4-电介质物理
- 格式:ppt
- 大小:414.50 KB
- 文档页数:36
电介质物理_西安交通大学中国大学mooc课后章节答案期末考试题库2023年1.非线性光学效应仅存在于光强很高的情况答案:正确2.BaTiO3为位移型铁电体。
答案:正确3.电畴的形成是系统自由能取极大值的结果。
答案:错误4.铁电体中电畴不能在空间任意取向,只能沿晶体的某几个特定晶向取向,电畴所能允许的晶向取决于该种铁电体原型结构的对称性,即在铁电体的原型结构中与铁电体极化轴等效的晶向。
答案:正确5.自由晶体受热时热释电效应是第一类效应和第二类效应之和答案:正确6.热释电材料和铁电材料属于压电材料。
答案:正确7.经过极化处理后,铁电体的剩余极化强度是不稳定的且随时间而衰减,从而造成其介电,压电,热释电性质发生变化,这种现象就是铁电体的陈化。
答案:正确8.自发极化能被外电场重新定向的热释电晶体就是铁电体;铁电体的电畴结构受铁电体原型结构对称性的限制。
答案:正确9.铁电体的表观特征是具有电滞回线,描述了极化强度和电场强度之间的滞后关系,从该曲线可以直观观察到的两个物理量是剩余极化和矫顽场。
答案:正确10.具有自发极化的晶体称为热释电体,在温度变化时可以释放电荷,该效应与电卡效应互为逆效应。
答案:正确11.自发极化只存在具有单一极轴的点群中,共有21种。
答案:12.沿x3轴极化的压电陶瓷通过坐标变换后,有哪些独立分量()答案:13.以下哪个材料不是铁电体或反铁电体材料()答案:Al2O314.室温下将铁电四方BaTiO3陶瓷极化,其饱和极化强度与晶体自发极化强度的关系是()。
答案:15.沿x3轴极化的压电陶瓷的弹性柔顺系数的独立分量为:s11、s12、s13、s33、s44、s55。
答案:错误16.应力张量【图片】与以下哪个应力张量等价()答案:17.沿x3轴极化的压电陶瓷为4mm点群,属于四方晶系,则X3轴为四次轴绕X3轴进行四次旋转对称操作,则产生的下标变换关系为:1→2、2→-1、3→3。
答案:正确18.晶体中有8种宏观对称操作,共构成32种晶体学点群,其中11种晶体学点群具有对称中心,10种晶体学点群具有单一极轴。
电介质一、电介质(绝缘体)在外电场的作用下不易传导电流的物体叫绝缘体又叫电介质1、电介质的分类无外电场时,正负电荷等效中心不重合,叫做有极分子无外电场时,正负电荷等效中心重合,叫做无极分子2、电介质的极化对于有极分子,无外电场时,由于分子的热运动,分子的取向是杂乱无章的。
施加电场后,分子受到电场力作用排列变得规则。
在分子热运动和外电场的共同作用下,分子排列比较规则。
这种极化叫做有极分子的取向极化。
对于无极分子,无外电场时,分子内的正负电荷中心是重合的。
施加电场后,分子内的正负电荷受到电场力作用,各自的等效中心发生偏离。
这种极化叫做无极分子的位移极化。
对于有极分子,也会发生位移极化,只不过位移极化的效果远小于取向极化3、电介质极化的效果等效为电介质表面出现极化电荷(也叫束缚电荷),内部仍然为电中性。
表面的极化电荷会在电介质内产生与原电场方向相反的附加电场。
外加电场越强,附加电场也越强。
类比静电平衡中的导体0。
注意,电介质内部合场强不为0思考:附加电场的大小是否会超过外电场?答案:不会。
一般来说,物理反馈会减弱原来的变化,但不会出现反效果。
例如:勒沙特列原理(化学平衡的移动)、楞次定律(电磁感应)例1:解释:带电体能吸引轻小物体二、带电介质的平行板电容器1、带电介质对电容的影响假设电容器带电量Q 一定,电介质极化产生极化电荷,由于极化电荷会在电容内部产生附加电场E ’,会使得极板间电场E 0减小为合电场E= E 0 - E ’ ,从而使电势差U 减小,电容C 增加。
(若无特殊说明,默认为恒电量问题)假设电容器两板电势差U 一定,电介质极化产生极化电荷,由于极化电荷的感应效果,会使得极板上带电量Q 0增加为Q ,电容C 增加。
可见电介质极化使电容增大,增大的多少与极化的强弱有关。
2、介电常数介电常数ε反映了电介质极化的能力,也就反映了电容变化的程度。
真空的介电常数014kεπ= (利用这个恒等式可以将很多电学公式用ε0表示) 空气的介电常数114'4k k εππ=≈ 经常用相对介电常数εr 来表示:某物质的相对介电常数等于自身的介电常数与真空的比值(大于1)。
电偶极子:两个大小相等的正、负电荷"^!和^),相距为I,I较讨论中所涉及到的距离小得多。
这一电荷系统就称为电偶极子。
轴线场强中垂线场强1 ^电量^与矢径匸的乘积定义为电矩,电矩是矢量,用^表示,即11=0 ^ I "的单位是〔^①。
电介质极化:在外电场作用下,电介质内部沿电场方向产生感应偶极矩,在电介质表面出现极化电荷的现象称为电介质的极化。
束缚电荷(极化电荷在与外电场垂直的电介质表面上出现的与极板上电荷反号的电荷。
束缚电荷面密度记为0^退极化电场由极化电荷所产生的场强。
丑介电系数电容器充以电介质时的电容量〔与真空时的电容量〔0的比值为该电介质的介电系数5" ^ ^ 它是一个大于1、无量纲的常数,是综合反映电介质极化行为的宏观物理量。
平行板电容器:^ ^ 1十5^ 有效电场:实际上引起电介质产生感应偶极矩的电场称为有效电场或者真实电场,用曰6表示。
感应偶极矩与有效电场已6成正比,即^ ^扱化强度?:单位体积中电介质感应偶极矩的矢量和,即极化强度〉的宏观参数:1 ^提高介电系数1)1^个;2)0:个;3)^6个微观参数:1、感应偶极矩^ ^2、极化率0 :"^0013 (其物理含义是每单位电场强度的分子偶极矩。
越大,分子的极化能力越强。
单位是〉^2 3、极化强度〉〔单位体积中电介质感应偶极矩的矢量和,单位是0/^12 ?^ 则5 〉―&^极化系数,宏观参数第三节宏观平均场强^是指极板上的自由电荷以及电介质中所有极化粒子形成的偶极矩共同的作用场强。
对于平板介质电容器,满足:①电介质连续均匀,②介电系数不随电场0电位移0 强度的改变发生变化。
的一般定义式。
; ^ 有效电场:是指作用在某一极化粒子上的局部电场。
它应为极板上的自由电荷以及除这一被考察的极化粒子以外其他所有的极化粒子形成的偶极矩在该点产生的电场。
洛伦兹有效电场的计算模型:电介质被一个假想的空球分成两部分,极化粒子孤立的处在它的球腔中心。
电介质物理知识点总结电介质是一类具有不良导电性能的材料,可用于电容器、绝缘体等应用中。
电介质物理是研究介质在电场作用下的电学性能的科学。
电介质物理是电磁场理论和介质物理学的重要组成部分。
下面我们将对电介质物理的相关知识点进行总结和展开。
1. 电介质的基本性质电介质是一种不良导电性能的材料,通常包括固体、液体和气体。
电介质的主要特点是在外电场作用下会发生极化现象。
极化是指介电极化,即在电场作用下使介质内部出现正负电偶极子的排列现象,从而使介质产生极化电荷。
常见的电介质包括空气、水、玻璃、塑料等。
2. 电介质的极化过程当电介质处于外电场中时,介质内部的正负电荷将发生位移,使介质被极化。
电介质的极化过程可分为定向极化和非定向极化两种类型。
其中,定向极化是指在介质中存在有定向的分子或离子,当外电场作用下,这些分子或离子会按照一定方向排列,这种极化过程被称为定向极化;非定向极化是指介质中的分子或离子并不具有固定的方向排列,当外电场作用下,这些分子或离子将发生不规则的排列,这种极化过程被称为非定向极化。
极化过程使介质产生极化电荷,从而改变了介质的电学性能。
3. 介质极化的类型根据介质极化的不同类型,可以将极化过程分为电子极化、离子极化和取向极化。
电子极化是指在电场的作用下,介质中的电子云将出现位移,从而使整个分子或原子产生极化;离子极化是指在外电场作用下,介质中的阴离子和阳离子将发生位移,产生极化现象;取向极化是指在电场作用下,具有一定取向的分子或离子将产生极化现象。
不同类型的极化过程会影响介质的电学性能。
4. 介质极化与介电常数介质的极化现象将改变介质的电学性能,其中介电常数是一个重要的参数。
介电常数是介质在外电场作用下的电极化能力的体现,介电常数越大,介质的电极化能力越强。
介电常数的大小将影响介质的导电性、电容性等电学性能。
5. 介电损耗介质在外电场作用下会产生能量损耗,这种现象被称为介电损耗。
介电损耗会导致介质内部的吸收能量和产生热量,从而影响介质的电学性能。
第一章电介质基本物理知识电介质(或称绝缘介质)在电场作用下的物理现象主要有极化、电导、损耗和击穿。
在工程上所用的电介质分为气体、液体和固体三类。
目前,对这些电介质物理过程的阐述,以气体介质居多,液体和固体介质仅有一些基本理论,还有不少问题难以给出量的分析,这样就在很大程度上要依靠试验结果和工作经验来进行解释和判断。
第一节电介质的极化一、极化的含义电介质的分子结构可分为中性、弱极性和极性的,但从宏观来看都是不呈现极性的。
当把电介质放在电场中,电介质就要极化,其极化形式大体可分为两种类型:第一种类型的极化为立即瞬态过程,极化的建立及消失都以热能的形式在介质中消耗而缓慢进行,这种方式称为松弛极化。
电子和离子极化属于第一种,为完全弹性方式,其余的属于松弛极化型。
(一)电子极化电子极化存在于一切气体,液体和固体介质中,形成极化所需的时间极短,约为1015 s。
它与频率无关,受湿度影响小,具有弹性,这种极化无能量损失。
(二)原子或离子的位移极化当无电场作用时,中性分子的正、负电荷作用中心重合,将它放在电场中时,其正负电荷作用中心就分离,形成带有正负极性的偶极子。
离子式结构的电介质(如玻璃、云母等),在电场作用下,其正负离子被拉开,从而使正负电荷作用中心分离,使分子呈现极性,形成偶极子,形成正负电荷距离。
原子中的电子和原子核之间,或正离子和负离子之间,彼此都是紧密联系的。
因此在电场作用下,电子或离子所产生的位移是有限的,且随电场强度增强而增大,电场以清失,它们立即就像弹簧以样很快复原,所以通称弹性极化,其特点是无能量损耗,极化时间约为1013-s。
(三)偶极子转向极化电介质含有固有的极性分子,它们本来就是带有极性的偶极子,它的正负电荷作用中心不重合。
当无电场作用时,它们的分布是混乱的,宏观的看,电介质不呈现极性。
在电场作用下,这些偶极子顺电场方向扭转(分子间联系比较紧密的),或顺电场排列(分子间联系比较松散的)。
物理学中的电介质物理学理论电介质物理学理论是指在电学领域中,研究非金属材料在电场中的响应性质的学科,其研究的对象是电介质。
电介质是指在外界电场作用下,会将电能转换为其他形式的非导体材料。
电介质广泛应用于电子学、通信、电力等领域,是现代电子科技中不可或缺的一部分。
1. 电介质物理学理论的基础知识电介质在外界电场下会发生极化现象,也就是说,电介质中的电子、离子、偶极子等会产生相应的分布。
这种电荷分布会影响电介质中的电场分布,从而影响电介质物质的响应。
电介质分为线性电介质和非线性电介质,线性电介质遵循线性关系,而非线性电介质不遵循线性关系。
另外,电介质的极化可以分为自发极化和强制极化。
自发极化是指电介质中存在自发极化矢量,在无外界电场的作用下也会存在极化现象。
而强制极化是指电介质在受到外界电场的作用下,会出现新的极化矢量,这种极化是强制性的,与电介质自身性质无关。
2. 电介质的电容与介电常数对于一个电介质,其电容和介电常数是两个非常重要的参数。
电容指的是电荷与电势之间的比例关系,即电容等于电荷与电势的比值。
介电常数是电介质中电场强度与电位移密度之间的比值,介电常数越大,则电介质极化相对来说就越明显。
需要注意的是,电介质的介电常数会随着温度和频率的变化而变化。
在高温下介电常数通常会降低,而在频率高于1MHz时介电常数也会下降。
3. 非线性电介质的应用非线性电介质的特点是其电极化与电场的关系不是线性的,当电场强度超过一定阈值时,电介质中会出现非线性响应。
非线性电介质具有频率倍增与和谐倍频等非线性效应,被广泛用于激光技术、雷达通信以及图像处理等领域。
例如,二极管光谱翻转技术,通过在非线性晶体中将激光脉冲和稳态激光序列合并,可以生成高质量的超短脉冲。
4. 结语在科技不断进步的今天,电介质物理学理论正作为电子学、通信、电力等领域的重要组成部分,不断发掘和发展着。
通过系统而深入地学习电介质物理学理论,人们可以更好地理解各种电介质材料的性质,并将其应用于实际生活中的各种领域。
第一章 电介质的极化1.什么是电介质的极化?表征介质极化的宏观参数是什么? 若两平行板之间充满均匀的电介质,在外电场作用下,电介质的内部将感应出偶极矩,在与外电场垂直的电介质表面上出现与极板上电荷反号的极化电荷,即束缚电荷σˊ。
这种在外电场作用下,电介质内部沿电场方向产生感应偶极矩,在电介质表面出现极化电荷的现象称为电介质极化。
为了计及电介质极化对电容器容量变化的影响,我们定义电容器充以电介质时的电容量C 与真空时的电容量C0的比值为该电介质的介电系数,即0rC C=ε,它是一个大于1、无量纲的常数,是综合反映电介质极化行为的宏观物理量。
2.什么叫退极化电场?如何用一个极化强度P 表示一个相对介电常数为r ε的平行板介质电容器的退极化电场、平均宏观电场、电容器极板上充电电荷产生的电场。
电介质极化以后,电介质表面的极化电荷将削弱极板上的自由电荷所形成的电场,所以,由极化电荷产生的场强被称为退极化电场。
退极化电场:00εεσPE d -='-= 平行宏观电场:)1(0-=r PE εε充电电荷产生的电场:)1()1(0000000-=+-=+===+=r r r d PP P P E D E E E εεεεεεεεεεσ 3.氧离子的半径为m 101032.1-⨯,计算氧原子的电子位移极化率 按式304r πεα=代入相应的数据进行计算。
240310121056.2)1032.1()1085.8(14.34m F •⨯≈⨯⨯⨯⨯⨯=---α4.在标准状态下,氖的电子位移极化率为2101043.0m F •⨯-。
试求出氖的相对介电常数。
单位体积粒子数253231073.24.221010023.6⨯=⨯⨯=N e r N αεε=-)1(0 12402501085.81043.01073.211--⨯⨯⨯⨯+=+=∴εαεer N5.试写出洛伦兹有效电场的表达式。
适合洛伦兹有效电场时,电介质的介电系数r ε和极化率α有什么关系?其介电系数的温度系数的关系式又如何表示。
第一章电介质基本物理知识电介质(或称绝缘介质)在电场作用下的物理现象主要有极化、电导、损耗和击穿。
在工程上所用的电介质分为气体、液体和固体三类。
目前,对这些电介质物理过程的阐述,以气体介质居多,液体和固体介质仅有一些基本理论,还有不少问题难以给出量的分析,这样就在很大程度上要依靠试验结果和工作经验来进行解释和判断。
第一节电介质的极化一、极化的含义电介质的分子结构可分为中性、弱极性和极性的,但从宏观来看都是不呈现极性的。
当把电介质放在电场中,电介质就要极化,其极化形式大体可分为两种类型:第一种类型的极化为立即瞬态过程,极化的建立及消失都以热能的形式在介质中消耗而缓慢进行,这种方式称为松弛极化。
电子和离子极化属于第一种,为完全弹性方式,其余的属于松弛极化型。
(一)电子极化电子极化存在于一切气体,液体和固体介质中,形成极化所需的时间极短,约为1015 s。
它与频率无关,受湿度影响小,具有弹性,这种极化无能量损失。
(二)原子或离子的位移极化当无电场作用时,中性分子的正、负电荷作用中心重合,将它放在电场中时,其正负电荷作用中心就分离,形成带有正负极性的偶极子。
离子式结构的电介质(如玻璃、云母等),在电场作用下,其正负离子被拉开,从而使正负电荷作用中心分离,使分子呈现极性,形成偶极子,形成正负电荷距离。
原子中的电子和原子核之间,或正离子和负离子之间,彼此都是紧密联系的。
因此在电场作用下,电子或离子所产生的位移是有限的,且随电场强度增强而增大,电场以清失,它们立即就像弹簧以样很快复原,所以通称弹性极化,其特点是无能量损耗,极化时间约为1013-s。
(三)偶极子转向极化电介质含有固有的极性分子,它们本来就是带有极性的偶极子,它的正负电荷作用中心不重合。
当无电场作用时,它们的分布是混乱的,宏观的看,电介质不呈现极性。
在电场作用下,这些偶极子顺电场方向扭转(分子间联系比较紧密的),或顺电场排列(分子间联系比较松散的)。
1、电介质分类:非极性电介质、极性电介质、离子性电介质2、电介质的极化:在外电场作用下,电介质内部沿电场方向产生感应偶极矩,出现宏观偶极矩,在介质表面出现束缚电荷的现象3、电子位移极化:电子云畸变引起的负电荷中心位移产生感应电矩,称电子位移极化4、离子位移极化:正负离子中心发生相对位移,发生感应电矩,称离子位移极化5、取向极化:固有电偶极矩沿外电场方向转向称取向极化,6、热离子极化:实际电介质,由于热运动,离子脱离平衡位置发生迁移,电场使已经脱离平衡位置的弱联系离子做定向迁移,造成电介质内部电荷分布不均,形成偶极矩,称为热离子极化7、空间电荷极化或夹层极化、界面极化:电介质中的电荷在不同介质的界面上积聚,形成空间电荷局部积累,使电介质中的电荷分布不均匀,产生宏观电矩。
这种极化称为空间电荷极化或夹层极化、界面极化8、固有偶极矩的取向极化:当有外电场时,这些固有偶极矩将趋于转向沿外电场方向排列。
因固有偶极矩转向而在介质中产生宏观偶极矩,这种现象称为固有偶极矩的取向极化9、为什么宏观电场强度E 和有效电场Ei 不相等?答:1、在外电场的作用下电介质发生电极化,整个介质出现宏观电场2、电介质中的某一点的宏观电场E,是指极板上的自由电荷以及电介质中所有极化分子形成的偶极矩,共同在该点产生的电场3、作用在每个分子或原子上实质极化的有效电场(内电场)显然不包括该分子或原子自身极化所产生的电场。
4、比如:平行板电容器1011、电介质的极化包括弹性位移极化和弛豫极化。
弹性位移极化:电子弹性位移极化和离子位移极化,这两种极化的时间非常短,与温度的依赖关系不大弛豫极化:固有电矩的取向极化和热离子极化、缺陷偶极矩的取向极化(又称界面极化),固有电矩的取向极化与热平衡性质(温度)有关,缺陷偶极矩的取向极化与电荷的堆积过程有关,需要很长弛豫时间,称弛豫极化12、弛豫时间:电介质的极化是一个弛豫过程,从施加电场到极化平衡需要一定的时间,这个时间称弛豫时间13、瞬时极化:电子弹性位移极化和离子弹性位移极化达到稳态所需时间约10-16-10-12 s,在远低于光频情况下可认为是即时的,因此弹性极化也称瞬时极化或无惯性极化。
电介质四个大类物理现象
电介质是一种在电场中能够发生极化现象的物质。
电介质的四个大类物理现象包括:
1. 极化现象,当电介质置于外电场中时,其分子或原子会发生极化现象,即在电场的作用下,正负电荷分离,形成电偶极矩。
这种极化现象是电介质的基本特征之一。
2. 介质击穿,当电场强度达到一定数值时,电介质会发生击穿现象,即电介质内部的电阻突然减小,导致电流急剧增大,这种现象常常伴随着放电和火花的产生。
3. 介质损耗,在交流电场中,电介质会因为分子或原子在电场中的周期性运动而产生能量损耗,这种损耗称为介质损耗。
介质损耗会导致电介质加热,并且会影响电介质的电学性能。
4. 介质弛豫,当外电场发生变化时,电介质内部的极化现象不会立即跟随电场的变化而变化,而是有一定的滞后时间。
这种现象称为介质弛豫,其时间常数取决于电介质的性质和温度等因素。
以上是电介质的四个大类物理现象,它们展现了电介质在电场中的复杂而丰富的行为。