ADVFC32芯片中文翻译
- 格式:doc
- 大小:502.50 KB
- 文档页数:7
自动检测中获取频率信号的方法摘要:在微机测控系统中往往需要将被测信号(传感器信号)转换为频率信号。
获取频率信号的常用方法是使用集成电压/频率变换器(VFC),但集成VFC有一些明显的局限。
本文讨论了集成VFC的特点,以及在微机测控系统中获取频率信号的几种实用方法,恰当选用这些方法既能满足微机测控系统的应用需要,又能克服集成VFC的某些应用局限。
关键词:自动检测;频率信号;传感器;555定时器;锁相环Automatic detection for the method of frequency signalAbstract:It is very useful for measuring and controlling systems with microcontrollers to convert sensor signals into frequency signals. The integrated voltage-to-frequency converters are commonly used for this purpose. The integrated voltage-to-frequency converters have some significant limitations of performance and cost. In a microcomputer measurement and control system is discussed in this paper to obtain frequency signal of several practical methods (VFC) without integration and its characteristics, appropriate chooses these methods can not only meet the needs of the application of microcomputer measurement and control system, and integration of VFC some application limitation can be overcome.Key words:Automatic detection; Frequency signal; sensor; 555 timer; phase-locked loop (PLL)1 引言由于频率信号具有很多重要优点,如抗干扰性好、便于远距离传送输、送入微处理器时输入灵活、接口简单、占用I/O口资源少,因而在微机测控系统中有重要应用。
自动检测中获取频率信号的方法摘要:在微机测控系统中往往需要将被测信号(传感器信号)转换为频率信号。
获取频率信号的常用方法是使用集成电压/频率变换器(VFC),但集成VFC有一些明显的局限。
本文讨论了集成VFC的特点,以及在微机测控系统中获取频率信号的几种实用方法,恰当选用这些方法既能满足微机测控系统的应用需要,又能克服集成VFC的某些应用局限。
关键词:自动检测;频率信号;传感器;555定时器;锁相环Automatic detection for the method of frequency signalAbstract:It is very useful for measuring and controlling systems with microcontrollers to convert sensor signals into frequency signals. The integrated voltage-to-frequency converters are commonly used for this purpose. The integrated voltage-to-frequency converters have some significant limitations of performance and cost. In a microcomputer measurement and control system is discussed in this paper to obtain frequency signal of several practical methods (VFC) without integration and its characteristics, appropriate chooses these methods can not only meet the needs of the application of microcomputer measurement and control system, and integration of VFC some application limitation can be overcome.Key words:Automatic detection; Frequency signal; sensor; 555 timer; phase-locked loop (PLL)1 引言由于频率信号具有很多重要优点,如抗干扰性好、便于远距离传送输、送入微处理器时输入灵活、接口简单、占用I/O口资源少,因而在微机测控系统中有重要应用。
AD中英文技术资料Ecardsh整理,2011年8月3日型号厂家功能说明AD5361 ADI 16通道、14-Bit、串行输入、电压输出型DACAD5362 ADI 八通道、14-Bit、串行输入、电压输出型DACAD5363 ADI 八通道、14-Bit、串行输入、电压输出型DACAD536A ADI Integrated Circuit True RMS-to-DC ConverterAD537 ADI Integrated Circuit Voltage-to-Frequency ConverterAD5370 ADI 40通道、16-Bit、串行输入、电压输出型DACAD5371 ADI 40通道、14-Bit、串行输入、电压输出型DACAD5372 ADI 32通道、14-Bit、串行输入、电压输出型DACAD5373 ADI 32通道、14-Bit、串行输入、电压输出型DACAD5378 ADI 32-Channel 14-Bit Serial/Parallel Bipolar D/A ConverterAD5379 ADI 40-Channel 14-Bit Bipolar Voltage-Output D/A ConverterAD537S ADI Aerospace Voltage to Frequency Converter, ±30V to 150kHzAD537S ADI Aerospace Voltage to Frequency Converter, ±30V to 150kHzAD538 ADI Real-Time Analog Computational Unit (ACU)AD5380 ADI 40-Channel 14-Bit 3 V/5 V Single-Supply Voltage-Output DACAD5381 ADI 40-Channel 12-Bit 3 V/5 V Single-Supply Voltage-Output DACAD5382 ADI 32-Channel 14-Bit 3 V/5 V Single-Supply Voltage-Output DACAD5383 ADI 32-Channel 12-Bit 3 V/5 V Single-Supply Voltage-Output DACAD5384 ADI 40-Channel, 3 V/5 V Single Supply,14-Bit, Serial Voltage-Output DAC AD539 ADI Wideband Dual-Channel Linear Multiplier/DividerAD5390 ADI 16-Channel 14-Bit 3 V/5 V Single-Supply Voltage-Output DACAD5391 ADI 16-Channel 12-Bit 3V/5V Single-Supply Voltage-Output DACAD5392 ADI 8-Channel 14-Bit Single-Supply Voltage-Output DACAD5398 ADI 120 mA、吸电流、10-Bit、具有I2C接口的数模转换器AD5398A ADI 120 mA, Current Sinking, 10-Bit, I2C DACAD5398A ADI 120 mA, Current Sinking, 10-Bit, I2C DACAD5398A ADI 120 mA, Current Sinking, 10-Bit, I2C DACAD5399 ADI Two's Complement, Dual 12-Bit DACs, Internal REFAD5405 ADI Dual 12-Bit , High Bandwidth, Multiplying DAC with 4 Quadrant Resistors and Parallel InterfaceAD5410 ADI Single Channel, 12-Bit, Serial Input, Current Source DACAD5412 ADI Single Channel, 12-Bit, Serial Input, Current Source & Voltage Output DACAD5415 ADI Dual 12-Bit,High Bandwidth,Multiplying DAC with 4 Quadrant Resistors and Serial InterfaceAD5420 ADI Single Channel, 16-Bit, Serial Input, Current Source DACAD5422 ADI 单通道,16-Bit, 串行输入, 电流源与电压输出数模转换器AD5424 ADI High Bandwidth CMOS 8-Bit Parallel Interface Multiplying D/A Converter AD5425 ADI High Bandwidth, CMOS 8-Bit Serial Interface Multiplying D/A Converter AD5426 ADI High Bandwidth CMOS 8-Bit Serial Interface Multiplying D/A Converter AD5428 ADI Dual 8-Bit, High Bandwidth Multiplying DACs with Parallel InterfaceAD5429 ADI Dual 8-Bit, High Bandwidth Multiplying D/A Converter With Serial InterfaceAD5432 ADI High Bandwidth CMOS 10-Bit Serial Interface Multiplying D/A Converter AD5433 ADI High Bandwidth CMOS 10-Bit Parallel Interface Multiplying D/A ConverterAD5439 ADI Dual 10-Bit, High Bandwidth Multiplying D/A Converter With Serial InterfaceAD5440 ADI Dual 10-Bit, High Bandwidth Multiplying DACs with Parallel Interface AD5441 ADI 12-Bit串行输入乘法型数模转换器AD5441 ADI 12-Bit串行输入乘法型数模转换器AD5443 ADI High Bandwidth CMOS 12-Bit Serial Interface Multiplying D/A Converter AD5444 ADI 12-Bit High Bandwidth Multiplying DAC with Serial InterfaceAD5445 ADI High Bandwidth CMOS 12-Bit Parallel Interface Multiplying D/A Converter AD5446 ADI 14-Bit High Bandwidth Multiplying DAC with Serial InterfaceAD5447 ADI Dual 12-Bit, High Bandwidth Multiplying DACs with Parallel InterfaceAD5449 ADI Dual 12-Bit, High Bandwidth Multiplying D/A Converter With Serial InterfaceAD5450 ADI 8-Bit High Bandwidth Multiplying DACs with Serial InterfaceAD5451 ADI 10-Bit High Bandwidth Multiplying DACs with Serial InterfaceAD5452 ADI 12-Bit High Bandwidth Multiplying DACs with Serial InterfaceAD5453 ADI 14-Bit High Bandwidth Multiplying DACs with Serial InterfaceAD548 ADI Precision, Low Power BiFET Op AmpAD549 ADI Ultralow Input-Bias Current Operational AmplifierAD5516 ADI 16-Channel 12-Bit Bipolar Voltage-Output DAC with 14-Bit Increment Mode AD5520 ADI Per-pin Parametric Measurement Unit / Source Measure UnitAD5522 ADI 集成16位电平设置DAC的四参数测量单元AD5530 ADI Serial Input, Voltage Output 12-Bit D/A ConverterAD5531 ADI Serial Input, Voltage Output14-Bit D/A ConverterAD5532 ADI 32-Channel 14-Bit Bipolar Voltage-Output DACAD5532B ADI 32-Channel 14-bit Bipolar Voltage-Output DACAD5532HS ADI 32-Channel 14-Bit bipolar DAC with High Speed 3-Wire Serial Interface AD5533 ADI 32-Channel Infinite Sample-and-HoldAD5533B ADI 32-Channel Infinite Sample-and-HoldAD5535 ADI 32-Channel, 14-Bit DAC with Fullscale Output Voltage Programmable from 50 V to 200 VAD5541 ADI 16-Bit Voltage-Output DAC in SO-8 PackageAD5542 ADI 16-Bit Bipolar-Voltage-Output DAC with Kelvin SensingAD5543 ADI 16-Bit DAC in μSOIC-8 PackageAD5544 ADI Precision QUAD 16-Bit D/A ConverterAD5545 ADI Precision DUAL 16-Bit and 14-Bit DACs in Compact TSSOP Packages AD5546 ADI Current-Output Parallel-Input, 16-Bit Digital-to-Analog Converter AD5547 ADI Dual Current-Output Parallel-Input, 16-Bit DACAD5551 ADI 5 V, Serial-Input, Voltage-Output 14-Bit DACAD5552 ADI 5 V, Serial-Input, Voltage-Output 14-Bit DAC With Bipolar Output CapabilityAD5553 ADI 14-Bit DAC in μSOIC-8 PackageAD5554 ADI Precision QUAD 14-Bit D/A ConverterAD5555 ADI Precision DUAL 16-Bit 14-Bit-DACs in Compact TSSOP Packages AD5556 ADI Current-Output Parallel-Input, 14-Bit Digital-to-Analog Converter AD5557 ADI Dual Current-Output Parallel-Input, 14-Bit DACAD5560 ADI 1.2A Programmable Device Power Supply with Integrated 16-bit Level Setting DACsAD5560 ADI 1.2A Programmable Device Power Supply with Integrated 16-bit Level Setting DACsAD5564 ADI This product is obsolete and replaced by the AD5532. (9/99) AD557 ADI DACPORT Low Cost, Complete μP-Compatible 8-Bit DACAD5570 ADI True Accuracy, 16-Bit ±12 V/±15 V, Serial Input Voltage Output D/A ConverterAD558 ADI Voltage-output 8-bit digital-to-analog converter,including output amplifier,full microprocessor interface and precisionAD5582 ADI +15 V, Quad, Parallel Input, 12-Bit D/A Converter AD5583 ADI +15V, Quad, Parallel Input, 10-Bit D/A Converter AD5590 ADI 16输入/16输出模拟I/O端口,集成放大器AD5601 ADI 2.7 V to 5.5 V,<100 μA,8-Bit <em>nano</em>DAC?,SPI Interface in SC70 PackageAD5602 ADI 2.7 V to 5.5 V, <100 μA, 8-Bit <em>nano</em>DAC? D/A Converter with I2C Compatible Interface, Tiny SC70 PackageAD561 ADI Low Cost 10-Bit Monolithic D/A ConverterAD5611 ADI 2.7 V to 5.5 V,<100 μA,10-Bit <em>nano</em>DAC?,SPI Interface in SC70 PackageAD5612 ADI 2.7 V to 5.5 V,<100 μA,10-Bit <em>nano</em>DAC? D/A Converter with I2C Compatible Interface, Tiny SC70 PackageAD561S ADI Aerospace 10-Bit, Current Output DACAD5620 ADI 3 V/5 V, 12-Bit <em>nano</em>DAC? Converter with 5 ppm/°C On-Chip Reference in Sot-23AD5621 ADI 2.7 V to 5.5 V,<100 μA,12-Bit <em>nano</em>DAC?,SPI Interface in SC70 PackageAD5622 ADI 2.7 V to 5.5 V,<100 μA,12-Bit <em>nano</em>DAC? D/A Converter with I2C Compatible Interface, Tiny SC70 PackageAD5623R ADI Dual 12-Bit <em>nano</em>DAC? with 5 ppm/°C On-Chip ReferenceAD5624 ADI 2.7 V to 5.5 V, 450 μA, Rail-to-Rail Output, Quad, 12-/16-Bit <em>nano</em>DACs?AD5624R ADI Quad,12-Bit <em>nano</em>DAC? with 5ppm/°C On-Chip Reference AD5625 ADI Quad, 12-Bit <em>nano</em>DACs?, I2C? InterfaceAD5625R ADI Quad, 12-Bit <em>nano</em>DACs? with 5 ppm/°C On-Chip Reference,I2C? InterfaceAD5626 ADI 5 V,12-Bit <em>nano</em>DAC?,串行接口,采用MSOP与LFCSP 封装AD5627 ADI Dual, 12-Bit nanoDAC? with I2C? InterfaceAD5627R ADI Dual,12-Bit nanoDAC? with 5 ppm/°C On-Chip Reference,I2C? InterfaceAD5628 ADI Octal, 12-Bit D/A Converter with 5 ppm/°C On-Chip Reference in 14-Lead TSSOPAD563 ADI ObsoleteAD5640 ADI 3 V/5 V, 14-Bit <em>nano</em>DAC? Converter with 5 ppm/°C On-Chip Reference in Sot-23AD5641 ADI 2.7 V to 5.5 V,<100 μA,14-Bit <em>nano</em>DAC,SPI Interface in SC70 PackageAD5643R ADI Dual 14-Bit <em>nano</em>DAC? with 5 ppm/°C On-Chip Reference AD5644R ADI Quad, 14-Bit <em>nano</em>DAC? with 5ppm/°C On-Chip ReferenceAD5645R ADI Quad, 14-Bit <em>nano</em>DACs? with 5 ppm/°C On-Chip Reference,I2C? InterfaceAD5647R ADI Dual,14-Bit nanoDAC? with 5 ppm/°C On-Chip Reference,I2C? InterfaceAD5648 ADI Octal, 14-Bit D/A Converter with 5 ppm/°C On-Chip Reference in 14-Lead TSSOPAD565A ADI 12-bit Digital-to-Analog Converters, with Zener ReferenceAD565S ADI Aerospace 12-Bit, Current Output, Complete High Speed DACAD5660 ADI 3 V/5 V, 16-Bit <em>nano</em>DAC? Converter with 5 ppm/°C On-Chip Reference in a Sot-23AD5662 ADI 2.7-5.5V, 16-Bit <em>nano</em>DAC? Converter in a Sot-23AD5663 ADI 2.7 V to 5.5 V, 250 μA, Rail-to-Rail Output, Dual 16-Bit <em>nano</em>DAC?AD5663R ADI Dual 16-Bit <em>nano</em>DAC? with 5 ppm/°C On-Chip ReferenceAD5664 ADI 2.7 V to 5.5 V, 450 μA, Rail-to-Rail Output, Quad, 12-/16-Bit <em>nano</em>DACs?AD5664R ADI Quad, 16-Bit <em>nano</em>DAC? with 5ppm/°C On-Chip Reference AD5665 ADI Quad, 16-Bit <em>nano</em>DACs?, I2C? InterfaceAD5665R ADI 片上带5ppm/°C基准源和I2C接口的16bit 四nanoDAC?AD5666 ADI Quad, 16 Bit D/A Converter with 10ppm/°C Max On-Chip Reference in 14-Lead TSSOPAD5667 ADI Dual, 16-Bit nanoDAC? with I2C? InterfaceAD5667R ADI Dual,16-Bit nanoDAC? with 5 ppm/°C On-Chip Reference,I2C? InterfaceAD5668 ADI Octal, 16-Bit D/A Converter with 5 ppm/°C On-Chip Reference in 16-Lead TSSOPAD567 ADI 12-Bit Current Output, Microprocessor-Compatible DACAD5678 ADI 4 x 12-Bit and 4 × 16-Bit Octal D/A Converter with On-Chip Reference in 14-Lead TSSOPAD568 ADI 12-Bit Ultrahigh Speed Monolithic D/A ConverterAD5680 ADI 5 V 18-Bit <em>nano</em>DAC? in a SOT-23AD569 ADI 16-Bit Monotonic Voltage Output D/A ConverterAD570 ADI 8-Bit Successive Approximation Analog-to-Digital ConverterAD571 ADI 10-Bit, A/D Converter, Complete with Reference and Clock AD571S ADI Aerospace 10-Bit Complete Anolog to Digital ConverterAD572 ADI 12-Bit Successive Approximation Integrated Circuit A/D ConverterAD5722 ADI Complete,Dual,12-Bit,Serial Input,Unipolar/Bipolar,Voltage Output DACAD5722 ADI Complete,Dual,12-Bit,Serial Input,Unipolar/Bipolar,Voltage Output DACAD5722R ADI Complete,Dual,12-Bit,Serial Input,Unipolar/Bipolar,Voltage Output DACAD5724 ADI Complete,Quad,12-Bit,Serial Input,Unipolar/Bipolar Voltage Output DACsAD5724 ADI Complete,Quad,12-Bit,Serial Input,Unipolar/Bipolar Voltage Output DACsAD5724R ADI Complete,Quad,12-Bit,Serial Input,Unipolar/Bipolar Voltage OutputDACAD5725 ADI 12-bit、并行输入、单极性/双极性、电压输出四DACAD5726 ADI Quad, 12-Bit, Serial Input, Unipolar/Bipolar, Voltage Output DAC AD573 ADI 10-bit successive approximation ADC.AD5732 ADI Complete,Dual,14-Bit,Serial Input,Unipolar/Bipolar,Voltage Output DACAD5732 ADI Complete,Dual,14-Bit,Serial Input,Unipolar/Bipolar,Voltage Output DACAD5732R ADI Complete,Dual,14-Bit,Serial Input,Unipolar/Bipolar,Voltage Output DACAD5734 ADI Complete,Quad,14-Bit,Serial Input,Unipolar/Bipolar Voltage Output DACAD5734 ADI Complete,Quad,14-Bit,Serial Input,Unipolar/Bipolar Voltage Output DACAD5734R ADI Complete,Quad,14-Bit,Serial Input,Unipolar/Bipolar Voltage Output DACAD5744 ADI Complete,Quad,14-Bit,High Accuracy,Serial Input,Bipolar Voltage Output D/A ConverterAD5744R ADI Complete Quad, 14-Bit, High Accuracy, Serial Input, Bipolar Voltage Output D/A ConverterAD5744R ADI Complete Quad, 14-Bit, High Accuracy, Serial Input, Bipolar Voltage Output D/A ConverterAD574A ADI Complete 12-Bit A/D ConverterAD574S ADI Aerospace 12-Bit-ADC w/Microprocessor InterfaceAD575 ADI ObsoleteAD5750 ADI AD5750 电流/电压输出驱动器,输出范围可编程,适合工业应用 AD5750 ADI AD5750 电流/电压输出驱动器,输出范围可编程,适合工业应用AD5751 ADI 电流/电压输出驱动器,单电源供电,60 V电压范围,输出范围可编程,适合工业应用AD5751 ADI 电流/电压输出驱动器,单电源供电,60 V电压范围,输出范围可编程,适合工业应用AD5752 ADI Complete,Dual,16-Bit,Serial Input,Unipolar/Bipolar,Voltage Output DACAD5752 ADI Complete,Dual,16-Bit,Serial Input,Unipolar/Bipolar,Voltage Output DACAD5752R ADI Complete,Dual,16-Bit,Serial Input,Unipolar/Bipolar,Voltage Output DACAD5754 ADI 完全4通道、16 Bit、串行输入、单极/双极性电压输出数模转换器AD5754R ADI Complete,Quad,16-Bit,Serial Input,Unipolar/Bipolar Voltage Output DACAD5762R ADI 16-Bit,双通道,高精度, 串行输入, 双极性电压输出型DAC AD5763 ADI Complete Dual, 16-Bit, High Accuracy, Serial Input, ±5V DACsAD5764 ADI Complete Quad, 16-Bit, High Accuracy, Serial Input, Bipolar Voltage Output DACsAD5764R ADI Complete Quad, 16-Bit, High Accuracy, Serial Input, Bipolar Voltage Output D/A ConverterAD5764R ADI Complete Quad, 16-Bit, High Accuracy, Serial Input, Bipolar Voltage Output D/A ConverterAD5765 ADI Complete Quad, 16-Bit, High Accuracy, Serial Input, ±5V DACs AD580 ADI High Precision 2.5 V IC ReferenceAD581 ADI High Precision 10 V IC ReferenceAD582 ADI Low-Cost Sample-and-Hold AmplifierAD5821 ADI 120 mA, Current Sinking, 10-Bit, I2C? DACAD5821A ADI 120 mA, Current Sinking, 10-Bit, I2C DACAD5821A ADI 120 mA, Current Sinking, 10-Bit, I2C DACAD5821A ADI 120 mA, Current Sinking, 10-Bit, I2C DACAD583 ADI ObsoleteAD584 ADI Pin Programmable Precision Voltage ReferenceAD584S ADI Aerospace Pin Programmable Precision Voltage ReferenceAD585 ADI Complete Monolithic SHA Circuit.AD585S ADI Aerospace High Speed, Precision Sample-and-Hold AmplifierAD586 ADI High Precision 5 V ReferenceAD587 ADI High Precision 10 V ReferenceAD588 ADI High Precision Voltage ReferenceAD589 ADI Two-Terminal IC 1.2 V ReferenceAD589S ADI Aerospace Precision 1.2 Volt IC ReferenceAD590 ADI Two Terminal IC Temperature TransducerAD590S ADI Aerospace 2 Terminal Temperature Transducer, 1uA/°KAD592 ADI Current Output – Precision IC Temperature TransducerAD5930 ADI Programmable Frequency Sweep and Output Burst Waveform Generator AD5932 ADI 可编程单扫描波形发生器AD5933 ADI 1 MSPS,12 bit阻抗转换器和网络分析器AD5934 ADI 250 kSPS 12-Bit Impedance Converter Network AnalyzerAD594 ADI Monolithic Thermocouple Amplifier with Cold Junction Compensation Pretrimmed for Type J ThermocouplesAD595 ADI Monolithic Thermocouple Amplifier with Cold Junction Compensation Pretrimmed for Type K ThermocouplesAD596 ADI Thermocouple Conditioner and Setpoint Controller Operates with Type J ThermocoupleAD597 ADI Thermocouple Conditioner and Setpoint Controller Operates with Type K ThermocoupleAD598 ADI LVDT Signal ConditionerAD600 ADI Dual, Low Noise, Wideband Variable Gain Amplifier, 0 dB To +40 dB GainAD602 ADI Dual,Low Noise,Wideband Variable Gain Amplifier,-10 dB To +30 dB GainAD6021 ADI Othello One ET? Quad Band EDGE Transmit ModulatorAD603 ADI Low Noise, 90 MHz Variable Gain AmplifierAD604 ADI Dual, Ultralow Noise Variable Gain AmplifierAD605 ADI Dual, Low Noise, Single-Supply Variable Gain AmplifierAD606 ADI 50 MHz, 80 dB Demodulating Logarithmic Amplifier with Limiter Output AD607 ADI Low Power Mixer/AGC/RSSI 3V Receiver IF SubsystemAD608 ADI Low Power Mixer/Limiter/RSSI 3 V Receiver IF SubsystemAD620 ADI Low Drift, Low Power Instrumentation Amp with Set Gains of 1 to 10000 AD621 ADI Low Drift, Low Power Instrumentation Amp with fixed gains of 10 and 100 AD622 ADI 低成本仪表放大器AD623 ADI Single Supply, Rail-Rail, Low Cost Instrumentation AmplifierAD624 ADI High Precision, Low Noise Instrumentation AmplifierAD625 ADI Programmable Gain Instrumentation AmplifierAD626 ADI Low Cost, Single-Supply Differential AmplifierAD627 ADI 微功耗,单电源/双电源,轨到轨仪表放大器AD628 ADI High Common-Mode Voltage, Programmable Gain Difference Amplifier AD629 ADI High Common-Mode Voltage, Difference AmplifierAD630 ADI Balanced Modulator/DemodulatorAD632 ADI Internally Trimmed Precision IC MultiplierAD633 ADI Low Cost Four-Quadrant Analog MultiplierAD636 ADI Low Level, True RMS-to-DC ConverterAD637 ADI High Precision, Wideband RMS-to-DC ConverterAD640 ADI 120 MHz, 50 dB Demodulating Logarithmic AmplifierAD641 ADI 250 MHz, 44 dB Demodulating Logarithmic AmplifierAD6411 ADI DECT RF TransceiverAD648 ADI Dual Precision, Low Power BiFET Op AmpAD6488 ADI ADSL2+ CPE Analog Front EndAD648S ADI Aerospace Dual Precision, Low Power BiFET Op AmpAD650 ADI Voltage-to-Frequency and Frequency-to-Voltage ConverterAD651 ADI ObsoleteAD652 ADI Monolithic Synchronous Voltage-to-Frequency ConverterAD6524 ADI GSM Multi-Band SynthesizerAD6534 ADI Othello One Single-Chip Direct-Conversion GSM/GPRS/EDGE RFICAD6538 ADI Othello One Plus? Direct Conversion GSM/GPRS/EDGE Transceiver with Integrated LO VCOAD6539 ADI Othello One TV? Single Chip Direct Conversion GSM/GPRS Transceiver with Integrated TX VCOsAD654 ADI Low Cost Monolithic Voltage-to-Frequency ConverterAD660 ADI Monolithic 16-Bit Serial/Byte DACPORTAD6600 ADI Diversity Receiver ChipsetAD6620 ADI 65MSPS Digital Receive Signal ProcessorAD6622 ADI 65 MSPS, Quad Transmit Signal Processor (TSP)AD6623 ADI 104 MSPS, Four-Channel Digital Transmit Signal Processor (TSP) AD6624 ADI 80 MSPS, Quad Receiver Signal ProcessorAD6624A ADI Four-Channel, 100 MSPS Digital Receive Signal Processor (RSP) AD6630 ADI Differential, Low Noise IF Gain Block with Output ClampingAD6633 ADI Multi-channel (Digital) Transmit Signal Processor (TSP) with VersaCREST? Crest Reduction EngineAD6634 ADI 80 MSPS, Dual-Channel, WCDMA Receive Signal Processor (RSP) AD6635 ADI Four-Channel, 80 MSPS WCDMA Receive Signal Processor (RSP) AD6636 ADI 150 MSPS Wideband (Digital) Receive Signal Processor (RSP)AD664 ADI Monolithic 12-Bit Quad DACAD6640 ADI Multi-Channel, Multi-Mode Receiver ChipsetAD6644 ADI 14-Bit, 40 MSPS/65 MSPS Analog-to-Digital ConverterAD6645 ADI 14-Bit, 80 MSPS/105 MSPS A/D ConverterAD6645-MILADI 14-Bit, 80 MSPS Analog to Digital ConverterAD6650 ADI Diversity IF-to-Baseband GSM/EDGE Narrow-Band ReceiverAD6652 ADI 12-Bit, 65 MSPS IF to Base Band Diversity ReceiverAD6653 ADI IF Diversity ReceiverAD6654 ADI 14-Bit, 92.16 MSPS, 4 & 6-Channel Wideband IF to Base Band ReceiverAD6655 ADI IF Diversity ReceiverAD667 ADI Microprocessor-Compatible 12-Bit D/A ConverterAD667S ADI Aerospace 12-Bit Microprocessor Compatible DACAD668 ADI 12-Bit Ultrahigh Speed Multiplying D/A ConverterAD669 ADI Monolithic 16-Bit DACPORTAD670 ADI 8-Bit Signal Conditioning ADC.AD670S ADI Aerospace 8-Bit Low Cost Signal Conditioning Single Supply AD673 ADI 8-bit Successive Approximation, ADCAD674B ADI Complete 12-Bit A/D ConvertersAD676 ADI 16-Bit Parallel 100 kSPS Sampling ADCAD677 ADI 16-Bit, Serial, 100 kSPS Sampling ADC.AD678 ADI 12-Bit 200 kSPS Complete Sampling ADCAD679 ADI 14-Bit 128 kSPS Complete Sampling ADCAD680 ADI Bandgap, Low Power 2.5v ReferenceAD682 ADI ObsoleteAD684 ADI Monolithic Quad Sample-and-hold Amplifier (SHA)AD688 ADI High Precision ±10 V ReferenceAD689 ADI ObsoleteAD693 ADI Loop-Powered 4-20 mA Sensor TransmitterAD694 ADI 4-20mA Monolithic Current TransmitterAD698 ADI Universal LVDT Signal ConditionerAD7011 ADI CMOS, ADC pi/4 DQPSK Baseband Transmit PortAD704 ADI Quad Picoampere Input Current Bipolar Op AmpAD706 ADI Dual Picoampere Input Current Bipolar Op AmpAD708 ADI Ultralow Offset Voltage Dual Op AmpAD71028 ADI Dual Digital BTSC Encoder with Integrated DACAD711 ADI Precision, Low Cost, High Speed, BiFET Op Amp AD7111 ADI Monolithic Multiplying DAC Featuring Wide Dynamic RangeAD7112 ADI Dual CMOS Multiplying DAC with Anti-Log Transfer Function for Audio Volume Control ApplicationsAD712 ADI Dual Precision, Low Cost, High Speed, BiFET Op Amp AD713 ADI Quad Precision, Low Cost, High Speed, BiFET Op Amp AD7142 ADI 电容式触摸传感器专用可编程控制器AD7143 ADI 电容式触摸传感器专用可编程控制器AD7147 ADI CapTouch?单电极电容式传感器专用可编程控制器AD7148 ADI AD7148 可编程触摸控制器,用于单电极电容传感器AD7150 ADI 用于近程传感的超低功耗双通道电容式转换器。
电压频率和频率电压转换器ADVFC32及应用一、概述ADVFC32是ADI公司生产的一种低成本的单片集成的实现电压频率转换或频率电压转换的器件。
它具有很好的线性(10KHz时的最大误差时0.01%),最大的工作频率可以达到0.5MHz。
只需要外接很少的器件就可以把输入的正、负电压或电流转换为与之成比例的频率。
频率电压转换的模式所用的器件与电压频率转换的相同,只是要有一个简单的逻辑偏压或网络组合来保证输入逻辑电平有较大的范围。
在V/F模式下用一个开放的输出频率收集器可以实现TTL和CMOS兼容。
上拉电阻可以接到30V、15V的电压,或者5V标准CMOS和TTL逻辑电平。
应选取这个电阻值限制输出集电极的电流不超过8毫安。
低输入电压失调漂移,仅有满度的3ppm/℃。
ADVFC32具有以下的一些优点:1、ADVFC32采用的是电荷平衡电路技术,这使得它的电压频率转换具有很高的精度。
它的工作频率的范围仅仅由一个精密电阻和电容决定,其它的元件对频率范围影响不大。
所以可以采用比较便宜的,精度±20%的电阻和电容,这样并不会影响线性和温度漂移。
2、ADVFC32可以很容易满足系统工作范围要求。
选择不同的输入电阻可以实现不同的输入电压缩放比。
输入电阻还可以在最大的输入电压时使输入电流达到0.25mA。
3、频率电压转换的模式所用的器件与电压频率转换的相同,只是要有一个简单的逻辑偏置、网络相加和重新组合即可。
4、ADVFC32和其它公司生产的VFC32具有引脚的兼容性。
5、ADVFC32与军用标准MIL_STD_883兼容。
二、封装结构ADVFC32有两种封装方式:一种是14管脚的双列直插式,另一种是10管脚的金属罐式。
图1(A)给出的是ADVFC32的14脚封装结构及引脚排布,图1(B)给出的是ADVFC32的10脚封装结构及引脚排布。
(A):14引脚封装结构(B ):10引脚封装结构图1:ADVFC32的两种封装结构三、工作原理及应用设计ADVFC32应用广泛,除了用于电压频率转换和频率电压转换,还可以用于微处理器控制的A/D 转换及其他的电路。
2VFC32SPECIFICATIONSAt T A = +25°C and V CC = ±15V, unless otherwise noted.V Specification the same as VFC32KP.NOTES: (1) A 25% duty cycle (0.25mA input current) is recommended for best linearity. (2) Adjustable to zero. See Offset and Gain Adjustment section. (3) Linearity error is specified at any operating frequency from the straight line intersecting 90% of full scale frequency and 0.1% of full scale frequency. See Discussion of Specifications section. Above 200kHz,it is recommended all grades be operated below +85°C. (4) ±0.015% of FSR for negative inputs shown in Figure 5. Positive inputs are shown in Figure 1. (5) FSR = Full Scale Range (corresponds to full scale frequency and full scale input voltage). (6) Exclusive of external components’ drift. (7) Positive drift is defined to be increasing frequency with increasing temperature. (8) For operations above 200kHz up to 500kHz, see Discussion of Specifications and Installation and Operation sections. (9) One pulse of new frequency plus 1µs.5VFC32APPLICATION INFORMATION Figure 1 shows the basic connection diagram for frequency-to-voltage conversion. R 1 sets the input voltage range. For a 10V full-scale input, a 40k Ω input resistor is recommended.Other input voltage ranges can be achieved by changing the value of R 1.R 1should be a metal film type for good stability. Manufac-turing tolerances can produce approximately ±10% variation in output frequency. Full-scale output frequency can be trimmed by adjusting the value of R 1—see Figure 3.The full-scale output frequency is determined by C 1. Values shown in Figure 1 are for a full-scale output frequency of 10kHz. Values for other full-scale frequencies can be read from Figure 2. Any variation in C 1—tolerance, temperature drift, aging—directly affect the output frequency. Ceramic NPO or silver-mica types are a good choice.For full-scale frequencies above 200kHz, use larger capaci-tor values as indicated in Figure 2, with R 1 = 20k Ω.The value of the integrating capacitor, C 2, does not directly influence the output frequency, but its value must be chosen within certain bounds. Values chosen from Figure 2 produce approximately 2.5Vp-p integrator voltage waveform. If C 2’s value is made too low, the integrator output voltage can exceed its linear output swing, resulting in a nonlinear response. Using C 2 values larger than shown in Figure 2 is acceptable.Accuracy or temperature stability of C 2 is not critical be-cause its value does not directly affect the output frequency.For best linearity, however, C 2 should have low leakage and low dielectric absorption. Polycarbonate and other film capacitors are generally excellent. Many ceramic types are adequate, but some low-voltage ceramic capacitor types may degrade nonlinearity. Electrolytic types are not recom-mended.FREQUENCY OUTPUT PIN The frequency output terminal is an open-collector logic output. A pull-up resistor is usually connected to a 5V logic supply to create standard logic-level pulses. It can, however,be connected to any power supply up to +V CC . Output pulses have a constant duration and positive-going during the one-shot period. Current flowing in the open-collector output transistor returns through the Common terminal. This termi-nal should be connected to logic ground.(1)FIGURE 1. Voltage-to-Frequency Converter Circuit.R 1=V FS 0.25mA6VFC32PRINCIPLES OF OPERATION The VFC32 operates on a principle of charge balance. The signal input current is equal to V IN /R 1. This current is integrated by input op amp and C 2, producing a downward ramping integrator output voltage. When the integrator out-put ramps to the threshold of the comparator, the one-shot is triggered. The 1mA reference current is switched to the integrator input during the one-shot period, causing the integrator output ramp upward. After the one-shot period,the integrator again ramps downward.The oscillation process forces a long-term balance of charge (or average current) between the input signal current and the reference current. The equation for charge balance is:Where:f O is the output frequencyt OS is the one-shot period, equal tot OS = 7500 C 1 (Farads)(4)The values suggested for R 1 and C 1 are chosen to produce a 25% duty cycle at full-scale frequency output. For full-scale frequencies above 200kHz, the recommended values pro-duce a 50% duty cycle.FREQUENCY-TO-VOLTAGE CONVERSIONFigure 4 shows the VFC32 connected as a frequency-to-voltage converter. The capacitive-coupled input network C 3,R 6 and R 7 allow standard 5V logic levels to trigger the comparator input. The comparator triggers the one-shot on the falling edge of the frequency input pulses. Threshold voltage of the comparator is approximately –0.7V. For frequency input waveforms less than 5V logic levels, the R 6/R 7 voltage divider can be adjusted to a lower voltage to assure that the comparator is triggered.The value of C 1 is chosen from Figure 2 according to the full-scale input frequency. C 2 smooths the output voltage waveform. Larger values of C 2 reduce the ripple in the output voltage. Smaller values of C 2 allow the output voltage to settle faster in response to a change in input frequency.Resistor R 1 can be trimmed to achieve the desired output voltage at the full-scale input frequency.I IN =I R(AVERAGE)(2)V IN R 1=f O t OS (1mA)(3)FIGURE 2. Capacitor Value Selection.FIGURE 3. Gain and Offset Voltage Trim Circuit.7VFC32FIGURE 4. Frequency-to-Voltage Converter Circuit.FIGURE 5. V/F Converter—Negative Input Voltage.。
各国品牌IC封装及命名规则DIP英文简称:DIP英文全称:Double In-line Package中文解释:双列直插式封装。
插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种。
DIP是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。
PLCC英文简称:PLCC英文全称:Plastic Leaded Chip Carrier中文解释:PLCC封装方式,外形呈正方形,32脚封装,四周都有管脚,外形尺寸比DIP封装小得多。
PLCC封装适合用SMT表面安装技术在PCB上安装布线,具有外形尺寸小、可靠性高的优点。
PQFP英文简称:PQFP英文全称:Plastic Quad Flat Package中文解释: PQFP封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大规模集成电路采用这种封装形式,其引脚数一般都在100以上。
SOP英文简称:SOP英文全称:Small Outline Package中文解释: 1968~1969年菲为浦公司就开发出小外形封装(SOP)。
以后逐渐派生出SOJ(J型引脚小外形封装)、TSOP(薄小外形封装)、VSOP(甚小外形封装)、SSOP(缩小型SOP)、TSSOP(薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电路)等。
IC 封装及命名规则---TI逻辑器件的产品名称器件命名规则SN 74 LVC H 16 2 244 A DGG R1 2 3 4 5 6 7 8 9 101. 标准前缀示例:SNJ -- 遵从MIL-PRF-38535 (QML)2. 温度范围54 -- 军事74 -- 商业3. 系列4. 特殊功能空= 无特殊功能C -- 可配置Vcc (LVCC)D -- 电平转换二极管(CBTD)H -- 总线保持(ALVCH)K -- 下冲-保护电路(CBTK)R -- 输入/输出阻尼电阻(LVCR)S -- 肖特基钳位二极管(CBTS)Z -- 上电三态(LVCZ)5. 位宽空= 门、MSI 和八进制1G -- 单门8 -- 八进制IEEE 1149.1 (JTAG)16 -- Widebus™(16 位、18 位和20 位)18 -- Widebus IEEE 1149.1 (JTAG)32 -- Widebus™(32 位和36 位)6. 选项空= 无选项2 -- 输出串联阻尼电阻4 -- 电平转换器25 -- 25 欧姆线路驱动器7. 功能244 -- 非反向缓冲器/驱动器374 -- D 类正反器573 -- D 类透明锁扣640 -- 反向收发器8. 器件修正空= 无修正字母指示项A-Z9. 封装D, DW -- 小型集成电路(SOIC)DB, DL -- 紧缩小型封装(SSOP)DBB, DGV -- 薄型超小外形封装(TVSOP)DBQ -- 四分之一小型封装(QSOP)DBV, DCK -- 小型晶体管封装(SOT)DGG, PW -- 薄型紧缩小型封装(TSSOP)FK -- 陶瓷无引线芯片载体(LCCC)FN -- 塑料引线芯片载体(PLCC)GB -- 陶瓷针型栅阵列(CPGA)GKE, GKF -- MicroS tar™ BGA 低截面球栅阵列封装(LFBGA)GQL, GQN -- MicroStar Junior BGA 超微细球栅阵列(VFBGA)HFP, HS, HT, HV -- 陶瓷四方扁平封装(CQFP)J, JT -- 陶瓷双列直插式封装(CDIP)N, NP, NT -- 塑料双列直插式封装(PDIP)NS, PS -- 小型封装(SOP)PAG, PAH, PCA, PCB, PM, PN, PZ -- 超薄四方扁平封装(TQFP)PH, PQ, RC -- 四方扁平封装(QFP)W, WA, WD -- 陶瓷扁平封装(CFP)10. 卷带封装DB 和PW 封装类型中的所有新增器件或更换器件的名称包括为卷带产品指定的R。
研制开发基于瞬变电磁发射机的电路保护系统设计彪,张一鸣,张栋,原大康,王旭红(北京工业大学信息学部,北京瞬变电磁发射机是应用于深部地质探测的重要仪器设备,为了提高瞬变电磁发射机的安全性能,针对瞬功率器件温度过高和水冷系统水泵异常等状况,对该保护系统原理进行了详细地分析,完成电路设计,并给出了关键元件参数。
相比于软件保护系统,硬件电路保护具有响应无延迟、高可靠性、高稳定性的优点。
最后,通过实验验证了该硬件电路保护系统的有效性与可行性。
瞬变电磁发射机;电路设计;检测电路;保护电路Design of Circuit Protection System Based on Transient Electromagnetic TransmitterZHANG Yiming,ZHANG Dong,YUAN DakangBeijing University of Technology,Information Departmenttransmitter is an importantperformance of transienttransient electromagnetic transmitter possible over voltage,over current电极装置止步高压危险图1 发射接地电极瞬变电磁探测系统的具体工作原理如下:发电机输出的380 V 三相电经电源线连接到发射机的输入端,经发射机内部一系列的整流逆变等电力变换,调制成发射电压为0~1 000 V 可调,频率为0.012 5~ 9 600 Hz 的双极性方波。
发射机采用AC-DC-AC-DC-AC 的两极全桥逆变器串联结构,电路拓扑如图2所示。
H 1桥为三相不控整流桥,将输入的三相电压整流为570 V 左右的直流电压,由于整流之后的电压有一定的纹波,所以后级采用LC 滤波电路进行滤波,减小输出直流电压的纹波。
H 2桥为全桥逆变电路,采用移相全桥软开关的控制方法,利用谐振电容C 1~C 4和回路电感L leak 的谐振作用,使Q 1~Q 4导通和关断前集电极和发射极之间的电压先降为零电压,从而减少功率器件的开关损耗和电磁干扰,提高系统效率[7,8]。
0-10v转换频率的芯片
常见的可以实现0-10V信号转换为频率信号的芯片有:
1. LM331:这是一种广泛使用的频率转换芯片,可以将0-10V 的输入信号转换为可调范围的频率输出信号。
2. AD650:这是一种高精度的频率转换芯片,可以将0-10V的输入信号转换为可调频率输出信号。
3. VFC32x系列芯片:这是一系列高性能的电压到频率转换芯片,可以将0-10V的输入信号转换为频率输出信号。
4. XR4151:这是一种专门设计用于电压到频率转换的芯片,具有较高的精度和稳定性。
以上仅为常见的几种芯片,还有其他品牌和型号的芯片可以实现相同的功能。
具体选择芯片应根据应用需求和性能要求来确定。
电流互感器分类及原理1、电流互感器(Current Transformer,CT)电⼒系统电能计量和保护控制的重要设备,是电⼒系统电能计量、继电保护、系统诊断与监测分析的重要组成部分,其测量精度、运⾏可靠性是实现电⼒系统安全、经济运⾏的前提。
⽬前在电⼒系统中⼴泛应⽤的是电磁式电流互感器。
2、电流互感器国标(GB 1208-87S)1)准确级:以该准确级在额定电流下所规定的最⼤允许电流误差百分数标称。
2)测量⽤电流互感器的标准准确级有:0.1、0.2、0.5、1、3、5;特殊要求的电流互感器的准确级有:0.2S和0.5S;保护⽤电流互感器准确级有:5P和10P两级。
3、电磁式电流互感器1)原理:⼀次线圈串联于被测电流线路中,⼆次线圈串接电流测量设备,⼀⼆次侧线圈绕在同⼀铁芯上,通过铁芯的磁耦合实现⼀次⼆次侧之间的电流传感过程。
⼀⼆次侧线圈之间以及线圈与铁芯之间要采取⼀定的绝缘措施,以保证⼀次侧与⼆次侧之间的电⽓隔离。
根据应⽤场合以及被测电流⼤⼩的不同,通过合理改变⼀⼆次侧线圈匝数⽐可以将⼀次侧电流值按⽐例变换成标准的1A或5A电流值,⽤于驱动⼆次侧电器设备或供测量仪表使⽤。
2)缺点:①.绝缘要求复杂,体积⼤,造价⾼,维护⼯作量⼤;②.输出端开路产⽣的⾼电压对周围⼈员和设备存在潜在的威胁;③.固有的磁饱和、铁磁谐振、动态范围⼩、频率响应范围窄;④.输出信号不能直接和微机相连,难以适应电⼒系统⾃动化、数字化的发展趋势。
4、电⼦式电流互感器1)特征:①.可以采⽤传统电流互感器、霍尔传感器、空⼼线圈(或称为Rogowski coils)或光学装置作为⼀次电流传感器,产⽣与⼀次电流相对应的信号;②.可以利⽤光纤作为⼀次转换器和⼆次转换器之间的信号传输介质;③.⼆次转换器的输出可以是模拟量电压信号或数字量。
2)分类(1)按传感原理的不同划分:光学电流互感器和光电式电流互感器I、光学电流互感器(Optical Current Transformer,简称OCT)原理:传感器完全基于光学技术和光学器件来实现。
©1977 Burr-Brown Corporation PDS-372G Printed in U.S.A. October, 19982VFC32SPECIFICATIONSAt T A = +25°C and V CC = ±15V, unless otherwise noted.V Specification the same as VFC32KP.NOTES: (1) A 25% duty cycle (0.25mA input current) is recommended for best linearity. (2) Adjustable to zero. See Offset and Gain Adjustment section. (3) Linearity error is specified at any operating frequency from the straight line intersecting 90% of full scale frequency and 0.1% of full scale frequency. See Discussion of Specifications section. Above 200kHz,it is recommended all grades be operated below +85°C. (4) ±0.015% of FSR for negative inputs shown in Figure 5. Positive inputs are shown in Figure 1. (5) FSR = Full Scale Range (corresponds to full scale frequency and full scale input voltage). (6) Exclusive of external components’ drift. (7) Positive drift is defined to be increasing frequency with increasing temperature. (8) For operations above 200kHz up to 500kHz, see Discussion of Specifications and Installation and Operation sections. (9) One pulse of new frequency plus 1µs.3VFC32Supply Voltage...................................................................................±22V Output Sink Current (F OUT )................................................................50mA Output Current (V OUT )......................................................................+20mA Input Voltage, –Input.....................................................................±Supply Input Voltage, +Input.....................................................................±Supply Comparator Input ..........................................................................±Supply Storage Temperature Range:VFC32BM, SM.............................................................–65°C to +150°C VFC32KP, KU................................................................–25°C to +85°CABSOLUTE MAXIMUM RATINGSThe information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.PIN CONFIGURATIONSThis integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifi-cations.PACKAGE DRAWING TEMPERATUREPRODUCT PACKAGE NUMBER (1)RANGE VFC32KP 14-Pin Plastic DIP 0100°C to 70°C VFC32BM TO-100 Metal 007–25°C to +85°C VFC32SM TO-100 Metal 007–55°C to +125°C VFC32KUSO-14 SOIC2350°C to +70°CNOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.PACKAGE/ORDERING INFORMATION4VFC32TYPICAL PERFORMANCE CURVESAt T A = +25°C and V CC = ±15V, unless otherwise noted.1k1MFull Scale Frequency (Hz)0.100.001T y p i c a l L i n e a r i t y E r r o r (% o f F S R )10k100k0.01LINEARITY ERROR vs FULL SCALE FREQUENCY10kOperating Frequency (Hz)1–1.0L i n e a r i t y E r r o r (H z )1k7kLINEARITY ERROR vs OPERATING FREQUENCY2k3k4k5k6k8k9k0.5–0.51k1MFull Scale Frequency (Hz)100010F u l l S c a l e T e m p D r i f t (p p m o f F S R /°C )10k100k100FULL SCALE DRIFT vs FULL SCALE FREQUENCY5VFC32APPLICATION INFORMATIONFigure 1 shows the basic connection diagram for frequency-to-voltage conversion. R 1 sets the input voltage range. For a 10V full-scale input, a 40k Ω input resistor is recommended.Other input voltage ranges can be achieved by changing the value of R 1.R 1should be a metal film type for good stability. Manufac-turing tolerances can produce approximately ±10% variationin output frequency. Full-scale output frequency can be trimmed by adjusting the value of R 1—see Figure 3.The full-scale output frequency is determined by C 1. Values shown in Figure 1 are for a full-scale output frequency of 10kHz. Values for other full-scale frequencies can be read from Figure 2. Any variation in C 1—tolerance, temperature drift, aging—directly affect the output frequency. Ceramic NPO or silver-mica types are a good choice.For full-scale frequencies above 200kHz, use larger capaci-tor values as indicated in Figure 2, with R 1 = 20k Ω.The value of the integrating capacitor, C 2, does not directly influence the output frequency, but its value must be chosen within certain bounds. Values chosen from Figure 2 produceapproximately 2.5Vp-p integrator voltage waveform. If C 2’s value is made too low, the integrator output voltage can exceed its linear output swing, resulting in a nonlinear response. Using C 2 values larger than shown in Figure 2 is acceptable.Accuracy or temperature stability of C 2 is not critical be-cause its value does not directly affect the output frequency.For best linearity, however, C 2 should have low leakage and low dielectric absorption. Polycarbonate and other film capacitors are generally excellent. Many ceramic types are adequate, but some low-voltage ceramic capacitor types may degrade nonlinearity. Electrolytic types are not recom-mended.FREQUENCY OUTPUT PINThe frequency output terminal is an open-collector logic output. A pull-up resistor is usually connected to a 5V logic supply to create standard logic-level pulses. It can, however,be connected to any power supply up to +V CC . Output pulses have a constant duration and positive-going during the one-shot period. Current flowing in the open-collector output transistor returns through the Common terminal. This termi-nal should be connected to logic ground.(1)FIGURE 1. Voltage-to-Frequency Converter Circuit.R 1=V FS0.25mA6VFC32PRINCIPLES OF OPERATIONThe VFC32 operates on a principle of charge balance. The signal input current is equal to V IN /R 1. This current is integrated by input op amp and C 2, producing a downward ramping integrator output voltage. When the integrator out-put ramps to the threshold of the comparator, the one-shot is triggered. The 1mA reference current is switched to the integrator input during the one-shot period, causing the integrator output ramp upward. After the one-shot period,the integrator again ramps downward.The oscillation process forces a long-term balance of charge (or average current) between the input signal current and the reference current. The equation for charge balance is:Where:f O is the output frequencyt OS is the one-shot period, equal to t OS = 7500 C 1 (Farads)(4)The values suggested for R 1 and C 1 are chosen to produce a 25% duty cycle at full-scale frequency output. For full-scale frequencies above 200kHz, the recommended values pro-duce a 50% duty cycle.FREQUENCY-TO-VOLTAGE CONVERSION Figure 4 shows the VFC32 connected as a frequency-to-voltage converter. The capacitive-coupled input network C 3,R 6 and R 7 allow standard 5V logic levels to trigger the comparator input. The comparator triggers the one-shot on the falling edge of the frequency input pulses. Threshold voltage of the comparator is approximately –0.7V. For frequency input waveforms less than 5V logic levels, the R 6/R 7 voltage divider can be adjusted to a lower voltage to assure that the comparator is triggered.The value of C 1 is chosen from Figure 2 according to the full-scale input frequency. C 2 smooths the output voltage waveform. Larger values of C 2 reduce the ripple in the output voltage. Smaller values of C 2 allow the output voltage to settle faster in response to a change in input frequency.Resistor R 1 can be trimmed to achieve the desired output voltage at the full-scale input frequency.I IN =I R(AVERAGE)(2)V INR 1=f O t OS (1mA)(3)FIGURE 2. Capacitor Value Selection.FIGURE 3. Gain and Offset Voltage Trim Circuit.FIGURE 4. Frequency-to-Voltage Converter Circuit.FIGURE 5. V/F Converter—Negative Input Voltage.7VFC32。
STM32之ADC(内部基准电压,参考电压)
转 STM32内部参照电压VREFIN的使⽤ https:///uncle_guo/article/details/50625660
每个STM32芯⽚都有⼀个内部的参照电压,相当于⼀个标准电压测量点,在芯⽚内部连接到ADC1的通道17。
根据数据⼿册中的数据,这个参照电压的典型值是1.20V,最⼩值是1.16V,最⼤值是1.24V。
这个电压基本不随外部供电电压的变化⽽变化。
不少⼈把这个参照电压与ADC的参考电压混淆。
ADC的参考电压都是通过Vref+提供的。
100脚以上的型号,Vref+引到了⽚外,引脚名称为Vref+;64脚和⼩于64脚的型号,Vref+在芯⽚内部与VCC信号线相连,没有引到⽚外,这样AD的参考电压就是VCC上的电压。
在ADC的外部参考电压波动,或因为Vref+在芯⽚内部与VCC相连⽽VCC变化的情况下,如果对于ADC测量的准确性要求不⾼时,可以使⽤这个内部参照电压得到ADC测量的电压值。
具体⽅法是在测量某个通道的电压值之前,先读出参照电压的ADC测量数值,记为ADrefint;再读出要测量通道的ADC转换数值,记为ADchx;则要测量的电压为:
Vchx = Vrefint * (ADchx/ADrefint)
其中Vrefint为参照电压=1.20V(STM32F107)。
如何⽤VDDA作为ADC参考电压,当测量信号电压超过这个范围可以⽤精密电阻分压或者放⼤器分压,或者选择合适的外部电压基准芯⽚。
ADVFC32电压/频率(V/F)转换器和频率/电压(F/V)
转换器的应用
吴星明
【期刊名称】《微计算机信息》
【年(卷),期】1995(000)004
【摘要】ADVFC32是一种电压/频率转换器和频率/电压转换器的综合器件。
它是美国模拟器件公司生产的一种新产品。
本文简要地介绍了ADVFC32的主要性能指标,其中特点及其应用。
文中详细地给出了电压/频率转换模式时的有关各个参数的确定方法。
同时还列举了几个应用例子供广大读者参考。
【总页数】3页(P62-64)
【作者】吴星明
【作者单位】无
【正文语种】中文
【中图分类】TP335
【相关文献】
1.电压/频率和频率/电压转换器VF320 [J], 郭迎庆;席爱民
2.AD650电压频率与频率电压转换器 [J], 万天才
3.脉宽/周期(M/T)比率与输入电压成正比的电压—频率转换器(VFC) [J],
纪宗南
4.集成化电压/频率/电压转换器LT650电路的研制 [J], 胡国元;税有先;雷培明;丁
国勇
5.开关电容电压—频率转换器和频率—电压转换器 [J], 纪宗南
因版权原因,仅展示原文概要,查看原文内容请购买。
AD集成库元件简写中英文对照表序号英文简写元件英文名元件中文名1Res semi Semiconductor Resistor半导体电阻2Cap semi Semiconductor Capacitor半导体电容器3Cap Var Variable or Adjustable Capacitor可变或可调电容4Cap Pol1Polarized Capacitor (Radial)极化电容(径向)5Cap Pol2Polarized Capacitor (Axial)极化电容(轴向)6Cap Capacitor电容(径向)7Cap Pol3Polarized Capacitor (Surface Mount)极化电容(表面贴装)8Cap Feed Feed-Through Capacitor馈通电容9Cap2Capacitor电容10Res Varistor Varistor (Voltage-Sensitive Resistor)压敏电阻(电压敏感电阻)11Res Tap Tapped Resistor抽头电阻12Res Thermal Thermal Resistor 热敏电阻13Rpot Potentiometer Resistor (侧调或顶调)电位器14Rpot SM Square Trimming Potentiometer(顶调)方形电位器15Res Bridge Resistor Bridge电阻桥16Bridge1Full Wave Diode Bridge整流桥17Bridge2Bridge Rectifier整流桥集成组件(比1封装较大)18Res Adj Variable Resistor可变电阻19Res3Resistor IPC的高密度贴片电阻20 D Tunnel2Tunnel Diode - Dependent Source Model隧道二极管 - 依赖源模型21 D Varactor Variable Capacitance Diode变容二极管22 D Schottky Schottky Diode肖特基二极管23Diode 1N5402 3 Amp General Purpose Rectifier3放大器通用整流器其中,cap,cap2,cap pol1和cap pol2分别如下图所示:其中,径向型电容如下图所示:轴向型电容如下所示:有极性电容为电解电容,无极性电容为普通电容,电解电容的容量一般比普通电容的大,在滤波时电解电容用于滤低频,普通电容用于滤高频。
国外集成电路命名方法缩写字符:AMD 译名:先进微器件公司(美)器件型号举例说明缩写字符:ANA译名:模拟器件公司(美)器件型号举例说明()缩字字符:BUB 译名:布尔-布朗公司(美)通用器件型号举例说明()模拟器件产品型号举例说明缩写字符:CYSC译名:丝柏(CYPRESS)半导体有限公司器件型号举例说明()缩写字符:HAS 译名:哈里斯公司(美)器件型号举例说明80C86系列型号举例说明缩写字符:INL 译名:英特希尔公司(美)器件型号举例说明缩写字符:MOTA 译名:摩托罗拉公司(美)器件型号举例说明缩写符号:MPS 译名:微功耗系统公司(美)器件型号举例说明NECJ译名:日本电气公司(日)NECE日本电气公司美国电子公司(美)器件型号举例说明缩写字符:NSC译名:国家半导体公司(美)器件型号举例说明缩写字符:PHIN译名:菲利浦公司(荷兰)器件型号举例说明缩写字符:PMI译名:精密单片公司(美)器件型号举例说明缩写字符:PRSC译名:特性半导体有限公司器件型号举例说明缩写符号:QSI 译名:高级半导体公司器件型号举例说明缩写字符:ZIL译名:吉劳格公司(美)缩写字符:RCA译名:美国无线电公司(现为GE-RCA公司)器件型号举例说明缩写符号:SGL译名:硅通用公司(美)器件型号举例说明缩写字符:SGSI译名:意大利国家半导体公司器件型号举例说明(采用欧洲共同体、PRO、ELECTRON的符号)缩写符号:SANYO(TSAJ)译名:三洋公司(日)器件型号举例说明缩写符号:SIC 译名:西格尼蒂克公司(美)器件型号举例说明缩写符号:SIEG 译名:西门子公司(德)器件型号举例说明(与欧共体相一致)缩写符号:THEF译名:汤姆逊公司(法)器件型号举例说明(与欧共体相一致)老产品型号举例说明汤姆逊公司其它部分首标的型号举例说明缩写符号:TI 译名:得克萨斯公司(美)器件型号举例说明缩写符号:VTC译名:VTC公司器件型号举例说明器件型号举例说明缩写符号:MATJ译名:松下电气公司(日)器件型号举例说明缩写符号:HITJ译名:日立公司(日)器件型号举例说明缩写符号:IDT译名:集成器件技术公司器件型号举例说明精品文档。
原理图常用库文件:Miscellaneous Devices.ddbDallas Microprocessor.ddbIntel Databooks.ddbProtel DOS Schematic Libraries.ddb PCB元件常用库:Advpcb.ddbGeneral IC.ddbMiscellaneous.ddb部分分立元件库元件名称及中英对照AND 与门ANTENNA 天线BATTERY 直流电源BELL 铃,钟BVC 同轴电缆接插件BRIDEG 1 整流桥(二极管) BRIDEG 2 整流桥(集成块) BUFFER 缓冲器BUZZER 蜂鸣器CAP 电容CAPACITOR 电容CAPACITOR POL 有极性电容CAPVAR 可调电容CIRCUIT BREAKER 熔断丝COAX 同轴电缆CRYSTAL 晶体整荡器DB 并行插口DIODE 二极管DIODE SCHOTTKY 稳压二极管DIODE VARACTOR 变容二极管DPY_3-SEG 3段LEDDPY_7-SEG 7段LEDDPY_7-SEG_DP 7段LED(带小数点) ELECTRO 电解电容FUSE 熔断器INDUCTOR 电感INDUCTOR IRON 带铁芯电感INDUCTOR3 可调电感JFET N N沟道场效应管JFET P P沟道场效应管LAMP 灯泡LAMP NEDN 起辉器LED 发光二极管METER 仪表MICROPHONE 麦克风MOSFET MOS管MOTOR AC 交流电机MOTOR SERVO 伺服电机NAND 与非门NOR 或非门NPN NPN三极管NPN-PHOTO 感光三极管OPAMP 运放OR 或门PHOTO 感光二极管PNP 三极管NPN DAR NPN三极管PNP DAR PNP三极管POT 滑线变阻器PELAY-DPDT 双刀双掷继电器RES1.2 电阻RES3.4 可变电阻RESISTOR BRIDGE ? 桥式电阻RESPACK ? 电阻SCR 晶闸管PLUG ? 插头PLUG AC FEMALE 三相交流插头SOCKET ? 插座SOURCE CURRENT 电流源SOURCE VOLTAGE 电压源SPEAKER 扬声器SW ? 开关SW-DPDY ? 双刀双掷开关SW-SPST ? 单刀单掷开关SW-PB 按钮THERMISTOR 电热调节器TRANS1 变压器TRANS2 可调变压器TRIAC ? 三端双向可控硅TRIODE ? 三极真空管VARISTOR 变阻器ZENER ? 齐纳二极管DPY_7-SEG_DP 数码管SW-PB 开关74系列:74LS00 TTL 2输入端四与非门74LS01 TTL 集电极开路2输入端四与非门74LS02 TTL 2输入端四或非门74LS03 TTL 集电极开路2输入端四与非门74LS122 TTL 可再触发单稳态多谐振荡器74LS123 TTL 双可再触发单稳态多谐振荡器74LS125 TTL 三态输出高有效四总线缓冲门74LS126 TTL 三态输出低有效四总线缓冲门74LS13 TTL 4输入端双与非施密特触发器74LS132 TTL 2输入端四与非施密特触发器74LS133 TTL 13输入端与非门74LS136 TTL 四异或门74LS138 TTL 3-8线译码器/复工器74LS139 TTL 双2-4线译码器/复工器74LS14 TTL 六反相施密特触发器74LS145 TTL BCD—十进制译码/驱动器74LS15 TTL 开路输出3输入端三与门74LS150 TTL 16选1数据选择/多路开关74LS151 TTL 8选1数据选择器74LS153 TTL 双4选1数据选择器74LS154 TTL 4线—16线译码器74LS155 TTL 图腾柱输出译码器/分配器74LS156 TTL 开路输出译码器/分配器74LS157 TTL 同相输出四2选1数据选择器74LS158 TTL 反相输出四2选1数据选择器74LS16 TTL 开路输出六反相缓冲/驱动器74LS160 TTL 可预置BCD异步清除计数器74LS161 TTL 可予制四位二进制异步清除计数器74LS162 TTL 可预置BCD同步清除计数器74LS163 TTL 可予制四位二进制同步清除计数器74LS164 TTL 八位串行入/并行输出移位寄存器74LS165 TTL 八位并行入/串行输出移位寄存器74LS166 TTL 八位并入/串出移位寄存器74LS169 TTL 二进制四位加/减同步计数器74LS17 TTL 开路输出六同相缓冲/驱动器74LS170 TTL 开路输出4×4寄存器堆74LS173 TTL 三态输出四位D型寄存器74LS174 TTL 带公共时钟和复位六D触发器74LS175 TTL 带公共时钟和复位四D触发器74LS180 TTL 9位奇数/偶数发生器/校验器74LS181 TTL 算术逻辑单元/函数发生器74LS185 TTL 二进制—BCD代码转换器74LS190 TTL BCD同步加/减计数器74LS191 TTL 二进制同步可逆计数器74LS192 TTL 可预置BCD双时钟可逆计数器74LS193 TTL 可预置四位二进制双时钟可逆计数器74LS194 TTL 四位双向通用移位寄存器74LS195 TTL 四位并行通道移位寄存器74LS196 TTL 十进制/二-十进制可预置计数锁存器74LS197 TTL 二进制可预置锁存器/计数器74LS20 TTL 4输入端双与非门74LS21 TTL 4输入端双与门74LS22 TTL 开路输出4输入端双与非门74LS221 TTL 双/单稳态多谐振荡器74LS240 TTL 八反相三态缓冲器/线驱动器74LS241 TTL 八同相三态缓冲器/线驱动器74LS243 TTL 四同相三态总线收发器74LS244 TTL 八同相三态缓冲器/线驱动器74LS245 TTL 八同相三态总线收发器74LS247 TTL BCD—7段15V输出译码/驱动器74LS248 TTL BCD—7段译码/升压输出驱动器74LS249 TTL BCD—7段译码/开路输出驱动器74LS251 TTL 三态输出8选1数据选择器/复工器74LS253 TTL 三态输出双4选1数据选择器/复工器74LS256 TTL 双四位可寻址锁存器74LS257 TTL 三态原码四2选1数据选择器/复工器74LS258 TTL 三态反码四2选1数据选择器/复工器74LS259 TTL 八位可寻址锁存器/3-8线译码器74LS26 TTL 2输入端高压接口四与非门74LS260 TTL 5输入端双或非门74LS266 TTL 2输入端四异或非门74LS27 TTL 3输入端三或非门74LS273 TTL 带公共时钟复位八D触发器74LS279 TTL 四图腾柱输出S-R锁存器74LS28 TTL 2输入端四或非门缓冲器74LS283 TTL 4位二进制全加器74LS290 TTL 二/五分频十进制计数器74LS293 TTL 二/八分频四位二进制计数器74LS295 TTL 四位双向通用移位寄存器74LS298 TTL 四2输入多路带存贮开关74LS299 TTL 三态输出八位通用移位寄存器74LS30 TTL 8输入端与非门74LS32 TTL 2输入端四或门74LS322 TTL 带符号扩展端八位移位寄存器74LS323 TTL 三态输出八位双向移位/存贮寄存器74LS33 TTL 开路输出2输入端四或非缓冲器74LS347 TTL BCD—7段译码器/驱动器74LS352 TTL 双4选1数据选择器/复工器74LS353 TTL 三态输出双4选1数据选择器/复工器74LS365 TTL 门使能输入三态输出六同相线驱动器74LS365 TTL 门使能输入三态输出六同相线驱动器74LS366 TTL 门使能输入三态输出六反相线驱动器74LS367 TTL 4/2线使能输入三态六同相线驱动器74LS368 TTL 4/2线使能输入三态六反相线驱动器74LS37 TTL 开路输出2输入端四与非缓冲器74LS373 TTL 三态同相八D锁存器74LS374 TTL 三态反相八D锁存器74LS375 TTL 4位双稳态锁存器74LS377 TTL 单边输出公共使能八D锁存器74LS378 TTL 单边输出公共使能六D锁存器74LS379 TTL 双边输出公共使能四D锁存器74LS38 TTL 开路输出2输入端四与非缓冲器74LS380 TTL 多功能八进制寄存器74LS39 TTL 开路输出2输入端四与非缓冲器74LS390 TTL 双十进制计数器74LS393 TTL 双四位二进制计数器74LS40 TTL 4输入端双与非缓冲器74LS42 TTL BCD—十进制代码转换器74LS352 TTL 双4选1数据选择器/复工器74LS353 TTL 三态输出双4选1数据选择器/复工器74LS365 TTL 门使能输入三态输出六同相线驱动器74LS366 TTL 门使能输入三态输出六反相线驱动器74LS367 TTL 4/2线使能输入三态六同相线驱动器74LS368 TTL 4/2线使能输入三态六反相线驱动器74LS37 TTL 开路输出2输入端四与非缓冲器74LS373 TTL 三态同相八D锁存器74LS374 TTL 三态反相八D锁存器74LS375 TTL 4位双稳态锁存器74LS377 TTL 单边输出公共使能八D锁存器74LS378 TTL 单边输出公共使能六D锁存器74LS379 TTL 双边输出公共使能四D锁存器74LS38 TTL 开路输出2输入端四与非缓冲器74LS380 TTL 多功能八进制寄存器74LS39 TTL 开路输出2输入端四与非缓冲器74LS390 TTL 双十进制计数器74LS393 TTL 双四位二进制计数器74LS40 TTL 4输入端双与非缓冲器74LS42 TTL BCD—十进制代码转换器74LS447 TTL BCD—7段译码器/驱动器74LS45 TTL BCD—十进制代码转换/驱动器74LS450 TTL 16:1多路转接复用器多工器74LS451 TTL 双8:1多路转接复用器多工器74LS453 TTL 四4:1多路转接复用器多工器74LS46 TTL BCD—7段低有效译码/驱动器74LS460 TTL 十位比较器74LS461 TTL 八进制计数器74LS465 TTL 三态同相2与使能端八总线缓冲器74LS466 TTL 三态反相2与使能八总线缓冲器74LS467 TTL 三态同相2使能端八总线缓冲器74LS468 TTL 三态反相2使能端八总线缓冲器74LS469 TTL 八位双向计数器74LS47 TTL BCD—7段高有效译码/驱动器74LS48 TTL BCD—7段译码器/内部上拉输出驱动74LS490 TTL 双十进制计数器74LS491 TTL 十位计数器74LS498 TTL 八进制移位寄存器74LS50 TTL 2-3/2-2输入端双与或非门74LS502 TTL 八位逐次逼近寄存器74LS503 TTL 八位逐次逼近寄存器74LS51 TTL 2-3/2-2输入端双与或非门74LS533 TTL 三态反相八D锁存器74LS534 TTL 三态反相八D锁存器74LS54 TTL 四路输入与或非门74LS540 TTL 八位三态反相输出总线缓冲器74LS55 TTL 4输入端二路输入与或非门74LS563 TTL 八位三态反相输出触发器74LS564 TTL 八位三态反相输出D触发器74LS573 TTL 八位三态输出触发器74LS574 TTL 八位三态输出D触发器74LS645 TTL 三态输出八同相总线传送接收器74LS670 TTL 三态输出4×4寄存器堆74LS73 TTL 带清除负触发双J-K触发器74LS74 TTL 带置位复位正触发双D触发器74LS76 TTL 带预置清除双J-K触发器74LS83 TTL 四位二进制快速进位全加器74LS85 TTL 四位数字比较器74LS86 TTL 2输入端四异或门74LS90 TTL 可二/五分频十进制计数器74LS93 TTL 可二/八分频二进制计数器74LS95 TTL 四位并行输入\输出移位寄存器74LS97 TTL 6位同步二进制乘法器CD系列::CD4000 双3输入端或非门+单非门TICD4001 四2输入端或非门HIT/NSC/TI/GOLCD4002 双4输入端或非门NSCCD4006 18位串入/串出移位寄存器NSCCD4007 双互补对加反相器NSCCD4008 4位超前进位全加器NSCCD4009 六反相缓冲/变换器NSCCD4010 六同相缓冲/变换器NSCCD4011 四2输入端与非门HIT/TICD4012 双4输入端与非门NSCCD4013 双主-从D型触发器FSC/NSC/TOSCD4014 8位串入/并入-串出移位寄存器NSCCD4015 双4位串入/并出移位寄存器TICD4016 四传输门FSC/TICD4017 十进制计数/分配器FSC/TI/MOTCD4018 可预制1/N计数器NSC/MOTCD4019 四与或选择器PHICD4020 14级串行二进制计数/分频器FSCCD4021 08位串入/并入-串出移位寄存器PHI/NSC CD4022 八进制计数/分配器NSC/MOTCD4023 三3输入端与非门NSC/MOT/TICD4024 7级二进制串行计数/分频器NSC/MOT/TI CD4025 三3输入端或非门NSC/MOT/TICD4026 十进制计数/7段译码器NSC/MOT/TICD4027 双J-K触发器NSC/MOT/TICD4028 BCD码十进制译码器NSC/MOT/TICD4029 可预置可逆计数器NSC/MOT/TICD4030 四异或门NSC/MOT/TI/GOLCD4031 64位串入/串出移位存储器NSC/MOT/TICD4032 三串行加法器NSC/TICD4033 十进制计数/7段译码器NSC/TICD4034 8位通用总线寄存器NSC/MOT/TICD4035 4位并入/串入-并出/串出移位寄存NSC/MOT/TI CD4038 三串行加法器NSC/TICD4040 12级二进制串行计数/分频器NSC/MOT/TICD4041 四同相/反相缓冲器NSC/MOT/TICD4042 四锁存D型触发器NSC/MOT/TICD4043 4三态R-S锁存触发器("1"触发) NSC/MOT/TI CD4044 四三态R-S锁存触发器("0"触发) NSC/MOT/TI CD4046 锁相环NSC/MOT/TI/PHICD4047 无稳态/单稳态多谐振荡器NSC/MOT/TICD4048 4输入端可扩展多功能门NSC/HIT/TICD4049 六反相缓冲/变换器NSC/HIT/TICD4050 六同相缓冲/变换器NSC/MOT/TICD4051 八选一模拟开关NSC/MOT/TICD4052 双4选1模拟开关NSC/MOT/TICD4053 三组二路模拟开关NSC/MOT/TICD4054 液晶显示驱动器NSC/HIT/TICD4055 BCD-7段译码/液晶驱动器NSC/HIT/TICD4056 液晶显示驱动器NSC/HIT/TICD4059 “N”分频计数器NSC/TICD4060 14级二进制串行计数/分频器NSC/TI/MOT CD4063 四位数字比较器NSC/HIT/TICD4066 四传输门NSC/TI/MOTCD4067 16选1模拟开关NSC/TICD4068 八输入端与非门/与门NSC/HIT/TICD4069 六反相器NSC/HIT/TICD4070 四异或门NSC/HIT/TICD4071 四2输入端或门NSC/TICD4072 双4输入端或门NSC/TICD4073 三3输入端与门NSC/TICD4075 三3输入端或门NSC/TICD4076 四D寄存器CD4077 四2输入端异或非门HITCD4078 8输入端或非门/或门CD4081 四2输入端与门NSC/HIT/TICD4082 双4输入端与门NSC/HIT/TICD4085 双2路2输入端与或非门CD4086 四2输入端可扩展与或非门CD4089 二进制比例乘法器CD4093 四2输入端施密特触发器NSC/MOT/ST CD4094 8位移位存储总线寄存器NSC/TI/PHICD4095 3输入端J-K触发器CD4096 3输入端J-K触发器CD4097 双路八选一模拟开关CD4098 双单稳态触发器NSC/MOT/TICD4099 8位可寻址锁存器NSC/MOT/STCD40100 32位左/右移位寄存器CD40101 9位奇偶较验器CD40102 8位可预置同步BCD减法计数器CD40103 8位可预置同步二进制减法计数器CD40104 4位双向移位寄存器CD40105 先入先出FI-FD寄存器CD40106 六施密特触发器NSC\TICD40107 双2输入端与非缓冲/驱动器HAR\TICD40108 4字×4位多通道寄存器CD40109 四低-高电平位移器CD4529 双四路/单八路模拟开关CD4530 双5输入端优势逻辑门CD4531 12位奇偶校验器CD4532 8位优先编码器CD4536 可编程定时器CD4538 精密双单稳CD4539 双四路数据选择器CD4541 可编程序振荡/***CD4543 BCD七段锁存译码,驱动器CD4544 BCD七段锁存译码,驱动器CD4547 BCD七段译码/大电流驱动器CD4549 函数近似寄存器CD4551 四2通道模拟开关CD4553 三位BCD计数器CD4555 双二进制四选一译码器/分离器CD4556 双二进制四选一译码器/分离器CD4558 BCD八段译码器CD4560 "N"BCD加法器CD4561 "9"求补器CD4573 四可编程运算放大器CD4574 四可编程电压比较器CD4575 双可编程运放/比较器CD4583 双施密特触发器CD4584 六施密特触发器CD4585 4位数值比较器CD4599 8位可寻址锁存器CD40110 十进制加/减,计数,锁存,译码驱动STCD40147 10-4线编码器NSC\MOTCD40160 可预置BCD加计数器NSC\MOTCD40161 可预置4位二进制加计数器NSC\MOTCD40162 BCD加法计数器NSC\MOTCD40163 4位二进制同步计数器NSC\MOTCD40174 六锁存D型触发器NSC\TI\MOTCD40175 四D型触发器NSC\TI\MOTCD40181 4位算术逻辑单元/函数发生器CD40182 超前位发生器CD40192 可预置BCD加/减计数器(双时钟) NSC\TI CD40193 可预置4位二进制加/减计数器NSC\TICD40194 4位并入/串入-并出/串出移位寄存NSC\MOT CD40195 4位并入/串入-并出/串出移位寄存NSC\MOT CD40208 4×4多端口寄存器型号器件名称厂牌备注CD4501 4输入端双与门及2输入端或非门CD4502 可选通三态输出六反相/缓冲器CD4503 六同相三态缓冲器CD4504 六电压转换器CD4506 双二组2输入可扩展或非门CD4508 双4位锁存D型触发器CD4510 可预置BCD码加/减计数器CD4511 BCD锁存,7段译码,驱动器CD4512 八路数据选择器CD4513 BCD锁存,7段译码,驱动器(消隐) CD4514 4位锁存,4线-16线译码器CD4515 4位锁存,4线-16线译码器CD4516 可预置4位二进制加/减计数器CD4517 双64位静态移位寄存器CD4518 双BCD同步加计数器CD4519 四位与或选择器CD4520 双4位二进制同步加计数器CD4521 24级分频器CD4522 可预置BCD同步1/N计数器CD4526 可预置4位二进制同步1/N计数器CD4527 BCD比例乘法器CD4528 双单稳态触发器。
压/频频/压转换器
ADVFC32
一、产品说明
行业标准ADVFC32是低成本的V / F转换F / V转换器,具有很好的线性度(最大误差在10千赫时为%),最高转换频率为。
在V/F转换模式下只需要外接很少的器件就可以把输入的正、负电压或电流转换为与之成比例的频率。
频率电压转换的模式所用的器件与电压频率转换的相同,只是要有一个简单的逻辑偏压或网络组合来保证输入逻辑电平有较大的范围。
在V/F模式下用一个开放的输出频率收集器可以实现TTL和CMOS兼容。
上拉电阻可以接到30V、15V的电压,或者5V标准CMOS和TTL逻辑电平。
应选取这个电阻值限制输出集电极的电流不超过8毫安。
低输入电压失调漂移,仅有满度的3ppm/℃。
ADVFC32芯片可以广泛运用与工业和商业,有很大的温度适应范围。
商品级的为塑封的14管脚双列直插式芯片,有更高的温度范围的芯片灌装在密封的10管脚的金属罐里。
ADVFC32具有以下的一些优点:
1、ADVFC32采用的是电荷平衡电路技术,这使得它的电压频率转换具有很高的精度。
它的工作频率的范围仅仅由一个精密电阻和电容决定,其它的元件对频率范围影响不大。
所以可以采用比较便宜的,精度±20%的电阻和电容,这样并不会影响线性和温度漂移。
2、ADVFC32可以很容易满足系统工作范围要求。
选择不同的输入电阻可以实现不同的输入电压缩放比。
输入电阻还可以在最大的输入电压时使输入电流达到。
3、频率电压转换的模式所用的器件与电压频率转换的相同,只是要有一个简单的逻辑偏置、网络相加和重新组合即可。
4、ADVFC32和其它公司生产的VFC32具有引脚的兼容性。
5、ADVFC32与军用标准MIL_STD_883兼容。
二、封装结构
ADVFC32有两种封装方式:一种是14管脚的双列直插式,另一种是10管脚的金属罐式。
图1(A)给出的是ADVFC32的14脚封装结构及引脚排布,图1(B)给出的是ADVFC32的10脚封装结构及引脚排布。
(A):14引脚封装结构
(B):10引脚封装结构
图1:ADVFC32的两种封装结构
三、工作原理及应用设计
ADVFC32应用广泛,除了用于电压频率转换和频率电压转换,还可以用于微处理器控制的A/D转换及其他的电路。
下面介绍一些它的应用电路设计。
1、单极输入的电压频率转换
(1)输入为正电压
当作为电压频率转换器使用时,电压到频率的转换是基于输入信号和内部1mA的电
流源比较实现的。
当输入的电压为正时,连接的电路图为图2。
在一个周期开始时,和输入
电压成比例的电流通过3R 和1R 对电容2C 充电。
随着电容上电荷的积累,输入放大器的输出电压降低。
当输入放大器的输出电压达到零时,比较器反转一次,时间由电容1C 决定。
反转时间的精确值为:。
在这个过程中有1mA -IN I 的电流流过电容2C ,
在一个周期内电容上损耗的电荷为(1mA -IN I )⨯os
t 。
在一个周期的其余时间电容2C 上继续充电,积分器的电压达到原来的值。
因为每个周期内2C 的充电量和放电量相等。
(1)IN os mA I t -⨯os t =1
()IN os OUT I t F ⨯-,整理得OUT F =IN os
I 1mA t ⨯ 用IN IN V R 取代其中的IN I ,并把os t 用1C 表示得到ADVFC32的输出频率公式为:
OUT F =11(44) 6.7IN
IN V R mA C pF K ⨯+⨯Ω 用下面的公式计算元件的参数使输入电压和输出频率的范围优化。
2C =410sec OUTFS
Farads F -(最小1000pF );IN R =0.25INFS V mA ;2R ≥8LOGIC V mA + 表1中给出了建议使用的IN R 、2C 和1C 的值。
输入电阻IN R 由固定电阻3R 和可变电阻1R 组成,可以进行对内部增益的失调进行补偿。
为了满足所有的可能情况,3R 应该为输入电阻的20%,1R 应为输入电阻的90%。
这就允许有±10%的增益调节来补偿ADVFC32的全范围误差和1C 的误差。
如果需要更精确的内部偏置,则可以加入4R 和5R 组成的电路。
5R 的阻值可以在10K Ω和100K Ω之间,4R 应大约为10M Ω。
纠正零漂所需的电流相对很小,因此这两个电阻的温度系数不做要求。
如果加上这个电路后会产生大的偏移,则两个电阻的温漂就都非常重要了。
图2:正电压输入的电压频率转换电路
表1:建议使用的IN R 、2C 和1C 的值
(2) 输入为负电压
图3给出的是输入电压为负的V/F 转换的连接电路。
在这种结构中,最大的输出频 率对应最大的输入负电压,输出频率为零时对应输入电压也为零。
因为它只驱动积分器的输入,所以输入的信号源可以有很高的阻抗。
末端的典型输入阻抗值为250M Ω或更高。
对于正电压的V/F 转换来说,信号发生器必须可以提供 mA 来驱动ADVFC32,但对于负电压V/F 转换 mA 的电流是从地经3R 和1R 得到的。
负电压的电路工作原理和正电压的非常相似,上面已经给出了元件选择的公式,这里就不做进一步介绍了。
图3:输入为负电压的V/F 转换
2、双极输入V/F 转换
在脚1(对于10脚的是脚2)接一个稳定的正电压,ADVFC32就可以工作在双极电压输入状态。
例如,把80K Ω的电阻接到10V 的电压上得到一个外加的电流进入放大器。
这样一来即使在负电压输入时流入积分器的电流也是正的。
在最大的负电压输入时有的电流从IN V 流入积分器,从偏置电阻流出,输出的频率为零;当输入为最大的正电压时,两个电流的总和为,输出为最大频率。
3、 频率电压转换
图4给出了在输入幅值为TTL 逻辑电平上的F/V 转换连接图。
图中的电阻3R 主要
起增益调节的作用,使输出电压的幅值达到设计要求。
每次输入信号超过比较器极限时,产生一个单稳触发脉冲,开关闭合一次,1mA 的电流源接到比较器的输入端,持续时间由C1决定。
当频率增加时,积分电容上积累的电荷随之成比例增加。
当电容上的电荷达到稳定,经过3R 和1R 的漏电流和开关接入积分器的平均电流相等。
这两种作用的代数和为输出电压的均值,这个值是和输入频率成比例的。
如上面V/F 转换一样,选取合适的元件值可以使转换达最优。
图4:频率电压转换电路
4、高噪声抑制、高共模抑制比电路的设计
在许多应用中,信号可能在一个距离接受器很远的地方,在传到接受地点进行处理
的过程中会携带很大的噪声。
在现代医学中,远程医疗越来越为人们重视和看好,但在这种情况下,即使使用屏蔽电缆也不能把信号和噪声完全隔离。
图5给出了这种高噪声、高共模抑制比电路在心电信号传输中的应用。
用两个ADVFC32将模拟电压信号转换成与之成比例的数字信号,然后经过光电隔离后,再利用ADVFC32的频率/电压转换功能把数字信号转换为成比例的模拟信号。
这种连接方法可以很好的去除噪声和共模干扰。
采集到并经过放大处理的心电信号输入第一个ADVFC32,它把输入模拟心电信号调制为成比例的频率信号,一个输入电阻Ω和一个偏置电阻100KΩ确定转换比例。
这样0V的电压转换为50KHz,10V的输入对应最大的输出频率500KHz。
一个高频的光电隔离器把除去共模干扰后的信号送到第二个ADVFC32,这个ADVFC32负责把数字信号解调成成比例的模拟信号。
对于心电信号的传输我们采用光纤代替HCPL2630作为光电隔离器件,这样可以消除高达几十兆伏特的共模干扰,并可完全滤除电噪声。
光电隔离器的输出和第二个ADVFC32连接起来。
由于在10脚的重建信号中会有相当数量载波。
所以对于50KHz和500KHz之间的任何频率要求滤除效果都很好。
F/V转换器的响应频率只有3KHz,因此一个二阶截止频率为3KHz的滤波器并不会对带宽有限制作用。
用图5的单极滤波电路,输入到输出的3分贝衰减点大约在2KHz,输出的噪声小于15mV。
如果需要有较低的输出阻抗,则推荐使用双极的滤波器。
图5:高噪声、高共模抑制比电路。