新人教版七年级上册数学各单元分章节测试题
- 格式:pdf
- 大小:475.28 KB
- 文档页数:19
第 一 章 有 理 数班级 学号 姓名 得分一、选择题(4分³10=40分) 1、2008的绝对值是( )A 、2008B 、-2008C 、±2008D 、200812、下列计算正确的是( )A 、-2+1=-3B 、-5-2=-3C 、-112-=D 、1)1(2-=-3、近几年安徽省教育事业加快发展,据2005年末统计的数据显示,仅普通初中在校生就约有334万人,334万人用科学记数法表示为( )A 、0.334³710人B 、33.4³510人C 、3.34³210人D 、3.34³610人 4、下列各对数互为相反数的是( )A 、-(-8)与+(+8)B 、-(+8)与+︱-8︱C 、-2222)与(-D 、-︱-8︱与+(-8)5、计算(-1)÷(-5)³51的结果是( )A 、-1B 、1C 、251D 、-256、下列说法中,正确的是( )A 、有最小的有理数B 、有最小的负数C 、有绝对值最小的数D 、有最小的正数7、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( )A 、800 mB 、200 mC 、2400 mD 、-200 m 8、已知︱x ︱=2,y 2=9,且x ²y<0,则x +y=( )A 、5B 、-1C 、-5或-1D 、±19、已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所表示的数有( )A 、1个B 、2个C 、3个D 、4个10、有一张厚度是0.1mm 的纸,将它对折20次后,其厚度可表示为( )A 、(0.1³20)mmB 、(0.1³40)mmC 、(0.1³220)mmD 、(0.1³202)mm二、填空题(5分³4=20)11、妈妈给小颖10元钱,小颖记作“+10元”,那么“-5元”可能表示什么12、一个正整数,加上-10,其和小于0,则这个正整数可能是 .(写出两个即可)13、某同学用计算器计算“2÷13”时,计算器上显示结果为0.153846153,将此结果保留三位有效数字为 .14、观察下列各数,按规律在横线上填上适当的数。
最新人教版七年级数学上册单元测试题全套第1章检测题(时间:100分钟 满分:120分一、选择题(每小题3分,共30分) 1.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作(B)A .+0.02克B .-0.02克C .0克D .+0.04克 2.(2015·安徽)在-4,2,-1,3这四个数中,比-2小的数是(A) A .-4 B .2 C .-1 D .33.计算⎪⎪⎪⎪-13-23的结果是(A) A .-13 B.13C .-1D .14.如图,数轴的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是(B) A .-4 B .-2 C .0 D .4 5.下列计算不正确的是(A)A .-32+12=-2B .(-13)2=19C .|-3|=3D .-(-2)=26.(2015·三明)一个正常人的心跳平均每分钟70次,一天大约跳100800次,将100800用科学记数法表示为(C)A .0.1008×106B .1.008×106C .1.008×105D .10.08×104 7.下列说法正确的是(C)A .近似数0.21与0.210的精确度相同B .近似数1.3×104精确到十分位C .数2.9951精确到百分位为3.00D .小明的身高为161 cm 中的数是准确数8.下列计算:①0-(-5)=0+(-5)=-5;②5-3×4=5-12=-7;③4÷3×(-13)=4÷(-1)=-4;④-12-2×(-1)2=1+2=3.其中错误的有(C)A .1个B .2个C .3个D .4个9.有理数a ,b 在数轴上的位置如图,下列选项正确的是(D) A .a +b >a -b B .ab >0 C .|b -1|<1 D .|a -b |>1 10.(2015·重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形……依此规律,图○10中黑色正方形的个数是(B)A .32B .29C .28D .26点拨:图○10中黑色正方形的个数是2+(10-1)×3=29 二、填空题(每小题3分,共24分)11.(2015·金华)-3的相反数是__3__,-3的倒数是__-13__.12.在数轴上表示数a 的点到表示数1的点的距离为3,则a -3=__1或-5__. 13.比较下列各组数的大小: (1)0__>__-|-0.01|; (2)-0.2__<__|0.02|; (3)-(-3.3)__<__|-103|. 14.(2015·滨州)计算:-3×2+(-2)2-5=__-7__.15.平方等于它本身的数是__0或1__;立方等于它本身的数是__-1或0或1__;一个数的平方等于它的立方,这个数是__0或1__.16.若|a |=3,b =-2,且ab >0,则a +b =__-5__. 17.若(a +1)2+|b -99|=0,则b -a b 的值为__100__.18.由图①中找规律,并按规律从图②中找出a ,b ,c 的值,计算a +b +c 的值是__12__. 三、解答题(共66分) 19.(16分)计算:(1)-5-(-4)+(-3)-[-(-2)]; 解:-6(2)2×(-5)+23-3÷12;解:-8(3)(14-59-13+712)÷(-136); 解:2(4)-12-2×(-3)3-(-2)2+[313÷(-23)×15]4.解:5020.(7分)x 与y 互为相反数,m 与n 互为倒数,|a |=1,求a 2-(x +y )2017+(-mn )2016的值. 解:由题意得x +y =0,mn =1,a 2=|a |2=1,所以原式=1-02017+(-1)2016=221.(7分)定义新运算:对任意有理数a ,b ,都有a ⊗b =a 2-b .例如,3⊗2=32-2=7,求2⊗1的值. 解:21=22-1=322.(8分)下表是小明记录的今年雨季流沙河一周内的水位变化情况(上周末水位达到警戒水位记为0,“+”表示水位比前一天上升,“-”表示水位比前一天下降):星期 一 二 三 四 五 六 日 水位变化(米)+0.20+0.81-0.35+0.03+0.28-0.36-0.01戒水位的距离是多少米?(2)与上周末相比,本周末水位是上升了还是下降了?上升或下降多少米?解:(1)星期二水位最高,星期一水位最低;星期二水位位于警戒水位之上,距离为1.01米;星期一水位位于警戒水位之上,距离为0.20米 (2)上升,上升0.6米23.(8分)如图是一个数值转换机的示意图,若输入x的值为3,y的值为-2,根据程序列出算式并求出输出的结果.解:[3×2+(-2)3]÷2=[6+(-8)]÷2=-2÷2=-124.(8分)某个体儿童服装店老板以每件32元的价格购进30条连衣裙,针对不同的顾客,连衣裙的售价不完全相同,若以47元为标准,超过的钱数记为正,不足的钱数记为负,记录的结果如下表所示:售出件数7 6 3 5 4 5售价/元+3 +2 +1 0 -1 -2解:服装店卖完30件连衣裙所得钱数为47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(-1)×4+(-2)×5]=1410+22=1432(元),所以共赚了1432-32×30=472(元)25.(12分)有规律排列的一列数:2,4,6,8,10,12,14,…,它的每一项可用式子2n(n是正整数)来表示.现有有规律排列的一列数:1,-2,3,-4,5,-6,7,-8,….(1)它的每一项你认为可用怎样的式子来表示? (2)它的第100个数是多少?(3)2016是不是这列数中的数?如果是,是第几个数?如果不是,请说明理由.解:(1)(-1)n +1·n (n 是正整数) (2)-100 (3)不是,当n =2016时,(-1)2016+1·2016=-2016第2章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.用代数式表示“a 的3倍与b 的和”,正确的是(B) A .3a -b B .3a +b C .a -3b D .a +3b 2.下列说法不正确的是(C)A .多项式5x 2+4x -2的项是5x 2,4x ,-2B .5是单项式C .2x 3,a +b 3,ab 2,3aπ都是单项式 D .3-4a 中,一次项的系数是-43.-[-(m -n )]去括号得(A)A .m -nB .-m -nC .-m +nD .m +n 4.关于单项式-52xy n8,下列说法正确的是(C)A .系数是5,次数是nB .系数是-58,次数是n +3C .系数是-528,次数是n +1 D .系数是-5,次数是n +15.下列各组的两项是同类项的为(B) A .3m 2n 2与-m 2n 3 B.12xy 与2yxC .53与a 3D .3x 2y 2与4x 2z 26.化简a -2(1-3a )的正确结果是(A)A .7a -2B .-2-5aC .4a -2D .2a -27.如图,一块砖的外侧面积为x ,那么图中残留部分墙面的面积为(B) A .4x B .12x C .8x D .16x8.某厂一月份的产量为a 吨,二月份的产量比一月份增加了2倍,三月份的产量为二月份的2倍,则该厂第一季度的总产量为(B)A .5a 吨B .10a 吨C .7a 吨D .9a 吨9.如果在数轴上表示a ,b 两个数的点的位置如图所示,那么化简|a -b |+|a +b |的结果等于(B) A .2a B .-2a C .0 D .2b10.用棋子摆出如图所示的一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子(A)A .4n 枚B .(4n -4)枚C .(4n +4)枚D .n 2枚 二、填空题(每小题3分,共24分)11.x -(y -z )的相反数是__-x +y -z __.12.若14x m +1y 3与-2xy n 是同类项,则m +n =__3__.13.已知一个三位数的个位数字为x ,十位数字为y ,百位数字为z ,那么这个三位数用代数式表示为__100z +10y +x __.14.已知a -b =-3,c +d =2,则(b +c )-(a -d )的值为__5__. 15.若(a 2-3a -1)+A =a 2-a +4,则A =__2a +5__.16.一个只含字母x 的二次三项式,它的二次项系数比一次项系数小1,一次项系数比常数项又小1,常数项为-23,则这个多项式为__-83x 2-53x -23__.17.某城市为增强人们节水的意识,规定生活用水的基本价格是2元/m 3,每户每月用水限定为7 m 3,超过部分按3元/m 3收费.已知小华家上个月用水a m 3(超过7 m 3),则小华家上个月应交水费__(3a -7)__元.(用含a 的式子表示)18.一组按规律排列的式子:-a 2,a 52,-a 83,a 114,…(a ≠0),则第n 个式子是__(-1)n ·a 3n -1n __(n 是正整数).三、解答题(共66分) 19.(16分)计算:(1)(2m 2+4m -3)+(5m +2); (2)x -[y -2x -(x +y )]; 解:(1)2m 2+9m -1 (2)4x(3)2(x 2-2x +5)-3(2x 2-5); (4)3(x +y 2)-11(y 2+x )+5(x +y 2)+2(x +y 2). 解:(3)-4x 2-4x +25 (4)-y 2-x20.(10分)先化简,再求值:(1)(5a -3a 2+1-4a 3)-(-2a 2-a 3),其中a =-2; 解:原式=5a -a 2-3a 3+1,当a =-2时,原式=11(2)已知a -b =5,ab =1,求(2a +3b -2ab )-(a +4b +ab )-(3ab +2b -2a )的值.解:原式=3a -3b -6ab =3(a -b )-6ab ,当a -b =5,ab =1时,原式=3×5-6×1=921.(6分)已知A =2x 2-9x -11,B =3x 2-6x +4,求:(1)A -B ;(2)12A +2B .解:(1)A -B =(2x 2-9x -11)-(3x 2-6x +4)=-x 2-3x -15 (2)12A +2B =12(2x 2-9x -11)+2(3x 2-6x+4)=7x 2-332x +5222.(8分)按下列程序计算,把答案填写在表格里,然后看看有什么规律,想想为什么会有这个规律?n →平方→-n →×2→-2n 2→+2n -1→答案(1)填写表内空格:(2)你发现的规律是__-1__;(3)用简要过程说明你发现的规律的正确性.解:(3)2(n 2-n )-2n 2+2n -1=-1,输出值恒为-1,与n 无关23.(8分)如图,一块正方形的铁皮,边长为x cm(x>4),如果一边截去宽4 cm的一块,相邻一边截去宽3 cm的一块.(1)求剩余部分(阴影)的面积;(2)若x=8,则阴影部分的面积是多少?解:(1)剩余部分(阴影)的面积为x2-3x-4(x-3)=x2-7x+12(cm2)(2)当x=8时,x2-7x+12=82-7×8+12=20(cm2)24.(8分)托运行李的费用计算方法是:托运行李总质量不超过30千克,每千克收费1元;超过部分每千克收费1.5元.某旅客托运行李m千克(m为正整数).(1)请你用代数式表示托运m千克行李的费用;(2)求当m=45时的托运费用.解:(1)当m≤30时,费用为m元;当m>30时,费用为30+1.5(m-30)=(1.5m-15)元(2)当m=45时,费用为52.5元25.(10分)某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:排数 1 2 3 4座位数50 53 56 59按这种方式排下去:(1)第5,6排各有多少个座位?(2)第n排有多少个座位?请说出你的理由.解:(1)第5排有62个座位,第6排有65个座位(2)50+3(n -1)=3n +47(个),理由:后一排总比前一排多3个座位第3章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列方程中,是一元一次方程的是(A) A .x +3=2x -1 B .3x =2y C .x 2=1 D .1x =132.下列等式变形正确的是(C)A .若a =b ,则a -3=3-bB .若x =y ,则x a =yaC .若a =b ,则ac =bcD .若b a =dc,则b =d3.下列是四个同学解方程2(x -2)-3(4x -1)=9时去括号的结果,其中正确的是(A) A .2x -4-12x +3=9 B .2x -4-12x -3=9 C .2x -4-12x +1=9 D .2x -2-12x +1=94.解方程2x +13-x +16=2,有下列四步,其中最开始发生错误的是(A)A .2(2x +1)-(x +1)=2B .4x +2-x +1=2C .3x =-1D .x =-135.若式子14x +2与5-2x 互为相反数,且x 也是方程3x +(3a +1)=x -6(3a +2)的解,则a 的值为(B)A .1B .-1C .4D .-46.如图是某年9月的日历表,任意圈出一竖列上相邻的三个数,请你运用方程的思想来思考这三个数的和不可能是(D)A .69B .54C .27D .407.三个正整数的比是1∶2∶4,它们的和是84,那么这三个数中最大的数是(B) A .56 B .48 C .36 D .128.甲、乙两人同时从A 地到B 地,甲每小时行10千米,且甲比乙每小时多行1千米,结果甲比乙早到半小时,设A ,B 两地间的路程为x 千米,可列方程为(C )A.x 10=x 9+12B.x 10=x 11-12C.x 10=x 9-12D.x 10=x 11+129.某商店同一天出售了两件商品,售价都是60元,其中一件盈利50%,另一件亏本20%,则卖出这两件商品该商店(B )A .不赚不赔B .赚5元C .赔5元D .赚8元10.两根同样长的蜡烛,粗烛可燃烧4小时,细烛可燃烧3小时.一次停电,同时点燃两根蜡烛,来电后同时吹灭,发现粗烛的长是细烛的2倍,则停电时间为(C)A .2小时B .2小时20分C .2小时24分D .2小时40分点拨:设停电时间为x 小时,蜡烛长度均为1,由题意得1-x 4=2(1-x3),解得x =2.4,2.4小时=2小时24分,则停电2小时24分二、填空题(每小题3分,共24分)11.若x =2是关于x 的方程2x -3mx =4-2m 的解,则m 的值是__0__. 12.当x =__2__时,代数式3x -5比1-2x 的值大4. 13.已知|x +3|+(x +2y -1)2=0,则2x -y =__-8__.14.如图所示是一个数值计算程序,在某次计算时输入一个数x 后,输出的结果为38,那么输入的数x 的值为__27__.输入x →×5→-21→÷3→输出 点拨:由题意得5x -213=38,解得x =2715.如图,两个天平都平衡,则与3个球体相等质量的正方体的个数为__3__. 16.(2015·牡丹江)某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为__100__元.17.某小组几名同学准备到图书馆整理一批图书,若一名同学单独做,则需要40 h 完成.现在该小组全体同学一起先做8 h 后,有2名同学因故离开,剩下的同学再做4 h ,正好完成这项工作.假设每名同学的工作效率相同,则该小组共有__4__名同学.18.我们知道,无限循环小数都可以转化为分数.例如:将0.3·转化为分数时,可设0.3·=x ,则x =0.3+110x ,解得x =13,即0.3·=13.仿此方法,将0.4·5·化成分数是__511__. 三、解答题(共66分) 19.(16分)解下列方程:(1)4(2x +3)=8(1-x)-5(x -2); (2)1-7+3x 8=3x -104-x ;解:(1)x =27 (2)x =21(3)0.1-0.2x 0.3-1=0.7-x 0.4; (3)x -12[x -12(x -12)]=2.解:(3)x =2922 (4)x =17620.(6分)已知12ax +b -3=0,求ax +2b +5的值.解:由已知得12ax +b =3,所以ax +2b =6,所以ax +2b +5=1121.(7分)定义一种新运算“⊕”:a ⊕b =a -2b ,如:2⊕(-3)=2-2×(-3)=2+6=8.若(x -3)⊕(x +1)=1,求x 的值.解:x =-622.(7分)如图,小刚将一个正方形纸片剪去一个宽为4 cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5 cm 的长条.如果两次剪下的长条面积正好相等,那么每一个长条的面积为多少?解:设原正方形的边长为x cm ,由题意得5(x -4)=4x ,解得x =20,故每个长条的面积为20×4=80(cm 2)23.(9分)(2015·深圳)下表为深圳市居民每月用水收费标准(单位:元/m 3):用水量 单价 x ≤22 a 剩余部分a +1.1(1)某用户用水10立方米,(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米? 解:(1)a =23÷10=2.3 (2)因为22×2.3=50.6<71,所以该用户用水超过22 m 3.设该用户5月份用水x立方米,根据题意得2.3×22+3.4(x -22)=71,解得x =28,则该用户5月份用水28立方米24.(9分)请你根据下面的对话回答问题:(1)李明买的两箱鸡蛋合算吗?说明理由;(2)请你求出张新店里买了多少箱这种特价鸡蛋,假设这批特价鸡蛋的保质期还有18天,那么张新店里平均每天要用掉多少个鸡蛋才不会浪费?解:(1)不合算.理由:因为李明买两箱鸡蛋节省的钱为2×(14-12)=4(元),李明丢掉的20个坏鸡蛋损失掉的钱为1230×20=8(元),而4元<8元,所以李明买的两箱鸡蛋不合算 (2)设张新店里买了x 箱特价鸡蛋,根据题意得12x =2×14x -96,解得x =6,因而6×30÷18=10(个),所以张新店里平均每天要用掉10个鸡蛋才不会浪费25.(12分)为庆祝六一儿童节,某市中小学统一组织文艺会演,甲、乙两所学校共92名学生(其中甲校学生多于乙校学生,且甲校学生不够90名)准备统一购买服装参加演出,下面是某服装厂给出的演出服装价格表:购买服装的套数 1套至45套 46套至90套91套及以上 每套服装的价格60元50元40元(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少元钱?(2)甲、乙两校各有多少名学生准备参加演出?(3)如果甲校有10名学生被调去参加书法绘画比赛不能参加演出,请你为两校设计一种最省钱的购买服装方案.解:(1)节省的钱为5000-92×40=1320(元) (2)设甲校有x 名学生准备参加演出,则乙校有(92-x)名学生准备参加演出.根据题意得50x +60(92-x)=5000,解得x =52,所以92-x =92-52=40,则甲校有52名学生准备参加演出,乙校有40名学生准备参加演出 (3)因为甲校有10名学生不能参加演出,所以甲校参加演出的学生有52-10=42(名).①若两校联合购买服装,则需要(42+40)×50=4100(元);②若两校各自购买服装,则需要(42+40)×60=4920(元);③若两校联合购买91套服装,则需要40×91=3640(元).综上所述,最省钱的购买服装方案是两校联合购买91套服装第4章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分) 1.下列能用∠C 表示∠1的是(C)2.(2015·北海)已知∠A =40°,则它的余角为(B) A .40° B .50° C .130° D .140° 3.(2015·宜昌)下列图形中可以作为一个三棱柱的展开图的是(A)4.下面四个几何体中,从左面看到的图形是四边形的几何体共有(B)A .1个B .2个C .3个D .4个5.已知M 是线段AB 的中点,那么:①AB =2AM ;②BM =12AB ;③AM =BM ;④AM +BM =AB ,上面四个式子中,正确的个数有(D)A .1个B .2个C .3个D .4个6.如图,已知∠1=∠2,∠3=∠4,则下列结论:①AD 平分∠BAF ;②AF 平分∠DAC ;③AE 平分∠DAF ;④AE 平分∠BAC ,其中正确的个数是(B)A .1B .2C .3D .4错误! 错误!,第8题图) 错误!,第9题图)7.平面上五个点最多可以确定直线的条数为(C) A .5条 B .8条 C .10条 D .12条8.如图,直线l 1,l 2,l 3把平面分成(D)部分. A .4 B .5 C .6 D .79.如图,在时刻8:30,时钟上的时针和分针之间的夹角为(B) A .85° B .75° C .70° D .60°10.如果AB =10 cm ,BC =8 cm ,则A ,C 两点间的距离为(D)A.2 cm B.18 cm C.2 cm或18 cm D.不能确定二、填空题(每小题3分,共24分)11.如图,射线OA表示的方向是__南偏西20°__.,第11题图),第12题图),第15题图)12.写出如图所示立体图形的名称:①__圆柱__;②__四棱锥__;③__三棱柱__.13.计算:(1)53°19′42″+16°40′18″=__70°__;(2)23°15′16″×5=__116°16′20″__.14.延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC的__3__倍.15.把一张长方形纸条按如图的方式折叠后,量得∠AOB′=110°,则∠B′OC的度数是__35°__.16.如图,已知∠COE=∠BOD=∠AOC=90°,则图中互余的角有__4__对,互补的角有__7__对.,第16题图),第17题图),第18题图)17.如图是由一副三角板拼成的两个图形,则:(1)在第一个图形中,∠ACD=__75°__,∠ABD=__135°__;(2)在第二个图形中,∠BAG=__45°__,∠AGC=__105°__.18.如图,点A在数轴上对应的数为2,若点B也在数轴上,且线段AB的长为4,C为OB的中点,则点C在数轴上对应的数为__3或-1__.三、解答题(共66分)19.(8分)如图是由七块相同的小正方体搭成的立体图形,请画出这个图形分别从正面看、从左面看和从上面看到的平面图形.解:20.(8分)如图,两辆汽车从A 点同时出发,一辆沿西北方向以40千米/时的速度行驶;另一辆沿南偏西60°的方向以60千米/时的速度行驶,34小时后分别到达B ,C 两点,如果图中1 cm 代表10 km ,那么试在图中画出B ,C 两点,并通过测量,说出此时两辆车的距离.解:AB =34×40=30(千米),AC =60×34=45(千米).∠BAC =75°,两辆车的距离即为BC 的长度,图略,测量出两车距离约为47 km21.(9分)李老师到市场买菜,发现如果把10千克的菜放到托盘秤上,指标盘上的指针转了180°,第二天李老师就给同学们出了两个问题.(1)如果把0.6千克的菜放在托盘秤上,指针转过多少度角? (2)如果指针转了7°12′,这些菜有多少千克?解:(1)由题意得(180÷10)×0.6=10.8(度) (2)(10÷180)×71260=0.4(千克)22.(9分)如图,已知A ,B ,C 三点在同一直线上,AB =24 cm ,BC =38AB ,E 是AC 的中点,D 是AB 的中点,求DE 的长.解:因为AB =24 cm ,BC =38AB =38×24=9(cm ),所以AC =33 cm ,又因为E 是AC 的中点,则AE=12AC =16.5 cm ,又因为D 是AB 的中点,则AD =12AB =12 cm ,所以DE =AE -AD =16.5-12=4.5(cm )23.(10分)如图,点A,O,B在同一条直线上,∠COB与∠BOD互余,OE,OF分别是∠AOC,∠AOD的平分线,求∠EOF的度数.解:由∠COB与∠BOD互余得∠COD=90°,所以∠AOC+∠AOD=360°-90°=270°,又因为OE,OF分别是∠AOC,∠AOD的平分线,所以∠EOF=12(∠AOC+∠AOD)=12×270°=135°24.(10分)如图,A,O,E在一条直线上,OB平分∠AOC,∠AOB+∠DOE=90°,问∠COD与∠DOE之间有什么关系?并说明理由.解:∠COD=∠DOE.理由:因为∠AOB+∠DOE=90°,所以∠BOC+∠COD=90°.又因为OB平分∠AOC,所以∠BOC=∠AOB,所以∠COD=∠DOE25.(12分)如图①,已知∠AOB=80°,OC是∠AOB的平分线,OD,OE分别平分∠BOC和∠COA.(1)求∠DOE的度数;(2)当OC绕点O旋转到OB的左侧时如图②(或旋转到OA的右侧时如图③),OD,OE仍是∠BOC和∠COA的平分线,此时∠DOE的大小是否和(1)中的答案相同?若相同,请选取一种情况写出你的求解过程;若不同,请说明理由.解:(1)由题意可知∠BOC =∠AOC =12∠AOB =12×80°=40°,∠BOD =∠DOC =12∠BOC =12×40°=20°,∠COE =∠AOE =12∠AOC =12×40°=20°,所以∠DOC +∠COE =20°+20°=40°,即∠DOE=40° (2)∠DOE 的大小与(1)中答案相同,仍为40°.选图②,理由:∠DOE =∠COE -∠COD =12∠AOC-12∠BOC =12(∠AOC -∠BOC)=12∠AOB =12×80°=40°。
第一章《有理数》全章检测测试题(时间120分钟 满分150分)一、选择题(每题3分,共45分)1、大于–3.5,小于2.5的整数共有( )个。
A.6B.5C.4D.32、如果一个数的相反数比它本身大,那么这个数为 ( )A 、正数B 、负数C 、整数D 、不等于零的有理数3、在有理数中,绝对值等于它本身的数有 ( )A. 1个B. 2个C. 3个D. 无穷多个4. 若ab≠0,则a/b 的取值不可能是 ( )A 0B 1C 2D -25. 在-2,0,1,3这四个数中,比0小的数是( )A 、-2B 、0C 、1D 、36、已知点A 和点B 在同一数轴上, 点A 表示数2-, 又已知点B 和点A 相距5个单位长度, 则点B 表示的数是 ( )A.3B.-7C.3或-7D.3或77、 若两个有理数的和是正数,那么一定有结论( )A . 两个加数都是正数;B .两个加数有一个是正数;C . 一个加数正数,另一个为零D .两个加数不能同为负数8. 下列说法正确的个数是 ( ) ①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的。
A 1B 2C 3D 4 2.9、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高( )A.10米B.15米C.35米D.5米10、下列说法中正确的是 ( )A.a -一定是负数B.a 一定是负数C.a -一定不是负数D.2a -一定是负数11、每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米B .1.5×810千米C .15×710千米D .1.5×710千米12. 下列说法正确的是 ( )。
①0是绝对值最小的有理数 ②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小 。
最新人教版七年级数学上册单元测试题及答案全册最新人教版七年级数学上册单元测试题及答案全册第一章有理数末章综合检测时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.有理数-4的相反数是()A.4B.-4C.4D.-42.比较-3,1,-2的大小,下列排序正确的是()A.-3<-2<1B.-2<-3<1C.1<-2<-3D.1<-3<-23.为了市民出行更加方便,某市政府大力发展交通,2016年某市公共交通客运量约为1 608 000 000人次,将1 608 000 000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×10104.某市一天上午的气温是10℃,下午上升了2℃,半夜(24时)下降了15℃,则半夜的气温是()A.3℃B.-3℃C.4℃D.-2℃5.杨梅开始采摘啦!每筐杨梅以5 kg为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图1-1,则4筐杨梅的总质量是()A.19.7 kgB.19.9 kgC.20.1 kgD.20.3 kg6.(-3)的倒数是()A.3B.-2C.3D.27.下列运算错误的是()A.-8×2×6=-96B.(-1)2014+(-1)2015=0C.-(-3)2=-9D.2÷4÷3×3=28.如图1-2,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是()A.ab>0B.a+b0 D.(b-1)(a-1)>09.若|a-1|+(b+3)2=0,则ba=()A.1B.-1C.3D.-310.规定一种新的运算“*”:对于任意有理数x,y满足x*y=x-y+xy.例如,3*2=3-2+3×2=7,则2*1=()A.4B.3C.2D.1二、填空题(每小题4分,共32分)11.一个点从数轴上表示-1的点开始,先向右平移6个单位长度,再向左平移8个单位长度,则此时这个点表示的数是_____。
新人教版七年级数学上册《第1章有理数》一、选择题(30分)1.随着时间的变迁,三溪的气候变得与过去大不一样,今年夏天的最高气温是39℃,而冬天的最低气温是﹣5℃,那么三溪今年气候的最大温差是( )℃.A.44 B.34 C.﹣44 D.﹣342.|﹣3|的相反数是( )A.3 B.﹣3 C .D .﹣3.下列说法不正确的是( )A.0既不是正数,也不是负数B.0的绝对值是0C.一个有理数不是整数就是分数D.1是绝对值最小的正数4.在数﹣,0,4.5,|﹣9|,﹣6.79中,属于正数的个数是( )A.2 B.3 C.4 D.55.一个数的相反数是3,这个数是( )A.﹣3 B.3 C .D .6.若|a|=﹣a,a一定是( )A.正数 B.负数 C.非正数D.非负数7.近似数2.7×103是精确到( )A.十分位B.个位 C.百位 D.千位8.把数轴上表示数2的点移动3个单位后,表示的数为( )A.5 B.1 C.5或1 D.5或﹣19.大于﹣2.2的最小整数是( )A.﹣2 B.﹣3 C.﹣1 D.010.若|x|=4,且x+y=0,那么y的值是( )A.4 B.﹣4 C.±4 D.无法确定二、填空题(本题共30分)11.若上升15米记作+15米,则﹣8米表示__________.12.平方是它本身的数是__________.13.计算:|﹣4|×|+2.5|=__________.14.绝对值等于2的数是__________.15.绝对值大于1并且不大于3的整数是__________.16.最小的正整数是__________,最大的负整数是__________.17.比较下面两个数的大小(用“<”,“>”,“=”)(1)1__________﹣2;(2)__________﹣0.3;(3)|﹣3|__________﹣(﹣3).18.如果点A表示+3,将A向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.19.数据810000用科学记数法表示为__________.20.观察下面一列数,根据规律写出横线上的数,﹣;;﹣;;__________;__________;…;第2013个数是__________.三、解答题(共60分)21.把下列各数的序号填在相应的数集内:①1 ②﹣③+3.2 ④0 ⑤⑥﹣6.5 ⑦+108 ⑧﹣4 ⑨﹣6(1)正整数集合{ …}(2)正分数集合{ …}(3)负分数集合{ …}(4)负数集合{ …}.22.在数轴上把下列各数表示出来,并用从小到大排列出来2.5,﹣2,|﹣4|,﹣(﹣1),0,﹣(+3)23.(16分)计算:(1)2﹣5+4﹣(﹣7)+(﹣6)(2)(﹣24)÷6(3)(﹣18)÷2×÷(﹣16)(4)43﹣.24.已知a是最大的负整数,b是﹣2的相反数,c与d互为倒数,计算:a+b﹣cd的值.25.规定a⊗b=ab﹣1,试计算:(﹣2)⊗(﹣3)⊗(﹣4)的值.26.云云的爸爸驾驶一辆汽车从A地出发,且以A为原点,向东为正方向.他先向东行驶15千米,再向西行驶25千米,然后又向东行驶20千米,再向西行驶40千米,问汽车最后停在何处?已知这种汽车行驶100千米消耗的油量为8.9升,问这辆汽车这次消耗了多少升汽油?27.为迎接2008年北京奥运会,某体育用品公司通过公开招标,接到一批生产比赛用的篮球业务,而比赛用的篮球质量有严格规定,其中误差±5g符合要求,现质检员从中抽取6个篮球进行检查,检查结果如下表:单位:g①②③④⑤⑥+3 ﹣2 +4 ﹣6 +1 ﹣3(1)有几个篮球符合质量要求?(2)其中质量最接近标准的是几号球?为什么?新人教版七年级数学上册《第1章有理数》一、选择题(30分)1.随着时间的变迁,三溪的气候变得与过去大不一样,今年夏天的最高气温是39℃,而冬天的最低气温是﹣5℃,那么三溪今年气候的最大温差是( )℃.A.44 B.34 C.﹣44 D.﹣34【考点】有理数的减法.【专题】应用题.【分析】用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:39﹣(﹣5)=39+5=44℃.故选A.【点评】本题考查了有理数的减法运算,熟记减去一个数等于加上这个数的相反数是解题的关键.2.|﹣3|的相反数是( )A.3 B.﹣3 C .D .﹣【考点】绝对值;相反数.【分析】根据相反数的定义:只有符号不同的两个数叫互为相反数.【解答】解:|﹣3|的相反数是﹣3.故选B.【点评】本题考查绝对值与相反数的意义,是一道基础题.可能会混淆倒数、相反数和绝对值的概念,错误地认为﹣3的绝对值等于,或认为﹣|﹣3|=3,把绝对值符号等同于括号.3.下列说法不正确的是( )A.0既不是正数,也不是负数B.0的绝对值是0C.一个有理数不是整数就是分数D.1是绝对值最小的正数【考点】有理数.【分析】根据有理数的分类,以及绝对值得性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0,进行分析即可.【解答】解:A、0既不是正数,也不是负数,说法正确;B、0的绝对值是0,说法正确;C、一个有理数不是整数就是分数,说法正确;D、1是绝对值最小的正数,说法错误,0.1的绝对值比1还小.故选:D.【点评】此题主要考查了绝对值和有理数的分类,关键是掌握绝对值得性质.4.在数﹣,0,4.5,|﹣9|,﹣6.79中,属于正数的个数是( )A.2 B.3 C.4 D.5【考点】正数和负数.【分析】根据大于0的数是正数,找出所有的正数,然后再计算个数.【解答】解:|﹣9|=9,∴大于0的数有4.5,|﹣9|,共2个.故选A.【点评】本题主要考查大于0的数是正数的定义,是基础题.5.一个数的相反数是3,这个数是( )A.﹣3 B.3 C .D .【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:3的相反数是﹣3,故选:A.【点评】本题考查了相反数,注意相反数是相互的,不能说一个数是相反数.6.若|a|=﹣a,a一定是( )A.正数 B.负数 C.非正数D.非负数【考点】绝对值.【分析】根据负数的绝对值等于他的相反数,可得答案.【解答】解:∵非正数的绝对值等于他的相反数,|a|=﹣a,a一定是非正数,故选:C.【点评】本题考查了绝对值,注意负数的绝对值等于他的相反数.7.近似数2.7×103是精确到( )A.十分位B.个位 C.百位 D.千位【考点】近似数和有效数字.【分析】由于2.7×103=2700,而7在百位上,则近似数2.7×103精确到百位.【解答】解:∵2.7×103=2700,∴近似数2.7×103精确到百位.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.8.把数轴上表示数2的点移动3个单位后,表示的数为( )A.5 B.1 C.5或1 D.5或﹣1【考点】数轴.【专题】计算题.【分析】在数轴上找出表示2的点,向左或向右移动3个单位即可得到结果.【解答】解:把数轴上表示数2的点移动3个单位后,表示的数为5或﹣1.故选D【点评】此题考查了数轴,熟练掌握数轴的意义是解本题的关键.9.大于﹣2.2的最小整数是( )A.﹣2 B.﹣3 C.﹣1 D.0【考点】有理数大小比较.【分析】由于﹣2.2介于﹣2和﹣3之间,所以大于﹣2.2的最小整数是﹣2.【解答】解:∵﹣3<﹣2.2<﹣2,∴大于﹣2.2的最小整数是﹣2.故选:A.【点评】本题解题的关键是准确确定所给数值的大小,是一道基础题目,比较简单.10.若|x|=4,且x+y=0,那么y的值是( )A.4 B.﹣4 C.±4 D.无法确定【考点】相反数;绝对值.【分析】首先根据绝对值的性质可得x=±4,再根据x+y=0分情况计算即可.【解答】解:∵|x|=4,∴x=±4,∵x+y=0,∴当x=4时,y=﹣4,当x=﹣4时,y=4,故选:C.【点评】此题主要考查了绝对值,关键是熟悉绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.二、填空题(本题共30分)11.若上升15米记作+15米,则﹣8米表示下降8米.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”是相对的,∵上升15米记作+15米,∴﹣8米表示下降8米.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.平方是它本身的数是0,1.【考点】有理数的乘方.【专题】推理填空题.【分析】根据平方的性质,即正数的平方是正数,0的平方是0,负数的平方是正数,进行回答.【解答】解:平方等于它本身的数是0,1.故答案为:0,1.【点评】此题考查了有理数的乘方.注意:倒数等于它本身的数是1,﹣1;平方等于它本身的数是0,1;相反数等于它本身的数是0;绝对值等于它本身的数是非负数.13.计算:|﹣4|×|+2.5|=10.【考点】有理数的乘法.【分析】一个数的绝对值为正数,再根据有理数的乘法法则求解.【解答】解:|﹣4|×|+2.5|=4×2.5=10.故应填10.【点评】能够求解一些简单的有理数的运算问题.14.绝对值等于2的数是±2.【考点】绝对值.【专题】计算题.【分析】根据绝对值的意义求解.【解答】解:∵|2|=2,|﹣2|=2,∴绝对值等于2的数为±2.故答案为±2.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.15.绝对值大于1并且不大于3的整数是±2,±3.【考点】绝对值.【专题】计算题.【分析】找出绝对值大于1且不大于3的整数即可.【解答】解:绝对值大于1并且不大于3的整数是±2,±3.故答案为:±2,±3.【点评】此题考查了绝对值,熟练掌握绝对值的意义是解本题的关键.16.最小的正整数是1,最大的负整数是﹣1.【考点】有理数.【分析】根据有理数的相关知识进行解答.【解答】解:最小的正整数是1,最大的负整数是﹣1.【点评】认真掌握正数、负数、整数的定义与特点.需注意的是:0是整数,但0既不是正数也不是负数.17.比较下面两个数的大小(用“<”,“>”,“=”)(1)1>﹣2;(2)<﹣0.3;(3)|﹣3|=﹣(﹣3).【考点】有理数大小比较.【分析】本题对有理数进行比较,看清题意,一一进行比较即可.【解答】解:(1)1为正数,﹣2为负数,故1>﹣2.(2)可将两数进行分母有理化,﹣=﹣,﹣0.3=﹣,则﹣<﹣0.3.(3)|﹣3|=3,﹣(﹣3)=3,则|﹣3|=﹣(﹣3).【点评】本题考查有理数的大小比较,对分式可将其化为分母相同的形式,然后进行比较即可.18.如果点A表示+3,将A向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是﹣1.【考点】数轴.【分析】本题可根据数轴上点的移动和数的大小变化规律,左减右加来计算.【解答】解:依题意得该数为:3﹣7+3=﹣1.故答案为:﹣1.【点评】考查了数轴,正负数在实际问题中,可以表示具有相反意义的量.本题中,向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.19.数据810000用科学记数法表示为8.1×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:810000=8.1×105,故答案为:8.1×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.观察下面一列数,根据规律写出横线上的数,﹣;;﹣;;﹣;;…;第2013个数是﹣.【考点】规律型:数字的变化类.【专题】规律型.【分析】观察不难发现,分子都是1,分母是从1开始的连续自然数,并且第奇数个数是负数,第偶数个数是正数,然后依次写出即可.【解答】解:﹣;;﹣;;﹣;;…,第2013个数是﹣.故答案为:﹣;;﹣.【点评】本题是对数字变化规律的考查,注意从分子、分母和正负情况考虑即可,是基础题.三、解答题(共60分)21.把下列各数的序号填在相应的数集内:①1 ②﹣③+3.2 ④0 ⑤⑥﹣6.5 ⑦+108 ⑧﹣4 ⑨﹣6(1)正整数集合{ …}(2)正分数集合{ …}(3)负分数集合{ …}(4)负数集合{ …}.【考点】有理数.【分析】(1)根据大于0的整数是正整数,可得正整数集合;(2)根据大于0的分数是正分数,可得正分数集合;(3)根据小于0的分数是负分数,可得负分数集合;(4)根据小于0的数是负数,可得负数集和.【解答】解:(1)正整数集合{1,108,…};(2)正分数集合{+3.2,,…};(3)负分数集合{﹣,﹣6.5,…} (4)负数集合{﹣,﹣6.5,﹣4,﹣6…}.【点评】本题考查了有理数,注意负整数和负分数统称负数.22.在数轴上把下列各数表示出来,并用从小到大排列出来2.5,﹣2,|﹣4|,﹣(﹣1),0,﹣(+3)【考点】有理数大小比较;数轴.【分析】根据数轴的特点在数轴上标出各数,然后根据数轴上的数右边的总比左边的大排列即可.【解答】解:|﹣4|=4,﹣(﹣1)=1,﹣(+3)=﹣3,﹣(+3)<﹣2<0<﹣(﹣1)<2.5<|﹣4|.【点评】本题考查了数轴,有理数的大小比较,比较简单,熟记数轴上的数右边的总比左边的大是解题的关键.23.(16分)计算:(1)2﹣5+4﹣(﹣7)+(﹣6)(2)(﹣24)÷6(3)(﹣18)÷2×÷(﹣16)(4)43﹣.【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式利用除法法则变形,约分即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣5+4+7﹣6=2;(2)原式=(﹣24﹣)×=﹣4﹣=﹣4;(3)原式=﹣18×××(﹣)=;(4)原式=64﹣(81﹣)=64﹣81+=37.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.已知a是最大的负整数,b是﹣2的相反数,c与d互为倒数,计算:a+b﹣cd的值.【考点】有理数的混合运算;有理数;相反数;倒数.【专题】计算题.【分析】根据相反数与倒数的定义得到a=﹣1,b=2,cd=1,然后代入a+b﹣cd得﹣1+2﹣1,然后进行加减运算即可.【解答】解:∵a是最大的负整数,b是﹣2的相反数,c与d互为倒数,∴a=﹣1,b=2,cd=1,∴a+b﹣cd=﹣1+2﹣1=0.【点评】本题考查了有理数的混合运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.也考查了相反数与倒数.25.规定a⊗b=ab﹣1,试计算:(﹣2)⊗(﹣3)⊗(﹣4)的值.【考点】有理数的混合运算.【专题】新定义.【分析】原式利用已知的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(﹣2)⊗(﹣3)=6﹣1=5,则原式=5⊗(﹣4)=﹣20﹣1=﹣21.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.云云的爸爸驾驶一辆汽车从A地出发,且以A为原点,向东为正方向.他先向东行驶15千米,再向西行驶25千米,然后又向东行驶20千米,再向西行驶40千米,问汽车最后停在何处?已知这种汽车行驶100千米消耗的油量为8.9升,问这辆汽车这次消耗了多少升汽油?【考点】数轴;相反数.【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以路程,可得答案.【解答】解:(1)+15﹣25+20﹣40=﹣30(千米),答:在A地西30千米处;②15+|﹣25|+20+|﹣40|=100(千米),8.9×=8.9(升).答:本次耗油为8.9升.【点评】本题考查了数轴,利用了有理数的加法运算.27.为迎接2008年北京奥运会,某体育用品公司通过公开招标,接到一批生产比赛用的篮球业务,而比赛用的篮球质量有严格规定,其中误差±5g符合要求,现质检员从中抽取6个篮球进行检查,检查结果如下表:单位:g①②③④⑤⑥+3 ﹣2 +4 ﹣6 +1 ﹣3(1)有几个篮球符合质量要求?(2)其中质量最接近标准的是几号球?为什么?【考点】正数和负数.【专题】图表型.【分析】(1)根据题意,只要每个篮球的质量标记的正负数的绝对值不大于5的,即符合质量要求;(2)篮球的质量标记的正负数的绝对值越小的越接近标准.【解答】解:(1)|+3|=3,|﹣2|=2,|﹣4|=4,|﹣6|=6,|+1|=1,|﹣3|=3;只有第④个球的质量,绝对值大于5,不符合质量要求,其它都符合,所以有5个篮球符合质量要求.(2)因|+1|=1在6个球中,绝对值最小,所以⑤号球最接近标准质量.【点评】本题主要考查了正负数表示相反意义的量,注意绝对值越小的越接近标准.新人教版七年级上册《第2章整式的加减》一、选择题(共10小题,每小题3分,满分30分)1.单项式﹣3πxy2z3的系数是( )A.﹣πB.﹣1 C.﹣3π D.﹣32.下面计算正确的是( )A.3x2﹣x 2=3 B.3a2+2a3=5a5C.3+x=3x D.﹣0.25ab+ba=03.下列运算中,正确的是( )A.3a+5b=8ab B.3y2﹣y2=3C.6a3+4a3=10a6D.5m2n﹣3nm2=2m2n4.下列去括号正确的是( )A.﹣(2x+5)=﹣2x+5 B.C.D.5.若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是( ) A.m=3,n=9 B.m=9,n=9 C.m=9,n=3 D.m=3,n=36.单项式﹣3πxy2z3的系数和次数分别是( )A.﹣π,5 B.﹣1,6 C.﹣3π,6 D.﹣3,77.代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是( )A.20 B.18 C.16 D.158.已知2x3y2和﹣x3m y2是同类项,则式子4m﹣24的值是( )A.20 B.﹣20 C.28 D.﹣289.已知a是一位数,b是两位数,将a放在b的左边,所得的三位数是( ) A.ab B.a+b C.10a+b D.100a+b10.原产量n吨,增产30%之后的产量应为( )A.(1﹣30%)n吨B.(1+30%)n吨 C.n+30%吨D.30%n吨二、填空题(每小题3分,共18分)11.单项式的系数是__________,次数是__________.12.多项式2x2y﹣+1的次数是__________.13.任写一个与﹣a2b是同类项的单项式__________.14.多项式3x+2y与多项式4x﹣2y的差是__________.15.李明同学到文具商店为学校美术组的30名同学购买铅笔和橡皮,已知铅笔每支m元,橡皮每块n元,若给每名同学买两支铅笔和三块橡皮,则一共需付款__________元.16.按如图程序输入一个数x,若输入的数x=﹣1,则输出结果为__________.三、计算:(每小题20分,共20分)17.(1)a+2b+3a﹣2b.(2)(3a﹣2)﹣3(a﹣5)(3)3x2﹣3x2﹣y2+5y+x2﹣5y+y2.(4)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)四、先化简下式,再求值.(每小题6分,共12分)18.化简求值:3a2b﹣[2ab2﹣2(﹣a2b+4ab2)]﹣5ab2,其中a=﹣2,b=.19.先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x)+3(x2y2+y),其中x=﹣1,y=2.五、解答题:(每小题分,共20分)20.已知A=2x2﹣1,B=3﹣2x2,求B﹣2A的值.21.计算某个整式减去多项式ab﹣2bc+3a+bc+8ac时,一个同学误认为是加上此多项式,结果得到的答案是﹣2ab+bc+8ac.请你求出原题的正确答案.新人教版七年级上册《第2章整式的加减》一、选择题(共10小题,每小题3分,满分30分)1.单项式﹣3πxy2z3的系数是( )A.﹣πB.﹣1 C.﹣3π D.﹣3【考点】单项式.【分析】依据单项式的系数的定义解答即可.【解答】解:单项式﹣3πxy2z3的系数是﹣3π.故选:C.【点评】本题主要考查的是单项式系数,明确π是一个数轴不是一个字母是解题的关键.2.下面计算正确的是( )A.3x2﹣x2=3 B.3a2+2a3=5a5C.3+x=3x D.﹣0.25ab+ba=0【考点】整式的加减.【分析】先判断是否为同类项,若是同类项则按合并同类项的法则合并.【解答】解:A、3x2﹣x2≠=2x2=3,故A错误;B、3a2与2a3不可相加,故B错误;C、3与x不可相加,故C错误;D、﹣0.25ab+ba=0,故D正确.故选:D.【点评】此题考查了合并同类项法则:系数相加减,字母与字母的指数不变.3.下列运算中,正确的是( )A.3a+5b=8ab B.3y2﹣y2=3C.6a3+4a3=10a6D.5m2n﹣3nm2=2m2n【考点】合并同类项.【分析】根据合并同类项的法则结合选项进行求解,然后选出正确选项.【解答】解:A、3a和5b不是同类项,不能合并,故本选项错误;B、3y2﹣y2=2y2,计算错误,故本选项错误;C、6a3+4a3=10a3,计算错误,故本选项错误;D、5m2n﹣3nm2=2m2n,计算正确,故本选项正确.故选D.【点评】本题考查了合并同类项的知识,解答本题的关键是掌握合并同类项的法则.4.下列去括号正确的是( )A.﹣(2x+5)=﹣2x+5 B .C .D .【考点】去括号与添括号.【专题】常规题型.【分析】去括号时,若括号前面是负号则括号里面的各项需变号,若括号前面是正号,则可以直接去括号.【解答】解:A、﹣(2x+5)=﹣2x﹣5,故本选项错误;B 、﹣(4x﹣2)=﹣2x+1,故本选项错误;C 、(2m﹣3n)=m﹣n,故本选项错误;D 、﹣(m﹣2x)=﹣m+2x,故本选项正确.故选D.【点评】本题考查去括号的知识,难度不大,注意掌握去括号的法则是关键.5.若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是( )A.m=3,n=9 B.m=9,n=9 C.m=9,n=3 D.m=3,n=3【考点】合并同类项.【分析】根据同类项的概念,列出方程求解.【解答】解:由题意得,,解得:.故选C.【点评】本题考查了合并同类项,解答本题的关键是掌握同类项定义中的相同字母的指数相同.6.单项式﹣3πxy2z3的系数和次数分别是( )A.﹣π,5 B.﹣1,6 C.﹣3π,6 D.﹣3,7【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选C.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意π是数字,应作为系数.7.代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是( )A.20 B.18 C.16 D.15【考点】代数式求值.【专题】计算题.【分析】根据题意2a2+3a+1的值是6,从而求出2a2+3a=5,再把该式左右两边乘以3即可得到6a2+9a的值,再把该值代入代数式6a2+9a+5即可.【解答】解:∵2a2+3a+1=6,∴2a2+3a=5,∴6a2+9a=15,∴6a2+9a+5=15+5=20.故选A.【点评】本题考查了代数式求值,解题的关键是利用已知代数式求出6a2+9a的值,再代入即可.8.已知2x3y2和﹣x3m y2是同类项,则式子4m﹣24的值是( )A.20 B.﹣20 C.28 D.﹣28【考点】同类项.【专题】计算题.【分析】根据同类项相同字母的指数相同可得出m的值,继而可得出答案.【解答】解:由题意得:3m=3,解得m=1,∴4m﹣24=﹣20.故选B.【点评】本题考查同类项的知识,比较简单,注意掌握同类项的定义.9.已知a是一位数,b是两位数,将a放在b的左边,所得的三位数是( )A.ab B.a+b C.10a+b D.100a+b【考点】列代数式.【分析】a放在左边,则a在百位上,据此即可表示出这个三位数.【解答】解:a放在左边,则a在百位上,因而所得的数是:100a+b.故选D.【点评】本题考查了利用代数式表示一个数,关键是正确确定a是百位上的数字.10.原产量n吨,增产30%之后的产量应为( )A.(1﹣30%)n吨B.(1+30%)n吨 C.n+30%吨D.30%n吨【考点】列代数式.【专题】应用题.【分析】原产量n吨,增产30%之后的产量为n+n×30%,再进行化简即可.【解答】解:由题意得,增产30%之后的产量为n+n×30%=n(1+30%)吨.故选B.【点评】本题考查了根据实际问题列代数式,列代数式要分清语言叙述中关键词语的意义,理清它们之间的数量关系.二、填空题(每小题3分,共18分)11.单项式的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数与次数的定义解答.单项式中数字因数叫做单项式的系数.单项式的次数就是所有字母指数的和.【解答】解:单项式的系数是﹣,次数是1+2=3.故答案为﹣,【点评】本题考查了单项式的系数与次数的定义,需注意:单项式中的数字因数叫做这个单项式的系数;单项式中,所有字母的指数和叫做这个单项式的次数.12.多项式2x2y﹣+1的次数是3.【考点】多项式.【分析】多项式的次数是多项式中最高次项的次数,根据定义即可求解.【解答】解:多项式2x2y ﹣+1的次数是3.故答案为:3.【点评】本题考查了多项式的次数,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.13.任写一个与﹣a2b是同类项的单项式a2b.【考点】同类项.【专题】开放型.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可解答.【解答】解:与﹣a2b是同类项的单项式是a2b(答案不唯一).故答案是:a2b.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.14.多项式3x+2y与多项式4x﹣2y的差是﹣x+4y.【考点】整式的加减.【专题】计算题.【分析】由题意可得被减数为3x+2y,减数为4x﹣2y,根据差=被减数﹣减数可得出.【解答】解:由题意得:差=3x+2y﹣(4x﹣2y),=﹣x+4y.故填:﹣x+4y.【点评】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.15.李明同学到文具商店为学校美术组的30名同学购买铅笔和橡皮,已知铅笔每支m元,橡皮每块n元,若给每名同学买两支铅笔和三块橡皮,则一共需付款60m+90n元.【考点】列代数式.【分析】根据题意列出代数式.【解答】解:由题意得:付款=60m+90n【点评】本题考查代数式的知识,关键要读清题意.16.按如图程序输入一个数x,若输入的数x=﹣1,则输出结果为4.【考点】代数式求值.【专题】图表型.【分析】根据图示的计算过程进行计算,代入x的值一步一步计算可得出最终结果.【解答】解:当x=﹣1时,﹣2x﹣4=﹣2×(﹣1)﹣4=2﹣4=﹣2<0,此时输入的数为﹣2,﹣2x﹣4=﹣2×(﹣2)﹣4=4﹣4=0,此时输入的数为0,﹣2x﹣4=0﹣4=﹣4<0,此时输入的数为﹣4,﹣2x﹣4=﹣2×(﹣4)﹣4=8﹣4=4>0,所以输出的结果为4.故答案为:4.【点评】此题考查了代数式求值的知识,属于基础题,解答本题关键是理解图标的计算过程,难度一般,注意细心运算.三、计算:(每小题20分,共20分)17.(1)a+2b+3a﹣2b.(2)(3a﹣2)﹣3(a﹣5)(3)3x2﹣3x2﹣y2+5y+x2﹣5y+y2.(4)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)【考点】整式的加减.【分析】(1)(3)直接合并同类项即可;(2)(4)先去括号,再合并同类项即可.【解答】解:(1)原式=4a;(2)原式=3a﹣2﹣3a+15=13;(3)原式=(3﹣3+1)x2﹣(1﹣1)y2+(5﹣5)y=x2;(4)原式=4a2b﹣5ab2﹣3a2b+4ab2=a2b﹣ab2.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.四、先化简下式,再求值.(每小题6分,共12分)18.化简求值:3a2b﹣[2ab2﹣2(﹣a2b+4ab2)]﹣5ab2,其中a=﹣2,b=.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=3a2b﹣2ab2﹣2a2b+8ab2﹣5ab2=a2b+ab2,当a=﹣2,b=时,原式=2﹣=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x)+3(x2y2+y),其中x=﹣1,y=2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=2x2﹣2y2﹣3x2y2﹣3x+3x2y2+3y=2x2﹣2y2﹣3x+3y,当x=﹣1,y=2时,原式=2﹣8+3+6=3.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.五、解答题:(每小题分,共20分)20.已知A=2x2﹣1,B=3﹣2x2,求B﹣2A的值.【考点】整式的加减.【专题】计算题.【分析】将A和B的式子代入可得B﹣2A=3﹣2x2﹣2(2x2﹣1),去括号合并可得出答案.【解答】解:由题意得:B﹣2A=3﹣2x2﹣2(2x2﹣1),=3﹣2x2﹣4x2+2=﹣6x2+5.【点评】本题考查整式的加减运算,比较简单,注意在计算时要细心.21.计算某个整式减去多项式ab﹣2bc+3a+bc+8ac时,一个同学误认为是加上此多项式,结果得到的答案是﹣2ab+bc+8ac.请你求出原题的正确答案.【考点】整式的加减.【分析】设该整式为A,求出A的表达式,进而可得出结论.【解答】解:∵A+(ab﹣2bc+3a+bc+8ac)=﹣2ab+bc+8ac,∴A=(﹣2ab+bc+8ac)﹣(ab﹣2bc+3a+bc+8ac)=﹣2ab+bc+8ac﹣ab+2bc﹣3a﹣bc﹣8ac=﹣3ab+2bc﹣3a,∴A﹣(ab﹣2bc+3a+bc+8ac)=(﹣3ab+2bc﹣3a)﹣(ab﹣2bc+3a+bc+8ac)=﹣3ab+2bc﹣3a﹣ab+2bc﹣3a﹣bc﹣8ac=﹣4ab+3bc﹣6a﹣8ac.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.第三章一元一次方程(2)考试范围:第三章一元一次方程;考试时间:100分钟;命题人:天涯剑客QQ:2403336035题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题共42分)评卷人得分一、选择题(1--6题每题2分,7--16每题3分,共计42分)1.下列运用等式的性质对等式进行的变形中,正确的是().A.若x y=,则55x y-=+B.若a b=,则ac bc=C .若a bc c=,则23a b = D .若x y =,则x ya a=2.若 与kx -1=15的解相同则k 的值为( ). A.2 B.8 C.-2 D.6 3.下列方程①x-2=x3,②x=0,③y +3=0,④x +2y =3,⑤x 2=2x,⑥x x 61312=+中是一元一次方程的有( ).A .2个B .3个C .4个D .5个4.某顾客以八折的优惠价买了一件商品,比标价少付了30元,那么他购买这件商品花了 A .70元 B .120元 C .150元 D .300元 5.把方程21-331-23+=+x x x 去分母正确的是 A .)1(3-18)1-2(218+=+x x xB .)1(3)12(3+-=-+x x xC.)1(18)12(18+-=-+x x x D .)1(33)12(23+-=-+x x x6.若37-213m m 与+互为相反数,则m 的值为( ) A 、43 B 、34 C 、43- D 、34-7.一个商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则彩电标价是( ) A .3200元 B .3429元 C .2667元 D .3168元8.用“●”“■”“”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为( ).A 、5B 、4C 、3D 、29.某商店在某一时间以每件50元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该家商店( ) A 、亏损6.7元 B 、盈利6.7元 C 、不亏不盈 D 、以上都不正确10.若,,都是不等于零的数,且,则( )A .2B .-1C .2或-1D .不存在 11.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是A .2(1)313x x -+=B .2(1)313x x ++=C .23(1)13x x ++=D .23(1)13x x +-=12.日历上竖列相邻的三个数,它们的和是39,则第一个数是( ) A.6 B.12 C.13 D.14 13.如果是方程31的解,那么关于的方程的解是( ) A.-10 B.0 C.34D.4 14.若与互为相反数,则a=( )A .B .10C .D .﹣1015.小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是【 】 A .7岁 B .8岁 C .9岁 D .10岁16.相传有个人不讲究说话艺术常引起误会。
第一章《有理数》 单元测试卷一.选择题(每小题3分,共24分)1.给出下列各数: 2,-3,-0.56,+11,53,0.618 ,-125,+2.5,613-,-2.333,0 其中负数有( ) A .4个B .5个C .6个D .7个2.如图所示的图形为四位同学画的数轴,其中正确的是( )3.下列表示相反意义量是( )A .“前进8米”与“前进6米”B .“赢利50元”与“亏损160元”C .“黑色”与“白色”D .“你比我高3cm ”与“我比你重5千克” 4.下列四组有理数的大小比较正确的是( )A. 31->41- B. -->-+||||11 C. 31<41 D. |31|->|41|- 5.如果一个有理数的平方等于(-3)2,那么这个有理数等于( ) A .-3 B .3 C .9 D .3或-3 6.(-1)2007+(-1)2008÷1-+(-1)2009的值等于( ) A .0 B . 1 C .-1 D .27.观察下列一组数:1.-2.3.-4.5.-6.7.-8.…,则第101个数是( ) A .100 B .-100 C .101 D .-101 8.若│x │=2,│y │=3,则│x +y │的值为( )A.5B.-5C.5或1D.以上都不对二. 填空题(每小题3分,共18分)9.如果规定收入500元记作+500元,则-235元表示_______________________. 10. 某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是 ℃.11. 用科学记数法表示:-57000000= .12. 若0<a <1,则a ,a 2,a1的大小关系是 . 13. ()()()=---200220014321 .14. 56990000000精确到亿位是 .三、解答题(共58分)15.计算题(每小题4分,共24分)(1) (-10)+(+7) (2) 22-(-18)+(-5)-15 (3))12()4332125(-⨯-+ (4) )5()103()101()212(-÷-÷-⨯-(5))411(113)2131(215-÷⨯-⨯- (6))(--)(-)(-22223124324123⨯+⨯÷16.(8分)某班10名学生在一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:-7,-10,+9,+2,-1,+5,-8,+10,+4,+9求他们的平均成绩.17.(8分)某检修小组从A 地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下(单位:km )(1)求收工时距A 地多远?(2)在第 次纪录时距A 地最远. (3)若每千米耗油0.3升,问共耗油多少升?18.(8分)观察下面一列数,探究其中的规律:—1,21,31-,41,51-,61(1) 填空:第11,12,13三个数分别是 , , ; (2) 第2012个数是什么?第n (n 是正整数)个数是什么? (3) 如果这列数无限排列下去,与哪个数越来越近?19.(10分)如下3个图形中,长方形的长都为4cm ,宽都为2cm ,先通过计算,然后判断3个图形中阴影部分面积的大小有什么关系(π取3.14)?① ② ③参考答案第一章《有理数》 单元测试卷一.选择题1.B2.D3.B4.D5.D6.C7.C8.C 二.填空题9.支出235元 10. -1 11.7107.5⨯- 12.a1>a >2a 13.-1 14.101070.5⨯ 三.解答题15.(1)-3 (2)20 (3)-4 (4)61(5)31- (6)956 16.91.3分 17.(1)1 km (2)五 (3)12.3升 18.(1)131121111,-,- (2)20121,当n 时偶数时结果为n 1-,当n 时奇数时结果为n1(3)019.三个图中阴影部分的面积相等,都等于π-28第二章 整式的加减 单元测试题考试总分: 120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1.下列式子中:,,,,,整式的个数为( )A.个B.个C.个D.个2.已知单项式的次数是,则的值为( ) A. B. C.D.3.下列各式:中,其中多项式的个数是( )A. B. C.D..4.下列结论中,正确的是( ) A.单项式的系数是,次数是B.的系数是,次数是C.单项式的次数是,没有系数单项式D.多项式是三次三项式5.多项式的次数是( ) A. B. C. D.6.下列各组中的两项不是同类项的是( ) A.和B.和C.和D.和7.多项式合并同类项后不含项,则的值是( )A.B.C.D.8.下列代数式中,既不是单项式,也不是多项式的是( )A.D.B. C.9.下列运算正确的是()A. B.C. D.10.如图两个正方形的面积分别为和,两阴影部分的面积分别为,.则等于()A. B. C. D.二、填空题(共10 小题,每小题 3 分,共30 分)11.若与是同类项,则________.12.若与可以合并,则________.13.计算:________.14.单项式的指数是________.15.________.16.若多项式与多项式相加后不含二次项,则的值为________.17.若所得的差是单项式,则这个单项式是________.18.根据去括号法则,在横线上填上“+”或“-”.________________________________.19.系数为,只含有字母,的四次单项式有________个,它们是________.20.的系数是________.三、解答题(共6 小题,每小题10 分,共60 分)21.化简:..22.先化简,后求值:,其中,.23.已知与是同类项,求、的值.24.已知下列式子:①;②;③;④;⑤;⑥;⑦.其中哪些是单项式?分别指出它们的系数和次数;其中哪些是多项式?分别指出它们的项和次数;其中哪些是整式?25.合并同类项:.26.已知单项式的次数与多项式的次数相同,求的值.答案1.B2.B3.C4.B5.B6.C8.C9.B10.A11.12.13.14.15.16.17.18.+,-,-,+.19.、、20.21.解:;.22.解:原式,当,时,原式.23.解:由与是同类项,得,解得.24.解析①、②、⑦是单项式,系数分别为、,次数分别是、、.④、⑥是多项式,④的项分别是、、,次数为,⑥的项分别为,次数为.①、②、④、⑥、⑦是整式,25.解:原式.26.解:∵单项式的次数与多项式的次数相同,∴,解得.一元一次方程应用学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共20小题,共60.0分)1.闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的,设把x公顷旱地改造为林地,则可列方程为A. B.C. D.2.某年的某个月份中有5个星期三,它们的日期之和为把日期作为一个数,例如把22日看作,那么这个月的3号是星期A. 日B. 一C. 二D. 四3.爷爷现在的年龄是孙子的5倍,12年后,爷爷的年龄是孙子的3倍,现在孙子的年龄是4.如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是A. 39B. 43C. 57D. 665.一件商品按成本价提高后标价,再打8折标价的销售,售价为312元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是A. B.C. D.6.在一次美化校园活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍、问支援拔草和支援植树的分别有多少人?若设支援拔草的有x人,则下列方程中正确的是A. B. C. D.7.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为A. B. C. D.8.某场音乐会贩卖的座位分成一楼与二楼两个区域若一楼售出与未售出的座位数比为4:3,二楼售出与未售出的座位数比为3:2,且此场音乐会一、二楼未售出的座位数相等,则此场音乐会售出与未售出的座位数比为何?A. 2:1B. 7:5C. 17:12D. 24:179.我国古代名著九章算术中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海今凫雁俱起,问何日相逢?”凫:野鸭设野鸭大雁与从北海和南海同时起飞,经过x天相遇,可列方程为A. B. C. D.10.在排成每行七天的月历表中取下一个方块如图所示若所有日期数之和为108,且n所在的是星期四,则是星期几?A. 星期四B. 星期六C. 星期日D. 星期一11.整理一批数据,由一个人做要40小时完成现在计划由x人先做4小时,再增加2人和他们一起做8小时,完成这项工作,假设这些人的工作效率相同,则得A. B.C. D.12.甲仓库有煤200吨,乙仓库有煤80吨,如果甲仓库每天运出15吨,乙仓库每天运进25吨,问多少天后两仓库存煤相等A. 6天B. 5天C. 4天D. 3天13.几个人打算合买一件物品,每人出7元,还少5元;每人出8元,就多3元,则该物品的价格为A. 59元B. 60元C. 61元D. 62元14.一件夹克衫先按成本价提高标价,再将标价打8折出售,结果获利28元,如果设这件夹克衫的成本价是x元,那么根据题意,所列方程正确的是A. B. C.15.在一次高中男篮联赛中,共有12支球队参赛,比赛采用单循环赛制,胜一场积2分,负一场积1分水高队在这次比赛中取得了较理想的成绩,获总积分17分,那么水高队的负场数为场.A. 7B. 6C. 5D. 416.某班级举行元旦联欢会,有m位师生,购买了n个苹果若每人发3个,则还剩5个苹果,若每人发4个,则最后还缺30个苹果下列四个方程:;;;.其中符合题意的是A. B. C. D.17.用白铁皮做罐头盒,每张铁皮可制盒身15个,或制盒底42个,一个盒身与两个盒底配成一套罐头盒,现有108张白铁皮,怎样分配材料可以正好制成整套罐头盒?若设用x张铁皮做盒身,根据题意可列方程为A. B. C.D.18.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲,乙合作完成此项工作,若甲一共做了x天,则所列方程为A. B. C. D.19.一个长方形的周长是18cm,若这个长方形的长减少1cm,宽增加2cm,就可以成为一个正方形,则此正方形的边长是A. 5cmB. 6cmC. 7cmD. 8cm20.甲仓库存煤200吨,乙仓库存煤70吨,若甲仓库每天运出15吨煤,乙仓库每天运进25吨煤,几天后乙仓库存煤比甲仓库多1倍?设x天后乙仓库存煤比甲仓库存煤多1倍,则有A. B.C. D.二、填空题(本大题共6小题,共12.0分)21.一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是______ 元22.一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是卡车的行驶速度是,客车比卡车早1h到达B地设客车经过x小时到达B地,依题意可列方程______ 不必求解23.某校七年级1班共有学生48人,其中女生人数比男生人数的多3人,若设男生有x人,则列方程为______.24.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高而数学与古诗词更是有着密切的联系古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字问两种诗各多少首?设七言绝句有x首,根据题意,可列方程为______ .25.某中学库存若干套桌椅,准备修理后支援贫困山区学校现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天设该中学库存x套桌椅根据题意列方程是______.26.小明从家里骑自行车到学校,每小时骑15千米,可早到10分钟;每小时骑12千米,就会迟到5分钟问他家到学校的路程是多少千米?设他家到学校的路程为x千米,则根据题意列出的方程是______ .三、解答题(本大题共9小题,共68.0分)27.甲、乙两人从A,B两地同时出发,沿同一条路线相向匀速行驶,已知出发后经3小时两人相遇,相遇时乙比甲多行驶了60千米,相遇后再经1小时乙到达A地.甲,乙两人的速度分别是多少?两人从A,B两地同时出发后,经过多少时间后两人相距20千米?28.某水果店用1000元购进甲、乙两种新出产的水果共140kg,这两种水果的进价、售价如表所示:进价元售价元甲种58乙种913这两种水果各购进多少千克?若该水果店按售价售完这批水果,获得的利润是多少元?如果这批水果是在一天之内按照售价销售完成的,除了进货成本,水果店每天的其它销售费用是元,那么水果店销售这批水果获得的利润是多少?29.某蔬菜经营户,用160元从某蔬菜市场批发了茄子和豆角共50千克,茄子、豆角当天的批发价和零售价如下表所示:品名茄子豆角批发价元千克零售价元千克这天该经营户批发了茄子和豆角各多少千克?当天卖完这些茄子和豆角共可盈利多少元?30.一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算,若租两车合运,10天可以完成任务,若甲车的效率是乙车效率的2倍.甲、乙两车单独完成任务分别需要多少天?已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.31.列方程解应用题.沈丹高铁于2015年9月1日正式开通,小明美滋滋的坐上漂亮的和谐号列车从本溪去丹东游玩,大约8点半途径沈丹线最长的南芬隧道列车进入和驶出隧道用时分钟,已知隧道全长7300米隧道顶部的灯光照在列车上的时间是4秒请你帮助小明算出列车的长度是多少?列车的行驶速度是多少?32.在五一黄金周期间,小明、小亮等同学随家人一同到江郎山游玩如图是买门票时,小明与他爸爸的对话问题:小明他们一共去了几个成人?几个学生?请你帮小明算一算,用哪种方式买票更省钱?并说明理由.33.某车间有22名工人,每人每天可以生产1200个螺钉或2000螺母,一个螺钉需要配两个螺母,为了使每天生产的螺钉和螺母刚好配套,则这个车间一天可最多生产多少个螺钉?34.一个两位数,十位数字是个位数字的两倍,将这个两位数的十位数字与个位数字对调后得到的两位数比原来的两位数小27,求这个两位数.解:设原来两位数的个位数字为x,则十位数字为______ ,这个两位数是______ ,根据题意得:请完成后面的解答过程35.甲乙两件服装的进价共500元,商场决定将甲服装按的利润定价,乙服装按的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润定价取整数.36.答案和解析【答案】1. A2. D3. B4. B5. D6. B7. C8. C9. D10. C11. A12. D13. C14. A15. C16. C 17. D18. C19. A20. C21. 18022. 23. 24.25. 26.27. 解:设甲的速度为x千米时,解得,,即甲的速度为10千米时,乙的速度为30千米时;设经过y小时后两人相距20千米,或解得,或,即经过小时或小时后两人相距20千米.28. 解:设甲种水果购进了x千克,则乙种水果购进了千克,根据题意得:,解得:,.答:购进甲种水果65千克,乙种水果75千克.元.答:获得的利润是495元.元.答:水果店销售这批水果获得的利润是395元.29. 解:设这天该经营户批发茄子x千克,则批发豆角千克,由题意得:,解得:,千克,答:批发茄子30千克,则批发豆角20千克;这些茄子和豆角共可盈利:元,答:当天卖完这些茄子和豆角共可盈利79元.30. 解:设甲车单独完成任务需要x天,则乙单独完成需要2x天,根据题意可得:,解得:,经检验得,x是原方程的解,则,即甲车单独完成需要15天,乙车单独完成需要30天;设甲车每天租金为a元,乙车每天租金为b元,则根据两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元可得:,解得:,租甲乙两车需要费用为:65000元;单独租甲车的费用为:元;单独租乙车需要的费用为:元;综上可得,单独租甲车租金最少.31. 解:设高铁列车长度x米.分钟秒列方程得:,解得:米列车的速度为:米秒答:高铁列车长为200米,速度为50米秒.32. 解:设x个成人,则个学生,根据题意可得:,解得:,则人.答:小明他们一共去了8个成人,4个学生;当购买16张门票,则需要付款:元,,选择团体购票比较合适.33. 解:设这个车间x人生产螺钉,人生产螺母根据题意得:,,,,,个,答:这个车间一天可最多生产12000个螺钉.34. 2x;35. 解:设甲服装的进价为x元,则乙服装的进价为元,根据题意得:,解得:,.答:甲服装的进价为300元、乙服装的进价为200元.乙服装的进价为200元,经过两次上调价格后,使乙服装每件的进价达到242元,设每件乙服装进价的平均增长率为y,则,解得:,不合题意舍去.答:每件乙服装进价的平均增长率为;每件乙服装进价按平均增长率再次上调,再次上调价格为:元,商场仍按9折出售,设定价为a元时,,解得:.故定价至少为296元时,乙服装才可获得利润.率问题和一元一次不等式的应用,注意售价的算法:售价定价打折数.第四章达标测试卷一、选择题(每题3分,共30分)1.下列各图中,∠1与∠2互为补角的是()2.下列语句错误的是()A.延长线段AB B.延长射线ABC.直线m和直线n相交于点PD.在射线AB上截取线段AC,使AC=3 cm3.下列立体图形中,都是柱体的为()4.如图,表示∠1的其他方法中,不正确的是()A.∠ACB B.∠C C.∠BCA D.∠ACD 5.如图所示的表面展开图所对应的几何体是()A.长方体B.球C.圆柱D.圆锥6.如图所示的物体从上面看到的形状是()7.下列各图中,经过折叠能围成一个正方体的是()8.在直线上顺次取A,B,C三点,使得AB=5 cm,BC=3 cm,如果O是线段BC的中点,那么线段AO的长度是()A.8 cm B.7.5 cm C.6.5 cm D.2.5 cm 9.如图,∠AOC=∠DOE=90°,如果∠AOE=65°,那么∠COD的度数是() A.90°B.115°C.120°D.135°10.用折纸的方法,可以直接剪出一个正五边形(如图).方法是:拿一张长方形纸对折,折痕为AB,以AB的中点O为顶点将平角五等分,并沿五等分的线折叠,再沿CD剪开,使展开后的图形为正五边形,则∠OCD等于() A.108°B.90°C.72°D.60°二、填空题(每题3分,共24分)11.如图,射线OA表示____________方向,射线OB表示____________方向.12.已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC=__________.13.如图,图中线段有________条,射线有________条.14.计算:(1)90.5°-25°45′=__________;(2)5°17′23″×6=__________.15.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,则∠AOC 的度数是________.16.将线段AB延长至点C,使BC=13AB,延长BC至点D,使CD=13BC,延长CD至点E,使DE=13CD,若CE=8 cm,则AB=________ cm.17.如图,将一副三角尺叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB =________.18.如图是由一些小立方块所搭立体图形分别从正面、左面、上面看到的图形,若在所搭立体图形的基础上(不改变原立体图形中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题(19,21题每题6分,20,22,24题每题10分,其余每题12分,共66分)19.如图,A,B两个村庄在河m的两侧,连接AB,与m交于点C,点D在m 上,连接AD,BD,且AD=BD.若要在河上建一座桥,使A,B两村来往最便捷,则应该把桥建在点C还是点D?请说明理由.20.如图,已知线段a,b,画一条线段,使它等于3a-b(不要求写画法).21.如图所示的立体图形是由七块积木搭成的,这几块积木是大小相同的正方体,请画出这个立体图形分别从正面、左面、上面看到的图形.22.如图,点C 是AB 的中点,D ,E 分别是线段AC ,CB 上的点,且AD =23AC ,DE =35AB ,若AB =24 cm ,求线段CE 的长.23.如图,OD 平分∠BOC ,OE 平分∠AOC ,∠BOC =60°,∠AOC =58°. (1)求出∠AOB 及其补角的度数; (2)①请求出∠DOC 和∠AOE 的度数;②判断∠DOE 与∠AOB 是否互补,并说明理由.24.如图,把一根绳子对折成线段AB,从点P处把绳子剪断,已知AP BP=23,若剪断后的各段绳子中最长的一段为60 cm,求绳子的原长.25.已知O为直线AB上一点,∠COE是直角,OF平分∠AOE.(1)如图①,若∠COF=34°,则∠BOE=________;若∠COF=n°,则∠BOE=________;∠BOE与∠COF的数量关系为________________.(2)当射线OE绕点O逆时针旋转到如图②的位置时,(1)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由.(3)在图③中,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的一半?若存在,请求出∠BOD的度数;若不存在,请说明理由.答案一、1.D 2.B 3.C 4.B 5.D 6.D7.A8.C9.B10.B二、11.北偏西45°(西北);南偏东75°12.11 cm或5 cm13.6;614.(1)64°45′(2)31°44′18″15.84°16.5417.180°18.54三、19.解:应该把桥建在点C.理由:两点之间,线段最短.20.解:如图,AE=3a-b.21.解:如图所示.22.解:因为点C是AB的中点,所以AC=BC=12AB=12×24=12(cm).所以AD=23AC=23×12=8(cm).所以CD=AC-AD=12-8=4(cm).因为DE=35AB=35×24=14.4(cm),所以CE=DE-CD=14.4-4=10.4(cm).23.解:(1)∠AOB=∠BOC+∠AOC=60°+58°=118°,其补角为180°-∠AOB=180°-118°=62°.(2)①因为OD平分∠BOC,OE平分∠AOC,所以∠DOC=∠BOD=12∠BOC=12×60°=30°,∠AOE=∠COE=12∠AOC=12×58°=29°.②∠DOE与∠AOB不互补.理由:因为∠DOC=30°,∠COE=29°,所以∠DOE=∠DOC+∠COE=59°.所以∠DOE+∠AOB=59°+118°=177°,故∠DOE与∠AOB不互补.24.解:(1)当点A是绳子的对折点时,将绳子展开,如图①所示.因为AP BP=23,剪断后的各段绳子中最长的一段为60 cm,所以2AP=60 cm,所以AP=30 cm.所以BP=45 cm.所以绳子的原长为2AB=2(AP+BP)=2×(30+45)=150(cm).(2)当点B是绳子的对折点时,将绳子展开,如图②所示.因为AP BP=23,剪断后的各段绳子中最长的一段为60 cm,所以2BP=60 cm,所以BP=30 cm.所以AP=20 cm.所以绳子的原长为2AB=2(AP+BP)=2×(20+30)=100(cm).综上,绳子的原长为150 cm或100 cm.25.解:(1)68°;2n°;∠BOE=2∠COF(2)仍然成立.理由如下:设∠COF=n°,则∠EOF=90°-n°.所以∠AOE=2∠EOF=180°-2n°.所以∠BOE=180°-(180°-2n°)=2n°,即∠BOE=2∠COF.(3)存在.由(2)可知,∠BOE=2∠COF=2×65°=130°.因为OF平分∠AOE,所以∠AOF=∠EOF=90°-65°=25°.当2∠BOD+∠AOF=12(∠BOE-∠BOD)时,有2∠BOD+25°=12(130°-∠BOD).所以∠BOD=16°.。
第一章 丰富的图形世界一、精心选一选,慧眼识金!(每小题4分,共10小题,共40分) 1. 如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种形状图都是同一种几何图形,则另一个几何体是 ( ) A .长方体 B .圆柱体C .球体D .三棱柱2. 如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎”相对的面上的汉字是 ( )A.文B.明C.奥D.运3. 如图所示的几何体的从上面看到的形状图是( )4.下面形状的四张纸板,按图中线经过折叠可以围成一下直三棱柱的是 ( )5. 将如左下图所示的绕直角边旋转一周,所得几何体的从正面看到的形状图是 ( )6. 如图是由若干个小正方形所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时, 所看到的几何图形是( )7. 某几何体的三种形状图如下所示,则该几何体可以是 ( )第1题图 第5题图第2题图 第3题图 A B C D第6题图从正面看 从左面看 从上面看8. 一个无盖的正方体盒子的平面展开图可以是下列图形中的 ( )9.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是 ( )10.如图表示一个由相同小立方块搭成的几何体的从上面看到的形状图俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的从正面看到的形状图为 ( )(每小题4分,共5小题,共20分)11.快速旋转一枚竖立的硬币(假定旋转轴在原地不动),旋转形成的立体图形是 .12.把边长为lcm 的正方体表面展开要剪开 条棱,展开成的平面图形的周长为cm.13.如果一个六棱柱的一条侧棱长为5cm ,那么所有侧棱之和为 .14.一个n 边形,从一个顶点出发的对角线有 条,这些对角线将n 边形分成了________个三角形.15.如图,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了802cm ,那么这根木料本来的体积是 3cm .A B C D 第10题图 3 1 1 2 2 4 第15题图1.6米三、用心做一做,马到成功!(每小题12分,共5小题,共60分) 16.将图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?说出所有可能的情况.17.由一些大小相同的小正方体组成的简单几何体的从正面、从上面看到的形状图(如图):⑴若组成这个几何体的小正方体的块数为n ,则n 的所有可能的值为 . ⑵请你画出这个几何体所有可能的从左面看到的形状图.18.如图是一个几何体的两种形状图,求该几何体的体积(л取3.14).19. 如图所示的几何体是由若干个相同的小正方体搭建而成的(第一层,1个;第二层3个;第3层,6个),小正方体的一个侧面的面积为1cm.今要用红颜色给这个几何体的表面着色(但底部不着色),要着色的面积是多少?20.若已知两点之间的所有连线中,线段最短,那么你能否试着解决下面的问题呢?问题:已知正方体的顶点A 处有一只蜘蛛,B 处有一只小虫,如图所示,请你在图上作出一种由A 到B 的最短路径,使得这只小蜘蛛能在最短时间内捉住这只小虫子.第16题图 1 5 4 62 3 7 第18题图20cm32cm 40cm 30cm30cm 25cmBA 第20题图第19题图单元测试题1.C2.A3.D4.C5.A6.B7.A8.D9.C 10.C 11.球体 12.7,6 13.30 cm 14.n-3,n-2 15.32 16.1号、2号 17.⑴8或9 ⑵图略 18.40048cm 319.18cm 220.略第二章 有理数及其运算一、耐心填一填:(每题3分,共30分)1、52-的绝对值是 ,52-的相反数是 ,52-的倒数是 . 2、某水库的水位下降1米,记作 -1米,那么 +1.2米表示 . 3、数轴上表示有理数-3.5与4.5两点的距离是 .4、已知|a -3|+24)(+b =0,则2003)(b a += .5、已知p 是数轴上的一点4-,把p 点向左移动3个单位后再向右移1个单位长度,那么p 点表示的数是______________。
第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5− B .0 C .5 D .2−4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .AB B .BOC .OCD .CD5.(2024年湖北省大冶市五月中考模拟数学试题)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B . 3.5−C .0.5−D . 2.5+6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数 B .正数 C .0 D .负数或07.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1 B .2 C .3 D .410.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.13.化简:35−= ; 1.5−−= ;(− 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL 175 180 190 18515.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A 、B 在数轴上,若8AB =,且A 、B 两点表示的数互为相反数,则点A 表示的数为 .18.如图,一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是14−,30,现以点C 为折点,将数轴向右对折,若点A 落在射线CB 上且到点B 的距离为6,则C 点表示的数是___________三、解答题(本大题共7小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{_____________________};(2)负数集合:{__________________________};(3)整数集合:{__________________________};(4)分数集合:{__________________________}.(5)负有理数:{__________________________}.20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.21.比较下列各对数的大小:①1−与0.01−; ②2−−与0;③0.3−与13−; ④19 −− 与110−−.22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm .姓名A B C D E F 身高170 160 175 与平均身高的差值+4+7 8− +2(1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值: ①13x x −+−的最小值为 ; ②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 【答案】A【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024−的相反数是2024,故选:A .2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元【答案】A【分析】本题考查了运用正数和负数表示两个相反意义的量,正确理解正、负数的意义是解题的关键.收入和支出相反,如果收入为正,那么负为支出,即可解决.【详解】∵收入100元记作100+元,∴15−元表示支出15元,故选:A .3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5−B .0C .5D .2− 【答案】A【分析】本题考查了有理数大小的比较的实际应用,有理数大小比较法则为:正数大于0,0大于负数,两个负数绝对值大的反而小;由此法则比较出两个负数的大小即可完成. 【详解】解:52−>− ,52∴−<−,即5−最小,故选:A .4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .ABB .BOC .OCD .CD 【答案】A【分析】本题主要考查了有理数与数轴,根据数轴上点的位置,结合2 1.51−<−<−即可得到答案.【详解】解:由数轴可知,数轴上表示数 1.5−的点所在的线段是AB ,故选:A .5.(2024年湖北省大冶市五月中考模拟数学试题)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B .3.5−C .0.5−D . 2.5+【答案】C【分析】本题考查了绝对值和正数和负数的应用,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可. 【详解】解:0.90.9, 3.5 3.5,0.50.5, 2.5 2.5+=−=−=+=,∵0.50.9 2.5 3.5<<<,∴从轻重的角度看,最接近标准的是0.5−,故选:C .6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数B .正数C .0D .负数或0 【答案】D【分析】本题考查绝对值,熟练掌握其性质是解题的关键.根据绝对值的性质即可求得答案. 【详解】解:∵a a =−,∴a 是非正数,即负数或0,故选:D7.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−【答案】D【分析】本题考查绝对值、化简多重符号.负数的绝对值等于它的相反数,化简多重符号时“正正得正,正负得负,负负得正”,由此逐项计算即可.【详解】解:A ,(2024)2024-+=-,与题干不符,不符合题意;B ,(2024)2024+-=-,与题干不符,不符合题意;C ,20242024−−=−,与题干不符,不符合题意;D ,(2024)2024−−=,与题干相符,符合题意.故选D .8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分【答案】D【分析】本题考查了有理数的加法,整数和负数的定义,解题的关键是掌握正数和负数表示具有相反意义的量,以及有理数的加法法则.根据题意列出算式进行计算即可. 【详解】解:()80575+−=(分),故选:D .9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1B .2C .3D .4【答案】B【分析】本题主要考查了负数的定义,根据负数的定义进行判断即可.【详解】解:只有1−和0.1−是负数.124 −− 中124−是负数,故124 −− 不是负数,a −可以是正数或零或负数, ∴负数的个数是2个.故选:B .10.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1【答案】D【分析】本题考查数轴上点移动后数字表示,解题关键是移动规律左减右加.根据数轴上点的移动规律,左减右加计算即可.【详解】解:根据数轴上点的移动规律,左减右加,可得点A 向左移动时:235−−=−,可得点A 向右移动时:231−+=, 综上可得点B 表示的数是5−或1,故选D .二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 【答案】3【分析】本题考查了有理数的分类.正确掌握有理数的分类是解答本题的关键.根据正数的定义解答即可.【详解】解:2−,0,0.2,14,3中正数有:0.2,14,3,一共有3个. 故答案为:3.12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.【答案】6−【分析】本题考查正数和负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.根据正负数表示相反意义的量,点火后记为正,可得点火前用负表示.【详解】解:把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“6−秒”;故答案为:6−.13.化简:35−= ; 1.5−−= ;(− 【答案】 35 1.5− 2 【分析】本题考查了绝对值:若0a >,则a a =;若0a =,则0a =;若0a <,则a a =−.【详解】解:33||55−=, 1.5 1.5−−=−,()22−−=, 故答案为:35, 1.5−,2. 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL175 180 190 185【答案】香草味【分析】本题主要考查了正数和负数等知识点,根据正数和负数的实际意义求得合格酸奶的重量范围,据此进行判断即可,理解正数和负数的实际意义是解决此问题的关键. 【详解】由题意可得:合格酸奶净含量的最小值为:()1805175ml −=,合格酸奶净含量的最大值为:()1805185ml +=,∴合格酸奶的重量范围为175ml 185ml ~,则净含量不合格的是香草味,故答案为:香草味.15.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .【答案】3−【分析】本题考查数轴上两点的距离,根据两点之间的距离公式a b −求解即可.【详解】解:由数轴,点A 表示的数为1,又点B 在数轴上点A 的左边,且4AB =,∴点B 表示的数是143−=−, 故答案为:3−.16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .【答案】4【分析】本题考查了绝对值的非负性,解题的关键是掌握正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.根据绝对值的非负性即可解答.a−≥,【详解】解:∵20∴244a−+≥,∴24a−+的最小值为4,故答案为:4.17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A、B在数轴上,若8AB=,且A、B两点表示的数互为相反数,则点A表示的数为.【答案】4−【分析】此题考查了数轴上两点之间的距离,数轴上的点表示有理数,相反数的概念,÷=,然后根据点A在原点根据题意得到A,B两点到原点的距离相等,然后求出点A到原点的距离为824的左侧求解即可.【详解】解:∵数轴上A,B两点表示的数互为相反数,∴A,B两点到原点的距离相等,∵点A与点B之间的距离为8个单位长度,÷=,∴点A到原点的距离为824∵点A在原点的左侧,∴点A表示的数是4−.故答案为:4−.18.如图,一条数轴上有点A、B、C,其中点A、B表示的数分别是14−,30,现以点C为折点,将数轴向右对折,若点A落在射线CB上且到点B的距离为6,则C点表示的数是___________【答案】5/11【分析】本题考查了数轴,先根据两点间的距离公式求出点A落在对应点表示的数,在利用中点求出C点表示的数;能根据点A的位置不同进行分类讨论是解题的关键.【详解】解:设A ′是点A 的对应点,由题意可知点C 是A 和A ′的中点,当点A 在B 的右侧,6BA ′=,A ′表示的数为30636+=, 那么C 表示的数为:()1436211−+÷=;,当点A 在B 的左侧,6BA ′=,A ′表示的数为30624−=,那么C 表示的数为:(1424)25−+÷=, 故答案:5或11.三、解答题(本大题共8小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{________};(2)负数集合:{________};(3)整数集合:{________};(4)分数集合:{________}.(5)负有理数:{________}.【答案】(1)227,2012,1.99,()6−−, (2)5−,34−, 3.14−, 12−−, (3)5−,0, 2012, ()6−−,12−−, (4)34−, 3.14−,227, 1.99, (5)5−,34−, 3.14−, 12−−,【分析】本题考查的是化简双重符号,化简绝对值,有理数的分类,熟记有理数的分类是解本题的关键; (1)根据正数的定义填写即可;(2)根据负数的定义填写即可;(3)根据整数的定义填写即可;(4)根据分数的定义填写即可;(5)根据负有理数的定义填写即可;【详解】(1)解:∵()66−−=,1212−−=−, ∴正数集合:{227,2012,1.99,()6−−, }; (2)负数集合:{5−,34−, 3.14−, 12−−, }; (3)整数集合:{5−,0, 2012, ()6−−,12−−, };(4)分数集合:{34−, 3.14−,227, 1.99, }; (5)负有理数:{5−,34−, 3.14−, 12−−, }; 20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.【答案】5【分析】本题考查非负数的性质.根据非负数的性质,可得30a −=,20b −=,求出a 、b 的值,据此即可求解. 【详解】解:∵320a b −+−=, ∴30a −=,20b −=, ∴3a =,2b =,∴325a b +=+=.21.比较下列各对数的大小:①1−与0.01−;②2−−与0; ③0.3−与13−; ④19 −−与110−−. 【答案】①10.01−<−;②20−−<;③10.33−>−;④11910 −−>−− 【分析】本题主要考查有理数比较大小,绝对值的性质的运用,掌握有理数比较大小的方法是解题的关键.①两个负数比较大小,绝对值大的反而小,由此即可求解;②先化简绝对值,再根据负数小于零,即可求解;③两个负数比较大小,绝对值大的反而小,由此即可求解;④先化简,再根据负数小于零,即可求解.【详解】解:①∵11−=,0.010.01−=,10.01>, ∴10.01−<−;②22−−=−,因为负数小于0,所以20−−<; ③∵0.30.3−=,•110.333−==, 0.30.3•<, ∴10.33−>−; ④分别化简两数,得:1111991010 −−=−−=− ,, ∵正数大于负数, ∴11910 −−>−−. 22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.【答案】(1)见解析 (2)()2.5023−<<−−<−【分析】本题考查了在数轴上表示数和有理数大小比较,能准确地在数轴上表示出所给的各个数是解题的关键. (1)在数轴上直接表示出各个数即可;(2)根据(1)中数轴上表示的数,结合数轴右边的数比左边的数大即可比较.【详解】(1)解:33−=,()22−−=, ∴在数轴上标出 2.5−,0,3−,()2−−,如图所示:(2)解:由(1)中数轴可得:()2.5023−<<−−<−.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm .姓名A B C D E F 身高170 160 175 与平均身高的差值 +4 +7 8− +2(1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?【答案】(1)173,6−,158,168,9+(2)同学F 最高,同学D 最矮;(3)最高与最矮的同学身高相差17cm【分析】本题考查有理数加减法的实际应用、正负数的应用.读懂题意,正确的列出算式,是解题的关键. (1)利用身高减去平均身高进行计算即可;(2)由表格信息可确定最高和最矮的学生;(3)确定最高和最矮的学生,两者的身高作差即可.【详解】(1)解:∵某中学九(1)班学生的平均身高是166cm .∴完善表格如下:姓名 A B C D E F身高170 173 160 158 168 175 与平均身高的差值+4 +7 6− 8− +2 9+(2)同学F 身高175cm ,最高,同学D 身高158cm ,最矮;(3)∵()17515817cm −=, ∴最高与最矮的同学身高相差17cm .24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值: ①13x x −+−的最小值为 ; ②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .【答案】(1)c<a<b(2)<,<(3)①2;②b a −③a ,b c −【分析】本题考查了数轴、绝对值的意义、数轴上两点之间的距离、利用数轴判断式子的正负,熟练掌握以上知识点并灵活运用,采用数形结合的思想是解此题的关键.(1)根据数轴即可得出答案;(2)由数轴可得012c a b <<<<<,从而即可得出答案;(3)①由13x x −+−的意义即可得出最小值;②由x a x b −+−的意义,结合a b <即可得解;③由||x a x b x c −+−+−的意义,结合c<a<b 即可得解.【详解】(1)解:由数轴可得:c<a<b ;(2)解:由数轴可得:012c a b <<<<<,1b a ∴−<,10c a −+<,故答案为:<,<;(3)解:①13x x −+−的意义是数轴上表示数x 的点到表示数1,到表示数3的点的距离之和, 故13x x −+−的最小值为312−=, 故答案为:2; ②x a x b −+−的意义是数轴上表示数x 的点到表示数a ,到表示数b 的点的距离之和, a b < , 故x a x b −+−的最小值为b a −,故答案为:b a −; ③||x a x b x c −+−+−的意义是数轴上表示数x 的点到表示数a ,到表示数b ,到表示数c 的点的距离之和, c a b <<故当x a =时,||x a x b x c −+−+−的值最小,为b c −,故答案为:b c −.。
人教版七年级数学上册各章节习题第1章知识回顾1.1 单元1 有理数1. 计算下列各式的值:a) 12 + (-5)b) -8 - (-9)c) -6 + 3 - (-4)d) (-8) + (-5) + (-2)2. 根据计算结果,填写下表中的空格:| 计算 | 结果 |3. 将以下有理数按从大到小的顺序排列:-5, 3, -1, -41.2 单元2 整数运算1. 计算下列各式的值:a) -6 + 8b) 5 - (-7)c) -3 - 4 - (-2)d) 7 + (-4) - (-9)2. 判断下列各式的运算结果是正数、零还是负数,并填写在括号内:a) -5 - 3 ()b) 9 + (-9)()c) -1 - (-3)()d) -4 + 4 - 3 ()第2章实数2.1 单元1 小数1. 把下列有限小数写成分数:a) 0.25b) 0.6c) 0.752. 把下列小数化为百分数:a) 0.125b) 0.04c) 0.953. 将百分数转换为小数:a) 35%b) 2.5%c) 120%2.2 单元2 分数1. 比较大小:a) $\frac{1}{2}$ , $\frac{2}{3}$b) $\frac{3}{5}$ , $\frac{1}{4}$c) $\frac{5}{9}$ , $\frac{4}{7}$2. 计算下列各式的值:a) $\frac{1}{4}$ + $\frac{1}{8}$b) $\frac{3}{5}$ - $\frac{1}{10}$c) $\frac{2}{3}$ $\times$ $\frac{3}{4}$d) $\frac{5}{6}$ $\div$ $\frac{2}{3}$以上是人教版七年级数学上册各章节的题。
请根据题目要求进行练,加强对数学知识的理解与掌握。
参考答案可以在教材或辅导书中查找并核对,以便对练习情况进行自我评估和复习。
祝你学习进步!。