L (c / n)
激光通过长度为L的晶体所需时间。
对电光调制器来说,总是希望获得高的调制效率及满足要求的 调制带宽。
前面对电光调制的分析,均认为调制信号频率远远低于光波频
率(也就是调制信号波长远远大于光波波长),并且入远大于晶体的
长度L,因而在光波通过晶体L的渡越时间 d
L (c / n)
内,调制信号
由此可见,输出的调制光中含有高次诣波分量,使 调制光发生畸变。为了获得线性调制,必须将高次
2019/10/15 共29页 9
UP
DOWN
BACK
谐波控制在允许的范围内。设基频波和高次谐波的幅 值分别为I1和I2n+1, 则高次谐波与基频波成分的比值为
(3.2-33)
若取 =1rad, 则J1 (1)=0.44, J3(1)=0.02, 所以I3 /I 1
UP
DOWN
BACK
其一,除了施加信号电压之外,再附加一个 Vλ/4 的固定偏压, 但会增加电路的复杂性,且工作点的稳定性也差。
其二,在光路上插入一个1/4波片(3.2-5图)其快慢轴与晶体 主轴x成45o 角,使E x’和E y’二分量间产生 /2 的固定相位差。 (3.2-30)式中的总相位差
UP
DOWN
BACK
1.外电路对调制带宽的限制
调制带宽:调制信号占据的频带的宽度。
调制信号频率高时大部分电压降在电源内阻上,致使晶体无法 工作。若要调制信号在较高频状况下工作时(实现阻抗匹配必须在 晶体两端并联一电感和分流电阻)其频带宽度就要受到约束:
当调制频率与谐振频率相同时电压全降在晶体上。
于是,通过两块晶体之后的总相位差
(3.2-37) 因此,若两块晶体的尺寸、性能及受外界影响完全相同,则自 然双折射的影响即可得到补偿。