新电力电子技术实验 第2版 教学课件 主编 实验二十九 晶闸管直流调速系统参数的测定
- 格式:ppt
- 大小:1.13 MB
- 文档页数:22
4 -1 晶闸管直流调速系统主要单元调试一、实验目的1.熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。
2.掌握直流调速系统主要单元部件的调试步骤和方法。
二、实验内容1.调节器的调试2.电平检测器的调试3.反号器的调试4.逻辑控制器的调试三、实验设备及仪器1 . DKSZ 一l 型实验装置主控制屏DK012 . DK02 、DK03、DK04挂箱3 .二踪扫描示波器4 .万用电表四、实验方法实验中所用的各控制单元的原理图见第二章有关内容。
1 .调节器(AsR 、ACR )的调试合上低压直流电源开关,观察各指示灯指示是否正常。
( l )调零.将调节器输入端接地,把串联反馈网络中的电容短接,使调节器变为P调节器,再调节面板上的调零电位器,使调节器的输出为零。
( 2 )调整输出正、负限幅值. 将反馈电容短接线去掉,使调节器变为PI 调节器,加入一定的输入电压,调整正、负限幅电位器,使输出正负最大值为所需的数值。
( 3 )测定输入输出特性.向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画出曲线。
( 4 )观察PI 特性.突加给定电压UG,用示波器观察输出电压的变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。
反馈电容由外接电容箱改变数值。
2 .电平检测器的调试1)测定转矩极性鉴别器DPT的环宽,要求环宽为0.4-0.6V,记录高电平值,调节RP1使环宽对称纵坐标。
2)测定零电流检测器DPZ的环宽,要求环宽也为0.4-0.6V,调节RP1使回环向纵坐标右侧偏离0.1-0.2V。
3)按测得数据,画出两个电平检测器的回环。
3 .反号器(AR)的调试( l )调零(2)测定输入输出比例.调节RP2使USC=-U Sr 。
4.逻辑控制器(DLC )的调试(1)测试逻辑功能,列出真值表,真值表应符合下表(2)调试时的阶跃信号可从给定器和低压直流电源输出端得到。
可按下图进行连线测试。
第一章DJDK-1 型电力电子技术及电机控制实验装置简介1-1 控制屏介绍及操作说明一、特点(1)实验装置采用挂件结构,可根据不同实验内容进行自由组合,故结构紧凑、使用方便、功能齐全、综合性能好,能在一套装置上完成《电力电子技术》、《自动控制系统》、《直流调速系统》、《交流调速系统》、《电机控制》及《控制理论》等课程所开设的主要实验项目。
(2)实验装置占地面积小,节约实验室用地,无需设置电源控制屏、电缆沟、水泥墩等,可减少基建投资;实验装置只需三相四线的电源即可投入使用,实验室建设周期短、见效快。
(3)实验机组容量小,耗电小,配置齐全;装置使用的电机经过特殊设计,其参数特性能模拟3KW左右的通用实验机组。
(4)装置布局合理,外形美观,面板示意图明确、清晰、直观;实验连接线采用强、弱电分开的手枪式插头,两者不能互插,避免强电接入弱电设备,造成该设备损坏;电路连接方式安全、可靠、迅速、简便;除电源控制屏和挂件外,还设置有实验桌,桌面上可放置机组、示波器等实验仪器,操作舒适、方便。
电机采用导轨式安装,更换机组简捷、方便;实验台底部安装有轮子和不锈钢固定调节机构,便于移动和固定。
(5)控制屏供电采用三相隔离变压器隔离,设有电压型漏电保护装置和电流型漏电保护装置,切实有效保护操作者的人身安全,为开放性的实验室创造了前提条件。
(6)挂件面板分为三种接线孔,强电、弱电及波形观测孔,三者有明显的区别,不能互插。
(7)实验线路选择紧跟教材的变化,完全配合教学内容,满足教学大纲要求。
图1-1 DJDK-1 电力电子技术及电机控制实验装置外形图二、技术参数(1)输入电压三相四线制 380V±10% 50±1Hz(2)工作环境环境温度范围为-5~40℃,相对湿度≤75%,海拔≤1000m(3)装置容量:≤1.5kVA(4)电机输出功率:≤200W(5)外形尺寸:长×宽×高=1870㎜×730㎜×1600㎜1-2 DJK01电源控制屏电源控制屏主要为实验提供各种电源,如三相交流电源、直流励磁电源等;同时为实验提供所需的仪表,如直流电压、电流表,交流电压、电流表。
晶闸管直流调速系统参数和环节特性的测定实验报告一、实验目的1.熟悉晶闸管直流调速系统的组成及其基本结构。
2.掌握晶闸管直流调速系统的参数测试及反馈环节测定方法和测试条件。
二、实验内容1.测定晶闸管直流调速系统主电路总电阻 R。
2.测定晶闸管直流调速系统主电路总电感 L。
3.测定直流电动机 - 发电机 - 测速发电机飞轮惯量 GD2。
4.测定晶闸管直流调速系统主电路电磁时间常数 T d。
5.测定直流发电机电动势常数C e和转矩常数 C T。
6.测定晶闸管直流调速系统机电时间常数 T m。
7.测定晶闸管触发及整流装置特性 U d =ƒ(U ct)。
8.测定测速发电机特性 U TG =ƒ(n)。
三、实验设备四、实验原理五、实验步骤(一)测定晶闸管直流调速系统主电路电阻。
伏安比较法测量1. 测量电枢回路总电阻RR=R a + R L + R n (电枢电阻R a、平波电抗器电阻R L 、整流装置内阻R n )(1)不加励磁、电机堵转(2)合上S1和S2,调节给定,使输出电压到30%-70%的额定电压调节电阻,使枢电流80%-90%的额定电流测定U1和I1。
(3)断开S2测定U2和I2。
(4)计算电枢回路总电阻R=(U2-U1)/( I1 - I2)合上S1和S2测得U1=100V, I1=0.95A;断开S2测得U2=103V,I2=0.63A;R=(U2-U1)/( I1 - I2)=(103V-100V)/(0.95A-0.63A)=9.375Ω2. 电枢电阻 R a(1)短接电机电枢(2)不加励磁、电机堵转(3)合上S1和S2,调节给定,使输出电压到30%-70%的额定电压调节电阻,使枢电流80%-90%的额定电流测定U1’和I1’。
(4)断开S2测定U2’和I2’。
(5)计算平波电抗器电阻R L和整流装置内阻R n: R L + R n =(U2’-U1’)/(I2’-I1’) 电枢电阻R a :R a =R-(R L + R n)合上S1和S2测得U1’=95V,I1’=1.15A断开S2测得U2’=97V,I2’=0.80AR L + R n =(U2’-U1’)/(I2’-I1’)=(97V-95V)/(1.15A-0.8A)=5.714ΩR a =R-(R L + R n)=9.375Ω-5.714Ω=3.661Ω3. 平波电抗器电阻 R L(1)短接电抗器两端(2)不加励磁、电机堵转(3)合上S1和S2,调节给定,使输出电压到30%-70%的额定电压调节电阻,使枢电流80%-90%的额定电流测定U1’ ’和I1’ ’ 。
实验三 晶闸管直流调速系统的调试一、实验目的1.分析晶闸管半控桥式整流电路电机负载(反电动势负载)时的电压、电流波形。
2.熟悉典型小功率晶闸管直流调速系统的工作原理,掌握直流调速系统的整定与调试。
3.测定直流调速系统的机械特性。
二、实验设备高自EAD —I 型电力电子与自控系统实验装置 万用表 双踪示波器 滑动变阻器直流电机机组,带涡流制动和机械制动负载,并有光电数字测速计及转速反馈模拟量输出。
机组的直流电机为SZD01型稀土高性能永磁直流电动机,电机的额定值为P nom =100W ,U nom =90V ,I nom =1.5A ,n nom =1000,T nom =1Nm ,Ω=11a R 。
三、实验电路实验电路具体接线如图3-1所示 四、实验原理此调速系统是小容量晶闸管直流调速装置,适用于4kW 以下直流电动机无级调速。
装置的主回路采用单相半控桥式晶闸管可控整流电路,触发电路采用电压控制的单结晶体管移相触发电路。
具有电压负反馈和电流正反馈及电流截止负反馈环节,电路均为分离元件,用于要求不太高的小功率传动调速场合。
1.晶闸管直流调速系统的基本工作原理虽然采用转速负反馈可以有效地保持转速的近似恒定,但安装测速发电机比较麻烦,费用也多。
所以在要求不太高的场合,往往以电压负反馈加电流正反馈来代替转速负反馈。
这是由于当负载转矩变化(设转矩增加)而使转速降低时,电动机的电枢电流将增加,而电流的增加,整流装置的内阻和平波电抗器上的电压降落也成正比地增加,这样,电动机电枢两端的电压将减小,转速也因此要下降,因而可考虑引入电压负反馈,使电压保持不变。
另一方面,电枢电流(d I )的大小也间接地反映了负载转矩l T (扰动量)的大小(d T m l I K T T Φ=≈),因此可考虑采用扰动顺馈补偿,引入电流正反馈,以补偿因负载转矩l T (扰动)增加而形成的转速降。
电压负反馈不能弥补电枢压降所造成的转速降落,调速性能不太理想。
晶闸管直流调速系统参数和环节特性的测定实验报告实验报告:晶闸管直流调速系统参数和环节特性的测定1.引言晶闸管直流调速系统是目前广泛应用于工业生产中的一种主要电力调速装置。
了解晶闸管直流调速系统的参数和环节特性对于系统的稳定运行和性能优化具有重要意义。
本实验旨在通过实验测定的方式获得晶闸管直流调速系统的参数和环节特性,并对其进行分析和评价。
2.实验设备和原理实验所使用的设备包括晶闸管直流调速系统、信号发生器、示波器等。
晶闸管直流调速系统由晶闸管单元、电机、测速装置和控制电路等组成。
系统的调速性能受到许多因素的影响,如比例增益、积分时间常数、微分时间常数等。
3.实验步骤3.1参数测定首先调节信号发生器产生脉冲信号,并连接至晶闸管控制器的脉冲控制口。
设置信号发生器的频率和幅度,记录下晶闸管控制器的输出电压和输出脉冲宽度。
通过改变信号发生器的频率和幅度,重复上述步骤,获得晶闸管控制器的不同输出电压和输出脉冲宽度。
3.2环节特性测定将信号发生器的正弦波信号连接至晶闸管控制器的控制口,设置不同频率的信号,并记录下晶闸管控制器的输出电压和输出电流。
通过改变信号发生器的频率,重复上述步骤,获得晶闸管控制器的不同输出电压和输出电流。
4.实验数据处理和结果分析通过实验测得的参数和环节特性数据,进行数据处理和结果分析,得出晶闸管直流调速系统的参数和环节特性。
参数包括比例增益、积分时间常数、微分时间常数等;环节特性包括传递函数、开环增益和相位等。
5.结果及讨论根据实验数据处理和结果分析,得出晶闸管直流调速系统的参数和环节特性。
分析系统的稳定性和性能优化的方法,如调节比例增益、积分时间常数和微分时间常数等参数的取值。
讨论实验结果的局限性和可能存在的误差。
6.结论通过实验测定和结果分析,得出晶闸管直流调速系统的参数和环节特性,并对系统的稳定性和性能优化提出了建议。
实验结果有助于理解晶闸管直流调速系统的工作原理和设计方法,为实际应用提供指导和参考。
1.3 半控器件—晶闸管全称晶体闸流管,又称可控硅整流器(SCR )。
1、晶闸管的结构与工作原理晶闸管结构图、双晶体管模型图、工作原理图和符号图如图1所示,晶闸管的管芯是P1N1P2N2四层半导体,形成3个PN 结J1、J2和J3。
可等效为PNP 和NPN 两个三极管。
图1 晶闸管结构图、双晶体管模型图、工作原理图和符号图晶闸管的工作原理是:门极电流I G ↑→I b2↑→I c2(I b1)↑→Ic 1↑→I K ↑,阳极A 、阴极K 饱和导通。
2、晶闸管工作特点是:(1)承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。
(2)承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。
(3)晶闸管一旦导通,门极就失去控制作用。
(4)要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下 。
3、晶闸管电流关系 根据晶体管的工作原理和结点电流定律,得:I I I CBO A C 111+=αI I I CBO K C 222+=αI I I G A K +=I I I C C A 21+=)(121CBO2CBO1G 2A ααα+-++=I I I I (2-1) 阻断状态:I G =0,α1+α2很小。
流过晶闸管阳极的漏电流稍大于两个晶体管漏电流之和。
开通状态:若注入触发电流使晶体管的发射极电流增大以致α1+α2趋近于1,则流过晶闸管的电流I A将趋近于无穷大,实现饱和导通,I A实际由外电路决定。
4、闸管静态特性晶闸管静态V-I特性曲线图如图2所示。
图2 晶闸管静态V-I特性曲线图(1)正向特性:I G=0时,器件两端施加正向电压,只有很小的正向漏电流,为正向阻断状态。
正向电压超过正向转折电压U bo,则漏电流急剧增大,器件开通。
随着门极电流幅值的增大,正向转折电压降低。
晶闸管本身的压降很小,在1V左右。
(2)反向特性:反向特性类似二极管的反向特性。
反向阻断状态时,只有极小的反相漏电流流过。
电力电子课程设计书——晶闸管直流调速系统设计******班级:机电二班学号:***********指导教师:***2012-7-3一、设计意义及目的通过课程设计是学生对本课程所学内容加深理解另一方面让学生熟悉工程设计的过程、规范和方法能正确查阅技术资料、技术手册和标准培养学生工程设计能力。
二、设计技术数据及要求1. 直流电动机额定数据2. 主电路中晶闸管要有过电压、过电流及抑制其正向电压上升率、正向电流上升率的保护电路。
3.选择合适的晶闸管触发电路。
三、设计内容1.系统调速方案的确定。
2.主电路的选择与计算a.整流变压器次级电压的计算整流变压器次级电流及变压器容量的计算b.电枢整流桥路中晶闸管额定电压和额定电流的计算,以及晶闸管型号的确定。
C. 电枢电感M L的计算整流变压器漏电感BL的计算。
3.主电路中各种保护电路的选用及元件参数计算。
摘要直流电动机具有良好的起、制动性能宜于在大范围内平滑调速在许多需要调速或快速正反向的电力拖动领域中得到应用。
晶闸管问世后生产出成套的晶闸管整流装置组成晶闸管—电动机调速系统简称V-M系统和旋转变流机组及离子拖动变流装置相比晶闸管整流装置不仅在经济性和可靠性上都有很大提高而且在技术性能上也显示出较大的优越性。
本文首先明确了设计的任务和要求在了解了转速电流双闭环直流调速系统的调速原理后依次对晶闸管相控整流调速系统的主电路保护电路检测电路和触发电路进行了设计并且计算了相关参数。
最后给出了这次设计的心得体会参考文献和系统的电气总图。
目录设计任务及要求摘要第一章晶闸管直流调速系统概述第一节直流调速系统的组成第二节双闭环直流调速系统的静特性第二章系统主电路原理分析第一节晶闸管直流电动机调速系统原理第二节总体方案第三节三相桥式全控整流电路第三章系统参数计第一节整流变压器参数计算第二节晶闸管参数计算第三节其他参数计算第四章保护电路第一节过电压保护第二节过电流保护第五章系统控制电路设计第一节信号检测电路设计第二节系统调节器第三节触发电路心得第一章晶闸管直流电动机调速系统概述直流调速系统通过调节控制电压Uc就可改变电动机的转速。