得到纳米TiO2, 其化学反应方程式如下:水解:Ti(OR) 4 + nH20 - Ti(OR)(4-n) (0H)n + nROH缩聚:2Ti(OR)(4-n)(OH)n - [Ti(OR)(4-n)(。
册母。
+ 出0制备过程中各反应物的配比、搅拌速度及煅烧温度对所得TiO2纳米粒子的结构和性质都有影响。
⑵.以四氯化钛(TiCl4)为前体水解制备TiO2纳米粒子由于Ti离子的电荷/半径比大,具有很强的极化能力,在水溶液中极易发生水解。
发生的化学反应方程式如下:TiCl4 + 2H2O >TiO2 + 4HCl制备过程中各反应物的配比、反应温度、搅拌速度、溶液pH值及煅烧温度对所得TiO2纳米粒子的结构和性质都有影响。
2. TiO2光催化原理根据固体能带理论,如图1所示,TiO2半导体的能带结构是由一个充满电子的低能价带(valenee band, VB.)和空的高能导带(conduction band, C.B.)构成。
价带和导带之间的不连续区域称为禁带(禁带宽度Eg)。
新型气敏材料的制备与性能研究随着现代科技的不断发展,气敏材料的广泛应用已经成为了我们生活中的一部分。
而在气敏材料中,新型气敏材料的制备与性能研究则成为了近年来研究的热点。
本篇文章将从气敏材料的定义、制备和性能三个方面为大家简介新型气敏材料的制备与性能研究。
一、气敏材料的定义气敏材料是一种能够对特定气体成分快速响应的材料。
其响应速度通常是几秒钟到几分钟。
其主要使用场景是在空气污染检测、安全监控等领域。
因此,它们通常能够识别并区别出特定气体成分的存在或变化,然后产生明显的电学、光学和热学等物理量变化。
二、新型气敏材料的制备新型气敏材料制备的关键是如何实现其敏感性的提升。
这主要涉及到材料的结构和成分控制、表面和接口优化等方面的研究。
1、结构和成分控制结构和成分控制是新型气敏材料制备的重要环节。
研究表明,纳米结构的气敏材料响应速度更快,敏感性更强。
因此,利用化学合成、溶胶-凝胶法、金属有机框架材料等方法制备纳米材料是当前研究的重点之一。
同时,控制气敏材料的成分和结构也是制备高敏感材料的关键。
例如,通过控制氧化双金属氧化物(如ZnO,SnO2,TiO2等)的晶体结构和掺杂的金属离子类型、浓度和分布等来提高气敏材料的性能。
2、表面和接口优化表面和界面性质也是新型气敏材料制备的重点。
在气敏材料中,表面状态和界面特性对于气体识别和敏感性至关重要。
因此,通过表面化学处理、修饰、还原等方法来改变气敏材料的表面化学状态和形貌,从而实现对敏感性的提升。
同时,利用纳米化技术、微结构设计等方法来实现表面和界面优化,进一步提高气敏材料的性能。
三、新型气敏材料的性能研究新型气敏材料的性能研究主要包括敏感性、选择性和稳定性等方面的研究。
1、敏感性敏感性是气敏材料性能的重要指标。
通常来说,越高的敏感性意味着越快的响应速度和更强的响应强度。
因此,研究如何提高气敏材料的敏感性是新型气敏材料研究中的重点之一。
在敏感性研究方面,主要包括敏感性的性质、提高敏感性机理和关键参数等的实验和理论分析。
TiO2纳米管阵列的制备及光电性能研究作者:李娜林仕伟赵玉伟来源:《价值工程》2013年第23期摘要:用阳极氧化法制备出高度致密、有序的TiO2纳米管阵列。
利用SEM和XRD表征分析纳米管阵列的形貌和结构,并通过电化学瞬时光电流对TiO2纳米管阵列的光电化学特性进行了研究。
实验结果表明:经过500℃退火后的TiO2为掺杂有金红石相的锐钛矿的混晶结构。
随着退火温度升高到600℃,金红石型的晶相比例增加。
光电测试结果表明:随着退火温度升高,瞬时光电流减小,同时阳极氧化时间影响TiO2 纳米管阵列光电极的光电性能。
Abstract: TiO2 nanotube arrays were fabricated by anodic oxidation on a titanium sheet. The morphology and structure of the nanotube arrays were characterized by SEM and XRD. The photoelectric properties of the nanotube arrays electrodes were evaluated by transient photocurrents. The results show that the structure of nanotube arrays is a mixture phase of anatase and rutile annealed at 500℃. With the annealing temperature increasing to 600℃, the phase ratio of rutile increases. Photoelectric test results show that: the instantaneous photoelectric current decreases as the annealing temperature increases and at the same time, anodic oxidation time affects the photoelectric properties of nanotube arrays photoelectrode.关键词:阳极氧化;纳米管;光电流Key words: anodic oxidation;nanotube;photoelectric current中图分类号:O649 文献标识码:A 文章编号:1006-4311(2013)23-0305-020 引言高有序的TiO2纳米管阵列薄膜是近年来纳米材料研究的热点之一。
基于二氧化钛纳米管气敏材料的制备及其性能研究基于二氧化钛纳米管气敏材料的制备及其性能研究引言二氧化钛(TiO2)是一种重要的半导体材料,具有许多特殊的物理、化学性质和广泛的应用潜力。
由于其良好的光催化性能和气敏特性,TiO2在环境保护、能源领域等方面受到了广泛的关注。
近年来,以二氧化钛纳米管为基础的气敏材料备受研究者的青睐,具有独特的电学特性和超高敏感性。
本文将介绍基于二氧化钛纳米管的气敏材料的制备方法及其在气体检测方面的应用。
一、二氧化钛纳米管的制备方法1. 模板法模板法是一种常用的制备二氧化钛纳米管的方法。
其基本步骤是通过选择合适的模板材料,在模板孔道中沉积TiO2前驱体,然后去除模板材料,得到二氧化钛纳米管。
常用的模板材料包括具有孔道结构的多孔硅、阳离子聚合物等。
这种方法制备的纳米管具有规整的孔道结构和可调控的尺寸,可以根据需要进行调整。
2. 水热法水热法是一种简单高效的制备纳米材料的方法。
一般步骤是将TiO2前驱体溶解在水溶液中,并在一定的温度和压力下进行反应。
通过调节反应条件,可以合成不同形状和尺寸的二氧化钛纳米管。
该方法制备的纳米管具有良好的结晶性和较高的比表面积,具有优异的电学性能。
二、基于二氧化钛纳米管的气敏材料的性能研究1. 气敏性能测试将制备的二氧化钛纳米管气敏材料制成传感器,并使用专业的气敏性能测试系统进行性能测试。
在空气中引入不同浓度的目标气体,通过测量传感器的电阻变化来判断目标气体的浓度。
实验结果表明,制备的二氧化钛纳米管气敏材料对于一氧化碳、甲醛等有害气体具有高度的敏感性,响应速度快、稳定性好,具有潜在的应用前景。
2. 机理研究通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等表征手段对制备的二氧化钛纳米管进行形貌和结构表征,以了解其制备过程与性能之间的关系。
实验结果表明,制备过程中的反应条件、材料组成对纳米管的形貌和结构有直接的影响,进而影响气敏材料的性能。
光催化合成金属Ag 纳米颗粒的生长机制——晶核密度控制的生长模式转换李帅陶强张庆瑜*(大连理工大学三束材料改性教育部重点实验室,大连116024)摘要:利用AgNO3 水溶液,通过严格控制TiO2薄膜的化学活性,系统研究了在TiO2表面光催化合成金属Ag 纳米颗粒的生长行为。
研究发现,光催化合成金属Ag 纳米颗粒存在着两个完全不同的生长机制,分别对应着金属Ag 纳米颗粒的各向同性和各向异性生长。
当溶液浓度较低时,Ostwa l d熟化(OR)机制主导着金属Ag 纳米颗粒的长大过程;当溶液浓度较高时,取向附生(OA) 机制决定着金属Ag 纳米颗粒长大成纳米片。
原位消光光谱分析表明,OR机制和OA 机制生长的前期具有相近消光特征,决定金属Ag 纳米颗粒生长模式的关键是AgNO3溶液的浓度,更准确地说是金属Ag 初级晶核的局域密度。
在此基础上提出了有关光催化合成金属Ag 纳米颗粒的生长模型。
关键词:Ag 纳米颗粒;光催化合成;生长模式转换中图分类号:O644.15文献标识码:A文章编号:1001-4861(2014)07-1567-08DOI:10.11862/CJIC.2014.239Transition of Growth Mode Controlled by the Density of Nucleiin Photocatalytic Synthesis of Ag NanoparticlesLI Sh u a i TAO Qiang ZHANG Qin g-Yu(Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Physics &Opto-electronic Technology, Dalian University of Technology, Dalian, Liaoning 116024, China)Ab s tr ac t:Us i n g the aqueous s olu t i on of AgNO3, the growth behavior of Ag n a n op a rt i c l es s yn t h es i ze d by phot oca t a l y t i c method i s s t ud i e d by con t rol li n g the ch e m i c a l a c t i vit y of T i O2fi l m. It i s found that the A g n a n opa rt i c l es can grow up w i t h two d i s t i nc t growth modes, wh i ch correspond to the i s otropic and a n i s otropic growth, re s pec t i ve l y.When the conc e n t ra t i on of AgNO3 i s l ow,O s t w a l d ri pen i n g(OR) d om i n a t es the growth of A g n a n opa rt i c l es.If the conc e n t ra t i on of AgNO3 exceeds a c rit i c a l l eve l,oriented attachment (OA) d e t e rm i n es the A g n a n opa rt i c l es g row i n g up i n t o Ag nanoplates. The i n-s i t u e xt i nc t i on spectra suggest that the Ag nuc l e i have t h e very s i m il a r features i n the s t age of nuc l ea t i on before the growth of Ag n a n opa rt i c l es i s d o m i n a t e d by OR or OA m e ch a n i s m.The t ran s i t i on of growth behavior i s d e t e rm i n e d by the conc e n t ra t i on of AgNO3 i n the s olu t i on,or t h e l oca l d e n s i t y of Ag primary nuc l e i.On the ba s i s of e xpe ri m e n t a l re s u l t s and t h e ore t i c a l a n a l y s i s,a phy s i c a l mod e l i s suggested for the growth of Ag n a n opa rt i c l es i n the phot oca t a l y t i c s yn t h es i s.Key wor d s: Ag nanop a rt i c l e s;phot o c a t a l yt i c synthesis; tr a nsit i o n of growth m o de收稿日期:2013-12-05。
第52卷第11期表面技术2023年11月SURFACE TECHNOLOGY·347·TiO2-SiO2多功能薄膜的制备及其性能研究向军淮,徐志东,王军*(江西科技师范大学 江西省材料表面工程重点实验室,南昌 330013)摘要:目的改善普通玻璃的防雾性能。
方法采用溶胶−凝胶法在玻璃表面制备均匀透明的x TiO2-(1−x)SiO2(x为1.00、0.75、0.50、0.25、0)复合薄膜。
利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、原子力显微镜(AFM)表征TiO2-SiO2复合材料的微观结构和表面形貌,通过紫外可见近红外分光光度计、接触角测试仪测试TiO2-SiO2复合薄膜的光学性质和润湿性,通过热水浴实验评价镀膜前后玻璃的防雾性能。
结果XRD测试结果表明,TiO2-SiO2复合材料由锐钛矿相TiO2和非晶相SiO2构成,其相结构随着TiO2含量的变化而变化。
SEM和AFM结果表明,在TiO2-SiO2复合薄膜中,当SiO2的物质的量分数小于50%时,TiO2-SiO2复合薄膜表面均匀致密、粗糙度低;当SiO2的物质的量分数大于75%时,复合薄膜表面出现了孔洞和大颗粒,粗糙度增大。
光学性质测试结果表明,在TiO2-SiO2复合薄膜中,当SiO2的物质的量分数大于50%时,镀膜后的玻璃在可见光范围内的平均透过率高于85%。
润湿性测试结果表明,镀膜后玻璃表面的亲水性明显增强,当SiO2的物质的量分数小于50%时,TiO2-SiO2复合薄膜的接触角低于5°,表现为超亲水。
防雾性能测试结果表明,在玻璃表面制备TiO2-SiO2复合薄膜后,玻璃具有良好的防雾性能。
评价了0.50TiO2-0.50SiO2复合薄膜的耐久性,在室内放置60 d后,0.50TiO2-0.50SiO2复合薄膜的平均透过率在84%以上,且具有防雾性能,表明其耐久性较好。
结论在玻璃表面制备的0.50TiO2-0.50SiO2复合薄膜在可见光范围内具有高透明度和良好的防雾性能,且该薄膜的耐久性较好。
1.1纳米材料概述纳米材料是指其结构单元的尺寸介于1纳米~100纳米范围之间的材料。
由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。
并且,其尺度已接近光的波长,因此其所表现的特性如具有量子尺寸效应、表面效应和宏观量子隧道效应等。
从而使得熔点、磁性、光学、导热、导电特性等等往往不同于该物质在整体状态时所表现的性质。
纳米材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。
而现在,纳米材料已经渗透入医药化工、电子计算机和电子工业、环境保护、纺织工业、机械工业等多个领域,展现了其非凡的特性和广阔的发展的前景[1-13]。
1.2纳米TiO2 概述二氧化钛(TiO2),俗称钛白粉,是仅次于合成氨和磷酸的世界无机化工产品中销售量第三的产品。
在化工生产领域占据着极其重要的地位。
纳米级二氧化钛的粒径在1~100nm之间,比表面积远大于普通二氧化钛,因此具有很大的表面活性,并以其颗粒尺寸的优势而具有许多超过普通钛白粉的优点,光催化降解有机物活性和气敏湿敏性也显著增强。
纳米二氧化钛对可见光和波长在200-400nm间的紫外光是透明的,可用作透明效应颜料和紫外光吸收剂,对紫外光有着很好的屏蔽能力,可用于制造化妆品和包装材料,制作多种消毒、作为新防臭和水果保鲜用品,又因其分散性好不沉降可用于高档油墨。
纳米TiO2型涂料和光催化剂等大量应用于精细化工中,还可以被用作电子陶瓷元件、光介子、氧化物半导体材料广泛用于消除放射性废物和环境污染物质,以及回收贵金属等。
日本还将二氧化钛的光催化功能应用在净化垃圾处理、高速公路两边的隔音墙、厨房和浴池用瓷砖等,日本东陶公司的科学家渡部俊也在1995年发现了纳米二氧化钛的超亲水性,并已经利用这种特性生产出了不用擦拭的汽车后视镜、防水气和防污的玻璃和陶瓷等。
纳米二氧化钛是光催化材料研究的热点也是研究的最多的半导体光催化材料。
TiO2纳米结构、复合及其光催化性能研究共3篇TiO2纳米结构、复合及其光催化性能研究1TiO2纳米结构、复合及其光催化性能研究随着环境污染日益严重,光催化技术逐渐成为一种重要的治理手段。
其中,TiO2因其良好的光催化性能,在光催化领域中得到了广泛应用。
近年来,随着纳米技术的发展,研究人员开始尝试制备TiO2纳米结构及其复合材料,以提高其光催化性能。
本文将就TiO2纳米结构、复合及其光催化性能进行探讨。
TiO2是一种广泛应用于光催化领域的半导体材料。
其中,纳米级TiO2颗粒具有更高的比表面积和更好的光催化性能。
通过控制TiO2颗粒的形貌和尺寸,可以进一步提高其光催化性能。
目前,制备TiO2纳米颗粒的方法主要有溶胶-凝胶法、水热法、气-液界面法等。
其中,溶胶-凝胶法是最常用的制备方法之一。
通过将钛酸四丁酯、乙醇等原料混合后,进行溶胶-凝胶、干燥、煅烧等步骤,即可制备纳米级TiO2颗粒。
研究表明,通过控制煅烧温度和时间,可以控制TiO2颗粒的尺寸和形貌。
例如,较高温度和较长时间会导致颗粒尺寸增大,形貌由球形转变为椭球形或纺锤形等。
除了纳米颗粒外,掺杂和复合是另一种提高TiO2光催化性能的有效手段。
掺杂主要是通过将其他元素掺入TiO2晶格中,以改变其电子结构,提高光催化性能。
目前常用的掺杂元素包括银、氮、碳等。
复合则是将TiO2与其他材料复合,以提高其光催化稳定性和性能。
常用的复合材料包括金属氧化物、石墨烯、聚合物等。
对于掺杂TiO2,研究发现,掺杂银元素可以增加TiO2的光催化活性和稳定性。
由于银元素具有良好的表面等离子共振吸收效应,可促进TiO2的光吸收和电子传输。
同时,掺杂氮和碳元素可以缩小TiO2带隙,增强光吸收效果。
对于复合TiO2,研究发现,纳米级TiO2颗粒与金属氧化物复合,可以提高其光吸收和电子传输效果,从而提高光催化性能。
总体而言,制备TiO2纳米结构、掺杂和复合是提高TiO2光催化性能的有效手段。
《纳米材料导论》课程报告题目:纳米TiO2的制备方法与应用学生姓名:李玉海学生学号:2010130101025纳米TiO2的制备方法与应用摘要:综述了纳米二氧化钛材料的制备及应用,论文主要根据二氧化钛的表征及性能,深入地讨论了纳米二氧化钛材料的一些制备方法及应用。
从物理法和化学法、或从液相法和气相法,详细地概述了二氧化钛粉体制备。
在诸多性能的分析下,二氧化钛纳米材料在空气净化、废水处理、杀菌消毒、化妆品、涂料、塑料中的应用等方面起到了实际作用。
在写作过程中,本文通过查找各种关于纳米材料以及有关纳米科技的书籍和文献进行论述,充分体现了纳米材料在生活中的应用。
关键词:纳米二氧化钛制备应用前景1. 纳米TiO2的概述钛的氧化物——二氧化钛,是雪白的粉末,是最好的白色颜料,俗称钛白。
以前,人们开采钛矿,主要目的便是为了获得二氧化钛。
钛白的粘附力强,不易起化学变化,永远是雪白的。
特别可贵的是钛白无毒。
它的熔点很高,被用来制造耐火玻璃,釉料,珐琅、陶土、耐高温的实验器皿等。
具有独特的光催化性、优异的颜色效应以及紫外线屏蔽等功能,在光纳米TiO2催化剂、化妆品、抗紫外线吸收剂、功能陶瓷、气敏传感器件等方面具有广阔的应用前景。
1.2纳米TiO2的制备方法纳米TiO2在光催化领域具有举足轻重的地位,因此制备高光催化性能的纳米TiO2一直也是光催化研究的重点内容。
纳米TiO2的制备方法大致可以分为气相法和液相法。
1.2.1气相法气相法是正在开发的一种优良方法,多用于制备纳米级别的粒子或薄膜,该法是使用钛卤化物、钛有机化合物等在加热条件下挥发,经气相反应使生成物沉淀下来。
气相法合成纳米Ti02颗粒具有纯度高、粒度细、分散性好、组分易于控制等优点。
但是气相法由于受能耗大、设备复杂、产品生产成本高、对设备材质及工艺过程要求高等条件限制,在我国要实现工业化生产,还要解决设备材质及一系列制备的工程技术问题。
1.2.2液相法液相法是选择可溶于水或有机溶剂的钛盐,使其溶解并以粒子或分子状态混合均匀,再选择一种合适的沉淀剂或采用蒸发、结晶、升华、水解等过程,将钛离子均匀沉淀后结晶出来,再经脱水或热分解制得粉体。
纳米TiO2的性能、应用及其制备方法综述摘要:纳米TiO2具有独特的光催化性、优异的颜色效应以及紫外线屏蔽等功能, 在光催化剂、化妆品、抗紫外线吸收剂、功能陶瓷、气敏传感器件等方面具有广阔的应用前景。
国内外文献对纳米TiO2的性质、应用及其制备方法进行了大量的研究报道, 本文对有关纳米TiO2的性能、应用及制备方法研究进行了综述。
关键字:纳米TiO2、性能、应用、制备一、简介:纳米二氧化钛,亦称纳米钛白粉。
从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在100纳米以下,其外观为白色疏松粉末。
具有抗紫外线、抗菌、自洁净、抗老化功效,可用于化妆品、功能纤维、塑料、油墨、涂料、油漆、精细陶瓷等领域。
二、分类:①、按照晶型可分为:金红石型纳米钛白粉和锐钛型纳米钛白粉。
②、按照其表面特性可分为:亲水性纳米钛白粉和亲油性纳米钛白粉。
③、按照外观来分:有粉体和液体之分,粉体一般都是白色,液体有白色和半透明状。
三、纳米TiO2的性能:纳米TiO2除了具有与普通纳米材料一样的表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应等外, 还具有其特殊的性质, 尤其是催化性能。
3. 1 基本物化特性纳米TiO2有金红石、锐钛矿和板钛矿3种晶型。
金红石和锐钛矿属四方晶系, 板钛矿属正交晶系,一般情况下,板钛矿在650℃转变为锐钛矿,锐钛矿915℃转变为金红石。
结构转变温度与TiO2颗粒大小、含杂质及其制备方法有关,颗粒愈小,转变温度愈低,锐钛型纳米TiO2向金红石型转变的温度为600℃或低于此温度。
纳米TiO2化学性能稳定,常温下几乎不与其它化合物反应,不溶于水、稀酸,微溶于碱和热硝酸,不与空气中CO2、SO2、O2等反应,具有生物惰性和热稳定性,无毒性[1]。
3. 2光催化性3.2.1光催化原理纳米TiO2是一种n型半导体材料,禁带宽度较宽,其中锐钛型为3.2eV,金红石型为3.0eV,当它吸收了波长小于或等于387.5nm 的光子后,价带中的电子就会被激发到导带,形成带负电的高活性电子e-,同时在价带上产生带正电的空穴h+,吸附在TiO2表面的氧俘获电子形成•O2-,而空穴则将吸附在TiO2表面的OH-和H2O氧化成具有强氧化性的•OH,反应生成的原子氧、氢氧自由基都有很强的化学活性, 氧化降解大多数有机污染物,同时空穴本身也可夺取吸附在半导体表面的有机物质中的电子,使原本不吸收光的物质被直接氧化分解,这两种氧化方式可能单独起作用也可能同时起作用,对于不同的物质两种氧化方式参与作用的程度有所不同[2]。
Ag纳米颗粒增强SnO_(2)纳米薄膜的室温气敏性能研究刘文强;吴鹏举;王瑗瑗;连艳利;杨莹丽
【期刊名称】《传感器与微系统》
【年(卷),期】2024(43)2
【摘要】采用磁控溅射法在p-Si衬底上沉积二氧化锡(SnO_(2))纳米薄膜并在其上负载银(Ag)纳米颗粒作为气体传感器的敏感材料。
实验结果表明:负载Ag纳米颗粒提高了SnO_(2)纳米薄膜的灵敏度。
Ag溅射时间为80 s,负载量为6%质量分数的SnO_(2)纳米薄膜对乙醇气体的响应值较未负载Ag纳米颗粒时提高了78.7%,这可以归因于Ag纳米颗粒与SnO_(2)纳米薄膜之间形成了异质结。
实验测试了工作电压对SnO_(2)纳米薄膜灵敏度的影响,当工作电压均为5.5 V时,传感器对乙醇和丙酮气体的响应最佳,响应值分别为3.49和4.51。
【总页数】4页(P45-48)
【作者】刘文强;吴鹏举;王瑗瑗;连艳利;杨莹丽
【作者单位】河南理工大学物理与电子信息学院;中国联合网络通信有限公司焦作市分公司;河南理工大学分析测试中心
【正文语种】中文
【中图分类】TP212
【相关文献】
1.介孔硅基WO_3纳米颗粒薄膜室温气敏元件特性(英文)
2.Ag纳米颗粒修饰TiO2阵列薄膜的制备及其气敏性能研究
3.Ag掺杂ZnFe_(2)O_(4)纳米颗粒的制备及光
学气敏性能研究4.多孔硅基VO_(2)纳米颗粒复合体的制备及增强NO_(2)室温气敏特性研究5.磁控溅射SnO_(2)/ZnO复合纳米薄膜的气敏特性研究
因版权原因,仅展示原文概要,查看原文内容请购买。
Ag掺杂纳米二氧化钛的制备及光催化性能研究张理元;刘钟馨;于晓龙;吕作凤;曹阳【摘要】采用溶胶-凝胶法制备了Ag掺杂纳米二氧化钛.采用SEM、XPS、XRD、UV-Vis对样品进行表征.结果表明,未掺杂的样品的粒径在80~100nm,Ag掺杂的样品的粒径在40~50nm;Ag元素成功进入晶格,含量为0.67%(原子分数);400℃热处理时,掺杂与未掺杂样品晶型基本相同,600℃热处理时,掺杂能够抑制样品晶型的转变;掺杂使二氧化钛的吸收带边发生了一定的红移.在此条件下Ag的最佳掺杂量为0.5%,最佳热处理温度为600℃.在最佳条件下,以甲基橙为模拟污染物,经过120min的光催化实验,降解率达到97.9%.【期刊名称】《功能材料》【年(卷),期】2010(041)012【总页数】5页(P2169-2173)【关键词】溶胶-凝胶法;纳米二氧化钛;Ag掺杂;光催化性能【作者】张理元;刘钟馨;于晓龙;吕作凤;曹阳【作者单位】海南大学,材料与化工学院,海南优势资源化工材料应用技术教育部重点实验室,硅锆钛资源综合开发与利用海南省重点实验室,海南,海口,570228;海南大学,材料与化工学院,海南优势资源化工材料应用技术教育部重点实验室,硅锆钛资源综合开发与利用海南省重点实验室,海南,海口,570228;海南大学,材料与化工学院,海南优势资源化工材料应用技术教育部重点实验室,硅锆钛资源综合开发与利用海南省重点实验室,海南,海口,570228;海南大学,材料与化工学院,海南优势资源化工材料应用技术教育部重点实验室,硅锆钛资源综合开发与利用海南省重点实验室,海南,海口,570228;海南大学,材料与化工学院,海南优势资源化工材料应用技术教育部重点实验室,硅锆钛资源综合开发与利用海南省重点实验室,海南,海口,570228【正文语种】中文【中图分类】O614二氧化钛作为一种重要的无机半导体材料,在太阳能光解水,污水处理等方面有着重要的应用前景。