苏州市2019年中考数学一模(解答题)压轴题汇编
- 格式:doc
- 大小:7.07 MB
- 文档页数:30
2019学年江苏省苏州市、相城、吴江区中考一模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 化简|-2|的结果是()A.一2 B.2 C. D.±22. 下列腾讯QQ表情中,不是轴对称图形的是()3. 下列运算正确的是()A.x3+x3=2x6 B.(-x5)4=x20 C.xm•xn=xmn D.x8÷x2=x44. 如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是()A.17° B.34° C.56° D.68°5. 在平面直角坐标系中,将直线x=0绕原点顺时针旋转45°,再向上平移1个单位后得到直线a,则直线a对应的函数表达式为()A.y=x B.y=x-1 C.y=x+1 D.y=-x+16. 我国古代问题:以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?(注:绳儿折即把绳平均分成几等分.)()A.36,8 B.28,6 C.28,8 D.13,37. 设函数y=x+5与y=的图象的两个交点的横坐标为a、b,则的值是()A.- B. C.- D.8. 在△ABC中,∠C=90°,∠A=60°,AC=1,D在BC上,E在AB上,使得△ADE为等腰直角三角形,∠ADE=90°,则BE的长为()A.4-2 B.2- C.-1 D.(-1)9. 在平面直角坐标系中,一次函数y=x的图象、反比例函数y=图象以及二次函数y=x2-6x的对称轴围成一个封闭的平面区域(含边界),从该区域内所有格点(横、纵坐标均为整数的点称为格点)中任取3个,则该3点恰能作为一个三角形的三个顶点的概率是()A. B. C. D.10. 定义一个新的运算:a⊕b=,则运算x⊕2的最小值为()A.-3 B.-2 C.2 D.3二、填空题11. 已知1nm等于0.000001mm,则0.000001用科学记数法可表示为.12. 班30位女生所穿鞋子的尺码.数据如下(单位:码):13. 码号3334353637人数761511td14. “两直线平行,内错角相等”的逆命题是.15. 分解因式:2x2+x-6= .16. 如图,AB是⊙O的切线,切点为B,AO交⊙O于点C,且AC=OC,若⊙O的半径为5,则图中阴影部分的面积是.17. 若二次函数y=ax2+bx+c(a<0)的对称轴为直线x=-1,图象经过点(1,0),有下列结论:①abc<0;②2a-b=0;③a+b+c>0;④b2>5ac,则以上结论一定正确的个数是。
2019年江苏省苏州市中考数学一模试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,AB 切⊙O 于 B ,割线 ACD 经过圆心0,若∠BCD=70°,则∠A 的度数为( ) A .20°B .50°C .40°D .80°2.若tan (α+10°)=3,则锐角α的度数是( ) A .20° B .30° C .35° D .50° 3.若x 是3和6的比例中项,则x 的值为( )A . 23B . 23−C . 23±D .32± 4.如图,点D ,E ,F 分别是△ABC 三边的中点,且S △DEF =3,则△ABC 的面积等于( )A .6B .9C .12D .155. 已知 2 是关于y 的方程23202y a −=的一个解,则21a −的值是( ) A . 3B . 4C . 5D . 66.直线443y x =−−与两坐标轴围成的三角形面积是( ) A .3 B . 4 C . 6 D . 12 7.已知某样本的方差是4,则这个样本的标准差是( )A .2B .4C .8D .168.以下四种说法:①对顶角相等;②相等的角是对顶角;③不是对顶角的两个角不相等;④不相等的两个角,不是对顶角.其中正确的有( ) A .1个B .2个C .3个D .4个9.有下列计算 :①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯−=−;④(36)(9)4−÷−=−. 其中正确的有( ) A . 1个B . 2个C .3个D .4个二、填空题10.在 Rt △ABC 中,∠C= Rt ∠,AB=5 cm ,BC= 3 cm ,以 A 为圆心,4 cm 长为半径作圆,则:(1) 直线 BC 与⊙A 的位置关系是 ; (2)直线 AC 与⊙A 的位置关系是 .(3)以 C 为圆心,半径为 cm 的圆与直线 AB 相切.11.若y 是关于x 的反比例函数,当x=-3 时,y=4,则y 关于x 的函数解析式为 . 12.当a 时,二次根式3a −−−有意义. 13.二次根式14x −中,字母x 的取值范围是 .14.填空: (1)21122818323−+−= ; (2)2211()0.339+−= ; (3) 482375+− ; (4)3111212233−−= . 15.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为4cm,则其腰上的高为 .16.多项式24ax a −与多项式244x x −+的公因式是 .17.如图是一个个五叶风车示意图,它可以看做是由“基本图案” 绕着点O 通过 次旋转得到的.18.已知a 2-ab=15,ab-b 2= -10,则代数式a 2-b 2= .三、解答题19.已知二次函数y =x 2+ax +a -2,证明:不论a 取何值,抛物线的顶点总在x 轴的下方. Δ=(a-2)2+4>0,抛物线与x 轴有两个交点,又抛物线的开口向上,所以抛物线的顶点总在x 轴的下方.20.二次函数 y=ax 2+c(a,c 为已知常数),当x 取值x 1,x 2时(x 1≠x 2),函数值相等,求当x =x 1+x 2时函数的值21.某人骑自行车以10km/h 的速度由 A 地到B 地,路上用了 6 h.(1)如果以 v(km/h)的速度行驶,那么需t(h)到达,写出 t 与 v 之间的函数关系式; (2)如果返回时以 12 km/h 的速度行进,求路上所需的时间? (3)如果要求在 4 h 内到达,那么速度至少要多少?22.用反证法证明:在一个三角形中,如果两条边不等,那么它们所对的角也不等.23.解下列方程:(1)0252=−−x x ; (2)0)52(4)32(922=−−+x x (3)3)76(2)76(222=−−−x x x x24.作为一项惠农强农应对前国际金触危机、拉动国内消费需求重要措施,“家电下乡”工作已经国务院批准从2008年12月1日起在某市实施. 某市某家电公司营销点自2008 年 12 月份至2009年 5 月份销售两种不同品牌冰箱的数量如下图:(1)完成下表:平均数/台 方差甲品牌销售量/台 1O乙品牌销售量/台4325.如图,已知等腰直角三角形ABC中,∠BAC=90°,∠ABC的平分线交AC于D,过C 作BD的垂线交BD的延长线于E,交BA的延长线于F,请说明:(1)△BCF是等腰三角形;(2)△ABD≌△ACF;(3)BD=2CE.26.如图,在等边△ABC所在平面内求一点,使△PAB、△PBC、△PAC都是等腰三角形,你能找到这样的点吗?27.如图,地面上的电线杆 AB、CD 都与地面垂直,那么电线杆AB 和 CD 平行吗?为什么?28.⑴分析图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.⑵如图,由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.29.球的体积公式为343r π,求地球的体积.(地球的半径6371 km ,结果保留2个有效数字)30.求下列每对数在数轴上对应点之间的距离. (1)3 与-2. 2 (2)142与124(3)-4 与-4. 5 (4)132−与123你能发现两点之间的距离与这两数的差有什么关系吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.C5.C6.C7.A8.B9.B二、填空题10.(1)相切;(2)相交;(3)12 511.12y x=−12. 3≤−13. 4x >14.(12)0. 3;(34) 15..2x − 17.△0AB ,418.5三、解答题 19. 20.ax 12+c =ax 22+c ,则x 1+x 2=0,所以y =c .21.(1)设 t 与 v 之间的函数关系式为st v =,其中 s 为A 地、B 地间距离. ∵当 t=6 时,v= 10,∴s =60,∴60t v=(2)v= 12 时,60512t ==,∴路上要用 5 h . (3)t=4 时,60154v ==,∴速度至少要 15 km/h . 22.略23.⑴2335,233521+=−=x x ;⑵219,10121−==x x ; ⑶61,1,31,234321==−==x x x x . 24.(1)表中从左到右依次填10,133; (2)建议如下:从折线图来看,甲品牌冰箱的月销售量呈上升趋势,因此进货时可多进甲品牌冰箱.25.(1)利用△CBE≌△FBE来说明;(2)利用ASA说明;(3)利用CF=2CE而CF=BD来说明26.共有10个,等边三角形共有三条对称轴,每条对称轴上有4个点,有3个点重合27.AB∥CD(同位角相等,两直线平行)28.略.29.1.O8×lO12km330.(1)5.2 (2)124(3)0. 5 (4)556两点之间的距离等于两数之差的绝对值。
2019年江苏省苏州市昆山市中考数学一模试卷副标题题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.-12的倒数是()A. 12B. 2 C. −12D. −22.计算−√(−2)2的结果是()A. 2B. −2C. −4D. 43.下列计算正确的是()A. 2a+3b=5abB. (−2a2b)3=−6a6b3C. √8+√2=3√2D. (a+b)2=a2+b24.化简x2x−1+11−x的结果是()A. x+1B. 1x+1C. x−1 D. xx−15.若2x-3y2=3,则1-x+32y2的值是()A. −2B. −12C. 32D. 46.如图,D是△ABC的边AB的延长线上一点,DE∥BC,若∠A=32°,∠D=56°.则∠C的度数是()A. 16∘B. 20∘C. 24∘D. 28∘7.如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于点D,E,连接AD,若△ABD的周长C△ABD=16cm,AB=5cm,则线段BC的长度等于()A. 8cmB. 9 cmC. 10 cmD. 11 cm8.对于二次函数y=-14x2+x-4,下列说法正确的是()A. 当x>0时,y随x的增大而增大B. 当x=2时,y有最大值−3C. 图象的顶点坐标为(−2,−7)D. 图象与x轴有两个交点9.如图所示,直线y=kx+b经过点(-2,0),则关于x的不等式kx-b<0的解集为()A. x >−1B. x <−2C. x <1D. x <210. 如图,将边长为10的等边三角形OAB 位于平面直角坐标系第一象限中,OA 落在x 轴正半轴上,C 是AB 边上的动点(不与端点A 、B 重合),作CD ⊥OB 于点D ,若点C 、D 都在双曲线y =kx (k >0,x >0)上,则k 的值为( )A. 9√3B. 18C. 25√3D. 9二、填空题(本大题共8小题,共24.0分) 11. 因式分解:2x 2-8=______. 12. 函数y =√2−3x x中,自变量x 的取值范围是______.13. 若1<a <2,化简|a -2|+|1-a |的结果是______.14. 已知关于x 的一元二次方程ax 2+x +a 2-2a =0的一个根是x =0,则系数a =______. 15. 已知,点P (a ,b )为直线y =x -3与双曲线y =-2x 的交点,则1b -1a 的值等于______. 16. 如图,已知△ABC 中,AB =AC ,∠CAB 的角平分线与外角∠CBD 的角平分线交于点M ,且∠AMB =35°,则∠CAB =______.17. 如图,已知抛物线y =ax 2+bx +4与x 轴、y 轴正半轴分别交于点A 、B 、D ,且点B 的坐标为 (4,0),点C 在抛物线上,且与点D 的纵坐标相等,点E 在x 轴上,且BE =AB ,连接CE ,取CE 的中点F ,则BF 的长为______.18. 如图,平面直角坐标系中,已知直线y =kx (k ≠0)经过点P (2,1),点A 在y 轴的正半轴上,连接PA ,将线段PA 绕点P 顺时针旋转90°至线段PB ,过点B 作直线MN ⊥x 轴,垂足为N ,交直线y =kx (k ≠0)于点M (点M 在点B 的上方),且BN =3BM ,连接AB ,直线AB 与直线y =kx (k ≠0)交于点Q ,则点Q 的坐标为______.三、计算题(本大题共2小题,共12.0分)19. 解不等式组,并写出该不等式组的所有整数解.{5x +2≥3(x −1)1−x −26>12x20. 先化简再求值:a 2+a a 2+2a+1÷(a a−1-3a−1a 2−1),其中a =√3+1.四、解答题(本大题共8小题,共64.0分) 21. 计算:(1)(√3-1)0-|-√2|+√8(2)22+(1-√2)2-√12tan30° 22. 解方程:2(x+1)x−1-x−1x+1=123. 某学校为了了解九年级学生“一分钟跳绳”体育测试项目情况,随机抽取了九年级部分学生组成测试小组进行调查测试,并对这部分学生“一分钟跳绳”测试的成绩按A ,B ,C ,D 四个等级进行了统计,并绘制了如下两幅不完整的统计图(1)本次随机调查抽样的样本容量为______;(2)D等级所对扇形的圆心角为______°,并将条形统计图补充完整;(3)如果该学校九年级共有400名学生,那么根据以上样本统计全校九年级“一分钟跳绳”测试成绩为A等级的学生有______人;(4)现有测试成绩为A等级,且表现比较突出的两男两女共4名学生,计划从这4名学生中随机抽取2名同学作平时训练经验交流,请用列表法或画树状图的方法,求所选两位同学恰好是1男1女的概率.24.已知关于x的一元二次方程x2+(2m-1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12-x22=0时,求m的值.25.已知锐角△ABC,∠ABC=45°,AD⊥BC于D,BE⊥AC于E,交AD于F.(1)求证:△BDF≌△ADC;(2)若BD=4,DC=3,求线段BE的长度.26.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)当轿车刚到乙地时,此时货车距离乙地______千米;(2)当轿车与货车相遇时,求此时x的值;(3)在两车行驶过程中,当轿车与货车相距20千米时,求x的值.27.如图,在平面直角坐标系中,直线AB与x轴交于点A(-2,0),交y轴于点C,(x>0)在第一象限内的图象交于点B(2,n),连接BO,且S△AOB=4.与反比例函数y=kx(1)求该反比例函数y=k(x>0)的解析式和直线AB的解析式;x个单位,与y轴的交点为D,交反比例函数图象于点(2)若将直线AB向下平移73E,连接BE,CE,求△BCE的面积S△BCE.28.如图,抛物线y=ax2-3ax+c(a≠0)与x轴交于A,B两点,交y轴于点C,其中A(-1,0),C(0,3).(1)求抛物线的解析式;(2)点P是线段BC上方抛物线上一动点(不与B,C重合),过点P作PD⊥x轴,垂足为D,交BC于点E,作PF⊥直线BC于点F,设点P的横坐标为x,△PEF的周长记为l,求l关于x的函数关系式,并求出l的最大值及此时点P的坐标;(3)点H是直线AC上一点,该抛物线的对称轴上一动点G,连接OG,GH,则两线段OG,GH的长度之和的最小值等于______,此时点G的坐标为______(直接写出答案.)答案和解析1.【答案】D【解析】解:∵-×(-2)=1,∴-的倒数是-2,故选:D.根据乘积为1的两个数互为倒数,直接解答即可.本题主要考查倒数的定义,解决此类题目时,只要找到一个数与这个数的积为1,那么此数就是这个数的倒数,特别要注意:正数的倒数也一定是正数,负数的倒数也一定是负数.2.【答案】B【解析】解:原式=-|-2|=-2.故选:B.根据=|a|得到原式=-|-2|,然后利用绝对值的意义去绝对值即可.本题考查了二次根式的性质与化简:=|a|.也考查了绝对值的意义.3.【答案】C【解析】解:A、2a+3b无法计算,故此选项错误;B、(-2a2b)3=-8a6b3,故此选项错误;C、+=2+=3,正确;D、(a+b)2=a2+b2+2ab,故此选项错误;故选:C.直接利用二次根式加减运算法则以及完全平方公式和积的乘方运算法则分别化简求出答案.此题主要考查了二次根式加减运算以及完全平方公式和积的乘方运算等知识,正确把握相关运算法则是解题关键.4.【答案】A【解析】解:原式=-===x+1.故选:A.原式变形后,利用同分母分式的减法法则计算即可得到结果.此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.5.【答案】B【解析】解:∵2x-3y2=3,∴x-y2=,则原式=1-(x-y2)=1-=-,故选:B.将已知等式变形为x-y2=,再代入到原式=1-(x-y2)计算可得.本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.6.【答案】C【解析】解:∵DE∥BC,∠D=56°,∴∠DBC=56°,∵∠A=32°,∴∠C=56°-32°=24°,故选:C.根据平行线的性质求出∠DBC,根据三角形外角性质得出即可.本题考查了三角形外角性质和平行线的性质,能熟练地运用性质进行推理是解此题的关键.7.【答案】D【解析】解:∵AC的垂直平分线分别交BC、AC于点D、E,∴AD=DC,∴△ABD的周长为AB+AD+BD=AB+DC+BD=AB+B,∵C△ABD=16cm,AB=5cm,∴BC=11cm,故选:D.根据线段垂直平分线性质求出AD=DC,得出△ABD周长=AB+BC即可.本题考查了线段垂直平分线性质的应用,关键是根据线段垂直平分线上的点到线段两个端点的距离相等解答.8.【答案】B【解析】解:∵二次函数y=-+x-4可化为y=-(x-2)2-3,又∵a=-<0∴当x=2时,二次函数y=-x2+x-4的最大值为-3.故选:B.先用配方法把函数化为顶点式的形式,再根据其解析式即可求解.本题考查了二次函数的性质,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.9.【答案】B【解析】解:由图象可得:当x<-2时,kx+b<0,所以关于x的不等式kx+b<0的解集是x<-2,故选:B.观察函数图象得到即可.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.10.【答案】A【解析】解:过点D作DE⊥x轴于点E,过C作CF⊥x轴于点F,如图所示.可得:∠ODE=30∠BCD=30°,设OE=a,则OD=2a,DE=a,∴BD=OB-OD=10-2a,BC=2BD=20-4a,AC=AB-BC=4a-10,∴AF=AC=2a-5,CF=AF=(2a-5),OF=OA-AF=15-2a,∴点D(a,a),点C[15-2a,(2a-5)].∵点C、D都在双曲线y=(k>0,x>0)上,∴a•a=(15-2a)×(2a-5),解得:a=3或a=5.当a=5时,DO=OB,AC=AB,点C、D与点B重合,不符合题意,∴a=5舍去.∴点D(3,3),∴k=3×3=9.故选:A.根据等边三角形的性质表示出D,C点坐标,进而利用反比例函数图象上点的坐标特征得出答案.本题考查了反比例函数图象上点的坐标特征以及等边三角形的性质,解题的关键是找出点D、C的坐标.11.【答案】2(x+2)(x-2)【解析】解:2x2-8=2(x+2)(x-2).观察原式,找到公因式2,提出即可得出答案.本题考查提公因式法和公式法分解因式,是基础题.12.【答案】x≤2且x≠03【解析】解:由题意得,2-3x≥0且x≠0,解得,x≤且x≠0.故答案为:x≤且x≠0.根据被开方数大于等于0,分母不等于0列式求解即可.本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.13.【答案】1【解析】解:∵1<a<2,∴a-2<0,1-a<0,∴|a-2|+|1-a|=-a+2-1+a=1,故答案为:1.判断a-2、1-a是正数还是负数,然后利用绝对值的概念进行化简即可.本题考查了绝对值的概念,解题的关键是根据得出a-2、1-a是正数还是负数.14.【答案】2【解析】解:把x=0代入一元二次方程ax2+x+a2-2a=0得a2-2a=0,解得a1=0,a2=2,而a≠0,所以a的值为2.故答案为2.把x=0代入一元二次方程ax2+x+a2-2a=0得a2-2a=0,解得a1=0,a2=2,然后根据一元二次方程的定义确定a的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.【答案】-32【解析】解:∵点P(a,b)为直线y=x-3与双曲线y=-的交点,∴b=a-3,b=-,∴a-b=3,ab=-2.∴-===-.故答案是:-.将点P分别代入两函数解析式得到:b=a-3,b=-,进而得到a-b=3,ab=-2.将其代入求值即可.本题考查了反比例函数与一次函数的交点,难度适中,关键是得到a-b=3,ab=-2.16.【答案】40°【解析】解:∵△ABC中,AB=AC,AM是∠CAB的角平分线,∴AM⊥BC,∴∠MOB=90°,∵∠AMB=35°,∴∠CBM=55°,∵BM是∠CBD的角平分线,∴∠CBD=110°,∴∠CBA=70°,∵AB=AC,∴∠CAB=180°-70°-70°=40°,故答案为:40°.根据等腰三角形的性质得出AM⊥CB,进而利用角平分线的定义和三角形的内角和解答即可.本题考查了等腰三角形的性质,角平分线定义,求出∠CBM=55°以及∠CBA=70°是解题的关键.17.【答案】2√2【解析】解:∵点C在抛物线上,且与点D的纵坐标相等,D(0,4),∴把y=4代入y=ax2+bx+4得,ax2+bx+4=4,解得:,∴点C的坐标为,∵抛物线y=ax2+bx+4与x轴正半轴交于点A、B两点,∴ax2+bx+4=0两根为x A,x B,且,∴,点A的坐标为,∴,连AC,BE=AB,CE的中点是F,∴.故答案为:.根据题意表示点C的坐标为,点A的坐标为,连结AC,由中位线定理得AC=2BF,求出AC长即可得解.本题考查二次函数图象上点的坐标特征及中位线定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.18.【答案】(7,7)2【解析】解:∵直线y=kx(k≠0)经过点P(2,1),∴k=,∴直线OM的解析式为:y=x,过P作EF∥x轴交y轴于E交MN于F,∵MN⊥x轴,∴MN∥AO,∴四边形OEFN是矩形,∵P(2,1),∴OE=FN=1,PE=2,∴∠OEF=∠EFN=90°,∴∠AEF=∠BFE=90°,∵∠APB=90°,∴∠EAP+∠APE=∠APE+∠BPF=90°,∴∠EAP=∠BPF,在△AEP与△PFB中,∴△AEP ≌△PFB (AAS ), ∴AE=PF ,PE=BF=2, ∴BN=3, ∵BN=3BM , ∴BM=1, ∴MN=4,∴点M 的纵坐标为4, ∴M (8,4), ∴PF=AE=6,∴A (0,7),B (8,3),设直线AB 的解析式为:y=kx+b , ∴, ∴,∴直线AB 的解析式为:y=-x+7,由得,∴点Q 的坐标为(7,). 故答案为:(7,).根据已知条件得到直线OM 的解析式为:y=x ,过P 作EF ∥x 轴交y 轴于E 交MN 于F ,推出四边形OEFN 是矩形,根据全等三角形的性质得到AE=PF ,PE=BF=2,求得A (0,7),B (8,3),列方程组即可得到结论.本题考查一次函数的应用、待定系数法、全等三角形的判定和性质、二元一次方程组等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建一次函数,利用方程组求交点坐标,属于中考填空题中的压轴题.19.【答案】解:解不等式5x +2≥3(x -1),得:x ≥-52,解不等式1-x−26>12x ,得:x <2,∴不等式组的解集为-52≤x <2,则不等式组的整数解为-2,-1,0,1. 【解析】分别求出每一个不等式的解集,根据口诀“大小小大中间找”确定不等式组的解集,再在解集内确定其整数解即可.本题主要考查解一元一次不等式组和不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.【答案】解:原式=a(a+1)(a+1)2÷[a 2+a(a+1)(a−1)-3a−1(a+1)(a−1)] =aa+1÷(a−1)2(a+1)(a−1)=a a+1•a+1a−1 =aa−1, 当a =√3+1时,原式=√3+1√3=3+√33. 【解析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得. 本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.21.【答案】解:(1)原式=1-√2+2√2=1+√2;(2)原式=3√24+1-2√2+2-2√3×√33=3√24+3-2√2-2=1-5√24.【解析】(1)根据零指数幂和绝对值的意义计算;(2)根据完全平方公式和特殊角的三角函数值计算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.【答案】解:2(x+1)2-(x-1)2=x2-16x=-2x=−1,3是原方程的根,经检验,x=-13.所以原方程的解为:x=-13【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.【答案】80 18 120【解析】解:(1)本次随机调查抽样的样本容量为20÷25%=80,故答案为:80;(2)D等级所对扇形的圆心角为360°×=18°,B等级的人数为80×40%=32,补全图形如下:故答案为:18;(3)根据以上样本估计全校九年级“一分钟跳绳”测试成绩为A等级的学生有400×=120(人),故答案为:120; (4)画树状图得:∵共有12种等可能的结果,选出的2人恰好是1男1女的有8种情况, ∴选出的2人恰好是1男1女的概率为=.(1)由C 等级人数及其对应的百分比可得样本容量;(2)用360°乘以样本中D 等级人数所占比例,再用总人数乘以B 等级百分比可得其人数,从而补全图形;(3)总人数乘以样本中A 等级人数所占比例即可得;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出的2人恰好是1男1女的情况,再利用概率公式求解即可求得答案. 此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比. 24.【答案】解:(1)由题意有△=(2m -1)2-4m 2≥0,解得m ≤14,∴实数m 的取值范围是m ≤14;(2)由两根关系,得根x 1+x 2=-(2m -1),x 1•x 2=m 2, 由x 12-x 22=0得(x 1+x 2)(x 1-x 2)=0, 若x 1+x 2=0,即-(2m -1)=0,解得m =12, ∵12>14,∴m =12不合题意,舍去, 若x 1-x 2=0,即x 1=x 2∴△=0,由(1)知m =14,故当x 12-x 22=0时,m =14. 【解析】(1)若一元二次方程有两实数根,则根的判别式△=b 2-4ac≥0,建立关于m 的不等式,求出m 的取值范围;(2)由x 12-x 22=0得x 1+x 2=0或x 1-x 2=0;当x 1+x 2=0时,运用两根关系可以得到-2m-1=0或方程有两个相等的实根,据此即可求得m 的值.本题考查了一元二次方程根的判别式及根与系数关系,利用两根关系得出的结果必须满足△≥0的条件.25.【答案】证明:(1)∵AD ⊥BC ,∠ABC =45° ∴∠ABC =∠BAD =45°,∴AD =BD ,∵DA ⊥BC ,BE ⊥AC∴∠C +∠DAC =90°,∠C +∠CBE =90°∴∠CBE =∠DAC ,且AD =BD ,∠ADC =∠ADB =90°∴△BDF ≌△ADC (ASA ) (2)∵△BDF ≌△ADC∴AD =BD =4,CD =DF =3,BF =AC ∴BF =√BD 2+DF 2=5 ∴AC =5,∵S △ABC =12×BC ×AD =12×AC ×BE ∴7×4=5×BE ∴BE =285 【解析】(1)由题意可得AD=BD ,由余角的性质可得∠CBE=∠DAC ,由“ASA”可证△BDF ≌△ADC ;(2)由全等三角形的性质可得AD=BD=4,CD=DF=3,BF=AC ,由三角形的面积公式可求BE 的长度.本题考查了全等三角形的判定和性质,等腰三角形的性质,利用三角形面积公式可求BE 的长度. 26.【答案】30【解析】解:(1)根据图象信息:货车的速度V货=,∵轿车到达乙地的时间为货车出发后4.5小时,∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),此时,货车距乙地的路程为:300-270=30(千米).所以轿车到达乙地后,货车距乙地30千米.故答案为:30;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,,解得,∴CD段函数解析式:y=110x-195(2.5≤x≤4.5);易得OA:y=60x,,解得,∴当x=3.9时,轿车与货车相遇;(3)当x=2.5时,y货=150,两车相距=150-80=70>20,由题意60x-(110x-195)=20或110x-195-60x=20,解得x=3.5或4.3小时.答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300-270=30千米;(2)先求出线段CD对应的函数关系式,再根据两直线的交点即可解答;(3)分两种情形列出方程即可解决问题.本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.27.【答案】解:(1)∵S△AOB═12AO⋅y B=4,A(-2,0),∴n=4,即B(2,4),∴k=2n=8,即反比例函数的解析式为y=8x;设直线AB:y=mx+n,则{2m+n=4−2m+n=0,∴{n=2m=1,∴直线AB:y=x+2;(2)连接BD,CD,由题可知BC∥DE,CD=73,∴S△BCE=S△BCD,又∵B(2,4),∴S△BCD=12CD⋅x B=73,∴S△BCE=73.【解析】(1)先求出点B的坐标,即可得出反比例函数y=(x>0)的解析式,再运用待定系数法求直线AB的解析式;(2)连接BD,CD,根据题意可知S△BCE=S△BCD,据此解答即可.此题考查了反比例函数与一次函数的交点问题,涉及的知识有:勾股定理,待定系数法求函数的解析式,三角形的面积,以及三角函数的定义,用待定系数法确定函数的解析式,是常用的一种解题方法,同学们要熟练掌握这种方法.28.【答案】65√10(32,12)【解析】解:(1)将A、C代入解析式,可得c=3,a=∴抛物线的解析式为y=-x2+x+3(2)设P(m,-m2+m+3)直线BC的解析式为y=x+3点E(m,m+3)∴PE=-m2+m+3+m-3=-m2+3m∵△OBC∽△PEF∴=∴l=-m2+m当m=2时L的最大值为点P坐标为(2,)(3)如图,作点O关于对称轴的对称点Q(3,0),作QH⊥AC交对称轴于G∵△AOC∽△ABH∴=∴=∴QH=∵△GMQ∽△ACO∴=∴=∴GM=∴G(,)(1)将点A、C代入求得解析式;(2)设出点P和点E的坐标,表示出线段PE的长度表达式,由△PEF∽△BOC,通过相似比等于周长之比,也等于对应线段之比,求出△PEF的周长表达式,从而求出最大值和点P坐标;(3)线段之和求极值的类型,将点O关于抛物线的对称轴对称,得到点Q,过点Q作QH⊥AC,交对称轴于一点G,则QH即为OG+GH长度之和的最小值.本题考查了周长极值,线段极值,(2)要注意△OBC与△PEF之间的相似关系,运用相似之比获得周长表示式会更快些,(3)要了解点与线之间垂线段最短,本题是一道很好的压轴题.。
苏州市2019年中考数学一模(解答题)压轴题汇编昆山市一模 27.(本题满分9分)如图,在平面直角坐标系中,直线AB 与x 轴交于点A (-2,0),交y 轴于点C ,与反比例函数(0)ky x x=>在第一象限内的图像交于点B (2,n ),连接BO ,且S △AOB =4.(1)求该反比例函数(0)ky x x =>的解析式和直线AB 的解析式; (2)若将直线AB 向下平移73个单位,与y 轴的交点为D ,交反比例函数图像于点E ,连接BE ,CE ,求△BCE 的面积S △BCE28.(本题满分10分)如图,抛物线23(0)y ax ax c a =-+≠与x 轴交于A ,B 两点,交y 轴于点C ,其中A (-1,0),C (0,3). (1) 求抛物线的解析式(2) 点P 是线段BC 上方抛物线上一动点(不与B ,C 重合),过点P 作PD ⊥x 轴,垂足为D ,交BC 于点E ,作PF ⊥直线BC 于点F ,设点P 的横坐标为x ,△PEF 的周长记为l ,求l 关于x 的函数关系式,并求出l 的最大值及此时点P 的坐标(3) 点H 是直线AC 上一点,该抛物线的对称轴上一动点G ,连接OG ,GH ,则两线段OG ,GH 的长度之和的最小值等于______,此时点G 的坐标为_____(直接写出答案。
)苏州市吴中、吴江、相城一模27.(本题满分10分)如图,抛物线234(0)y ax ax a a =--<与x 轴交于,A B 两点,直线 1122y x =+经过点A ,与抛物线的另一个交点为点C ,点C 的横坐标为3,线段PQ 在线段AB 上移动,PQ =1,分别过点,P Q 作x 轴的垂线,交抛物线于,E F ,交直线于,D G . (1)求抛物线的解析式;(2)当四边形DEFG 为平行四边形时,求出此时点P ,Q 的坐标;(3)在线段PQ 的移动过程中,以D ,E ,F ,G 为顶点的四边形面积是否有最大值,若有求出最大值,若没有请说明理由.28.(本题满分10分)如图①,在矩形ABCD中,点P从AB边的中点E出发,沿着E B CAQ=, 速运动,速度为每秒2个单位长度,到达点C后停止运动,点Q是AD上的点,10∆的面积为y,点p运动的时间为t秒,y与t的函数关系如图②所示.设PAQ(1)图①中AB= ,BC= ,图②中m= .(2)当t=1秒时,试判断以PQ为直径的圆是否与BC边相切?请说明理由:(3)点p在运动过程中,将矩形沿PQ所在直线折叠,则t为何值时,折叠后顶点A的对应点A'落在矩形的一边上.苏州市高新区27.(本题满分10分)如图1,矩形ABCD 中,BC =12cm ,点P 从A 点出发,以2cm/s 的速度沿A B C --匀速运动,运动到C 点时停止;点Q 从B 点出发,以a cm/s 的速度沿B C D A ---匀速运动,运动到A 点时停止.若,P Q 两点同时出发,设点P 运动的时间为t (s), PBQ ∆的面积为S (cm 2),S 与t 之间的函数关系由图2中的曲线段OEF 、线段,FG GH 表示.(1) a = ,AB = ;(2)求图2中曲线段OEF 对应的函数表达式以及这个函数的最大值; (3)当02t ≤≤,若PDQ ∆为直角三角形,求t 的值.28.(本题满分10分)如图1,抛物线21:34C y x x =--+与x 轴交于,A B 两点(点A 在点B 的右侧),与B 轴的正半轴相交于C 点. (1)如图1,求:抛物线1C 顶点D 的坐标;(2)如图2,把抛物线1C 以1个单位长度砂的速度向右平移得到抛物线2C ,同时ABC ∆以2个单位长度/秒的速度向上平移得到A B C '''∆,当抛物线2C 的顶点D '落在A B C '''∆之内 时,设平移的时间为t 秒. ①求t 的取值范围;②若抛物线2C 与y 轴相交于E 点,是否存在这样的t ,使得90A EB ''∠=︒,若存在,求出t 的值;若不存在,请说明理由.苏州工业园区27.(本题满分10分)如图,以ABC ∆的边AB 为直径的⊙O 与边AC 相交于点D ,BC 是⊙O 的切线,E 为BC 的中点,连接AE 、DE .(1)求证:DE 是⊙O 的切线:(2)设CDE ∆的面积为1S ,四边形ABED 的面积为2S .若215S S =,求tan BAC ∠的值;(3)在(2)的条件下,若AE =O 的半径长.28.(本题满分10分)如图①,在矩形ABCD 中,动点P 从点A 出发,以1 cm/s 的速度沿AD 向终点D 移动,设移动时间为t (s).连接PC ,以PC 为一边作正方形PCEF ,连接DE 、DF .设PCD ∆的面积为y (cm 2). y 与t 之间的函数关系如图②所示.(1) AB = cm ,AD = cm;(2)当t 为何值时,DEF ∆的面积最小?请求出这个最小值; (3)当t 为何值时,DEF ∆为等腰三角形?请简要说明理由.苏州市区中学一模27.(本题满分10分)如图1,在平面直角坐标系中,一次函数483y x=-+的图像与y轴交于点A,与x轴交于点B点C是x轴正半轴上的一点,以,OA OC为边作矩形AOCD,直线AB交OD于点E,交直线DC于点F.(1)如图2,若四边形AOCD是正方形.①求证: AOE COE ∆≅∆;②过点C 作CG CE ⊥,交直线AB 于点G .求证: CG FG =.(2)是否存在点C ,使得CEF ∆是等腰三角形?若存在,求该三角形的腰长;若不存在,请说明理由.28.(本题满分10分)如图,在平面直角坐标系中,一次函数3y x =-的图像与x 轴交于点A , 与y 轴交于点B ,点B 关于x 轴的对称点是C ,二次函数2y x bx c =-++的图像经过点A 和点C .(1)求二次函数的表达式;(2)如图1,平移线段AC ,点A 的对应点D 落在二次函数在第四象限的图像上,点C 的对应点E 落在直线AB 上,求此时点D 的坐标;(3)如图2,在(2)的条件下,连接CD ,交CD 轴于点M ,点P 为直线AC 上方抛物线上一动点,过点P 作PF AC ⊥,垂足为点F ,连接PC ,是否存在点P ,使得以点,,P C F 为顶点的三角形与COM ∆相似?若存在,求点P 的横坐标:若不存在,请说明理由.常熟市模拟27.(本题满分10分)如图①,四边形ABCD 是知形,1,2AB BC ==,点E 是线段BC 上一动点(不与,B C 重合),点F 是线段BA 延长线上一动点,连接,,,DE EF DF EF 交AD 于点G .设,BE x AF y ==,已知y 与x 之间的函数关系如图②所示.(1)求图②中y 与x 的函数表达式;(2)求证:DE DF ⊥;(3)是否存在x 的值,使得DEG ∆是等腰三角形?如果存在,求出x 的值;如果不存在,说明理由28.(本题满分10分)如图1,二次函数234y ax ax a =--的图像与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点(0,3)C -.(1)求二次函数的表达式及点A 、点B 的坐标;(2)若点D 在二次函数图像上,且45DBC ABC S S ∆∆=,求点D 的横坐标; (3)将直线BC 向下平移,与二次函数图像交于,M N 两点(M 在N 左侧),如图2,过M 作//ME y 轴,与直线BC 交于点E ,过N 作//NF y 轴,与直线BC 交于点F ,当MN ME +的值最大时,求点M 的坐标.太仓市模拟27.(本题满分10分)如图,己知Rt ABC ∆中,90C ∠=︒,8,6AC BC ==,点P 以每秒1个单位的速度从A 向C 运动,同时点Q 以每秒2个单位的速度从A B C →→方向运动,它们到C 点后都停止运动,设点,P Q 运动的时间为t 秒.(1)当 2.5t =时,PQ = ;(2)经过t 秒的运动,求ABC ∆被直线PQ 扫过的面积S 与时间t 的函数关系式;(3),P Q 两点在运动过程中,是否存在时间t ,使得PQC ∆为等腰三角形?若存在,求出此时t 的值;若不存在,请说明理由.28.(本题满分11分)如图,在平面直角坐标系xOy 中,直线//l x 轴,且直线l 与抛物线24y x x =-+和y 轴分别交于点,,A B C ,点D 为抛物线的顶点.若点E 的坐标为(1,1),点A 的横坐标为1.(1)线段AB 的长度等于 ;(2)点P 为线段AB 上方抛物线上的一点,过点P 作AB 的垂线交AB 于点H ,点F 为y轴上一点,当PBE ∆的面积最大时,求2PH HF FO ++的最小值; (3)在(2)的条件下,删除抛物线24y x x =-+在直线PH 左侧部分图象并将右侧部分图象沿直线PH 翻折,与抛物线在直线PH 右侧部分图象组成新的函数M 的图象.现有平行于FH 的直线1l :y mx t =+,若直线1l 与函数M 的图象有且只有2个交点,求t 的取值范围(请直接写出t 的取值范围,无需解答过程).。
2019年江苏省苏州市工业园区中考数学一模试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.计算(﹣2)×3的结果是()A.﹣6 B.6 C.﹣5 D.52.已知∠α和∠β互为余角.若∠α=40°,则∠β等于()A.40°B.50°C.60°D.140°3.若式子在实数范围内有意义,则x的取值范围是()A.x≠1 B.x>1 C.x≥1 D.x≤14.太阳的半径约为696 300km.696 300这个数用科学记数法可表示为()A.0.696 3×106B.6.963×105C.69.63×104D.696.3×1035.如图,一个正六边形转盘被分成6个全等的正三角形.任意旋转这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A.B.C.D.6.某校为调查1000名学生对新闻、娱乐、动画、体育四类电视节目的喜爱情况,随机抽取了部分学生进行调查,并利用调查数据作出如图所示的扇形统计图.根据图中信息,可以估算出该校喜爱体育节目的学生共有()A.300名B.250名C.200名D.150名7.二次函数y=x2﹣2x﹣1的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,D、E、F分别是△ABC的边AB、BC、AC的中点.若四边形ADEF是菱形,则△ABC必须满足的条件是()A.AB⊥AC B.AB=AC C.AB=BC D.AC=BC9.如图,PA切⊙于点A,OP交⊙O于点B,且点B为OP的中点,弦AC∥OP.若OP=2,则图中阴影部分的面积为()A. B. C. D.10.如图,已知△ABC,∠C=90°,∠A=30°,AC=,动点D在边AC上,以BD 为边作等边△BDE(点E、A在BD的同侧),在点D从点A移动至点C的过程中,点E移动的路线为()A.B.2 C.D.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.计算:(﹣2x)2=.12.有一组数据:3,5,7,6,5,这组数据的中位数是.13.如图,直线a、b被直线c所截,且a∥b.若∠1=35°,则∠2=°.14.方程的解是x=.15.若a2﹣3a+2=0,则1+6a﹣2a2=.16.将边长为2的正方形OABC如图放置,O为原点.若∠α=15°,则点B的坐标为.17.如图,小岛A在港口P的南偏东45°方向、距离港口81海里处.甲船从A 出发,沿AP方向以9海里/h的速度驶向港口;乙船从港口P出发,沿南偏西60°方向,以18海里/h的速度驶离港口.现两船同时出发,当甲船在乙船的正东方向时,行驶的时间为h.(结果保留根号)18.如图,AB是半⊙O的直径,点C在半⊙O上,AB=5cm,AC=4cm.D是上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.计算:|﹣3|+20﹣.20.解不等式组:.21.先化简,再求值:,其中x=+1.22.购买6件A商品和5件B商品共需270元,购买3件A商品和4件B商品共需180元.问:购买1件A商品和1件B商品共需多少元?23.如图,已知△ABC中,∠C=90°,AC<BC.D为BC上一点,且到A、B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)若∠B=38°,求∠CAD的度数.24.从1名男生和3名女生中随机抽取参加“我爱苏州”演讲比赛的同学.(1)若抽取1名,恰好是男生的概率为;(2)若抽取2名,求恰好是2名女生的概率.(用树状图或列表法求解)25.如图,一次函数y=kx+b与反比例函数Y=的图象交开A(﹣2,1),B(1,a)两点.(1)分别求出反比例函数与一次函数的关系式;(2)观察图象,直接写出关于x,y的方程组的解.26.如图,己知AB是⊙O的直径,且AB=4,点C在半径OA上(点C与点O、点A不重合),过点C作AB的垂线交⊙O于点D.连接OD,过点B作OD的平行线交⊙O于点E,交CD的延长线于点F.(1)若点E是的中点,求∠F的度数;(2)求证:BE=2OC;(3)设AC=x,则当x为何值时BE•EF的值最大?最大值是多少?27.如图①,已知矩形ABCD中,AB=60cm,BC=90cm.点P从点A出发,以3cm/s 的速度沿AB运动:同时,点Q从点B出发,以20cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设点P、Q运动的时间为t(s).(1)当t=s时,△BPQ为等腰三角形;(2)当BD平分PQ时,求t的值;(3)如图②,将△BPQ沿PQ折叠,点B的对应点为E,PE、QE分别与AD交于点F、G.探索:是否存在实数t,使得AF=EF?如果存在,求出t的值:如果不存在,说明理由.28.如图,已知二次函数y=m2x2﹣2mx﹣3(m是常数,m>0)的图象与x轴分别相交于点A、B(点A位于点B的左侧),与y轴交于点C,对称轴为直线l.点C关于l的对称点为D,连接AD.点E为该函数图象上一点,AB平分∠DAE.(1)①线段AB的长为.②求点E的坐标;(①、②中的结论均用含m的代数式表示)(2)设M是该函数图象上一点,点N在l上.探索:是否存在点M.使得以A、E、M、N为顶点的四边形是矩形?如果存在,求出点M坐标;如果不存在,说明理由.2019年江苏省苏州市工业园区中考数学一模试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.计算(﹣2)×3的结果是()A.﹣6 B.6 C.﹣5 D.5【考点】有理数的乘法.【分析】根据异号两数相乘的乘法运算法则解答.【解答】解:(﹣2)×3=﹣6.故选A.2.已知∠α和∠β互为余角.若∠α=40°,则∠β等于()A.40°B.50°C.60°D.140°【考点】余角和补角.【分析】根据余角的意义,即若两个角的和为90°,则这两个角互余.【解答】解:∵∠α,∠β互为余角,且∠α=40°,∴∠α+∠β=90°,∴∠β=90°﹣40°=50°,故选B.3.若式子在实数范围内有意义,则x的取值范围是()A.x≠1 B.x>1 C.x≥1 D.x≤1【考点】二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,就可以求解.【解答】解:由在实数范围内有意义,得x﹣1≥0,解得x≥1,故答案为:x≥1.4.太阳的半径约为696 300km.696 300这个数用科学记数法可表示为()A.0.696 3×106B.6.963×105C.69.63×104D.696.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:696 300用科学记数法表示应为:6.963×105,故选:B.5.如图,一个正六边形转盘被分成6个全等的正三角形.任意旋转这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A.B.C.D.【考点】几何概率.【分析】首先确定在图中阴影区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向阴影区域的概率.【解答】解:∵圆被等分成6份,其中阴影部分占1份,∴落在阴影区域的概率=.故选D.6.某校为调查1000名学生对新闻、娱乐、动画、体育四类电视节目的喜爱情况,随机抽取了部分学生进行调查,并利用调查数据作出如图所示的扇形统计图.根据图中信息,可以估算出该校喜爱体育节目的学生共有()A.300名B.250名C.200名D.150名【考点】扇形统计图;用样本估计总体.【分析】先根据扇形统计图求出喜欢体育节目人数占总人数的百分比,进而可得出结论.【解答】解:∵由图可知,喜欢体育节目人数占总人数的百分比=1﹣30%﹣40%﹣10%=20%,∴该校喜爱体育节目的学生=1000×20%=200(名).故选C.7.二次函数y=x2﹣2x﹣1的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】二次函数的性质.【分析】根据二次函数的性质解题.【解答】解:将二次函数进行配方为y=(x﹣1)2﹣2,∴顶点坐标为(1,﹣2),∴在第四象限.故选D.8.如图,D、E、F分别是△ABC的边AB、BC、AC的中点.若四边形ADEF是菱形,则△ABC必须满足的条件是()A.AB⊥AC B.AB=AC C.AB=BC D.AC=BC【考点】菱形的判定;等腰三角形的性质;三角形中位线定理.【分析】根据等腰三角形性质和三角形的中位线求出AE⊥DF,根据三角形的中位线求出DE∥AC,EF∥AB,得出四边形ADEF是平行四边形,再根据菱形的判定推出即可.【解答】解:AB=AC,理由是:∵AB=AC,E为BC的中点,∴AE⊥BC,∵D、F分别为AB和AC的中点,∴DF∥BC,∴AE⊥DF,∵D、E、F分别是△ABC的边AB、BC、AC的中点,∴EF∥AD,DE∥AF,∴四边形ADEF是平行四边形,∵AE⊥DF,∴四边形ADEF是菱形,即只有选项B的条件能推出四边形ADEF是菱形,选项A、C、D的条件都不能推出四边形ADEF是菱形,故选B.9.如图,PA切⊙于点A,OP交⊙O于点B,且点B为OP的中点,弦AC∥OP.若OP=2,则图中阴影部分的面积为()A. B. C. D.【考点】切线的性质;扇形面积的计算.【分析】连结OA、OC,如图,由切线的性质得∠OAP=90°,再利用三角函数的定义求出∠POA=60°,接着判断△OAC为等边三角形得到∠AOC=60°,然后根据等边三角形面积公式和扇形面积公式,利用图中阴影部分的面积=S扇形AOC ﹣S△AOC进行计算即可.【解答】解:连结OA、OC,如图,∵PA切⊙于点A,∴OA⊥PA,∴∠OAP=90°,∵点B为OP的中点,∴OB=PB,∴OA=OP=1,∴∠P=30°,∠POA=60°,∵AC∥OP,∴∠OAC=∠POA=60°,而OA=OC,∴△OAC为等边三角形,∴∠AOC=60°,∴图中阴影部分的面积=S扇形AOC ﹣S△AOC=﹣•12=﹣.故选C.10.如图,已知△ABC,∠C=90°,∠A=30°,AC=,动点D在边AC上,以BD 为边作等边△BDE(点E、A在BD的同侧),在点D从点A移动至点C的过程中,点E移动的路线为()A.B.2 C.D.【考点】轨迹;等边三角形的性质.【分析】作EF⊥AB垂足为F,连接CF,由△EBF≌△DBC,推出点E在AB的垂直平分线上,在点D从点A移动至点C的过程中,点E移动的路线和点D运动的路线相等,由此即可解决问题.【解答】解:如图,作EF⊥AB垂足为F,连接CF.∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵△EBD是等边三角形,∴BE=BD,∠EBD=60°,∴∠EBD=∠ABC,∴∠EBF=∠DBC,在△EBF和△DBC中,,∴△EBF≌△DBC,∴BF=BC,EF=CD,∵∠FBC=60°,∴△BFC是等边三角形,∴CF=BF=BC,∵BC=AB=,∴BF=AB,∴AF=FB,∴点E在AB的垂直平分线上,∴在点D从点A移动至点C的过程中,点E移动的路线和点D运动的路线相等,∴在点D从点A移动至点C的过程中,点E移动的路线为.故选A.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.计算:(﹣2x)2=4x2.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:(﹣2x)2=4x2.故答案为:4x2.12.有一组数据:3,5,7,6,5,这组数据的中位数是5.【考点】中位数.【分析】根据中位数的定义进行解答即可.【解答】解:把这些数据从小到大排列为:3,5,5,6,7,最中间的数是5,则组数据的中位数是5;故答案为:5.13.如图,直线a、b被直线c所截,且a∥b.若∠1=35°,则∠2=145°.【考点】平行线的性质.【分析】根据平行线的性质求出∠3的度数,即可求出∠2的度数.【解答】解:∵a∥b,∴∠1=∠3,∵∠1=35°,∴∠3=35°,∴∠2=180°﹣∠3=145°,故答案为:145.14.方程的解是x=6.【考点】解分式方程.【分析】本题的最简公分母是x(x﹣2).方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.【解答】解:方程两边都乘x(x﹣2),得3(x﹣2)=2x,解得x=6.检验:当x=6时,x(x﹣2)≠0.∴x=6是原方程的解.15.若a2﹣3a+2=0,则1+6a﹣2a2=5.【考点】代数式求值.【分析】先根据a2﹣3a+2=0得出a2﹣3a=﹣2,再代入代数式进行计算即可.【解答】解:∵a2﹣3a+2=0,∴a2﹣3a=﹣2,∴原式=﹣2(a2﹣3a)+1=4+1=5.故答案为:5.16.将边长为2的正方形OABC如图放置,O为原点.若∠α=15°,则点B的坐标为(﹣,).【考点】正方形的性质;坐标与图形性质;勾股定理;解直角三角形.【分析】连接OB,过B作BE⊥x轴于E,则∠BEO=90°,根据正方形性质得出AB=OA=2,∠A=90°,∠BOA=45°,根据勾股定理求出OB,解直角三角形求出OE、BE,即可得出答案.【解答】解:连接OB,过B作BE⊥x轴于E,则∠BEO=90°,∵四边形OABC是正方形,∴AB=OA=2,∠A=90°,∠BOA=45°,由勾股定理得:OB==2,∵∠α=15°,∠BOA=45°,∴∠BOE=45°+15°=60°,在Rt△BOE中,BE=OB×sin60°=2×=,OE=OB×cos60°=,∴B的坐标为(﹣,).故答案为:17.如图,小岛A在港口P的南偏东45°方向、距离港口81海里处.甲船从A 出发,沿AP方向以9海里/h的速度驶向港口;乙船从港口P出发,沿南偏西60°方向,以18海里/h的速度驶离港口.现两船同时出发,当甲船在乙船的正东方向时,行驶的时间为9(﹣1)h.(结果保留根号)【考点】解直角三角形的应用﹣方向角问题.【分析】连接AB在P正南方向取点Q,则PQ⊥BA于Q,根据PQ是直角三角形PQB和PQA的公共边,可用时间表示出PB和PA的长,然后根据PQ在不同直角三角形中不同的表达式,来求出时间.【解答】解:设出发t小时后甲船在乙船的正东方向,连接AB在P正南方向取点Q,则PQ⊥BA于Q,在Rt△PQC中,∠CPB=60°,∴PQ=PBcos60°=×18t=9t,在Rt△PQB中,∠APQ=45°,∴PQ=APcos45°=(81﹣9t)则(81﹣9t)=9t,解得:t==9(﹣1),答:当甲船在乙船的正东方向时,行驶的时间为9(﹣1)h.故答案为:9(﹣1).18.如图,AB是半⊙O的直径,点C在半⊙O上,AB=5cm,AC=4cm.D是上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为﹣2.【考点】圆的综合题.【分析】如图,连接BO′、BC.在点D移动的过程中,点E在以AC为直径的圆上运动,当O′、E、B共线时,BE的值最小,最小值为O′B﹣O′E,利用勾股定理求出BO′即可解决问题.【解答】解:如图,连接BO′、BC.∵CE⊥AD,∴∠AEC=90°,∴在点D移动的过程中,点E在以AC为直径的圆上运动,∵AB是直径,∴∠ACB=90°,在Rt△ABC中,∵AC=4,AB=5,∴BC===3,在Rt△BCO′中,BO′===,∵O′E+BE≥O′B,∴当O′、E、B共线时,BE的值最小,最小值为O′B﹣O′E=﹣2,故答案为:.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.计算:|﹣3|+20﹣.【考点】实数的运算;零指数幂.【分析】原式利用绝对值的代数意义,零指数幂法则,以及算术平方根定义计算即可得到结果.【解答】解:原式=3+1﹣2=2.20.解不等式组:.【考点】解一元一次不等式组.【分析】利用不等式的性质,先求出两个不等式的解集,再求其公共解.【解答】解:,由①式得x>1;由②式得x≤4,所以不等式组的解为1<x≤4.21.先化简,再求值:,其中x=+1.【考点】分式的化简求值.【分析】根据分式混合运算的法则先算括号里面的,再算除法,最后把x的值代入进行计算即可.【解答】解:原式=÷=•=,当x=+1时,原式=.22.购买6件A商品和5件B商品共需270元,购买3件A商品和4件B商品共需180元.问:购买1件A商品和1件B商品共需多少元?【考点】二元一次方程组的应用.【分析】设购买1件A商品需x元,1件B商品需y元,根据购买6件A商品和5件B商品共需270元,购买3件A商品和4件B商品共需180元列出方程组解答即可.【解答】解:设购买1件A商品需x元,1件B商品需y元,可得:,解得:,答:购买1件A商品需20元,1件B商品需30元,20+30=50元,答:购买1件A商品和1件B商品共需50元.23.如图,已知△ABC中,∠C=90°,AC<BC.D为BC上一点,且到A、B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)若∠B=38°,求∠CAD的度数.【考点】作图—基本作图;线段垂直平分线的性质.【分析】(1)作出线段AB的垂直平分线与线段BC的交点即为所求的点D.(2)求出∠CAB,∠DAB,根据∠CAD=∠CAB﹣∠DAB,即可解决问题.【解答】解:(1)如图点D就是所求的点.(2)∵∠C=90°,∠B=38°,∴∠CAB=90°﹣38°=52°,∵DA=DB,∴∠DAB=∠B=38°,∴∠CAD=∠CAB﹣∠DAB=52°﹣38°=14°.24.从1名男生和3名女生中随机抽取参加“我爱苏州”演讲比赛的同学.(1)若抽取1名,恰好是男生的概率为;(2)若抽取2名,求恰好是2名女生的概率.(用树状图或列表法求解)【考点】列表法与树状图法.【分析】(1)由1名男生和3名女生中随机抽取参加“我爱苏州”演讲比赛,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是2名女生的情况,再利用概率公式即可求得答案.【解答】解:(1)∵1名男生和3名女生中随机抽取参加“我爱苏州”演讲比赛,∴抽取1名,恰好是男生的概率为:;故答案为:;(2)画树状图得:∵共有12种等可能的结果,恰好是2名女生的有6种情况,∴恰好是2名女生的概率为:=.25.如图,一次函数y=kx+b与反比例函数Y=的图象交开A(﹣2,1),B(1,a)两点.(1)分别求出反比例函数与一次函数的关系式;(2)观察图象,直接写出关于x,y的方程组的解.【考点】反比例函数与一次函数的交点问题.【分析】(1)先将点A代入y=,求出m,再将点B代入求得a,最后把点A,B代入即可得出答案;(2)一次函数和反比例函数的交点坐标即为方程组的解.【解答】解:(1)∵点A(﹣2,1)在反比例函数上,∴1=,∴m=﹣2,∴反比例函数的解析式为y=﹣.∵点B在反比例函数上,∴a==﹣2,∴A(﹣2,1),B(1,﹣2)在一次函数上,∴,解得k=﹣1,b=﹣1,∴一次函数的解析式为y=﹣x﹣1;(2)关于x,y的方程组的解为(﹣2,1)(1,﹣2).26.如图,己知AB是⊙O的直径,且AB=4,点C在半径OA上(点C与点O、点A不重合),过点C作AB的垂线交⊙O于点D.连接OD,过点B作OD的平行线交⊙O于点E,交CD的延长线于点F.(1)若点E是的中点,求∠F的度数;(2)求证:BE=2OC;(3)设AC=x,则当x为何值时BE•EF的值最大?最大值是多少?【考点】圆的综合题.【分析】(1)首先连接OE,由=,OD∥BF,易得∠OBE=∠OEB=∠BOE=60°,又由CF⊥AB,即可求得∠F的度数;(2)连接OE,过O作OM⊥BE于M,由等腰三角形的性质得到BE=2BM,根据平行线的性质得到∠COD=∠B,根据全等三角形的性质得到BM=OC,等量代换即可得到结论.(3)根据相似三角形的性质得到,求得BF=,于是得到EF=BF﹣BE=,推出BE•EF=﹣4x2+12x=﹣4(x﹣)2+9,即可得到结论.【解答】解:(1)如图1,连接OE.∵=,∴∠BOE=∠EOD,∵OD∥BF,∴∠DOE=∠BEO,∵OB=OE,∴∠OBE=∠OEB,∴∠OBE=∠OEB=∠BOE=60°,∵CF⊥AB,∴∠FCB=90°,∴∠F=30°;(2)连接OE,过O作OM⊥BE于M,∵OB=OE,∴BE=2BM,∵OD∥BF,∴∠COD=∠B,在△OBM与△ODC中,∴△OBM≌△ODC,∴BM=OC,∴BE=2OC;(3)∵OD∥BF,∴△COD∽△CBF,∴,∵AC=x,AB=4,∴OA=OB=OD=2,∴OC=2﹣x,BE=2OC=4﹣2x,∴,∴BF=,∴EF=BF﹣BE=,∴BE•EF=•2(2﹣x)=﹣4x2+12x=﹣4(x﹣)2+9,∴当时,最大值=9.27.如图①,已知矩形ABCD中,AB=60cm,BC=90cm.点P从点A出发,以3cm/s 的速度沿AB运动:同时,点Q从点B出发,以20cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设点P、Q运动的时间为t(s).(1)当t=s时,△BPQ为等腰三角形;(2)当BD平分PQ时,求t的值;(3)如图②,将△BPQ沿PQ折叠,点B的对应点为E,PE、QE分别与AD交于点F、G.探索:是否存在实数t,使得AF=EF?如果存在,求出t的值:如果不存在,说明理由.【考点】四边形综合题.【分析】(1)由运动得出BP=BQ,求出t,即可;(2)由PM∥AD,得出,表示出PM,从而求出t,即可;(3)先判断出△AEP≌△FEG,表示出BH,HQ,CQ,再由勾股定理计算即可.【解答】解:(1)当BP=BQ时,60﹣3t=20t,∴t=,(2)如图1,过P作PM∥AD,∴,∴,∴PM=90﹣t,∵PN=NQ,PM=BQ,∴90﹣t=20t,∴t=,(3)如图2,作GH⊥BQ,∴PB=PF=60﹣3t,∵AE=EF,∠AEP=∠FEG,∠A=∠F,∴△AEP≌△FEG,∴PE=EG,FG=AP,∴AG=PF=60﹣3t=BH,∴HQ=BQ﹣BH=20t﹣(60﹣3t)=23t﹣60,GQ=FQ﹣FG=BQ﹣AP=17t,根据勾股定理得,602=(17t)2﹣(23t﹣60)2∴t1=4,t2=7.5(舍),∴t=4∴存在t=4,使AE=EF.28.如图,已知二次函数y=m2x2﹣2mx﹣3(m是常数,m>0)的图象与x轴分别相交于点A、B(点A位于点B的左侧),与y轴交于点C,对称轴为直线l.点C关于l的对称点为D,连接AD.点E为该函数图象上一点,AB平分∠DAE.(1)①线段AB的长为.②求点E的坐标;(①、②中的结论均用含m的代数式表示)(2)设M是该函数图象上一点,点N在l上.探索:是否存在点M.使得以A、E、M、N为顶点的四边形是矩形?如果存在,求出点M坐标;如果不存在,说明理由.【考点】二次函数综合题.【分析】(1)①令y=0,求出抛物线与x轴的交点坐标;②根据抛物线解析式确定出对称轴,和y轴交点坐标;(2)先设出M点的坐标,分两种情况计算,利用矩形的对角线互相平分来确定出点M的坐标,再用勾股定理计算即可.【解答】解:(1)①令y=0,则(mx﹣3)(mx+1)=0,∴x=﹣或x=,∴A(﹣,0),B(,0),∴AB=,故答案为;②∵二次函数y=m2x2﹣2mx﹣3,∴C(0,﹣3),对称轴l:x=,∴D(,﹣3)∵AB平分∠DAE,∴点D关于x轴的对称点Q(,3)在直线AE上,∴直线AE的解析式为y=mx+1,∵点E是抛物线和直线AE的交点,∴E(,5).(2)设M(x,m2x2﹣2mx﹣3),N(,a)∵A(﹣,0),E(,5).以A、E、M、N为顶点的四边形是矩形,①以AE,MN为对角线时,AE,MN的中点重合,∴﹣+=x+,∴x=,∴M(,﹣3),∵MA2+ME2=AE2,∴+9++64=+25,∴m=﹣(舍),或m=,∴M(4,﹣3),②以AN,ME为对角线时,AN,ME的中点重合,∴﹣+=x+,∴x=﹣,∴M(﹣,21),∵AE2+AM2=ME2,∴+25++441=+256,∴m=﹣(舍)或m=∴,即:存在,M(4,﹣3)或.2019年3月10日。
2019初三教学调研试卷数 学 2019.04一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相对应的位置上.) 1.13-的倒数是 A. 3- B. 13- C. 3 D. 132.下列计算正确的是A. 224a a a += B. 235()a a = C. 22a a -= D. 222()ab a b =3.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如下表:则这30名同学每天使用的零花钱的众数和中位数分别是A. 4, 3B. 4, 3.5C. 3.5,3.5D. 3.5,4 4.已知2310x x -+=,则21xx x -+的值是A.12 B. 2 C. 13D. 3 5.如图,己知AB 、AD 是⊙O 的弦, 30B ∠=︒,点C 在弦AB 上,连接CO 并延长CO交于⊙O 于点D ,20D ∠=︒,则BAD ∠的度数是A. 30︒ B . 40︒ C. 50︒ D. 60︒6.某工厂进行技术创新,现在每天比原来多生产50台机器,并且现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设现在每天生产x 台机器,根据题意可得方程为: A.6004505x x =+ B . 6004505x x =- C. 60045050x x =+ D. 60045050x x =-7.已知二次函数2y ax bx c =++的图象如图所示,顶点为(1,0-),下列结论: ①0abc <; ②240b ac -=; ③2a >; ④420a b c -+> 其中正确结论的个数是A. 1B. 2C. 3D. 48.对于正数x ,规定()1x f x x =+, 例如133113(3),()11343413f f ====++,计算11111()()()()()(1)(2)(3)100099999832f f f f f f f f ++⋯++++++⋯ (998)(999)(1000)f f f ++的结果是A. 999B. 999.5C. 1000D. 1000.59.如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形(两组邻边分别相等的四边形),再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是cm 2B.cm 2C. 2D. cm 210.如图,OA 在x 轴上,OB 在y 轴上,4,3OA OB ==,点C 在边OA 上,1AC =,⊙P 的圆心P 在线段BC 上 ,且⊙P 与边AB ,AO 都相切.若反比例函数(0)ky k x=≠的图象经过圆心P ,则k 的值是 A. 54-B. 53-C. 52- D. 2- 二、填空题(本大题共8小题,每小题3分,共24分,把答案填在答题卷相应题中横线上. 11.分解因式2a a -= . 12.函数y =x 的取值范围是 .13.世界文化遗产长城总长约为6700000m ,若将6700000用科学记数法表示为 . 14.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片己经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于163”的概率是 . 15.圆锥底面圆的半径为3m ,其侧面展开图的圆心角为120︒,则圆锥的母线长为 m. 16.如图,ABC ∆中,2,4AB AC ==,将ABC ∆绕点C 按逆时针方向旋转得到A B C ''∆,使AB //B C ',分别延长AB 、CA '相交于点D ,则线段BD 的长为 .17.如图,CA AB ⊥,DB AB ⊥,己知2,6AC AB ==,点P 射线BD 上一动点,以CP 为直径作⊙O ,点P 运动时,若⊙O 与线段AB 有公共点,则BP 最大值为 . 18.如图(1)所示,E 为矩形ABCD 的边AD 上一点动点P 、Q 同时从点B 出发,点P 以1cm/ 秒的速度沿折线BE ED DC --运动到点C 时停止,点Q 以2cm/秒的速度沿BC 运动到点C 时停止.设P 、Q 同时出发t 秒时,BPQ ∆的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(其中曲线OG 为抛物线的一部分,其余各部分均为线段),则下列结论: ① 05t <≤时,245y t =; ② 当6t =秒时,ABE ∆≌PQB ∆; ③ 4cos 5CBE ∠=; ④ 当292t =秒时,ABE ∆∽QBP ∆; ⑤ 段NF 所在直线的函数关系式为:496y x =-+.其中正确的是 .(填序号)三、解答题(本大题共11小题,共76分.把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.(本题5分)计算:1301()(2)39-+-+-- 20.(本题5分)解不等式组:13x +≤34(1)1x --<21.(本题5分)先化简,再求值:22121()222a a a a a a -++÷---,其中1a = 22. (本题5分)解分式方程:—3323x x x x --=- 23.(本小题满分7分)如图,在ABC ∆中,90BAC ∠=︒,AD 是中线,E 是AD 的中点,过点A 作AF //BC 交BE 的延长线于点F ,连接CF . (1)求证:AD AF =;(2)如果AB AC =,试判断四边形ADCF 的形状,并证明你的结论.24.(本小题满分7分)某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家.为了解学生最喜欢哪一项校本课程,随机抽取 了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题: (1)这次被调查的学生共有____人; (2)请你将条形统计图补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).25.(本小题满分6分)如图,为了测出某塔CD 的高度,在塔前的平地上选择一点A ,用测角 仪测得塔顶D 的仰角为30︒,在A 、C 之间选择一点B (A 、B 、C 三点在同一直线上)用测角仪测得塔顶D 的仰角为75︒,且AB 间的距离为40m. (1)求点B 到AD 的距离; (2)求塔高CD (结果精确到0.1m.) (1.414 1.732≈≈).26.(本小题满分7分)如图,在直角坐标系xOy 中,一直线2y x b =+经过点(1,0)A -,与y 轴正半轴交于B 点,在x 轴正半轴上有一点D ,且OD OB =,过D 点作DC x ⊥轴交直线2y x b =+于C 点,反比例函数(0)ky x x=>经过点C . (1)求,b k 的值; (2)求BDC ∆的面积; (3)在反比例函数(0)ky x x=>的图像上 找一点P (异于点C ),使BDP ∆与BDC ∆的面积相等,求出P 点坐标.27.(本小题满分7分)如图,己知MN 是⊙O 的直径,P 为⊙O 上一点,NP 平分MNQ ∠,且NQ PQ ⊥.(1)求证:直线PQ 是⊙O 的切线;(2)若⊙O的半径2,R NP ==NQ 的长.28.(本小题满分10分)如图,二次函数23(0)2y ax x c a =++≠的图像与x 轴交于A 、B 两 点,与y 轴交于点C ,己知点(1,0)A -,点(0,2)C (1)求抛物线的函数解析式;(2)若点D 是抛物线在第一象限的部分上的一动点,当四边形OCDB 的面积最大时,求点D 的坐标;(3)若点E 为抛物线上任意一点,点F 为x 轴上任意一点,当以,,,B C E F 为顶点的四边 形是平行四边形时,写出满足条件的所有点E 的坐标.29.(本小题满分12分)如图①,四边形ABCD 中,AD // BC ,DC BC ⊥,6AD =cm ,8DC =cm ,12BC =cm.动点M 在CB 上运动,从C 点出发到B 点,速度每秒2cm;动点N 在BA 上运动,从B 点出发到A 点,速度每秒1cm.两个动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t (秒). (1)求线段AB 的长;(2)当t 为何值时,MN //CD ?(3)设三角形DMN 的面积为S ,求S 与t 之间的函数关系式;(4)如图②,连接BD ,是否存在某一时刻t ,使MN 与BD 互相垂直?若存在,求出这时 的t 值;若不存在,请说明理由.。
2019年江苏省苏州市中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应位置上)1.(3分)﹣2的相反数是()A.2B.﹣2C.D.2.(3分)苏州奥体中心体育场可容纳45000名观众,数据45000用科学记数法表示为()A.4.5×103B.4.5×104C.4.5×105D.4.5×1063.(3分)下列运算结果等于x6的是()A.x2•x3B.x6÷x C.x2+x4D.(x3)24.(3分)关于x的一元二次方程x2+(2m+1)x+m2=0有两个不相等的实数根,则实数m 的取值范围是()A.B.C.D.5.(3分)如图,△ABC是一把直角三角尺,∠ACB=90°,∠B=30°.把三角尺的直角顶点放在一把直尺的一边上,AC与直尺的另一边交于点D,AB与直尺的两条边分别交于点E,F.若∠AFD=58°,则∠BCE的度数为()A.20°B.28°C.32°D.88°6.(3分)如图,四边形ABCD内接于⊙O,AB是直径,BC∥OD,若∠C=130°,则∠B 的度数为()A.50°B.60°C.70°D.80°7.(3分)某校为了了解学生到校的方式,随机抽取了部分学生进行问卷调查,并将调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,则扇形统计图中“步行”对应的圆心角的度数为()A.54°B.60°C.72°D.108°8.(3分)如图,一架无人机航拍过程中在C处测得地面上A,B两个目标点的俯角分别为30°和60°.若A,B两个目标点之间的距离是120米,则此时无人机与目标点A之间的距离(即AC的长)为()A.120米B.米C.60米D.米9.(3分)已知,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,延长AC到F,使得CF=AC,连接EF.若EF=4,则AB的长为()A.8B.C.4D.10.(3分)如图,在平面直角坐标系中,点A坐标为(10,12),点B在x轴上,AO=AB,点C在线段OB上,且OC=3BC,在线段AB的垂直平分线MN上有一动点D,则△BCD周长的最小值为()A.B.13C.D.18二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应位置上.)11.(3分)若在实数范围内有意义,则x的取值范围是.12.(3分)分解因式2x2﹣4x+2=.13.(3分)分式方程的解是.14.(3分)某校随机调查了八年级20名男生引体向上的个数,统计数据如表所示,则这些男生引体向上个数的中位数与众数之和为.个数678910人数23465 15.(3分)若一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(1,3)和点(﹣1,2),则k2﹣b2的值为.16.(3分)在2019年春节期间,某商场开展迎春大酬宾活动,对一次性购物不超过200元和超过200元分别设置了两种不同的优惠办法,顾客一次性购物实际付款y(元)是所购物品的原价x(元)的函数,其图象如图所示.已知小明一次性购物实际付款236元,则他所购物品的原价为元.17.(3分)如图,一张扇形纸片OAB中,半径OA为2,点C是的中点,现将这张扇形纸片沿着弦AB折叠,点C恰好与圆心O重合,则图中阴影部分的面积为.18.(3分)如图,正方形ABCD的边长为,点E是正方形ABCD内一点,将△BCE 绕着点C顺时针旋转90°,点E的对应点F和点B,E三点在一条直线上,BF与对角线AC相交于点G,若DF=6,则GF的长为.三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(5分)计算:.20.(5分)解不等式组:.21.(6分)先化简,再求值:(1﹣)÷,其中x=﹣1.22.(6分)如图,点B,F,C,E在一条直线上,AB=DE,∠B=∠E,BF=CE.求证:CG=FG.23.(8分)有三张正面分别写有数字﹣1,2,3的卡片,它们背面完全相同.(1)将这三张卡片背面朝上洗匀后随机抽取一张,则抽到的卡片为正面写有正数的卡片的概率为.(2)小明将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为平面直角坐标系内点P的横坐标,然后将此卡片放回、洗匀,再由小丽从三张卡片中随机抽取一张,以其正面数字作为平面直角坐标系内点P的纵坐标,请用树状图或表格列出点P所有可能的坐标,并求出点P在第一象限内的概率.24.(8分)我市某中学为推进书香校园建设,在全校范围开展图书漂流活动,现需要购进一批甲、乙两种规格的漂流书屋放置图书.已知一个甲种规格的漂流书屋的价格比一个乙种规格的漂流书屋的价格高80元;如果购买2个甲种规格的漂流书屋和3个乙种规格的漂流书屋,一共需要花费960元.(1)求每个甲种规格的漂流书屋和每个乙种规格的漂流书屋的价格分别是多少元?(2)如果学校计划购进这两种规格的漂流书屋共15个,并且购买这两种规格的漂流书屋的总费用不超过3040元,那么该学校至多能购买多少个甲种规格的漂流书屋?25.(8分)如图,四边形ABCD是菱形,对角线AC⊥x轴,垂足为A.反比例函数y=的图象经过点B,交AC于点E.已知菱形的边长为,AC=4.(1)若OA=4,求k的值;(2)连接OD,若AE=AB,求OD的长.26.(10分)如图,AB是⊙O的直径,点P在BA的延长线上,过点P作⊙O的切线,切点为D,BC垂直于PD,垂足为C,BC与⊙O相交于点E,连接OE,交BD于点F.(1)求证:BD平分∠ABC;(2)若BC=6,tan P=,①求线段BD的长;②求线段BF的长.27.(10分)如图1,在平面直角坐标系中,一次函数y=﹣x+8的图象与y轴交于点A,与x轴交于点B,点C是x轴正半轴上的一点,以OA,OC为边作矩形AOCD,直线AB 交OD于点E,交直线DC于点F.(1)如图2,若四边形AOCD是正方形.①求证:△AOE≌△COE;②过点C作CG⊥CE,交直线AB于点G.求证:CG=FG.(2)是否存在点C,使得△CEF是等腰三角形?若存在,求该三角形的腰长;若不存在,请说明理由.28.(10分)如图,在平面直角坐标系中,一次函数y=x﹣3的图象与x轴交于点A,与y 轴交于点B,点B关于x轴的对称点是C,二次函数y=﹣x2+bx+c的图象经过点A和点C.(1)求二次函数的表达式;(2)如图1,平移线段AC,点A的对应点D落在二次函数在第四象限的图象上,点C 的对应点E落在直线AB上,求此时点D的坐标;(3)如图2,在(2)的条件下,连接CD,交CD轴于点M,点P为直线AC上方抛物线上一动点,过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使得以点P,C,F为顶点的三角形与△COM相似?若存在,求点P的横坐标;若不存在,请说明理由.2019年江苏省苏州市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应位置上)1.(3分)﹣2的相反数是()A.2B.﹣2C.D.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)苏州奥体中心体育场可容纳45000名观众,数据45000用科学记数法表示为()A.4.5×103B.4.5×104C.4.5×105D.4.5×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:45000=4.5×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列运算结果等于x6的是()A.x2•x3B.x6÷x C.x2+x4D.(x3)2【分析】直接利用合并同类项法则以及同底数幂的乘除法运算法则分别化简得出答案.【解答】解:A、x2•x3=x5,故此选项错误;B、x6÷x=x5,故此选项错误;C、x2与x4=不是同类项,不能合并,故此选项错误;D、(x3)2=x6,故此选项正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除法运算,正确化简各式是解题关键.4.(3分)关于x的一元二次方程x2+(2m+1)x+m2=0有两个不相等的实数根,则实数m 的取值范围是()A.B.C.D.【分析】根据根的判别式,可知△>0,据此即可求出m的取值范围.【解答】解:∵关于x的一元二次方程x2+(2m+1)x+m2=0有两个不相等的实数根,∴△=(2m+1)2﹣4m2=4m2+4m+1﹣4m2=4m+1>0,解得m>﹣.故选:C.【点评】此题考查了根的判别式,解题时要注意一元二次方程成立的条件:二次项系数不为0.5.(3分)如图,△ABC是一把直角三角尺,∠ACB=90°,∠B=30°.把三角尺的直角顶点放在一把直尺的一边上,AC与直尺的另一边交于点D,AB与直尺的两条边分别交于点E,F.若∠AFD=58°,则∠BCE的度数为()A.20°B.28°C.32°D.88°【分析】由平行线的性质得出∠AEC=∠AFD=58°,再由三角形的外角性质即可得出∠BCE的度数.【解答】解:∵CE∥DF,∴∠AEC=∠AFD=58°,∵∠AEC=∠B+∠BCE,∴∠BCE=∠AEC﹣∠B=58°﹣30°=28°;故选:B.【点评】本题主要考查了平行线的性质以及三角形的外角性质,解题时注意:两直线平行,同位角相等.6.(3分)如图,四边形ABCD内接于⊙O,AB是直径,BC∥OD,若∠C=130°,则∠B 的度数为()A.50°B.60°C.70°D.80°【分析】直接利用圆内接四边形的性质得出∠A=50°,进而利用等腰三角形的性质和平行线的性质分析得出答案.【解答】解:∵四边形ABCD内接于⊙O,∠C=130°,∴∠A=50°,∵DO=AO,∴∠ADO=∠A=50°,∴∠AOD=80°,∵BC∥OD,∴∠AOD=∠B=80°.故选:D.【点评】此题主要考查了圆内接四边形的性质以及等腰三角形的性质和平行线的性质,正确得出∠A的度数是解题关键.7.(3分)某校为了了解学生到校的方式,随机抽取了部分学生进行问卷调查,并将调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,则扇形统计图中“步行”对应的圆心角的度数为()A.54°B.60°C.72°D.108°【分析】根据统计图中的数据可以求得本次调查的学生数,进而求得扇形统计图中“步行”对应的圆心角的度数.【解答】解:由图可得,本次抽查的学生有:15÷30%=50(人),扇形统计图中“步行”对应的圆心角的度数为:360°×=72°,故选:C.【点评】本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.8.(3分)如图,一架无人机航拍过程中在C处测得地面上A,B两个目标点的俯角分别为30°和60°.若A,B两个目标点之间的距离是120米,则此时无人机与目标点A之间的距离(即AC的长)为()A.120米B.米C.60米D.米【分析】设CE=x米,根据正切的定义用x分别表示出AE、BE,根据题意列方程,解方程得到答案.【解答】解:设CE=x米,在Rt△ACE中,tan∠CAE=,则AE==x,在Rt△BCE中,tan∠CBE=,则BE==x,由题意得,x﹣x=120,解得,x=60,即CE=60,则AC=2CE=120(米)故选:B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.9.(3分)已知,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,延长AC到F,使得CF=AC,连接EF.若EF=4,则AB的长为()A.8B.C.4D.【分析】连接CD,证明四边形CDEF是平行四边形,则CD=EF=4,再利用直角三角形斜边上的中线性质可求AB长.【解答】解:连接CD,∵点D,E分别是AB,BC的中点,∴DE∥AC,DE=AC.∵延长AC到F,使得CF=AC,∴DE∥CF且DE=CF,∴四边形CDEF是平行四边形.∴CD=EF=4.∵∠ACB=90°,CD为斜边AB中线,∴AB=2CD=8.故选:A.【点评】本题主要考查了平行四边形的判定和性质、直角三角形斜边上的中线性质,解题的关键是利用平行四边形的性质进行线段的转化.10.(3分)如图,在平面直角坐标系中,点A坐标为(10,12),点B在x轴上,AO=AB,点C在线段OB上,且OC=3BC,在线段AB的垂直平分线MN上有一动点D,则△BCD周长的最小值为()A.B.13C.D.18【分析】过A作AH⊥OB于H,连接AD,根据MN垂直平分AB,即可得到AD=BD,当A,D,C在同一直线上时,△BCD周长的最小值为AC+BC的长,根据勾股定理求得AC的长,即可得到△BCD周长的最小值为13+5=18.【解答】解:如图,过A作AH⊥OB于H,连接AD,∵点A坐标为(10,12),AO=AB,∴OH=BH=10,AH=12,又∵OC=3BC,∴BC=5,CO=15,∴CH=15﹣10=5,∵MN垂直平分AB,∴AD=BD,∴BD+CD=AD+CD,∴当A,D,C在同一直线上时,△BCD周长的最小值为AC+BC的长,此时,Rt△ACH中,AC===13,∴△BCD周长的最小值=13+5=18,故选:D.【点评】本题主要考查了最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应位置上.)11.(3分)若在实数范围内有意义,则x的取值范围是x≥﹣3.【分析】根据二次根式有意义的条件可得x+3≥0,再解即可.【解答】解:由题意得:x+3≥0,解得:x≥﹣3,故答案为:x≥﹣3.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.12.(3分)分解因式2x2﹣4x+2=2(x﹣1)2.【分析】先提取公因数2,再利用完全平方公式进行二次分解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:2x2﹣4x+2,=2(x2﹣2x+1),=2(x﹣1)2.【点评】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.13.(3分)分式方程的解是x=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+x﹣2=﹣1,解得:x=,经检验x=是分式方程的解,故答案为:x=【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14.(3分)某校随机调查了八年级20名男生引体向上的个数,统计数据如表所示,则这些男生引体向上个数的中位数与众数之和为18.个数678910人数23465【分析】根据众数和中位数的概念求解.【解答】解:数据9出现了6次,最多,故众数为:9,中位数为:=9,所以二者的和为9+9=18.故答案18.【点评】本题考查了众数和中位数的知识,解答本题的关键是熟练掌握众数和中位数的定义.15.(3分)若一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(1,3)和点(﹣1,2),则k2﹣b2的值为﹣6.【分析】将点(1,3)和点(﹣1,2)代入解析式可求k,b的值,即可求k2﹣b2的值.【解答】解:根据题意得:解得:∴k2﹣b2=﹣=﹣6故答案为:﹣6【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握图象上点的坐标满足图象解析式是本题的关键.16.(3分)在2019年春节期间,某商场开展迎春大酬宾活动,对一次性购物不超过200元和超过200元分别设置了两种不同的优惠办法,顾客一次性购物实际付款y(元)是所购物品的原价x(元)的函数,其图象如图所示.已知小明一次性购物实际付款236元,则他所购物品的原价为270元.【分析】根据图象得出(200,180)和(300,260)两点,利用待定系数法得出解析式,进而代入解答即可.【解答】解:由图象可得(200,180)和(300,260),设解析式为:y=kx+b,可得:,可得:,所以解析式为:y=0.8x+20,把y=236代入y=0.8x+20,解得:x=270,故答案为:270.【点评】此题考查函数图象,关键是根据图象得出(200,180)和(300,260)两点,利用待定系数法得出解析式.17.(3分)如图,一张扇形纸片OAB中,半径OA为2,点C是的中点,现将这张扇形纸片沿着弦AB折叠,点C恰好与圆心O重合,则图中阴影部分的面积为π﹣2.【分析】连接OC交AB于点P,根据折叠的性质求出OP=PC=1,根据勾股定理求出AP,根据垂径定理求出AB,根据扇形的面积公式和三角形的面积求出即可.【解答】解:连接OC交AB于点P,由题意知,OC⊥AB,且OP=PC=2=1,在Rt△AOP中,∵OA=2,OP=1,∴cos∠POA==,∴∠POA=60°,同理∠BOP=60°,∴∠AOB=120°,AP===,由垂径定理得:AB=2PM=2,∴阴影部分的面积=S扇形AOB ﹣2S△AOB=﹣2××21=π﹣2,故答案为:π﹣2.【点评】本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.18.(3分)如图,正方形ABCD的边长为,点E是正方形ABCD内一点,将△BCE 绕着点C顺时针旋转90°,点E的对应点F和点B,E三点在一条直线上,BF与对角线AC相交于点G,若DF=6,则GF的长为.【分析】作CH⊥BF于H,GK⊥BC于K.证明△BCE≌△DCF(SAS),推出BE=DF =6,易知CH=HE=HF,设CH=HE=HF=a,在Rt△BCH中,根据BC2=BH2+CH2,构建方程求出a,再由tan∠CBH===,设GK=k,BK=7k,则GK=CK=k,构建方程求出k,求出BG即可解决问题.【解答】解:作CH⊥BF于H,GK⊥BC于K.∵四边形ABCD是正方形,∴CB=CD,∠BCD=90°,∵∠ECF=90°,∴∠BCD=∠ECF,∴∠BCE=∠DCF,∵CE=CF,∴△BCE≌△DCF(SAS),∴BE=DF=6,∵CE=CF,∠ECF=90°,CH⊥EF,∴EH=HF,∴CH=HE=HF,设CH=HE=HF=a,在Rt△BCH中,∵BC2=BH2+CH2,∴50=(6+a)2+a2,解得a=1或﹣7(舍弃),∴CH=HE=HF=1,BF=8,∵tan∠CBH===,设GK=k,BK=7k,则GK=CK=k,∴8k=5,∴k=,∴BG==5k=,∴FG=BF﹣BG=8﹣=,故答案为.【点评】本题考查正方形的性质,旋转变换,勾股定理,全等三角形的判定和性质,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(5分)计算:.【分析】本题涉及零指数幂、绝对值、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣(2﹣)+=1﹣2++=﹣1+2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.20.(5分)解不等式组:.【分析】分别求出各不等式的解集,再求出其公共解集.【解答】解:解不等式3x﹣2<x,得:x<1,解不等式≤2x+1,得:x≥﹣2,则不等式组的解集为﹣2≤x<1.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)先化简,再求值:(1﹣)÷,其中x=﹣1.【分析】先根据分式混合元算的法则把原式进行化简,再代入进行计算即可.【解答】解:原式=•=,当x=﹣1时,原式=【点评】本题考查了分式的化简求值.解题的关键是对分式的分子分母要因式分解.22.(6分)如图,点B,F,C,E在一条直线上,AB=DE,∠B=∠E,BF=CE.求证:CG=FG.【分析】由“SAS”可证△ABC≌△DEF,可得∠ACB=∠DFE,可得结论.【解答】证明:∵BF=CE∴BF+CF=CE+CF∴BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS)∴∠ACB=∠DFE∴CG=FG【点评】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定和性质是本题关键.23.(8分)有三张正面分别写有数字﹣1,2,3的卡片,它们背面完全相同.(1)将这三张卡片背面朝上洗匀后随机抽取一张,则抽到的卡片为正面写有正数的卡片的概率为.(2)小明将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为平面直角坐标系内点P的横坐标,然后将此卡片放回、洗匀,再由小丽从三张卡片中随机抽取一张,以其正面数字作为平面直角坐标系内点P的纵坐标,请用树状图或表格列出点P所有可能的坐标,并求出点P在第一象限内的概率.【分析】(1)直接根据概率公式计算可得.(2)列表得出有放回的所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得【解答】解:(1)抽到的卡片为正面写有正数的卡片的概率为,故答案为:;(2)列表如下:﹣123﹣1(﹣1,﹣1)(2,﹣1)(3,﹣1)2(﹣1,2)(2,2)(3,2)3(﹣1,3)(2,3)(3,3)由表知,共有9种等可能结果,其中点P在第一象限内的有4种结果,所以点P在第一象限内的概率为.【点评】本题考查了列表法与树状图法:列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.24.(8分)我市某中学为推进书香校园建设,在全校范围开展图书漂流活动,现需要购进一批甲、乙两种规格的漂流书屋放置图书.已知一个甲种规格的漂流书屋的价格比一个乙种规格的漂流书屋的价格高80元;如果购买2个甲种规格的漂流书屋和3个乙种规格的漂流书屋,一共需要花费960元.(1)求每个甲种规格的漂流书屋和每个乙种规格的漂流书屋的价格分别是多少元?(2)如果学校计划购进这两种规格的漂流书屋共15个,并且购买这两种规格的漂流书屋的总费用不超过3040元,那么该学校至多能购买多少个甲种规格的漂流书屋?【分析】(1)设每个甲种规格的漂流书屋的价格为x元,每个乙种规格的漂流书屋的价格为y元,根据“一个甲种规格的漂流书屋的价格比一个乙种规格的漂流书屋的价格高80元;如果购买2个甲种规格的漂流书屋和3个乙种规格的漂流书屋,一共需要花费960元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设该学校购买m个甲种规格的漂流书屋,则购买(15﹣m)个乙种规格的漂流书屋,根据总价=单价×数量结合总价不超过3040元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论.【解答】解:(1)设每个甲种规格的漂流书屋的价格为x元,每个乙种规格的漂流书屋的价格为y元,依题意,得:,解得:.答:每个甲种规格的漂流书屋的价格为240元,每个乙种规格的漂流书屋的价格为160元.(2)设该学校购买m个甲种规格的漂流书屋,则购买(15﹣m)个乙种规格的漂流书屋,依题意,得:240m+160(15﹣m)≤3040,解得:m≤8.答:该学校至多能购买8个甲种规格的漂流书屋.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.25.(8分)如图,四边形ABCD是菱形,对角线AC⊥x轴,垂足为A.反比例函数y=的图象经过点B,交AC于点E.已知菱形的边长为,AC=4.(1)若OA=4,求k的值;(2)连接OD,若AE=AB,求OD的长.【分析】(1)利用菱形的性质得出AH的长,再利用勾股定理得出BH的长,得出B点坐标即可得出答案;(2)首先表示出B,E两点坐标进而利用反比例函数图象上的性质求出D点坐标,再利用勾股定理得出DO的长.【解答】解:(1)连接BD交AC于点H,∵四边形ABCD是菱形,AC=4,∴BD⊥AC,AH=2,∵对角线AC⊥x轴,∴BD∥x轴,∴B、D的纵坐标均为2,在Rt△ABH中,AH=2,AB=,∴BH=,∵OA=4,∴B点的坐标为:(,2),∵点B在反比例函数y=的图象上,∴k=11;(2)设A点的坐标为(m,0),∵AE=AB=,CE=,∴B,E两点的坐标分别为:(m+,2),(m,).∵点B,E都在反比例函数y=的图象上,∴(m+)×2=m,∴m=6,作DF⊥x轴,垂足为F,∴OF=,DF=2,D点的坐标为(,2),在Rt△OFD中,OD2=OF2+DF2,∴OD=.【点评】此题主要考查了菱形的性质以及勾股定理和反比例函数图象上的性质,正确得出D点坐标是解题关键.26.(10分)如图,AB是⊙O的直径,点P在BA的延长线上,过点P作⊙O的切线,切点为D,BC垂直于PD,垂足为C,BC与⊙O相交于点E,连接OE,交BD于点F.(1)求证:BD平分∠ABC;(2)若BC=6,tan P=,①求线段BD的长;②求线段BF的长.【分析】(1)连接OD,证明OD∥BC,再由OB=OD证明∠OBD=∠ODB,进而得结论;(2)①解Rt△PBC得PC与PB,设⊙O的半径为x,由相似三角形列出x的方程求得x,进而求得CD,便可用勾股定理求得BD;②过点O作OM⊥BE于点M,得四边形ODCM为矩形,得到BM的长度,再得BE,由△ODF∽△EBF便可求得结果.【解答】解:(1)证明:连接OD,如图1,∵PD是⊙O的切线,∴OD⊥PC,∵BC⊥PC,∴OD∥BC,∴∠ODB=∠CBD,∵OB=OD,∴∠ODB=∠OBD,∴∠CBD=∠OBD,即BD平分∠ABC;(2)①∵∠PCB=90°,BC=6,tan P=,∴PC=,∴PB=,设⊙O的半径为x,则OA=OB=OD=x,PB=10﹣x,∵OD∥BC,∴△POD∽△PBC,∴,即,解得,x=,∴PD=,∴CD=PC﹣PD=8﹣5=3,∴BD=;②过点O作OM⊥BE于点M,如图2,则四边形ODCM为矩形,∴CM=OD=,∴BM=BC﹣CM=,∵OB=OE,∴BE=2BM=,∵OD∥BE,∴△ODF∽△EBF,∴,即,解得BF=.【点评】本题是圆的综合题,主要考查了圆周角定理,圆的切线的性质,平行线的判定与性质,等腰三角形的性质,解直角三角形,勾股定理,相似三角形的性质与判定,矩形的性质与判定,有一定难度,第(1)题关键是过切点连半径,第(2)题的突破口是构造矩形与相似三角形.27.(10分)如图1,在平面直角坐标系中,一次函数y=﹣x+8的图象与y轴交于点A,与x轴交于点B,点C是x轴正半轴上的一点,以OA,OC为边作矩形AOCD,直线AB 交OD于点E,交直线DC于点F.(1)如图2,若四边形AOCD是正方形.①求证:△AOE≌△COE;②过点C作CG⊥CE,交直线AB于点G.求证:CG=FG.(2)是否存在点C,使得△CEF是等腰三角形?若存在,求该三角形的腰长;若不存在,请说明理由.【分析】(1)①由四边形AOCD是正方形知AO=CO,∠AOD=∠EOC,据此依据“SAS”可证得△AOE≌△COE;②∠ECB+∠CBG=90°,∠CBG=∠BCG,在Rt△BCF中,∠BCG+∠FCG=90°,∠CBG+∠CFB=90°,利用角的代换得到∠GCF=∠CFG,即可解题;(2)设C(m,0),则可表示出F(m,﹣m+8),D(m,8),E(,),利用勾股定理分别求出EC2=,CF2=,EF2=;然后分三种情况进行讨论:①当EC=EF时,=;②当CF=EF时,=;③当EC=EF时,=;【解答】解:(1)①∵四边形AOCD是正方形.∴AO=CO,∠AOD=∠EOC,∴△AOE≌△COE(SAS);②∴△AOE≌△COE,∴∠OAB=∠ECB,∵∠OAB+∠OBA=∠OAB+∠CBG=90°,∴∠ECB+∠CBG=90°,∵CG⊥CE,∴∠CBG=∠BCG,∴BG=CG,在Rt△BCF中,∠BCG+∠FCG=90°,∠CBG+∠CFB=90°,∴∠GCF=∠CFG,∴CG=GF;(2)设C(m,0),F(m,﹣m+8),D(m,8),直线OD的解析式为y=x,两直线y=x与y=﹣x+8的交点为E,x=﹣x+8,∴x=,∴E(,),∴EC2=,CF2=,EF2=,当EC=EF时,=,∴m=;当CF=EF时,=,∴m=4;当EC=EF时,=,∴m=6;此时C与F重合,不合题意;综上所述:m=4或m=时△CEF是等腰三角形;【点评】本题考查一次函数图象与性质;等腰三角形的性质;三角形全等;动点问题;能够熟练用三角形的判定方法证明三角形全等,利用勾股定理结合等腰三角形的性质求点的坐标,计算准确是解题的关键.28.(10分)如图,在平面直角坐标系中,一次函数y=x﹣3的图象与x轴交于点A,与y 轴交于点B,点B关于x轴的对称点是C,二次函数y=﹣x2+bx+c的图象经过点A和点C.(1)求二次函数的表达式;(2)如图1,平移线段AC,点A的对应点D落在二次函数在第四象限的图象上,点C 的对应点E落在直线AB上,求此时点D的坐标;(3)如图2,在(2)的条件下,连接CD,交CD轴于点M,点P为直线AC上方抛物线上一动点,过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使得以点P,C,F为顶点的三角形与△COM相似?若存在,求点P的横坐标;若不存在,请说明理由.【分析】(1)由一次函数的解析式求出A、B两点坐标,再根据A、C两点坐标求出b、c即可确定二次函数解析式;(2)由平移的性质设E(m,m﹣3),则D(m+3,m﹣6),代入抛物线的解析式则可求出点D的坐标;(3)分两种情况讨论:①△COM∽△PFC,②△COM∽△CFP,可求得点P的横坐标.【解答】解:∵一次函数y=x﹣3的图象与x轴、y轴分别交于点A、B两点,∴A(3,0),B(0,﹣3),。
苏州市2019年中考数学一模(解答题)压轴题汇编昆山市一模 27.(本题满分9分)如图,在平面直角坐标系中,直线AB 与x 轴交于点A (-2,0),交y 轴于点C ,与反比例函数(0)ky x x=>在第一象限内的图像交于点B (2,n ),连接BO ,且S △AOB =4.(1)求该反比例函数(0)ky x x =>的解析式和直线AB 的解析式; (2)若将直线AB 向下平移73个单位,与y 轴的交点为D ,交反比例函数图像于点E ,连接BE ,CE ,求△BCE 的面积S △BCE28.(本题满分10分)如图,抛物线23(0)y ax ax c a =-+≠与x 轴交于A ,B 两点,交y 轴于点C ,其中A (-1,0),C (0,3). (1) 求抛物线的解析式(2) 点P 是线段BC 上方抛物线上一动点(不与B ,C 重合),过点P 作PD ⊥x 轴,垂足为D ,交BC 于点E ,作PF ⊥直线BC 于点F ,设点P 的横坐标为x ,△PEF 的周长记为l ,求l 关于x 的函数关系式,并求出l 的最大值及此时点P 的坐标(3) 点H 是直线AC 上一点,该抛物线的对称轴上一动点G ,连接OG ,GH ,则两线段OG ,GH 的长度之和的最小值等于______,此时点G 的坐标为_____(直接写出答案。
)苏州市吴中、吴江、相城一模27.(本题满分10分)如图,抛物线234(0)y ax ax a a =--<与x 轴交于,A B 两点,直线 1122y x =+经过点A ,与抛物线的另一个交点为点C ,点C 的横坐标为3,线段PQ 在线段AB 上移动,PQ =1,分别过点,P Q 作x 轴的垂线,交抛物线于,E F ,交直线于,D G . (1)求抛物线的解析式;(2)当四边形DEFG 为平行四边形时,求出此时点P ,Q 的坐标;(3)在线段PQ 的移动过程中,以D ,E ,F ,G 为顶点的四边形面积是否有最大值,若有求出最大值,若没有请说明理由.28.(本题满分10分)如图①,在矩形ABCD中,点P从AB边的中点E出发,沿着E B CAQ=, 速运动,速度为每秒2个单位长度,到达点C后停止运动,点Q是AD上的点,10∆的面积为y,点p运动的时间为t秒,y与t的函数关系如图②所示.设PAQ(1)图①中AB= ,BC= ,图②中m= .(2)当t=1秒时,试判断以PQ为直径的圆是否与BC边相切?请说明理由:(3)点p在运动过程中,将矩形沿PQ所在直线折叠,则t为何值时,折叠后顶点A的对应点A'落在矩形的一边上.苏州市高新区27.(本题满分10分)如图1,矩形ABCD 中,BC =12cm ,点P 从A 点出发,以2cm/s 的速度沿A B C --匀速运动,运动到C 点时停止;点Q 从B 点出发,以a cm/s 的速度沿B C D A ---匀速运动,运动到A 点时停止.若,P Q 两点同时出发,设点P 运动的时间为t (s), PBQ ∆的面积为S (cm 2),S 与t 之间的函数关系由图2中的曲线段OEF 、线段,FG GH 表示.(1) a = ,AB = ;(2)求图2中曲线段OEF 对应的函数表达式以及这个函数的最大值; (3)当02t ≤≤,若PDQ ∆为直角三角形,求t 的值.28.(本题满分10分)如图1,抛物线21:34C y x x =--+与x 轴交于,A B 两点(点A 在点B 的右侧),与B 轴的正半轴相交于C 点. (1)如图1,求:抛物线1C 顶点D 的坐标;(2)如图2,把抛物线1C 以1个单位长度砂的速度向右平移得到抛物线2C ,同时ABC ∆以2个单位长度/秒的速度向上平移得到A B C '''∆,当抛物线2C 的顶点D '落在A B C '''∆之内 时,设平移的时间为t 秒. ①求t 的取值范围;②若抛物线2C 与y 轴相交于E 点,是否存在这样的t ,使得90A EB ''∠=︒,若存在,求出t 的值;若不存在,请说明理由.苏州工业园区27.(本题满分10分)如图,以ABC ∆的边AB 为直径的⊙O 与边AC 相交于点D ,BC 是⊙O 的切线,E 为BC 的中点,连接AE 、DE .(1)求证:DE 是⊙O 的切线:(2)设CDE ∆的面积为1S ,四边形ABED 的面积为2S .若215S S =,求tan BAC ∠的值;(3)在(2)的条件下,若AE =O 的半径长.28.(本题满分10分)如图①,在矩形ABCD 中,动点P 从点A 出发,以1 cm/s 的速度沿AD 向终点D 移动,设移动时间为t (s).连接PC ,以PC 为一边作正方形PCEF ,连接DE 、DF .设PCD ∆的面积为y (cm 2). y 与t 之间的函数关系如图②所示.(1) AB = cm ,AD = cm;(2)当t 为何值时,DEF ∆的面积最小?请求出这个最小值; (3)当t 为何值时,DEF ∆为等腰三角形?请简要说明理由.苏州市区中学一模27.(本题满分10分)如图1,在平面直角坐标系中,一次函数483y x =-+的图像与y 轴交于点A ,与x 轴交于点B 点C 是x 轴正半轴上的一点,以,OA OC 为边作矩形AOCD ,直线AB 交OD 于点E ,交直线DC 于点F . (1)如图2,若四边形AOCD 是正方形. ①求证: AOE COE ∆≅∆;②过点C 作CG CE ⊥,交直线AB 于点G .求证: CG FG =.(2)是否存在点C ,使得CEF ∆是等腰三角形?若存在,求该三角形的腰长;若不存在,请说明理由.28.(本题满分10分)如图,在平面直角坐标系中,一次函数3y x =-的图像与x 轴交于点A , 与y 轴交于点B ,点B 关于x 轴的对称点是C ,二次函数2y x bx c =-++的图像经过点A 和点C .(1)求二次函数的表达式;(2)如图1,平移线段AC ,点A 的对应点D 落在二次函数在第四象限的图像上,点C 的对应点E 落在直线AB 上,求此时点D 的坐标;(3)如图2,在(2)的条件下,连接CD ,交CD 轴于点M ,点P 为直线AC 上方抛物线上一动点,过点P 作PF AC ⊥,垂足为点F ,连接PC ,是否存在点P ,使得以点,,P C F 为顶点的三角形与COM ∆相似?若存在,求点P 的横坐标:若不存在,请说明理由.苏州平江中学一模常熟市模拟27.(本题满分10分)如图①,四边形ABCD 是知形,1,2AB BC ==,点E 是线段BC 上一动点(不与,B C 重合),点F 是线段BA 延长线上一动点,连接,,,DE EF DF EF 交AD 于点G .设,BE x AF y ==,已知y 与x 之间的函数关系如图②所示. (1)求图②中y 与x 的函数表达式; (2)求证:DE DF ⊥;(3)是否存在x 的值,使得DEG ∆是等腰三角形?如果存在,求出x 的值;如果不存在,说明理由28.(本题满分10分)如图1,二次函数234y ax ax a =--的图像与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点(0,3)C -. (1)求二次函数的表达式及点A 、点B 的坐标; (2)若点D 在二次函数图像上,且45DBC ABC S S ∆∆=,求点D 的横坐标; (3)将直线BC 向下平移,与二次函数图像交于,M N 两点(M 在N 左侧),如图2,过M 作//ME y 轴,与直线BC 交于点E ,过N 作//NF y 轴,与直线BC 交于点F ,当MN ME +的值最大时,求点M 的坐标.张家港市模拟26.(本题满分10分)如图,以△ABC的BC边上一点O为圆心的圆,经过A、C两点,与BC边交于点E,点D为CE 的下半圆弧的中点,连接AD交线段EO于点F.AB=BF,CF=4,DF=10.(1)求证:AB 是⊙O 的切线; (2)求⊙O 的半径r.(3)设点P 是BA 延长线上的一个动点,连接DP 交CF 于点M,交弧AC 于点N(N 与A 、C 不重合).试问DN DM ⋅是否为定值?如果是,求出该定值:如果不是.请说明理由。
27.(本题满分10分)如图,在四边形ABCD 中,AB// DC,CB ⊥AB.AB=16cm ,BC=6cm ,CD=8cm ,动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们的运动速度均为2cm/s 。
点P 和点Q 同时出发,设运动的时间为t(s),0<t<5. (1)用含t 的代数式表示AP;(2)当以点A.P,Q 为顶点的三角形与△ABD 相似时,求t 的值; (3)当QP ⊥BD 时,求t 的值28.(本题满分10分)如图1,抛物线ax x y C -=21:与bx x y C +-=22:相交于点O 、C,1C 与2C 分别交x 轴于点B 、A,且B 为线段AO 的中点.(1)点A 的坐标为(____,____),点B 的坐标为(____,____),ba的值为____; (2)若OC ⊥AC,求△OAC 的面积;(3)在(2)的条件下,设抛物线2C 的对称轴为l ,顶点为M(如图2),点E 在抛物线2C 上点O 与点M 之间运动,四边形OBCE 的面积是否存在最大值?若存在,求出面积的最大值和点E 的坐标;若不存在,请说明理由.太仓市模拟27.(本题满分10分)如图,己知Rt ABC ∆中,90C ∠=︒,8,6AC BC ==,点P 以每秒1个单位的速度从A 向C 运动,同时点Q 以每秒2个单位的速度从A B C →→方向运动,它们到C 点后都停止运动,设点,P Q 运动的时间为t 秒. (1)当 2.5t =时,PQ = ;(2)经过t 秒的运动,求ABC ∆被直线PQ 扫过的面积S 与时间t 的函数关系式;(3),P Q 两点在运动过程中,是否存在时间t ,使得PQC ∆为等腰三角形?若存在,求出此时t 的值;若不存在,请说明理由.28.(本题满分11分)如图,在平面直角坐标系xOy 中,直线//l x 轴,且直线l 与抛物线24y x x =-+和y 轴分别交于点,,A B C ,点D 为抛物线的顶点.若点E 的坐标为(1,1),点A 的横坐标为1. (1)线段AB 的长度等于 ; (2)点P 为线段AB 上方抛物线上的一点,过点P 作AB 的垂线交AB 于点H ,点F 为y轴上一点,当PBE ∆的面积最大时,求2PH HF FO ++的最小值; (3)在(2)的条件下,删除抛物线24y x x =-+在直线PH 左侧部分图象并将右侧部分图象沿直线PH 翻折,与抛物线在直线PH 右侧部分图象组成新的函数M 的图象.现有平行于FH 的直线1l :y mx t =+,若直线1l 与函数M 的图象有且只有2个交点,求t 的取值范围(请直接写出t 的取值范围,无需解答过程).。