光电检测技术课件 第三章
- 格式:pdf
- 大小:4.48 MB
- 文档页数:95
第三章光电检测仪器的精度理论§3—1 概述主要内容1.误差分类①按误差源分: 原理误差、制造误差、运行误差(方案、理论误差) (工艺) (使用、环境、磨损)②. 按数学特征分: 系统误差、偶然误差(随机)2.误差源光学: 成像误差;机械: 机构原理误差、零件及装配误差电子学: 运放倍率误差、元器件误差计算机: AD转换误差、计时误差、图像边缘处理误差等3.误差计算方法: 微分法、几何法、综合法4.仪器总误差计算一.研究光电系统的误差的基本方法1. 精度设计: 总误差分配各部分原始误差例: 游标卡尺总误差不超过0.02mm/3, 分配到导轨及两测量爪上去。
2. 精度计算(综合): 分误差(原理误差) 合成总误差。
二.光电仪器的精度指标1. 误差: 实测值与真值之差。
仪器对同一尺寸的多次测量值的概率密度为高斯分布曲线(正态分布):f(x)= e -(x-μ)μ为数学期望(平均值) ; σ为均方差; δ=x -μ为随机误差, 示值落在μ-3σ< x<μ+3σ范围内的概率为P=0.9974, 几乎为肯定的事,这就是3σ规则。
用分布的一半(即3σ)表示精密度。
偶然误差分布规律有如下特点:A. 单峰性: 绝对值小的误差比绝对值大的误差出现的机会多。
B. 对称性: 绝对值小相等的正负误差出现的机会相等。
C. 有界性: 在一定条件下, 误差的绝对值不会超过一定界限。
D.当测量次数足够多时, 偶然误差的算术平均值趋于零。
利用这一特性, 我们经常取多次测量的算术平均值作测量结果,f(x)可以减小偶然误差对测量结果的影响。
2.精度: 平均准确度和精密度的总称。
精度=系统误差+ 偶然误差3.误差分类①. 系统误差Δ数学特征: 数值不变或有规律变化。
可以掌握其规律并补偿、消除。
例1: 艾宾斯坦原理, 令f′=H补偿阿贝误差Δ=(f′-H)α+α2l/2=α2l/2例2: 度盘偏心带来测角误差ΔΦ=e/r[sin(Φ+Φ0)] e为偏心量, r为度盘半径。
光电检测技术摘要:光电检测技术是一种利用光电效应来检测和测量物体的技术。
本文将介绍光电检测技术的原理和应用领域,探讨光电检测技术的优势和局限,并展望其未来发展方向。
第一部分:光电检测技术的原理1.1 光电效应的基本原理光电效应是指当光照射到特定材料表面时,产生光电子和电子的释放现象。
光电效应包括光电发射效应和光电吸收效应两种情况。
在光电检测技术中,一般利用光电发射效应来实现光电测量。
1.2 光电检测元件在光电检测技术中,常用的光电检测元件包括光电二极管、光敏电阻、光电倍增管等。
这些元件能够将光信号转化为电信号,并进行相应的电路处理。
1.3 光电检测技术的基本原理光电检测技术利用光电效应的原理,将光信号转化为电信号,并通过电路处理和分析得到所需的测量结果。
光电检测技术可以实现对光强度、光功率、光频率等参数的测量。
第二部分:光电检测技术的应用领域2.1 工业自动化光电检测技术在工业自动化领域中有广泛的应用。
例如,光电传感器可以用于检测物体的位置、速度和形状等信息,从而实现对生产流程的控制和优化。
2.2 无损检测光电检测技术可以用于无损检测领域,例如对材料的缺陷、组织结构和磨损程度进行检测和分析,从而提高材料的品质和可靠性。
2.3 生物医学在生物医学领域中,光电检测技术可以用于血氧测量、生物分子测量、细胞成像等应用。
例如,光电子学显微镜可以观察和研究微观生物结构。
2.4 环境监测光电检测技术在环境监测领域中被广泛应用。
例如,光电二极管可以用于光强度的测量,从而监测光照强度对环境的影响。
第三部分:光电检测技术的优势和局限3.1 优势光电检测技术具有响应速度快、精度高、可靠性强等优点。
光电检测元件体积小,可放置在狭小的空间中,并能耐受高温和高压等恶劣环境。
3.2 局限光电检测技术在进行远距离测量和透明物体测量时存在一定的局限。
此外,光电检测技术的应用受到光照强度和环境噪声等因素的影响。
第四部分:光电检测技术的未来发展方向随着科技的不断进步,光电检测技术将会在以下几个方面得到进一步发展:4.1 小型化和集成化光电检测元件将趋向于小型化和集成化,以适应小型化和高性能化的设备和系统要求。