日本电解电容使用寿命的分析和计算
- 格式:pdf
- 大小:135.07 KB
- 文档页数:5
电解电容寿命分析电解电容寿命分析:以下均为简要说明,如有不同看法,请直接点评,同时也为众多LED电源制造商找到一个长寿命的理由。
哪些地方不对,请多指教!我们说一个电解的额定寿命多少小时,都是在其额定参数相同的工作环境下的实际寿命。
同时也是设计寿命。
主要影响电解电容寿命的因素有以下几点:环境温度、电压、纹波电流、频率。
1、频率,首先请断定,使用的电解电容为高频电解电容。
保证在频率一项不影响您电源的实际工作频率。
2、纹波电流:这个参数在电解规格书里可以查到额定的纹波电流,按照电源本身的纹波电流来选用合适的电解。
以上2项要考虑参数的余量,一般按照1.5倍计算足以。
下面是影响寿命的主要参数3、环境温度:按照目前最普遍的电容寿命估算方法,实际工作温度比电容额定温度低10度,寿命增加1倍的理论。
额定温度105度,而实测温度为65度105-65=40度也就增加4倍。
我们选用额定1万小时的电解电容,即95度时2万小时,85度时4万小时,75度时8万小时,65度时16万小时,这16万小时暂时先记在这里。
4、工作电压:我们选用的电解额定为63V,实际工作37.2V,我们可以肯定寿命比额定要长,至于长了多少,我们先不管。
以上参数均为我公司的电解选用原则。
再分析一下电解电容的性能衰减特性。
我们说的一个电解电容的寿命结束了,其实并不是所有功能全部失效,而是开始衰减,直到满足不了电解在电路中所起到的作用。
那么我们就要看电解在实际电路中所起到的作用,我先说2种用途,1是在PFC电路中,一个是在电源输出端做滤波使用,当电解性能衰减时,PF值会降低,但是即使降低到0.5(不加PFC电路),电源也是一样在工作,输出电流和电压丝毫不会受到影响。
而做在输出端作为处理纹波的情况也是一样,只是输出纹波不断增大而已,而这个纹波对LED的确有很大影响,但是绝对不会立刻使LED失效。
所以,综上说述,我们做电源的要做到以下2点:1、选用正品知名品牌的电解电容2、设计电路时,充分考虑实际工作参数与电解参数的余量(转载)。
电解电容寿命计算
电解电容是一种常见的电子元件,在电路中扮演着储存电荷和滤
波的重要角色。
然而,电解电容的使用寿命并不长久,经过长时间使
用后容易损坏,导致电路出现故障。
为了提高电容的使用寿命,需要
进行寿命计算并采取相应措施。
电解电容的寿命主要取决于两个因素:工作温度和应用电压。
下面我们将介绍如何进行电解电容寿命计算。
第一步是确定电容的工作温度和应用电压。
通常,电容的温度和
电压会在其产品规格书中给出。
如果规格书中没有给出,可以使用温
度计和万用表等测试仪器进行测量。
如果电容的实际工作温度和应用
电压超过了其规格书中的限制,可能会导致电容的寿命缩短。
第二步是根据电容的工作温度和应用电压计算其寿命。
电容的寿
命可以用以下公式表示:
T= A * exp(Ea/ (k * T))
其中,T表示电容的寿命,A是通过实验测定的电容寿命常数,
Ea是电解电容的活化能,k是玻尔兹曼常数,T是电容的工作温度。
根据以上公式,可以得出结论:随着电容工作温度升高,其寿命
将减少;而随着应用电压升高,其寿命也会减少。
因此,在使用电容时,要严格遵守其工作温度和电压的限制,以延长其使用寿命。
总之,电解电容的寿命计算是非常重要的。
了解电容的使用寿命,可以帮助我们更好地进行电路设计和电子元件的选择,从而保证电路
的可靠性和稳定性。
希望以上介绍能对大家有所帮助。
电解电容使用寿命
影响电解电容寿命的因素有很多种,比如电解液的类型、工作状态、封装规格和使用环境等等,计算电容寿命公式:Lx=L0*KT*KR1*Kv
Lx:电容预期寿命
L0/LR:电容加速寿命,可以查阅电容规格书.
KT:环境温度影响系数(每升高10度,寿命降低一半)
KT等于2的(T0-Tx)/10次方
T0:电容最高工作温度(85或105)
Tx:电容实际工作温度
KR1/KR2:纹波电流影响系数.
KR1与L0对应,等于2的-T/5次方.T:纹波电流所引起的电容内部温升
Kv:工作电压影响系数
康富松电解电容(KFSON)厂家生产的电容器产品系列众多,品种齐全;产品包括:长寿命电解电容器、高频低阻电解电容、UPS 专用电解电容,LED专用电解电容器等,康富松产品被广泛用于LED驱动电源、UPS电源、工业控制设备等各大领域。
如何计算电解电容使用寿命
作为电子产品的重要部件电解电容,在开关电源中起着不可或缺的作用,它的使用寿命和工作状况与开关电源的寿命息息相关。
在大量的生产实践与理论探讨中,当开关电源中电容发生损坏,特别是电解电容冒顶,电解液外溢时,电源厂家怀疑电容质量有问题,而电容厂家说电源设计不当,双方争执不下。
以下就电解电容的使用寿命和使用安全作些分析,给电子工程师提供一些判断依据。
1、阿列纽斯(Arrhenius)
1.1 阿列纽斯方程
阿列纽斯方程是用来描述化学物质反应速率随温度变化关系的经验公式。
电解电容内部是由金属铝等和电解液等化学物质组成的,所以电解电容的寿命与阿列纽斯方程密切相关。
阿列纽斯方程公式:k=Ae-Ea/RT 或lnk=lnA—Ea/RT (作图法)
●K 化学反应速率
●R 为摩尔气体常量
●T 为热力学温度
●Ea 为表观活化能
●A 为频率因子
1.2 阿列纽斯结论
根据阿列纽斯方程可知,温度升高,化学反应速率(寿命消耗)增大,一般来说,环境温度每升高10℃,化学反应速率(K 值) 将增大2-10 倍,即电容工作温度每升高10℃,电容寿命减小一倍,电容工作温度每下降10℃,其寿命增加一倍,所以,环境温度是影响电解电容寿命的重要因素。
2、电解电容使用寿命分析
1)公式:
根据阿列纽斯方程结论可知,电解电容使用寿命计算公式如下:。
电解电容寿命计算方法寿命估算(Life Expectancy):电解电容在最高工作温度下,可持续动作的时间。
Lx=Lo*2(To-Ta)/10Lx=实际工作寿命Lo=保证寿命To=最高工作温度(85℃or105℃)Ta= 电容器实际工作周围温度Example:规范值105℃/1000Hrs65℃寿命推估:Lx=1000*2(105-65)/10实际工作寿命:16000Hrs高温负荷寿命(Load Life)将电解电容器在最高工作温度下,印加额定工作电压,经一持续规定完成时间后,须符合下列变化:Δcap:试验前之值的20%以内tanδ:初期特性规格值的200%以下LC :初期特性规格值以下高温放置寿命(Shelf Life):将电解电容器在最高工作温度下,经一持续规定完成时间后,须符合下列变化:Δcap: 试验前之值的20%以内tanδ:初期特性规格值的200%以下LC:初期特性规格值以下高温充放电试验(Charge/Discharge Test)将电解电容器在最高工作温度下,印加额定工作电压,经充电30秒后再放电330秒为一cycle,如此经1,000 cycles 后,须符合下列变化:Δcap : 试验前之值的10%以内tanδ : 初期特性规格值的175%以下LC : 初期特性规格值以下纹波负荷试验(Ripple Life)将电解电容器在最高工作温度下,印加直流电压及最大纹波电流(直流电压+最大涟波电压峰值=额定工作电压),经一持续规定完成时间后,须符合下列变化:Δcap : 试验前之值的20%以内tanδ : 初期特性规格值的200%以下LC : 初期特性规格值以下常用电解电容公式容抗 : XC=1/(2πfC) 【Ω】感抗 : XL=2πfL 【Ω】阻抗: Z=√ESR2+(XL-XC)2 【Ω】纹波电流: IR=√(βA△T/ESR) 【mArms】功率 : P=I2ESR 【W】谐振频率 : fo=1/(2π√LC) 【Hz】。
电解电容_纹波_温度_寿命_计算电解电容器是一种常见的电子元件,用于存储和释放电荷。
在实际应用中,电解电容器的性能参数包括电解电容、纹波电压、温度和寿命等。
1.电解电容电解电容是指电容器的额定值,单位是法拉(F)。
电解电容主要取决于电解液的种类和容量,以及电容器的结构和材料。
一般来说,电解电容越大,存储电荷的能力越强。
2.纹波电压纹波电压是指在交流电路中,电解电容器上的电压变化。
由于电解电容器的内部结构,它对交流信号的响应能力有限,会有一定程度的电压波动。
纹波电压越小,说明电解电容器对交流信号的滤波效果越好。
3.温度温度是电解电容器性能的重要影响因素之一、温度过高会导致电解液的蒸发、内阻上升,从而影响电解电容器的工作稳定性和寿命。
一般来说,电解电容器的温度范围应在指定范围内使用,过高或过低的温度都会对性能产生不良影响。
4.寿命电解电容器的寿命是指其可靠工作的时间。
电解电容器的寿命主要受电解液的腐蚀性和电容器的结构质量等因素影响。
一般来说,电解电容器具有一定的工作寿命,超过寿命后可能会出现容值下降、纹波电压增加等问题。
计算电解电容器的性能参数需要根据具体的电容器型号和规格,以及电路的设计要求进行分析和计算。
以下是一些常用的电解电容器的计算公式:1.电容器的纹波电压计算公式:纹波电压=(I*t)/(C*ΔV)其中,I是负载电流,t是纹波时间周期,C是电解电容容量,ΔV是纹波电压的标准值。
2.电解电容器的额定寿命计算公式:寿命=(T/ΔT)^k其中,T是电解电容器的工作温度,ΔT是电容器工作温度与最大允许温度的差值,k是材料系数。
在实际应用中,电解电容器的纹波和寿命通常是通过实验和测试得出的,也可以根据电解液种类和电容器的结构参数进行估算。
对于设计师来说,选用合适的电解电容器和合理的工作条件是确保电子设备正常工作和提高寿命的关键。
电解电容寿命测试报告背景介绍电解电容是一种常见的电子元件,用于储存电荷和平滑电压波动。
然而,电解电容的使用寿命是一个重要的考量因素。
本文将介绍电解电容寿命测试的步骤和结果。
测试步骤为了测试电解电容的寿命,我们采取了以下步骤:步骤一:准备测试设备和样品我们准备了一台恒温恒湿环境的测试设备,以确保稳定的测试条件。
选取了一组电解电容作为样品,确保样品之间的参数尽可能一致。
步骤二:测量电容初始参数在测试之前,我们使用万用表测量了每个电解电容的初始电容值、电阻值和漏电流。
这些参数将作为对比基准。
步骤三:施加恒定电压在恒温恒湿环境中,我们将恒定电压施加在电解电容上。
施加的电压与电容的额定电压相匹配。
步骤四:持续观察和记录数据我们持续观察每个电解电容的电容值、电阻值和漏电流,并定期记录这些数据。
观察周期根据测试要求进行设置。
步骤五:分析数据和绘制曲线在测试过程中,我们定期分析观察到的数据,并绘制电容值、电阻值和漏电流随时间的变化曲线。
通过分析曲线,我们可以了解电容的寿命情况。
步骤六:判定寿命终点根据数据分析和曲线观察,我们可以判定电解电容的寿命终点。
一般情况下,当电容值下降到额定值的一定百分比或漏电流超过一定阈值时,可以认为电解电容的寿命已经到达。
步骤七:总结和报告根据测试结果,我们对电解电容的寿命进行总结,并撰写测试报告,以便提供给相关工程师和决策者参考。
测试结果经过以上的测试步骤,我们得到了以下结果:•在恒定电压施加下,电容值随时间逐渐下降。
•电阻值随时间略微上升。
•漏电流随时间逐渐增加。
通过数据分析和曲线观察,我们判定电解电容的寿命终点为电容值下降到额定值的50%。
根据这个判定标准,样品A的寿命为1000小时,样品B的寿命为800小时,样品C的寿命为1200小时。
结论和建议根据测试结果,我们得出以下结论和建议:1.电解电容的寿命受到施加电压的影响,较高的电压会缩短寿命。
2.随着寿命的增加,电容值下降、电阻值上升和漏电流增加。
电解电容寿命分析像其它电子器件应用一样 , 电解电容同样遵循一种被称为“Bathtub Curve”的失效率曲线。
其表征的是一种普遍的器件(设备)失效率趋势。
但在实际应用中,电解电容的设计可靠性一般以其实际应用中的期望寿命( Expected Life )作为参考。
这种期望寿命表达的是一种磨损失效( wear-our failure )。
如下图所示,在利用威布尔概率纸( Weibull Probability Paper )对电解电容的失效率进行分析时可看到在某一使用期后其累进失效率曲线 (Accumulated Fallure Rate) 斜率要远大于 1 ,这说明了电解电容的失效模式其实为磨损失效所致。
影响电解电容寿命的因素可分为两大部分:1) 电容本身之特性。
其中包括制造材料(极片、电解液、封口等)选择及配方,制造工艺及技术(封口方式、散热技术等)。
2) 电容设计应用环境(环境温度、散热方式、电压电流参数等)。
电容器件一旦选定,寿命计算其实可归结为自身损耗及热阻参数的求取过程。
1 、寿命评估方式电解电容生命终结一般定义为电容量 C 、漏电流( I L)、损耗角( tan δ)这三个关键参数之一的衰退超出一定范围的时刻。
在众多的寿命影响因素中,温升是最关键的一个。
而温升又是使用损耗的表现,故额定寿命测试往往被定为“在最大工作温度条件下(常见的有 85degC 及 105degC ),对电容施以一定的 DC 及 AC 纹波后,电容关键参数电容量 C 、漏电流( IL )、损耗角( tan )的衰竭曲线”。
如下图所示:2 、环境温度与寿命的关系一般地(并非绝对),当电容在最大允许工作环境温度以下工作时(一般最低到 + 40degC 的温度范围),电解电容的期望寿命可以根据阿列纽斯理论( Arrhenius theory )进行计算。
该理论认为电容之寿命会随温度每十摄氏度的上升而减半(每上升十摄氏度将在原基础上衰减一半)。
电解电容的寿命标准《电解电容的寿命标准》前言嘿,朋友们!在电子设备的世界里,电解电容可是个相当重要的小零件呢。
就像人体里的小器官,虽然小,但要是出了问题,那整个设备可就可能会闹脾气啦。
今天咱们就来聊聊电解电容的寿命标准,为啥要聊这个呢?因为这对于我们使用和设计电子设备来说,可是个很关键的事儿。
如果我们知道电解电容大概能活多久,就可以更好地维护设备,也能在设计的时候就考虑到它的寿命,避免设备过早地出现故障。
适用范围这个电解电容寿命标准啊,适用的场景可多啦。
比如说咱们日常用的手机、平板电脑这些移动设备,里面就有很多电解电容。
你想啊,手机要是用着用着突然出问题了,很可能就是某个电解电容的寿命到了。
还有电脑主机,那里面的电源、主板上都有电解电容。
像一些老旧电脑,用久了之后经常死机或者重启,有时候就是电解电容老化导致的。
在工业设备上,比如那些大型的自动化生产设备、电力设备,电解电容也无处不在。
像工厂里的一些电机控制器,如果电解电容坏了,电机可能就没法正常工作了,这会影响整个生产流程呢。
所以说,无论是消费类电子产品,还是工业设备,只要用到电解电容的地方,这个寿命标准都有着重要的意义。
术语定义1. 电解电容- 简单来说呢,电解电容就是一种能够储存电荷的电子元件。
它就像一个小水库,能把电存起来,等到需要的时候再放出去。
它是由两个电极(阳极和阴极)以及中间的电解质构成的。
这个电解质是很关键的东西,就像水库里的水一样,和电容储存和释放电荷的能力密切相关。
2. 寿命- 这里说的电解电容的寿命可不是说这个电容彻底不能用了才叫寿命到了。
而是说在一定的工作条件下,电容的一些性能指标开始下降到不能满足正常工作要求的时间。
比如说,它可能还能储存一点电荷,但是储存的量已经远远不够设备正常运行所需了,这个时候就认为它的寿命到了。
正文1. 标准的核心部分- 1.1化学成分- 电解电容的化学成分对它的寿命有着重要的影响。
首先是阳极材料,常见的有铝和钽。
1.电解电容寿命计算基本公式L X=L0 ×K TEMPL X :电解电容器实际寿命L0 :目录标示寿命寿命K TEMP :温度关系影响系数2.电解电容使用不同温度时寿命计算公式L X =L0 ×K TEMP =L0 ×B10)0 (TX TL X :电解电容器实际寿命L0 :目录标示寿命寿命T0 :目录标示之电解电容最高使用温度℃T X :电解电容实际使用温度℃(B:温度系数)22-1例1、使用KLE 5000HR时,使用温度超过目录标示温度时目录105℃ 1000HR寿命使用在115℃时00XL X =L0 ×B10)0 (TX T-=5000×210115 105-=5000×21010-=5000×2-1=2,500 HR2-2例2、使用KLE 5000HR时,使用温度低于目录标示温度时目录105℃ 5000HR寿命使用在75℃时0 0XL X =L 0 × B10)0(TX T - =5000 × 21075105-=5000 × 21030=5000 × 23=40,000 HR3.电解电容Ripplee 关系寿命计算公式L X = L 0 × K TEMP × K voltage × K ripple= L 0 × B 10)0(TX T -× 250TT ∆-∆※L X:电解电容器实际寿命□L0 :电解电容器目录标示寿命寿命□B:系数)2(≈□T0 :目录标示之电解电容最高使用温度℃□T X :电解电容实际使用温度℃□K ripple:Ripplee系数)2(≈□T0 :最大标示Ripple印加时温升□T:电容器使用之Ripple电流在电容器中心增加温度3-1例1、使用KLE 5000HR时,Ripple关系(环境温度75℃,电容中心因Ripple温升10℃时)L x = L 0 × B 10)0(TX T - × 250T T ∆-∆ =5000 × 21057105℃℃-× 25105℃℃-=5000 × 21030℃× 255-℃=5000 × 23× 2-1=5000 × 8× 1/2=20,000 HR3-2例2、使用KLE 5000HR 时,Ripple 关系(环境温度85℃,电容中心因Ripple 温升0℃时)L x = L 0 × B 10)0(TX T - × 250T T ∆-∆ =5000 × 21058105℃℃-× 2505℃℃-=5000 × 21020℃× 255℃=5000 × 22 × 21=5000 × 4 × 2=40,000 HR4.电容器中心点上升温度△T□电容器经过涟波电流后中心温度上升 □ 可算出寿命□△T = K C × (Ts – Tx)□K C:下列表中系□T S :电容器表面之温度□T X :周围温度¢径(m/m)5¢~8¢10¢12.5¢16¢18¢22¢25¢KC 1.10 1.15 1.20 1.25 1.30 1.35 1.40 ¢径(m/m)30¢35¢40¢50¢63.5¢76¢89¢100¢KC 1.50 1.65 1.75 1.90 2.20 2.50 2.80 3.10。
电解电容寿命计算电解电容是一种常见的电子元件,在电源滤波、放大电路、信号耦合等方面有着广泛的应用。
然而,由于电解电容内部结构的特殊性,其使用寿命相对较短,需要合理估计和计算其寿命,以确保电路的可靠性和稳定性。
电解电容的寿命与其内部电解液的质量、工作温度、工作电压、工作电流以及使用环境等因素有关。
根据电解电容的生产厂家提供的信息,一般可根据以下几种方法估计电解电容的使用寿命:1.标称寿命法:电解电容的生产厂家一般会在元件上标注电容的标称寿命,即电容在允许的工作条件下正常工作的预期寿命。
标称寿命一般以小时(h)、年(y)或者温度(℃)为单位进行标注。
2.电压寿命法:电容的工作电压是影响其寿命的重要因素之一、通常,电解电容的寿命与工作电压的关系可以通过公式进行估算。
例如,电容的标称寿命为2000小时,在20℃下工作时,其寿命可以根据公式T'=T*(V/Vr)^n进行计算,其中V为实际工作电压,Vr为额定电压,T为标称寿命,n为系数。
通过测量电容的实际工作电压,可以根据公式计算出电容的寿命。
3.温度寿命法:温度是影响电容寿命的重要因素之一、一般来说,电容的使用温度越高,其寿命越短。
因此,温度寿命法是常用的一种估计电容寿命的方法之一、根据电容的工作温度和厂家提供的温度寿命曲线,可以通过计算电容在不同工作温度下的寿命,从而得到电容的使用寿命。
4.环境寿命法:电容的使用环境也会对其寿命产生一定的影响。
例如,高湿度、高温度、强烈的震动等环境条件都会缩短电容的使用寿命。
因此,在计算电容的使用寿命时,需要考虑到实际的使用环境。
需要注意的是,以上方法只是估计电容使用寿命的一种方法,实际寿命受多个因素影响,由于电容寿命通常通过试验进行估算,因此需要根据实际情况进行合理的估计。
总而言之,电解电容的寿命计算是一个复杂的问题,需要综合考虑电容的工作电压、工作温度、使用环境等因素,结合厂家提供的相关信息进行合理估算。
通过科学的方法计算电解电容的寿命,可以提高电路的可靠性和稳定性,保证电子设备的正常运行。
电解电容寿命设计电解电容寿命设计一、电解电容寿命设计本文主要是通过纹波电流的计算,然后通过电容的热等效模型来计算电容中心点的温度,在得到中心点温度后,也就是得到电容的工作点最高的问题后,通过电容的寿命估算公式来估算电容的设计寿命。
首先,电容等效成电容、电阻(ESR )和电感(ESL )的串联。
关于此请参考其他资料,接下来演示电容寿命计算步骤:1 、纹波电流计算纹波电流计算是得到电容功率损耗的一个重要参数,在设计电容时候,我们必须首先确定下来电流的纹波大小,这和设计规格和具体拓扑结构相关。
铝电解电容常被用在整流模块后以平稳电压,我们在选择好具体拓扑结构后,根据规格要求得到最小的电容值:控制某一纹波电压所需的电容容值为:P: 负载功率(单位W )注意:这是应用所需要的最小电容容值。
此外,电容容值有误差,在工作寿命期内,容值会逐步降低,随着温度降低,容值也会降低。
必须知道主线及负载侧的纹波电流数据。
可以首先计算出电容的充电时间。
f main是电网电流的频率。
电容的放电时间则为:充电电流的峰值为dU 是纹波电压(U max – U min)则充电电流有效值:接下来计算放电电流峰值和有效值。
最后计算得出:整流模块后纹波电流:这个有效值只是纹波电流的计算式,在复杂的市电输入的情况下,我们必须考虑各阶谐波的纹波有效值,也就是说要通过各阶谐波的有效值叠加,才是最后得到的电容纹波寿命计算的纹波,也就是需要将电流傅立叶分解。
2 、计算功率损耗在得到纹波电流后,我们可以计算各阶电流的纹波损耗,然后将各阶纹波求和:3 、计算电容中心点温度得到功率损耗后,我们由电容的热等效模型(参考其他资料)计算中心点温度:其中:Th 电容为电容中心点温度, 为电容最高温度,其值直接影响到电容寿命,是电容寿命计算公式中的重要参数。
Rth 为电容的热阻,其值和风速等有关,Ta 表示电容表面温度。
P Loss 为纹波电流的中损耗。
4 、计算电容寿命得到电解电容中心点最高温度后,我们可以计算电容的寿命,各个电容生产厂商会有不同的电容寿命的计算参数,也有不同的电容寿命修正值,现我们介绍阿列纽斯理论来计算电容寿命,其公式是说,电容工作没下降10 度,其寿命增加一倍,反过来也就是电容温度升高10 度,电容寿命减小一倍:Lop 为电容工作寿命,即设计寿命Lo 为电容在最大温度时的寿命Tmax 为电容的最大工作温度,在电容的说明书上会有电容的最大温度值Th 为电容的实际工作时候的温度,也即以上计算出来的电容中心点温度。
RIFA Nichicon Rubycon的电解电容寿命计算公式电解电容寿命计算是电容电路设计的最关键的一步,它直接考量电容的设计寿命,电容寿命主要受到温度的影响,所以在设计时候考虑到热源和风道,是提高电容寿命的有效方式,在设计时尽量让电容远离热源,通风好,有时利用强制风冷的方式,尽量让电容工作于低温情况下。
关于电容的寿命计算步骤这里不详述,请参考“电解电容寿命设计步骤”一文,以下主要介绍rifa ,nichicon ,Rubycon 电容寿命得计算公式。
1、nichicon 的电解电容寿命计算公式nichicon 的电解电容寿命计算公式分为两种:a 、大封装电解电容(large can type );b 、小封装(miniature type )的电容,以下针对两种电容分别列出其计算公式。
A、large can type电容结算公式如下:其中:Ln: 估算之寿命(在环境温度Tn 和总纹波In )Lo: 在最大允许工作温度To 和最大允许工作纹波Im 条件下的额定寿命To: 最大允许工作温度Tn: 环境温度to: 在最大允许工作温度To 和最大允许工作纹波电流Im 条件下内部温升量Im :在最大允许工作温度To 条件下的最大允许工作纹波电流有效值(在标准频率条件下的正弦波)In :实际应用的纹波电流有效值Δ tn: 在环境温度Tn 和纹波电流In 条件下致使的内部温升K: 因纹波损耗引起温升的加速系数(Tn 从实际应用环境获得,In 根据其规格书中的纹波系数将实际纹波有效值归一到标准频率上的有效值。
其它参数可从规格书中得到)以上公式给出的是一个基本寿命与环境温度函数、热点温度及纹波电流函数之积。
其内部温升Δ tn 估算并非由电阻损耗计算方式,而是提供了一个参考点值和相应的比例转换公式。
此公式关键点是归一到标准频率的等效电流有效值In 的求解。
B、miniature type对小封装的电容有两种情况,对应不同情况有两种计算公式(a)使用规格书的L 值L: 在最大允许工作温度To 和额定DC 电压条件下的额定寿命Bn: 因实际应用纹波损耗引起温升的加速系数;α:寿命常数。