太阳能电池发展现状
- 格式:doc
- 大小:88.50 KB
- 文档页数:13
太阳能技术的发展现状与前景一、发展现状随着能源资源的日益枯竭和环境问题的愈加严重,太阳能作为一种清洁的、可再生的能源,受到越来越多的关注和重视。
从目前的发展情况来看,太阳能技术已经取得了令人瞩目的进展。
1、太阳能电池技术太阳能电池技术是当前太阳能技术的核心之一,其主要应用是将太阳光转化为电能。
近年来,太阳能电池的效率不断提高,特别是在多晶硅、单晶硅、薄膜太阳能电池等领域,效率已达到了20%以上,这使得太阳能技术的应用范围更加广泛。
2、太阳能热利用技术太阳能热利用技术主要是利用太阳能产生热能,进行供热、供暖、制冷等。
目前,太阳能热利用技术已经应用于工业、民用领域,如太阳能热水器、太阳能空调等,这些都是通过太阳能进行环保节能的绿色能源。
二、未来发展趋势未来太阳能技术的发展趋势主要体现在三个方面:效率、成本和应用。
1、提高效率未来太阳能技术发展的关键是提高太阳能电池的转化效率,这也是目前太阳能技术发展的重中之重。
从技术层面来讲,双面电池、多晶硅电池等高效太阳能电池已经开始应用。
在未来,有可能通过镜面反射、太阳能追踪和集中光伏等技术策略,使太阳能电池的效率达到甚至超过30%。
2、减少成本太阳能技术的发展面临的另一个挑战是成本问题。
随着技术不断进步和规模效应的逐步体现,太阳能产品成本在不断下降。
未来,随着材料成本的降低、生产效率提高,太阳能技术的成本也将进一步降低。
3、扩大应用未来太阳能技术的发展不仅是在原有的领域应用上发力,更是通过技术升级和应用拓展,实现更广泛的应用,如大规模光伏发电、太阳能汽车、太阳能建筑等。
一方面,这需要政策和市场的扶持,另一方面也需要太阳能技术的不断提高和升级。
三、未来需解决的问题尽管太阳能技术在近年来取得了很大的进展,但是其发展仍然面临一些挑战和问题。
1、技术瓶颈太阳能技术的发展受制于物理学等学科的限制,目前的太阳能电池效率尚未达到理论上的极限。
除了提高电池的转化效率,还需要通过技术创新突破其它瓶颈,如太阳能电池的稳定性、耐久性等。
太阳能电池的研究现状及发展前景太阳能电池是一种将太阳光能直接转化为电能的器件。
它是现代清洁能源领域中备受瞩目的技术之一。
随着对环境污染和非可再生能源的担忧日益增加,太阳能电池作为一种可持续发展和环保的选择,正变得越来越热门。
本文将介绍太阳能电池的研究现状及发展前景。
一、太阳能电池的研究现状太阳能电池是利用半导体材料制成的电池,其工作原理是将光子能量转化为电子能量。
现在最常用的太阳能电池是硅基太阳能电池。
硅基太阳能电池已发展了几十年,其效率已经逐渐接近极限。
然而,硅基太阳能电池的成本仍然比较高,对大规模应用来说仍然不够经济实惠。
为了降低成本同时提高太阳能电池的效率,研究人员正在寻找替代性材料。
一些新兴材料被广泛研究,如钙钛矿、有机太阳能电池和复合太阳能电池等。
其中,钙钛矿太阳能电池由于其高效率和低成本而备受关注。
与硅基太阳能电池相比,钙钛矿太阳能电池不但具有更高效率,而且材料成本也更便宜。
因此,钙钛矿太阳能电池被认为是一种有望在未来大规模应用的技术。
二、太阳能电池的发展前景随着对环境污染和非可再生能源的担忧日益增加,太阳能电池作为一种可持续发展和环保的选择越来越受到重视。
据国际能源机构预测,到2030年,太阳能电力将成为全球电力消费量中最大的单一来源之一。
在未来几年中,太阳能电池技术将继续发展,效率将逐步提高,成本也将进一步下降。
此外,在不断涌现的新材料和新技术的推动下,太阳能电池将不断完善,性能将不断提升。
总的来说,太阳能电池是一种前景广阔的清洁能源技术。
它可以为世界各地的人们提供可靠、廉价的电力,同时帮助我们减少对环境的破坏,降低对化石燃料的依赖。
因此,在国际上,太阳能电池技术被认为是实现可持续发展的关键技术之一。
三、结语太阳能电池作为一种可持续发展和环保的技术,已经成为了清洁能源领域中备受瞩目的一种技术。
虽然目前太阳能电池的研究仍在进行之中,但已经取得了很大的进展。
未来,随着新材料和新技术的涌现,太阳能电池将变得更加高效、便宜和可靠,同时也将为我们提供更多的清洁能源选择。
有机太阳能电池技术的现状与未来发展太阳能是最为常见的可再生能源之一,但是常规太阳能电池的生产成本较高,效率也不高,因此有机太阳能电池技术的出现便是一个重要的突破。
有机太阳能电池是一种新型的可再生能源,具有较低的成本、可塑性、透明性、轻量化等优势,目前已经成为了许多科学研究的关注焦点。
一、有机太阳能电池技术的现状有机太阳能电池是将有机分子进行修饰后形成的薄膜材料,分为多种类型例如聚合物太阳能电池、小分子太阳能电池以及染料敏化太阳能电池等。
这些材料可塑、轻便,可以用于制造含有曲面和可弯曲构件的新型设备,以及建筑设计。
此外,有机太阳能电池还可以在室内或室外环境中产生电能,无需额外的电力供应。
聚合物太阳能电池(PSC)是目前研究的重点之一。
它通过构建由聚合物链组成的纳米结构,使电子和空穴能够分离并形成电流。
这种材料光谱范围广,制备简单,可连续制备大面积的器件,适合商业应用。
PSC充分利用了聚合物链的分子链距离、宽深,可以实现光谱范围开发与电子传输的优化。
此外,小分子太阳能电池(SMC)也是一种有机太阳能电池。
与PSC不同的是,SMC是由小分子组成的材料,具有易扩散和高迁移率的特点,其光谱范围有限,适用于特定的应用场景。
SMC的发展空间也在逐步被发掘着。
染料敏化太阳能电池(DSSC)利用了染料吸收光的原理,在锗或氧化锌中生成光生电荷,实现电能转换,它目前最为成熟的应用领域是薄膜太阳能电池板。
DSSC具有美感、透明度高、制作工艺简单等特点,对建筑材料应用非常有前景。
二、未来有机太阳能电池技术的发展有机太阳能电池具有广阔的发展前景。
目前,为了提高材料的光吸收效率和光电转换效率,研究人员正在开发新的有机分子结构及其组合方式。
聚合物及小分子太阳能电池的发展路线是改进电子迁移行为、增强稳定性和制备高效量子点共生材料。
同时,跨出单一有机太阳电池的局限性,实现多元化的应用场景和集成、节能需求。
例如,利用有机太阳能电池制造的柔性屏幕、太阳能电池板等逐渐诞生。
太阳能电池种类、发展历史及发展现状引言概述:太阳能电池是一种将太阳能转化为电能的装置,具有环保、可再生等优点,被广泛应用于电力供应、照明和电子设备等领域。
本文将介绍太阳能电池的种类、发展历史以及目前的发展现状。
一、太阳能电池种类1.1 结晶硅太阳能电池:结晶硅太阳能电池是目前应用最广泛的太阳能电池种类,其制作工艺相对简单,成本较低。
结晶硅太阳能电池分为单晶硅和多晶硅两种类型,单晶硅电池具有较高的转换效率,多晶硅电池则具有较低的制造成本。
1.2 薄膜太阳能电池:薄膜太阳能电池采用薄膜材料作为光电转换层,具有灵活性和轻薄的特点,可以应用于曲面或柔性设备上。
薄膜太阳能电池的种类主要包括非晶硅、铜铟镓硒等,其中非晶硅电池具有较高的稳定性和可靠性。
1.3 多结太阳能电池:多结太阳能电池是一种将不同材料的太阳能电池层叠在一起的结构,可以提高光电转换效率。
常见的多结太阳能电池包括锗太阳能电池和三元复合太阳能电池,具有高效率和抗辐照性能。
二、太阳能电池的发展历史2.1 19世纪末至20世纪初:在19世纪末至20世纪初,科学家们开始研究光电效应并发现了太阳能电池的原理。
在此期间,太阳能电池的效率较低,仅用于实验室研究。
2.2 20世纪中叶至末期:20世纪中叶至末期,太阳能电池的研究进展迅速。
1954年,贝尔实验室的科学家发明了第一块高效率的硅太阳能电池,使太阳能电池进入应用阶段。
此后,太阳能电池的效率不断提高,成本逐渐下降。
2.3 当代:随着技术的进步和市场需求的增加,太阳能电池的发展进入了一个新阶段。
目前,太阳能电池的效率已经达到了20%以上,而且在材料、制造工艺和结构设计方面也取得了重要突破。
太阳能电池的应用领域不断扩大,包括建筑一体化、光伏发电等。
三、太阳能电池的发展现状3.1 能源转型的推动:随着全球对能源安全和环境问题的关注度增加,太阳能电池作为一种清洁能源的代表,受到了广泛关注和支持。
许多国家和地区纷纷制定政策和计划,推动太阳能电池的发展和应用。
钙钛矿太阳能电池的发展现状及未来前景钙钛矿太阳能电池,这个名字听起来是不是有点高大上?它的背后藏着一个充满希望的故事。
想象一下,阳光洒在大地上,照耀着我们生活的每一个角落,而钙钛矿太阳能电池正是那把打开绿色能源大门的金钥匙。
说到钙钛矿,其实它是一种矿物,科学家们发现它的光电转换效率惊人,简直是“老虎”变“奶牛”的传奇。
相较于传统的硅基太阳能电池,钙钛矿不仅轻便,还能在低光照的情况下工作,真是“福星高照”呀。
发展现状方面,近年来,钙钛矿太阳能电池技术取得了突飞猛进的进展。
光是从实验室走向市场,这段路可不容易。
研究人员不断探索,尝试用不同的材料组合,力求让这种电池的稳定性更高、效率更好。
你知道吗?现在一些钙钛矿电池的转换效率已经超过了25%!这可不是小数字,意味着它能把阳光转化为电能的能力,简直比那些“心机”满满的传统电池强多了。
不过,听着听着,似乎有些小麻烦也冒了出来。
钙钛矿电池在长时间暴露于潮湿环境下容易降解,真是“水火无情”。
虽然科学家们已经在想方设法解决这个问题,但这就像是在给一只“活泼的小狗”上紧箍咒,难免让人担心。
不过,别忘了,科技的进步总是有惊喜。
在这条路上,有很多优秀的团队在奋力拼搏,致力于让钙钛矿电池更加坚固耐用。
每一次进步都让人感到“哇塞”,真希望不久的将来能看到它们在市场上大显身手。
聊到未来前景,钙钛矿太阳能电池的潜力就像无边无际的蓝天,令人期待。
我们生活在一个讲求可持续发展的时代,绿色能源成为了人们的首选,钙钛矿电池作为新兴力量,必定能在未来的能源市场中占据一席之地。
想象一下,未来的房顶上都是这类电池,阳光洒下,电能源源不断地供给家庭用电,那场景简直美得让人“心花怒放”!不仅如此,这种电池的生产成本也比传统电池低得多,能给我们的钱包带来“福音”。
随着技术的不断革新,钙钛矿太阳能电池的应用领域也在逐渐扩展。
除了常见的建筑外墙,未来我们或许能看到它在汽车、便携式设备上的身影。
想象一下,开车时阳光洒在车窗上,汽车自动充电,简直是“美梦成真”。
太阳能电池技术的发展现状与未来随着气候变化问题的日益突出,清洁能源的需求变得越来越迫切。
而太阳能电池技术作为一种绿色、可再生的能源解决方案,受到了越来越多人的关注。
本文将探讨太阳能电池技术的发展现状以及未来的发展趋势。
一、太阳能电池技术的发展现状太阳能电池技术已经有几十年的历史,经过多年的发展,已经取得了可喜的进展。
目前,主流的太阳能电池技术主要包括多晶硅太阳能电池、单晶硅太阳能电池和薄膜太阳能电池。
多晶硅太阳能电池是市场上应用最为广泛的一种技术,其制作工艺相对简单,成本较低。
但是,多晶硅太阳能电池在效率上仍然有一定的提升空间,其效率一般在15%到20%之间。
相比之下,单晶硅太阳能电池的效率要高一些,甚至可以达到20%以上。
单晶硅太阳能电池在能量转化效率和稳定性方面的表现更好,但其制造过程相对复杂,造成了较高的成本。
薄膜太阳能电池则是近年来崛起的一种新技术,不同于传统的硅基太阳能电池,它采用了柔性材料作为基底,可以实现轻薄柔性化的电池制作。
尽管薄膜太阳能电池的效率较低,但其开发潜力巨大,可以应用于各类可穿戴设备、移动通信和智能建筑等领域。
二、太阳能电池技术的未来发展方向在太阳能电池技术的未来发展中,人们将继续努力提高电池的能量转化效率、降低成本以及改进电池的稳定性和可靠性。
首先,提高能量转化效率是目前太阳能电池技术亟待解决的问题。
科学家们正在研究新材料、优化制造工艺,以提高电池的效率。
例如,利用纳米技术可以增加太阳能电池的吸收能力,提高光的利用率。
此外,研发更高效的光伏材料也是未来发展的重要方向之一。
其次,降低成本是推广太阳能电池技术的关键所在。
随着技术的进步和规模的扩大,太阳能电池的制造成本逐渐下降。
然而,成本仍然是限制太阳能电池技术大规模应用的瓶颈。
因此,继续改进制造工艺、降低材料成本以及提高电池的寿命,都将有助于降低太阳能电池的成本。
最后,改善太阳能电池的稳定性和可靠性也是未来发展的方向之一。
太阳能电池发展现状及其转换效率的提高及实例因为能源危机,环境问题,清洁的太阳能电池是不错的选择。
一太阳能电池发展概况目前研发出来的或者正在开发的太阳能电池有:晶体硅太阳电池,III-V族太阳电池,硅基薄膜太阳电池,CIGS太阳电池,染料敏化电池,纳米太阳电池。
晶体硅太阳电池的种类:HIT太阳电池,PERL太阳电池,OCEO 太阳电池,Pluto太阳电池。
HIT太阳电池,结构简单,效率高,具有产能优势;Pluto太阳电池去除或简化了PERL太阳电池电池的一些材料和工艺,已实现产业化,Pluto多晶硅太阳电池,材料多晶硅成本低,转换效率也已经实用。
目前产业化的电池还有,丝网印刷电池,掩埋栅电池,高效背面点接触电极电池。
III-V族太阳电池的种类:GaAs系太阳电池,InP系太阳电池,薄膜III-V族太阳电池,量子阱/点太阳电池,多结太阳电池,热光伏电池,分谱太阳电池,III-V族半导体中间带太阳电池。
制备方法:液相外延技术,金属有机化学气相沉积技术,分子束外延技术。
近几年,叠层电池效率的迅速提高以及聚光太阳电池技术的发展和设备的不断改进,使聚光III-V族太阳电池系统的成本大大降低。
2009年德国已经研制出高达41.4的GaInP/GaInAs/Ge叠层太阳电池。
硅基薄膜太阳电池包括非晶硅、微晶硅薄膜太阳电池,研发的种类有:a-SiC/a-Si异质结太阳电池,uc-Si薄膜太阳电池,非晶硅/微晶硅串联太阳电池。
制备方法较多,值得关注的新方法有热膨胀等离子体沉积法,常压等离子气相沉积法。
产业化生产技术:以玻璃衬底的硅基薄膜太阳电池制备技术,非晶硅薄膜的柔性衬底、卷到卷太阳电池制备技术。
硅基薄膜太阳电池所需原材料少,可大面积沉积,成本低,可沉积到柔性衬底上,柔性衬底的电池可以装在非平整的建筑物表面上,但转化效率低,仅7.5%-8.5%,非晶硅和非晶锗硅合金电池的光诱导衰退,是需要解决的问题。
CIGS太阳电池研发的有:柔性金属CIGS电池、聚合物衬底CIGS 薄膜电池。
太阳能电池的发展现状与未来趋势太阳能电池,作为可再生能源的重要组成部分,已经成为当今社会可持续发展的关键技术之一。
本文将从技术发展、市场应用和未来趋势三个方面对太阳能电池的发展现状进行探讨。
第一部分:技术发展太阳能电池的技术发展经历了几十年的积累和演进。
最早的太阳能电池是由硅材料制成的,称为单晶硅太阳能电池。
然而,由于制造难度高、成本高昂,以及工作效率低等问题,单晶硅太阳能电池一直受限于规模化应用。
随着科技的进步,多晶硅太阳能电池和薄膜太阳能电池等新型材料逐渐崭露头角。
多晶硅太阳能电池制造工艺相对简单,成本较低,同时工作效率也有所提高。
而薄膜太阳能电池则具有柔性、轻薄、透明等优势,具备更广阔的应用场景。
此外,还有一些新型太阳能电池技术不断涌现。
例如有机太阳能电池可以实现颜色和形状的灵活设计,有望嵌入到建筑物、电子产品等各种载体中。
钙钛矿太阳能电池具有高效、低成本的特点,近年来取得了显著的突破。
第二部分:市场应用随着太阳能电池技术的成熟和价格的下降,太阳能产业得到了迅猛发展。
目前,太阳能电池广泛应用于家庭光伏发电、商业光伏发电和大规模电站等领域。
在家庭光伏发电方面,越来越多的家庭开始安装太阳能电池板,利用太阳能自行发电。
这不仅可以降低对传统能源的依赖,减少碳排放,还可以通过售电上网实现经济效益。
商业光伏发电则主要指的是工业和商业领域的太阳能发电项目。
由于工厂、商场等场所的用电量较大,太阳能发电可以有效降低用电成本,同时满足绿色能源需求。
此外,大规模太阳能电站也在全球范围内广泛建设。
这些电站通常由数百甚至上千个太阳能电池组成,能够为城市或地区提供大量的清洁能源。
第三部分:未来趋势太阳能电池在未来的发展前景令人充满期待。
随着科技和工艺的不断进步,太阳能电池的效率将进一步提高,成本将进一步降低。
科学家们正在开展各种研究,尝试开发出更高效、更稳定的材料,并不断优化制造工艺。
另外,太阳能电池与储能技术的结合也是未来的一个趋势。
有机太阳能电池研究现状与进展
有机太阳能电池是一种可以将太阳能转化为电能的光电转换器件,相比于传统的硅基太阳能电池,有机太阳能电池具有成本低、可塑性好、轻量化等优点,因此备受关注。
以下介绍有机太阳能电池的研究现状与进展:
1. 效率提高:过去十年来,有机太阳能电池的功率转换效率不断提高,目前已经达到了17%左右,接近商业化水平。
2. 新材料的发展:研究者在寻找更优秀的有机材料方面进行了大量尝试,包括聚合物、小分子有机化合物和混合材料等,以提高有机太阳能电池的效率、稳定性和可持续性。
3. 有机太阳能电池的稳定性:为了解决有机太阳能电池的稳定性问题,研究者设计了新型材料和界面,探究了各种稳定剂和先进封装技术。
4. 柔性有机太阳能电池:在光电转换效率较高的情况下,有机太阳能电池适合制作柔性器件,形态可塑性好,可以应用于更广泛的领域。
目前柔性有机太阳能电池的商业化应用仍处于起步阶段,但未来充满潜力。
总的来说,有机太阳能电池的研究不断取得进展,但与传统硅基太阳能电池相比仍面临诸多挑战,例如效率、稳定性和成本等。
未来需要进一步探究新材料和工艺,提高有机太阳能电池的性能和可应用性。
2024年柔性太阳能电池市场发展现状柔性太阳能电池是一种具有柔性基底材料的太阳能电池,与传统的硅基太阳能电池相比,柔性太阳能电池具有更高的韧性和适应性。
随着可穿戴设备、智能手机和便携式电子产品等的普及,柔性太阳能电池市场逐渐壮大。
本文将探讨柔性太阳能电池市场的发展现状。
市场概况近年来,柔性太阳能电池市场快速增长,主要受益于以下因素:1.技术进步:新材料和制造工艺的不断创新,使得柔性太阳能电池的效率和可靠性得到了提升。
同时,柔性太阳能电池的重量较轻,便于携带和安装,满足用户对便携性的需求。
2.可穿戴设备的普及:随着可穿戴设备的迅速普及,人们对电池寿命和续航能力的需求不断增长。
柔性太阳能电池具有可弯曲和可塑性的特点,可以灵活地整合到可穿戴设备中,有效延长电池使用时间。
3.可选应用领域广泛:柔性太阳能电池的应用领域非常广泛,包括户外运动设备、智能家居、无人机等。
其柔性特性使得电池可以适应各种曲线表面,提供更多的潜在设计空间。
市场主要参与者目前柔性太阳能电池市场的主要参与者包括:1.太阳能电池制造商:包括国际公司如夏普、三星、LG等,以及国内公司如阿特斯、亿阳等。
这些公司通过研发、生产和销售柔性太阳能电池,推动市场的发展。
2.系统集成商:这些公司负责将柔性太阳能电池整合到各种设备和系统中,以满足不同行业的需求。
他们不仅提供柔性太阳能电池产品,还提供相应的解决方案和技术支持。
3.研究机构和大学:这些机构致力于柔性太阳能电池技术的研究和开发,推动行业的创新和进步。
他们通过合作项目、科研成果转化等方式,为市场提供技术支持和人才培养。
市场发展趋势随着技术进步和用户需求的不断变化,柔性太阳能电池市场有望迎来新的发展机遇:1.提升效率和可靠性:随着新材料和制造工艺的不断改进,柔性太阳能电池的效率有望进一步提升,同时还需要加强对其可靠性的研究和改善。
2.拓展应用领域:随着柔性太阳能电池在可穿戴设备领域的成功应用,未来有望进一步扩大应用领域,如智能家居、交通运输等。
太阳能光伏电池技术的研究现状与发展方向摘要:太阳能光伏电池是可再生能源的关键技术之一,它已经在可再生能源领域取得了显著的进展。
然而,光伏电池技术仍然面临一些挑战,如效率、成本和可持续性等方面的问题。
本文将探讨当前太阳能光伏电池技术的研究现状,并提出了未来的发展方向,以促进光伏电池技术进一步的突破和应用。
一、研究现状1. 多晶硅电池:多晶硅电池是当前太阳能光伏电池市场上占据主导地位的技术。
该技术以其相对较低的成本和较高的效能,受到了广泛的支持和应用。
然而,多晶硅电池的制造过程对于环境资源的消耗较大,且制造过程中产生的废料需要进行合理的处理和回收。
2. 单晶硅电池:单晶硅电池是一种具有更高效率的光伏技术,其效率可达到最高的水平。
然而,由于单晶硅材料的制造成本较高,导致单晶硅电池在市场上的比重相对较小。
随着技术的不断进步,人们对单晶硅电池的研究和应用越来越关注,以期降低制造成本,提高市场竞争力。
3. 薄膜光伏电池:薄膜光伏电池是一种新兴的太阳能电池技术,以其相对较低的制造成本和较高的柔性应用性能而备受关注。
该技术利用了较少的原材料,可以在各种曲面和复杂结构上进行应用,扩展了光伏电池的使用范围。
但是,薄膜光伏电池的转换效率目前仍然较低,需要进一步改进。
二、发展方向1. 提高光伏电池的转换效率:提高光伏电池的转换效率是当前研究的重点之一。
目前,太阳能电池的转换效率一般在20%至25%之间,而理论上的极限效率约为33%。
因此,研究人员可以通过优化材料结构和光学设计,提高电池的光电转换效率,从而提高光伏电池的实际应用价值。
2. 降低光伏电池的制造成本:降低光伏电池的制造成本是实现规模化应用的关键。
目前,太阳能电池的制造过程依赖于昂贵的设备和材料,导致制造成本较高。
因此,研究人员可以通过开发新的制造工艺和材料,降低光伏电池的制造成本,提高其市场竞争力。
3. 提高光伏电池的可持续性:可持续性是光伏电池技术发展的重要方向之一。
太阳能电池种类、发展历史及发展现状引言概述:太阳能电池是一种将太阳光转化为电能的装置,具有环保、可再生、长寿命等优点,因此在能源领域备受关注。
本文将介绍太阳能电池的种类、发展历史以及当前的发展现状。
一、太阳能电池种类1.1 结晶硅太阳能电池结晶硅太阳能电池是目前应用最广泛的太阳能电池种类之一。
它由高纯度的硅材料制成,具有较高的转换效率和稳定性。
结晶硅太阳能电池又可分为单晶硅和多晶硅两种。
单晶硅太阳能电池的晶粒结构密切有序,转换效率较高;而多晶硅太阳能电池的晶粒结构较为松散,转换效率相对较低。
1.2 薄膜太阳能电池薄膜太阳能电池利用非晶态硅、铜铟镓硒等材料制成薄膜层,相较于结晶硅太阳能电池,它具有更低的创造成本和更高的灵便性。
薄膜太阳能电池可分为非晶硅太阳能电池、铜铟镓硒太阳能电池等。
非晶硅太阳能电池具有较高的光吸收能力,适合于室内光源或者弱光条件下的发电;而铜铟镓硒太阳能电池具有较高的光电转换效率,适合于大规模光伏发电场景。
1.3 有机太阳能电池有机太阳能电池采用有机份子材料制成,具有较低的创造成本和较高的柔性。
然而,由于有机材料的稳定性较差,导致有机太阳能电池的转换效率相对较低,目前仍处于研究和开辟阶段。
有机太阳能电池的发展前景仍有待进一步探索。
二、太阳能电池发展历史2.1 19世纪初太阳能电池的发展可以追溯到19世纪初。
1839年,法国物理学家贝克勒尔发现了光电效应,为后来太阳能电池的研究奠定了基础。
2.2 20世纪中叶20世纪中叶,随着对能源危机的关注和环境保护意识的提高,太阳能电池的研究进入了实用化阶段。
1954年,贝尔实验室的科学家发明了第一块效率达到6%的硅太阳能电池。
2.3 近几十年近几十年来,太阳能电池的研究和应用取得了巨大的发展。
太阳能电池的转换效率不断提高,创造成本逐渐降低,同时在建造、交通、农业等领域的应用也得到了推广。
太阳能电池已经成为可再生能源领域的重要组成部份。
三、太阳能电池的发展现状3.1 提高转换效率目前,提高太阳能电池的转换效率是研究的重点之一。
太阳能电池技术的发展现状和趋势随着人们对环境保护意识的提高和传统燃煤等化石燃料的日益减弱,太阳能等可再生能源逐渐成为人们关注和研究的重点之一。
太阳能电池是应用太阳能转换为电能的关键技术之一,其发展现状和趋势值得关注。
1. 太阳能电池技术的发展现状:多样化、智能化发展目前太阳能电池技术正在向多样化、智能化发展。
传统的硅晶太阳能电池,尽管具有稳定性高、可靠性高等优点,但是制造成本高、能源转换效率低等缺点,局限了其应用范围。
同时,新型太阳能电池技术如有机太阳能电池、钙钛矿太阳能电池等的成熟,也进一步促进了多样化发展。
在智能化方面,目前随着工业4.0技术的应用,太阳能电池生产过程中的自动化与智能化程度得到了极大提高。
例如,具有自动光伏片切配合、快捷光学排布、充电执行等功能的智能光伏电池板生产线已经问世。
未来随着技术的发展,太阳能电池技术在多样化和智能化方面依然有着巨大发展空间。
2. 太阳能电池技术的发展趋势:转型多样化、高效化未来太阳能电池技术的发展趋势将主要囊括在转型多样化和高效化两个方面。
转型多样化:随着传统硅晶太阳能电池技术的限制,新型的有机太阳能电池、钙钛矿太阳能电池技术不断崛起。
未来的太阳能电池仍会面临技术上的突破和创新。
例如,目前同样处于研发阶段的染料敏化太阳能电池、量子点敏化太阳能电池、纳米太阳能电池等,都有望在不久的将来得以实现应用。
高效化:在大量太阳光照射的情况下,太阳能电池的转换效率将会影响其应用效果。
因此,未来太阳能电池技术的发展方向将主要着重于高效化。
在太阳能电池的材料和制造工艺上,多方研究机构正在进行创新和改进,例如提高硅晶太阳能电池转换效率的多晶硅太阳能电池、基于纳米晶的材料等等。
综上所述,太阳能电池技术的发展现状和趋势均是多样化、智能化、高效化的。
未来随着技术的不断改进和创新,太阳能电池的应用将更加广泛,对保护环境、提高能源利用效率也将发挥更重要的作用。
「太阳能电池发展现状及高效率的实例」太阳能电池是一种将太阳能转化为电能的装置,被广泛应用于太阳能发电、航天航空、农业灌溉、照明等领域。
随着全球对清洁能源的需求不断增长,太阳能电池技术也在不断创新与发展。
本文将就太阳能电池的发展现状、高效率技术和典型实例进行探讨。
首先,太阳能电池的发展现状。
太阳能电池可以分为多种类型,包括硅基太阳能电池、薄膜太阳能电池、多结太阳能电池等。
其中,硅基太阳能电池是目前应用最为广泛的太阳能电池类型。
硅基太阳能电池主要分为单晶硅电池、多晶硅电池和非晶硅电池。
单晶硅电池具有高转换效率和较长的使用寿命,但生产成本较高。
多晶硅电池具有较低的成本和较高的转换效率,是当前太阳能市场上最主流的产品。
非晶硅电池适用于柔性太阳能电池等领域。
其次,高效率太阳能电池的实例。
高效率太阳能电池是指具有高转换效率的太阳能电池,在同样的太阳光照射下,能够产生更多的电能。
以下是几个高效率太阳能电池的实例:1. 单晶硅PERC太阳能电池:PERC(Passivated Emitter and Rear Cell)技术是近年来最重要的太阳能电池技术之一、它通过在电池背面引入表面反射器和背电场,提高太阳能电池的光电转换效率。
单晶硅PERC 太阳能电池的转换效率可以达到22%以上。
2.多晶硅PERC太阳能电池:多晶硅也采用PERC技术,通过优化电池的正背电场和表面的能带结构,提高电池的转换效率。
多晶硅PERC太阳能电池的转换效率达到了20%以上。
3.背面钝化和金刚石结构的太阳能电池:背面钝化和金刚石结构技术可以减少电池表面的反射,提高电池的光吸收率和转换效率。
这种太阳能电池的转换效率可以超过24%。
4.多接点太阳能电池:多接点太阳能电池通过增加电池的接触点,减少电流通过的路径长度,提高电池的效率。
多接点太阳能电池的转换效率可以达到22%以上。
最后,太阳能电池的发展还面临一些挑战。
首先是成本问题,太阳能电池的生产成本较高,需要继续降低成本以提高市场竞争力。
太阳能电池技术发展现状与前景简介:太阳能电池技术是一种转化太阳能光子能量为电能的技术。
随着能源危机和环境保护问题的日益突出,太阳能作为一种清洁、可再生的能源逐渐受到关注。
本文将介绍太阳能电池技术的发展现状与前景。
一、太阳能电池技术的发展历程太阳能电池技术起源于19世纪末,最早由法国物理学家贝克勒尔发现光电效应。
随后,光伏效应得到了物理学家发展利用,最早的太阳能电池是由Russell Ohl于1940年获得的硅太阳能电池。
随着科学技术的发展,太阳能电池逐步实现了高效率转换,取得了显著的发展。
二、太阳能电池技术的现状1.硅太阳能电池目前,硅太阳能电池是最主流的技术,占据了太阳能电池市场的大部分份额。
硅太阳能电池可以分为多晶硅和单晶硅两种类型,其转换效率在15%至24%之间。
硅太阳能电池具有成熟的制造工艺和较长的使用寿命,但也存在成本高、材料资源有限的问题。
2.薄膜太阳能电池薄膜太阳能电池采用较薄的太阳能材料,如铜铟硒或硫(CuInSe2,CIS)、铜铟镓硒(CIGS)、铜硒(Cu2Se)等,通过堆叠形成太阳能电池。
薄膜太阳能电池具有较低的制造成本和较高的柔性,但其转换效率较低,目前为10%至15%。
3.钙钛矿太阳能电池钙钛矿太阳能电池是近年来迅速发展的新一代太阳能电池技术。
钙钛矿太阳能电池采用钙钛矿材料(如CH3NH3PbI3)作为光敏材料,具有较高的光电转换效率和较低的制造成本。
目前,钙钛矿太阳能电池的转换效率已达到25%以上,并且具有较好的稳定性,但其制造工艺相对复杂,仍需继续研究和改进。
三、太阳能电池的前景1.技术改进目前,太阳能电池技术仍有许多改进的空间。
通过改善材料性能、提高光电转换效率、降低制造成本等技术创新,可以进一步推动太阳能电池的发展。
此外,也可以通过优化太阳能电池的结构和组件,提高其在各种环境条件下的性能。
2.能源转型随着能源危机和环境问题的日益严重,太阳能电池作为一种清洁、可再生的能源技术,将在能源转型中发挥重要的作用。
太阳能行业的发展现状及未来前景太阳能作为一种清洁、可再生的能源,近年来得到了越来越多的关注和使用。
它将对环境产生的影响降到最低,并且在未来的发展中具有巨大的潜力。
本文将探讨太阳能行业的发展现状以及其未来的前景。
一、太阳能行业的发展现状太阳能行业在过去几十年中取得了显著的发展。
首先,太阳能电池板的效率不断提高。
以过去的硅基太阳能电池为例,其效率只能达到10%左右,而现在的高效硅基太阳能电池已经可以达到20%以上的效率。
此外,新型太阳能电池技术的出现也进一步推动了行业的发展,如有机太阳能电池和钙钛矿太阳能电池等。
这些新技术的应用将加速太阳能行业的规模扩大和市场占有率的增加。
其次,太阳能的价格不断降低。
随着技术的进步和规模化生产的实施,太阳能电池的成本大幅降低。
根据国际能源署的数据,太阳能的价格已经下降了70%以上。
这使得太阳能成为越来越多国家和地区的主要能源选择之一。
再次,政府的支持和鼓励也对太阳能行业的发展起到了积极的推动作用。
世界各国纷纷出台了鼓励太阳能产业发展的政策,包括对可再生能源的补贴和支持、对太阳能项目的优惠政策等。
这些措施有效地促进了太阳能行业的发展,并且吸引了越来越多的投资者参与其中。
二、太阳能行业的未来前景虽然太阳能行业取得了一系列的成就,但仍然存在一些挑战。
首先,太阳能电池的成本仍然较高。
尽管太阳能的价格已经大幅下降,但与传统能源相比,太阳能仍然需要更高的投资。
这是太阳能行业发展的一个瓶颈,但随着技术的进步和规模效应的发挥,成本将会进一步降低。
其次,太阳能发电的波动性和储存问题也需要解决。
太阳能发电的产能受到天气条件的限制,晴天产能高,阴天产能低。
此外,如何有效地储存太阳能也是一个挑战。
目前,解决这些问题的技术正在积极研究中,未来将有更多的解决方案出现。
在未来,太阳能行业将有更大的发展空间和潜力。
首先,全球对清洁能源需求的增加将推动太阳能行业的快速发展。
随着气候变化和环境污染问题的加剧,各国对清洁能源的需求与日俱增。
太阳能电池技术的现状和发展前景第一章:太阳能电池的概述太阳能电池是利用太阳能将太阳辐射能直接转化成电能的一种装置。
太阳能电池具有清洁、可再生、无噪音、无污染等特点,被认为是解决全球能源危机和环境污染问题的重要手段之一。
太阳能电池的关键技术是太阳能电池材料和结构的研发。
当前,太阳能电池材料主要包括硅、铜铟镓硫、钙钛矿等。
第二章:太阳能电池技术的现状目前,太阳能电池技术已经相当成熟,并且正在不断进步。
硅太阳能电池是目前最广泛使用的一种太阳能电池,其转换效率已经超过了20%。
但是,硅太阳能电池制造成本较高,且在光强度低的情况下效率较低,因此还需要进一步降低成本、提高效率。
钙钛矿太阳能电池作为新兴太阳能电池技术,具有高效能、低成本、制造工艺简单、材料丰富等优点,并且在最近几年内得到了极大的发展,其转换效率已经超过了24%。
然而,钙钛矿太阳能电池材料稳定性、寿命等问题还需要进一步研究解决。
第三章:太阳能电池技术的发展前景在能源危机和环境污染问题越来越严重的背景下,太阳能电池市场前景非常广阔。
据国际能源署(IEA)预测,到2030年,屋顶光伏发电有望提供全球能源消耗的50%。
未来,太阳能电池技术将逐渐发展成为产业化、商业化、运营化的能源领域,同时与电动汽车等新兴领域也能实现复合应用,还有望被广泛应用于航空航天领域。
第四章:太阳能电池技术发展的路径要实现太阳能电池技术的发展,需要在材料、结构、制造技术、系统方案、商业模式等方面进行全方位的研发。
具体来说,需要加强关键材料的研究,如钙钛矿太阳能电池的稳定性、寿命等问题;加强太阳能电池系统的集成研究,优化系统效率和性价比;加强太阳能电池技术与其他领域的复合应用研究,实现多种能源的相互补充。
第五章:结论太阳能电池技术作为一种清洁、可再生、无噪音、无污染的能源,将在未来发挥重要的作用。
目前太阳能电池技术已经非常成熟,并且有着广阔的市场前景。
未来的研究应该不断探索新的材料、结构、制造技术和商业模式,提高太阳能电池的转换效率、降低成本、扩大产业规模,以实现可持续发展。
太阳能电池技术的发展现状与未来趋势分析随着能源问题的日益凸显,人们对可再生能源的需求也越来越迫切。
太阳能作为最为丰富的一种可再生能源,其利用方式之一就是太阳能电池技术。
太阳能电池技术的发展已经取得了显著的进展,下面我们来对其现状与未来趋势进行分析。
首先,太阳能电池技术的现状。
传统的太阳能电池主要利用硅材料进行制造,其中多晶硅和单晶硅是最常用的两种材料。
这些太阳能电池面板在光照的作用下,将太阳能转化成为直流电能。
当前的太阳能电池技术已经具备了较高的转换效率,一些高性能的太阳能电池转换效率甚至可以达到30%左右。
此外,随着技术的进步,太阳能电池的成本也逐步降低,市场普及化的程度也在提升。
然而,传统的太阳能电池技术面临着一些挑战。
首先,制造太阳能电池所需的硅材料在现有资源供给下存在一定局限,未来可能会面临供应瓶颈。
其次,太阳能电池的转换效率虽然已经较高,但与化石能源相比还有一定的差距,因此提高太阳能电池的转换效率是未来的主要研究方向之一。
此外,太阳能电池的稳定性和寿命也是亟需解决的问题,因为其长期稳定性和耐用度直接关系到太阳能电池的经济性和可持续性。
然而,尽管存在一些技术问题,太阳能电池技术的未来前景依然十分光明。
首先,随着科技的不断进步,新材料的应用为太阳能电池的性能提升提供了新的可能。
例如,有机太阳能电池和钙钛矿太阳能电池等新型材料,以其较高的转换效率和较低的制造成本成为当前的研究热点。
其次,新兴的太阳能电池技术,如薄膜太阳能电池和柔性太阳能电池等,为太阳能电池的应用场景扩展提供了新的可能性。
这些新型太阳能电池具有重量轻、柔性可塑性强的特点,适用于建筑一体化、汽车充电等领域,为太阳能电池的商业化应用提供了更多的选择。
此外,太阳能电池技术与其他新兴技术的结合也将推动其发展。
例如,太阳能电池与储能技术的结合,可以解决太阳能的间歇性和不稳定性问题,实现能源的可持续利用。
此外,太阳能电池与人工智能、大数据等技术的结合,可以实现太阳能电池系统的智能监控和优化,提高其效率和经济性。
太阳能电池技术的现状及发展趋势太阳能电池技术是近年来备受关注的一种新型可再生能源技术,是利用太阳辐射能够产生的能量进行电能转换的一种技术。
太阳能电池技术在未来的能源体系中将扮演重要角色,因为它不仅环保、可再生、普遍存在而且在可持续发展的角度下,它是人类能源革命中很重要的一步。
一、太阳能电池技术的发展历程太阳能电池技术的历程可以追溯到19世纪初,1800年,到英国银行家Alexander Edmond Becquerel开始最早探索关于太阳能电池的原理。
但当时的太阳能电池技术非常原始,靠烧制硒化银或氧化铅、氧化铜等物质,并将其切成薄片,组成太阳电池单元,储存大量的能量以供电力使用。
这种太阳能电池要求不断地进行检测、维护,所以运行成本很高,且效率十分低下。
20世纪几十年代,美国贝尔实验室组织了一支专门从事太阳能电池研究的专业小组,成功地研制出利用单晶硅制作的具有更高效率和更长寿命的太阳能电池。
1989年,世界首个基于多晶硅太阳能电池组件的太阳能光伏综合加工系统在美国得克萨斯州特克萨科纳投入运行。
从那时起,太阳能电池技术的普及度和效率逐渐提高。
2013年8月,第一太阳能电池飞行器“太阳神1”被发射到了太空。
二、太阳能电池技术的现状太阳能电池技术已经成为可以实用化的技术,目前全球安装容量超过2万兆瓦,在欧洲和美国,太阳能电池被广泛应用于LED路灯、无人机、机器人、高速公路警示灯、移动公交车站亭、野外无线电通讯站、号角灯塔等各类为技术提供电力设施中。
近年来,随着太阳能电池产业的迅猛发展,国内的太阳能电池生产企业越来越多,太阳能电池生产技术不断改进,造出来的太阳能电池产品不仅效率更高,稳定性和耐腐蚀性也更好。
目前太阳能电池产品普遍采用的是单晶硅、多晶硅和非晶硅三种材料。
其中,单晶硅太阳能电池的转换效率最高,通常在18%~21%之间,多晶硅太阳能电池效率为15%~18%,非晶硅太阳能电池效率仅为7%~10%。
太阳电池及其研究现状、展望摘要随着现代工业的发展,全球能源危机和大气污染问题日益突出,太阳能作为理想的可再生能源受到了许多国家的重视。
由于不可再生能源的减少和环境污染的双重压力,使得光伏产业迅猛发展;太阳电池的发展也日新月异。
本文主要叙述了现阶段多晶硅太阳电池、单晶硅太阳电池、薄膜太阳电池、GaAs太阳电池及燃料敏化学电池的现状研究及发展趋势,以及对未来太阳电池发展方向的预测,认为今后太阳电池发展趋势为层叠太阳电池。
关键词:多晶太阳电池;单晶硅太阳电池;薄膜太阳电池;GaAs太阳电池;层叠太阳电池Solar cell and its current situation of research andoutlookAbstractWith the development of modern industry, the global energy crisis and atmospheric pollution problem increasingly, solar energy as the ideal renewable energy by many national attention. Due to energy reduction and environmental pollution, make double pressures of photovoltaic industry rapid development; Solar cell development also changing. This paper mainly describes the present polycrystalline silicon solar battery, monocrystalline silicon solar battery, thin film solar cells and GaAs solar cell and fuel sensitive situation of chemical battery research and development trends, as well as to the future direction of the solar forecast that future development trends of the solar sun cascade battery.Keywords: Polycrystalline solar cells; monocrystalline silicon solar cells; thin film solar cells; GaAs solar cells; cascade solar cell目录摘要 (I)Abstract (II)第1章太阳电池简介 (1)1.1 晶体硅太阳电池 (1)1.1.1单晶硅太阳电池 (1)1.1.2多晶硅太阳电池 (1)1.2 薄膜太阳电池 (2)1.2.1非晶硅薄膜电池 (2)1.2.2多晶硅薄膜电池 (2)1.3 GaAs太阳电池 (3)1.3.1 GaAs 基单结太阳电池 (3)1.3.2 GaAs 基多结太阳电池 (3)1.4 染料敏化电池 (3)第2章太阳电池研究及展望 (5)2.1层叠太阳能电池 (5)2.2层叠太阳能电池系列 (5)2.2.1多元化合物层叠太阳能电池 (5)2.2.2非晶硅层叠太阳能电池 (6)2.2.3染料敏化层叠太阳能电池 (6)2.3总结及展望 (6)结论 (8)参考文献 (9)致谢 (10)第1章太阳电池简介1.1 晶体硅太阳电池晶体硅太阳电池是PV(Photovoltaic)市场上的主导产品,优点是技术、工艺最成熟,电池转换效率高,性能稳定,是过去20多年太阳电池研究、开发和生产主体材料.缺点是生产成本高.在硅电池研究中人们探索各种各样的电池结构和技术来改进电池性能,进一步提高效率.如发射极钝化、背面局部扩散、激光刻槽埋栅和双层减反射膜等,高效电池在这些实验和理论基础上发展起来的。
本节主要介绍单晶硅太阳电池与多晶硅太阳电池。
1.1.1单晶硅太阳电池单晶硅太阳电池制备和加工工艺:一般以高纯度单晶硅棒为原料,有些也用半导体碎片或半导体单晶硅的头尾料,经过复拉制成太阳电池专用单晶硅棒。
在电弧中用炭还原石英砂制成纯度约为99%冶金及半导体硅,然后将它在流化床反应器中进行化学反应,达到电子及半导体硅要求。
将硅棒切成厚度约 300um 硅片做为太阳电池原料片,通过在硅片上掺和扩散,硅片上形成了pn结,然后采用丝网印刷法,将银浆印在硅片上做成删线,经过烧结,同时制成背电极,并在有删线的面上涂减反射膜,这样,单晶硅电池片就制成了。
经检验后的单体片按需要规格组装成太阳电池组件(太阳电池板),用串联和并联方法构成一定输出开路电压和短路电流[1]。
1.1.2多晶硅太阳电池目前,太阳能电池使用的多晶硅材料,多半是含有大量单晶颗粒的集合体,或用废次单晶硅料和冶金级硅材料熔化浇铸而成。
其工艺过程是:选择电阻率为100~300Q ·cm的多晶块料或单晶硅头尾料,经破碎,再用1:5的氢氟酸和硝酸混合液进行适当的腐蚀,然后用去离子水冲洗呈中性,并烘干。
用石英坩埚装好多晶硅料,加人适量硼硅,放人浇铸炉,在真空状态中加热熔化。
熔化后再保温约20min,然后注入石墨铸模中,待慢慢凝固冷却后,即得多晶硅锭。
这种硅锭可铸成立方体,以便切片加工成方形太阳电池片,可提高材制利用率和方便组装。
多晶硅太阳能电池的制作工艺与单晶硅太阳电池差不多,其光电转换效率约12%左右,稍低于单晶硅太阳能电池,但是材料制造简便,节约电耗,总的生产成本较低,因此得到快速的发展。
1.2 薄膜太阳电池目前薄膜太阳能电池按材料可分为硅薄膜型、化合物半导体薄膜型和有机薄膜型。
本节主要介绍了非晶硅薄膜电池与多晶硅薄膜电池。
1.2.1非晶硅薄膜电池非晶硅有较高的光吸收系数。
特别是在0.3~0.75μm 的可见光波段,它的吸收系数比单晶硅高出一个数量级,对太阳辐射的吸收效率要高40 倍左右,用很薄的非晶硅膜(约1μm厚)就能吸收90%有用的太阳能。
与单晶硅与多晶硅材料相比,非晶态硅的原子在空间排列上失去了长程有序性,但其组成原子也不是完全杂乱无章地分布。
由于受到化学键,特别是共价键的束缚,在几个原子的微小范围内,非晶态与晶体的硅具有非常相似的结构特征。
由于非晶硅没有晶体所要求的周期性原子排列,可以不考虑制备中晶体与衬底间的晶格失配问题。
因而非晶硅薄膜几乎可以淀积在任何衬底上,包括玻璃衬底,易于实现大面积化。
1.2.2多晶硅薄膜电池多晶硅材料是许多单晶颗粒(颗粒直径为数微米至数毫米)的集合体,各单晶颗粒的大小、晶体取向彼此各不相同。
尽管多晶硅存在晶粒间界,不利于太阳能电池转换效率的提高。
但因制备多晶硅材料比制备单晶硅材料要便宜得多,研究人员正致力于减少晶粒间界的影响以期得到低成本多晶硅太阳能电池。
多晶Si薄膜电池是兼具单晶Si和多晶Si电池的高转换效率和长寿命以及非晶Si薄膜电池的材料制备工艺相对简化等优点的新一代电池。
在不太遥远的将来,多晶Si薄膜电池技术可望使太阳电池组件的成本降低至1美元左右,从而使得光伏发电的成本能够与常规能源相竞争。
因此,近些年来,多晶Si薄膜材料和相关的电池工艺方面的工作引起了人们极大的关注。
1.3 GaAs太阳电池1.3.1 GaAs 基单结太阳电池由于太阳光谱的能量分布较宽,而半导体材料的带隙Eg都是确定的,因此只能吸收其中能量比其禁带宽度值高的光子,太阳光中能量小的光子则透过电池被背面电极金属吸收转化成热能,而高能光子超出禁带宽度的多余能量,通过光生载流子的能量热释作用传递给电池材料本身使其发热。
这些能量最终都没有变成有效电能,因此对于单结太阳能电池,即使是晶体材料制成的,理论最高转换效率也只有25%左右。
单结GaAs电池只能吸收特定光谱的太阳光,实验室实现的转换效率最高25.8%,高于晶体硅的23%[2]。
1.3.2 GaAs 基多结太阳电池采用不同禁带宽度的III—V族材料制备的多结叠层GaAs太阳能电池,通过禁带宽度由大到小组合,使得这些III—V族材料可以分别吸收和转换太阳光谱中不同波长的光,能大幅提高太阳能电池的转换效率,更多地将太阳能转变成电能。
叠层太阳能电池可以外延生长技术制备,在具有一定结晶取向的衬底上延伸并按一定晶体学方向生长薄膜,每层薄膜都称为外延层。
在衬底上逐层生长各级子电池,最终得到多结叠层结构电池。
目前主要采用的有金属气相外延(MOCVD)和分子束外延(MBE)等外延生长技术[3]。
1.4 染料敏化电池1991 年, 瑞士洛桑高等工业学院的Michael Gr¾ tzel教授领导的研究小组将纳晶多孔薄膜引入染料敏化太阳能电池(DSCs) 中,使得这种电池的光电转换效率有了大幅度的提高, 逐渐成为最有希望得到应用的新型太阳能电池之一。
相比于硅基太阳电池, DSC电池以其低廉的成本、简单的工艺和相对较高的光电转换效率而引起了全世界的广泛关注, 并迅速掀起了研究热潮。
染料敏化电池主要包括三个部分:附了染料的多孔光阳极、电解质和对电极。
染料吸收光子后发生电子跃迁, 光生电子快速注入到半导体的导带并经过集流体进入外电路而流向对电极。
失去电子的染料分子成为正离子, 被还原态的电解质还原再生。
还原态的电解质本身被氧化, 扩散到对电极, 与外电路流入的电子复合, 这样就完成了一个循环。
在DSC电池中,光能被直接转换成了电能, 而电池内部并没有发生净的化学变化。
第2章太阳电池研究及展望太阳能电池发展经历了三个阶段。
以硅片为基础的“第一代”太阳能电池其技术发展已经成熟,但单晶硅纯度要求在99.999%,生产成本太高使得人们不惜牺牲电池转换率为代价开发薄膜太阳能电池。
第二代太阳电池是基于薄膜材料的太阳电池。
薄膜技术所需材料较晶体硅太阳电池少得多,且易于实现大面积电池的生产,可有效降低成本。
薄膜电池主要有非晶硅薄膜电池、多晶硅薄膜电池、碲化镉以及铜铟硒薄膜电池,其中以多晶硅为材料的太阳能电池最优。
2.1层叠太阳能电池太阳能光电转换率的卡诺上限是95%[4],远高于标准太阳能电池的理论上限33%,表明太阳能电池的性能还有很大发展空间。
Martin Green 认为,第三代太阳电池必须具有如下条件:薄膜化,转换效率高,原料丰富且无毒。
目前第三代太阳电池还处在概念和简单的试验研究。
已经提出的主要有叠层太阳电池、多带隙太阳电池和热载流子太阳电池等。
其中,叠层太阳能电池是太阳能电池发展的一个重要方向。
太阳光光谱可以被分成连续的若干部分,用能带宽度与这些部分有最好匹配的材料做成电池,并按禁带宽度从大到小的顺序从外向里叠合起来,让波长最短的光被最外边的宽隙材料电池利用,波长较长的光能够透射进去让较窄禁带宽度材料电池利用,这就有可能最大限度地将光能变成电能,这样结构的电池就是叠层太阳能电池[5]。