圆周角中考题集锦(含答案)
- 格式:doc
- 大小:464.50 KB
- 文档页数:3
圆周角的练习题初三圆周角是指以圆心为顶点的角,它的度数等于所对弧的度数。
在初三的几何学中,圆周角是一个重要的概念,掌握圆周角的计算方法对于解决几何题目至关重要。
本文将为大家提供一些圆周角的练习题,帮助初三学生巩固和掌握这一知识点。
练习题一:已知直径AB的圆上一点C,连结AC和BC两条弦。
求∠ACB的度数。
解析:根据圆的性质可知,在圆上以弦为底的两个圆周角是等角,所以∠ACB = ∠AEB。
而直径AB是圆上的一条直径,它对应的圆周角为180度。
因此,∠ACB = ∠AEB = 180度。
练习题二:已知弧AC与弧BC分别是圆上的两个等分弧,且∠ACB = 20度。
求弧AC的度数。
解析:根据题目可知,∠ACB为圆周角,而弧AC和弧BC是等分弧,所以它们所对应的圆周角也相等,即∠ACB = ∠AEB。
而∠ACB 已知为20度,所以∠AEB = 20度。
而直径AB上的圆周角为180度,所以弧AC的度数为180度减去∠AEB的度数,即弧AC = 180度 - 20度 = 160度。
练习题三:已知直径AB的圆上一点C与D,连结AC和BD两条弦,交于点E。
若∠AEB = 70度,求证:∠ACD = 35度。
解析:要证明∠ACD = 35度,可以利用等角的性质。
根据题目已知,∠AEB = ∠AED = 70度。
而由圆周角的性质可知,∠ACD =∠AEB = 70度。
又∠ACD和∠ACB是同弦内角和对应的圆周角,所以有∠ACD = 180度 - ∠ACB。
将已知条件带入,∠ACD = 180度 - 70度= 110度。
由此可知,∠ACD的度数为35度。
练习题四:已知弦AB的长为8cm,圆心角∠AOB的度数为60度,求弦AB所对应的弧长。
解析:弦AB所对应的弧可以通过圆心角的度数与圆周长的比例来求解。
已知圆心角∠AOB的度数为60度,而整个圆的圆心角为360度,所以∠AOB所对应的弧所占圆周长的比例为60度/360度= 1/6。
0° 0 中考数学专项练习圆周角定理(含解析)是⊙O 的直径,弦 CD ⊥ AB ,∠ CAB=40 D+ ∠ABD 的度数为〔 〕A. 100°B. 110°C. 120°D. 1502.A 、C 、B 是⊙O 上三点,假设∠ AOC=40°,那么∠ ABC 的度数是 ()A. 1 0°B.C.80°C 的外接圆,∠ OCB=40 °,那么∠ A 的度数等于A. 6B. 5C. 4,连接 BD , O D. 3.如图,⊙ O 是△ A一】单项选择题 图,那么DD. 304.如图,EF是⊙ O的直径,把∠ A为60°的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB 与⊙ O交于点P,点B与点O 重合.将三角板ABC 沿OE方向平移,使得点B与点E重合为止.设∠ POF=x°,那么x 的取值范围是( )A. 30≤x≤60B. 30≤x≤90C.30≤x≤120D.60≤x≤1205.如图,圆心角∠ BOC=100°,那么圆周角∠ BAC 的大小是A. 50°B.100°C.130°D.200°6.以下各命题正确的选项是:〔〕A. 假设两弧相等,那么两弧所对圆周角相等B. 有一组对边平行的四边形是梯形.C. 垂直于弦的直线必过圆心 D. 有一边上的中线等于这边一半的三角形是直角三角形.7.某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为 1 的半圆形量角器中,画一个直径为 10的圆,把刻度尺 CA 的 0刻度固定在 刻度尺可以绕点 O 旋转.从图中所示的图尺可读出 sin 〕B.C.D. 【二】填空题 8.如图, P 是⊙ 0 直径那么∠ A 的度数为10.如图,在以 AB 为直径的半圆中,有一个边长为 1 的内接正方形 CF ,那么以 AC 和 BC 的长为两根的一元二次方程是 ___ ..如图, AB 是⊙的直径,点 C 是半径 OA 的中点,过点 C 作DE ⊥AB ,交 O 于点 D ,E 两点,过点 D 作直径 DF ,连结 AF ,那么∠ DEA= AB 延长线上的点, PC 切⊙0于 C 、假设∠ P=40是半圆 的直径, ,那么 的大小是假设∠ BO ∠BCD ,那么弧 BD 的长为11 A. 半圆的圆 AOB 的o12. 如图,⊙ O的半径为6,四边形ABCD 内接于⊙ O,连接OB,OD,13. __________________________ 如图,AB 是⊙O的直径,C、D、E都是⊙ O上的点,∠ A=55°,∠B=70°,那么∠ E的度数是.14. _____________________________________ 如图,AD 和AC 分别是⊙ O的直径和弦,且∠ CAD=30°,OB⊥A D交AC于点B,假设OB=5,那么BC等于__________________________ .O 的内接四边形ABCD 中,∠ A=105°,那么∠ BOD 等于【三】解答题16. 如图,在⊙ O 中,AC 与BD 是圆的直径,BE⊥ AC,CF⊥BD,垂足分别为E、F形ABCD 是什么特殊的四边形?请判断并说明理由;2〕求证:BE=CF.17. 如图,AB 是? O的直径,点C在? O上,过点C的直线与AB 的延长线交于点P,AC=PC,∠ COB=2∠PCB.〔1〕求证:PC是? O 的切线;〔2〕求证:BC= AB ;〔3〕点M 是弧AB 的中点,CM 交AB 于点N,假设AB=4 ,求MN ·M C 的值.【四】综合题18. 如图,⊙ O 是△ABC 的外接圆,AB=AC ,P是⊙O 上一点.〔1〕操作:请你只用无刻度的直尺,分别画出图①和图②中∠ P 的平分线;2〕说理:结合图②,说明你这样画的理由.〔1〕⊙D 的半径;〔2〕CE 的长. 【一】单项选择题【考点】垂径定理,圆周角定理 【考点】圆周角定理 【解析】【解答】根据圆周角和圆心角的关系解决问题,由〝一条弧所 对的圆周角等于它所对的圆心角的一半〞解答 . 【分析】此题考查了原周角和圆心角的联系 .【考点】圆周角定理【解析】【解答】解:在△ OCB 中, OB=OC 〔⊙ O 的半径〕,∴∠O BC=∠0CB 〔等边对等角〕;∵∠ OCB=40°,∠ C0B=180°﹣∠ OBC ﹣∠ 0CB , ∴∠COB=100°; 又∵∠ A= ∠C0B 〔同弧所对的圆周角是所对的圆心角的一半〕 , ∴∠ A=50 °, 应选 B 、【分析】在等腰三角形 OCB 中,求得两个底角∠ OBC 、∠0CB 的度数,然 后根据三角形的内角和求得∠ COB=100°;最后由圆周角定理求得∠ A 的 度数并作出选择.【考点】圆周角定理【考点】圆周角定理【解析】【分析】∠ BOC ,∠ BAC 是同弧所对的圆周角和圆心角,∠ B OC=2∠ BAC ,因为圆心角∠ BOC=100°,所以圆周角∠ BAC=50°.【点评】此题考查圆周角和圆心角,解此题的关键是掌握同弧所对的圆周 角和圆心角关系,然后根据题意来解答。
初三圆周角练习题圆周角在初三数学中是一个重要的概念,理解和掌握圆周角的性质及计算方法对解题非常关键。
下面给出一系列的圆周角练习题,帮助初三学生加深对这一概念的理解和应用。
题目一:已知半径为5cm的圆上的一条弧所对圆心角的度数是120°,求此弧的长度。
解析:根据圆周角的性质,圆周角的度数等于所对弧的度数,因此所求弧的度数也是120°。
由于圆周角的度数等于所对弧的弧长与半径的比值,设所求弧的弧长为L,则有120/360 = L/(2π×5)。
解方程可得L ≈ 10π/3 cm。
题目二:在半径为8cm的圆中,两条弦长分别为12cm和16cm,求这两条弦所对的圆周角的度数。
解析:根据圆周角的性质,圆周角的度数等于所对弦所对应的弧的度数,而弧长等于弦的长度。
设所求圆周角的度数为x°,根据等式关系12/8 = x/360 和16/8 = x/360,解这两个方程可得x ≈ 180° 和x ≈ 240°。
因此,一条弦所对圆周角的度数为180°,另一条弦所对圆周角的度数为240°。
题目三:一个扇形的圆心角是64°,对应的弧长为10π cm,求此扇形的面积。
解析:根据扇形面积公式,扇形的面积等于扇形所在圆的面积乘以圆心角的度数与360°的比值。
设扇形的面积为S,圆的面积为A,则有S/A = 64°/360° = 64/360。
解方程可得S = (64/360) × π × r^2,代入已知条件,可得S ≈ (64/360) × π × (10/2)^2 = 16π/9 cm^2。
题目四:在半径为3cm的圆中,一条弦的弦长为4cm,这条弦与半径所夹的圆周角的弧度数为1/6π rad,求该弦所对的弧长。
解析:根据圆周角的性质,弧度数等于所对弧的弧长与半径的比值。
圆周角定理专项练习30题(有答案)1.如图AB是⊙O的直径,C是⊙O上的一点,若AC=8cm,AB=10cm,OD⊥BC于点D,求BD的长.2.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.3.已知AB是⊙O的直径,半径OC⊥AB,D为上任意一点,E为弦BD上一点,且BE=AD,求证:△CDE为等腰直角三角形.4.如图,AB是圆O的直径,AD=DC,∠CAB=30°,AC=2.求AD的长.5.如图,AB,CD是⊙O的两条弦,它们相交于点P,连接AD,BD.已知AD=BD=4,PC=6,求CD的长.6.如图,已知点C、D在以O为圆心,AB为直径的半圆上,且OC⊥BD于点M,CF⊥AB于点F交BD于点E,BD=8,CM=2.(1)求⊙O的半径;(2)求证:CE=BE.7.如图,A是以EF为直径的半圆上的一点,作AG⊥EF交EF于G,又B为AG上一点,EB的延长线交半圆于K,求证:(1)△AEB∽△KEA;(2)AE2=EB•EK.8.如图,BC是⊙O的直径,P为⊙O上一点,点A是的中点,AD⊥BC,垂足为D,PB分别与AD、AC相交于点E、F.(1)若∠BAD=36°,求∠ACB,∠ABP;(2)如果AE=3,求BE.9.如图,△ABC内接于⊙O,AB=AC,弦AD交BC于点E,AE=4,ED=5,(1)求证:AD平分∠BDC;(2)求AC的长;(3)若∠BCD的平分线CI与AD相交于点I,求证:AI=AC.10.如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.11.如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.12.已知如图,在⊙O中,弦BC平行于半径OA,AC交BO于M,∠C=25°.求∠AMB的度数.13.如图,⊙O是△ABC的外接圆,∠A=45°,BD是直径,且BD=2,连接CD,求BC的长.14.已知:如图,AD平分∠BAC,DE∥AC,且AB=5cm,求DE的长.15.已知如图,在△ABC中,∠BAC=90°,AB=AC=,D是BC中点,作半径是的圆经过点A和D且交AB于F,交AC于E.求∠ADF的正弦值.16.如图,在△ABC中,AB是⊙O的直径,⊙O与AC交于点D,AB=,∠B=60°,∠C=75°,求∠BOD的度数.17.如图:在⊙O中,AB是直径,∠ACB的平分线交⊙O于点D,AD=5cm.求:BD与⊙O半径的长.18.如图,AB是⊙O的直径,P是弦AC延长线上的一点,且AC=PC,直线PB交⊙O于点D,若∠BDC=30°,求∠P的度数.19.如图,△ABC中,∠B=45°,∠C=60°,AB=cm,以AB为直径的⊙O交BC于点D,求CD的长?20.如图,已知AD是△ABC的高,AE是△ABC的外接圆的直径.(1)求证:AC•AB=AD•AE;(2)若AB=6,AC=5,AD=3,求⊙O的面积.21.如图,⊙0为四边形ABCD的外接圆,AC为⊙0的直径,CD∥AB,点E、F分别在BC和AD上,且EF经过圆心0.求证:OE=OF.22.如图,等腰三角形ABC中,以腰AB为直径的⊙O交底边BC于点D,交AC于点E,连接DE.(1)求证:BD=DE;(2)若⊙O的半径为3,BC=4,求CE的长.23.如图,已知⊙0的半径为5,AB是⊙0的直径,点C、D都在⊙0上,若∠D=30°,求AC的长.24.如下图,已知△ABC内接于⊙O,若∠C=45°,AB=4,求⊙O的面积.25.如图,⊙O的直径AB为4cm,弦AC为3cm,∠ACB的平分线交⊙O于D,求:①BC的长;②AD与BD的长.26.如图,⊙O为四边形ABCD的外接圆,圆心O在AD上,OC∥AB.(1)求证:AC平分∠DAB;(2)若AC=8,AC:CD=2:1,试求⊙O的半径.27.如图,点A、B、C、D在圆上,AB=8,BC=6,AC=10,CD=4,求AD的长.28.如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=50°,∠ADC=45°,求∠CDB及∠CEB的度数.29.如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=54°,求∠DEB的度数;(2)若DC=2,AB=8,求⊙O的直径.30.如图,已知△ABC内接于⊙O,AE平分∠BAC,且AD⊥BC于点D,连接OA.求证:∠OAE=∠EAD.参考答案:1.∵AB是⊙O的直径,∴∠ACB=90°;∵OD⊥BC,∴OD∥AC,又∵AO=OB,∴OD是△ABC的中位线,即BD=BC;Rt△ABC中,AB=10cm,AC=8cm;由勾股定理,得:BC==6cm;故BD=BC=3cm2.(1)∵∠APD=∠C+∠CAB,∴∠C=65°﹣40°=25°,∴∠B=∠C=25°;(2)作OE⊥BD于E,则DE=BE,又∵AO=BO,∴,圆心O到BD的距离为3.3.连接AC、BC,由圆周角定理得∠CBE=∠CAD,∵CO⊥AB,∴点C是弧ABC的中点,∴AC=BC,又∵BE=AD∴△ACD≌△BCE,∴CD=CE.∠ADC=∠BEC,∵AB是直径,∴∠ADB=90°,∵∠BEC=∠DCE+∠CDB,∠ADC=∠ADB+∠CDB,∴∠DCE=∠ADB=90°,即△DCE是等腰直角三角形.4.连接OD;∵D 是的中点,∴OD垂直平分AC;∴∠AOD=90°﹣∠CAB=60°;又∵OA=OD,∴△OAD是等边三角形;∴OA=AD;Rt△ABC中,∠CAB=30°,AC=2;∴AB==4,OA=2;即:AD=OA=2.故AD的长为2.5.连接AC,∵AD=BD,∴=.∵∠C=∠BAD,又∵∠ADP=∠CDA,∴△ADP∽△CDA.∴=,即AD2=CD•DP.∵AD=4,PC=6,设CD=x,则42=x(x﹣6),解得:x1=8,x2=﹣2(不合题意,舍去)∴CD=8.6.1)解:∵OC为⊙O的半径,OC⊥BD,∴;∵DB=8,∴MB=4(1分)设⊙O的半径为r,∵CM=2,∴OM=r﹣2,在Rt△OMB中,根据勾股定理得(r﹣2)2+42=r2,解得r=5;(2)证明:方法一:连接AC、CB,∵AB是直径,∴∠ACB=90°.∴∠ACF+∠FCB=90°.又∵CF⊥AB,∴∠CAF+∠ACF=90°∴∠FCB=∠CAF∵OC为⊙O的半径,OC⊥BD,∴C 是的中点,∴∠CAF=∠CBD.∴∠FCB=∠DBC.∴CE=BE;方法二:如图,连接BC,补全⊙O,延长CF交⊙O于点G;又∵CF⊥AB,AB为直径,∴=.∴OC为⊙O的半径,OC⊥BD.∴C 是的中点,∴=.∴=.∴∠FCB=∠DBC.∴CE=BE.7.(1)连接AK、AF,∴∠K=∠F=90°﹣∠AEF=90°﹣∠AEG.∠EAG=90°﹣∠AEG.∴∠K=∠EAG∠KEA=∠AEB.∴△AEB∽△KEA.(2)由①得△AEB∽△KEA,∴.∴AE2=EB•EK.8.(1)因为BC是⊙O的直径所以∠CAB=90°所以∠ABD+∠ACB=90°因为AD⊥BC所以∠ABD+∠BAD=90°所以∠ACB=∠BAD=36°因为A 是的中点,则所以∠ABP=∠ACB=36°.(2)因为∠ABP=∠ACB,∠BAD=∠ACB所以∠ABP=∠BAD因为AE=3所以BE=3.9.(1)∵AB=AC,∴;∴AD平分∠BDC;解:(2)∵∠ACB=∠ADB,∠CDA=∠ADB,∴∠CDA=∠ACB;∵∠CAE=∠DAC,∴△ACE∽△ADC;∴,即;∴AC=6;证明:(3)∠AIC=∠ADC+∠DCI,∠ACI=∠BCI+∠ACB;∴∠AIC=∠ACI;∴AI=AC.10.∵AB是⊙O的直径,∴∠ACB=90°.在Rt△ABC中,∠ACB=90°,AB=6,AC=5,∴BC===.∴tanA==.11.连接BC.∵AB是⊙O的直径,∴∠ACB=90°,∵∠ACD=60°,∴∠BCE=30°,∵∠CEB=100°,∴∠B=50°,∴∠ADC=∠B=50°.12.∵BC∥OA,∠C=25°,∴∠A=∠C=25°,在⊙O中,∵∠O=2∠C,∴∠O=50°,又∵∠AMB=∠A+∠O,∴∠AMB=75°13.在⊙O中,∵∠A=45°,∠D=45°,∵BD为⊙O的直径,∴∠BCD=90°,∴△BCD是等腰直角三角形,∴BC=BD•sin45°,∵BD=2,∴14.连接AE,BD,∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠ADE=∠CAD,∴∠ADE=∠BAD,∴AE=BD,∴AB=DE,∵AB=5cm,∴DE=5cm15.连接EF,ED(1分)在△ABC中∵AB=AC,∠BAC=90°,BD=CD,∴AD=,∠DAF=∠DCE=45°,∠ADC=90°,∴∠ADE+∠EDC=90°,在⊙O中,∵∠BAC=90°,∴EF是⊙O的直径,(3分)∴∠FDE=90°,∴∠FDA+∠ADE=90°,∴∠EDC=∠FDA,∴△EDC≌△FDA,∴AF=CE,(4分)设AF=x,则CE=x,AE=AC﹣CE=﹣x,∵⊙O 的半径是,∴EF=,在Rt△AEF 中,,解得,∠ADF=∠AEF,(5分)∴当x=1时,sin∠ADF=sin∠AEF==,当x=时,sin∠ADF=sin∠AEF==,∴∠ADF 的正弦值为或.16.在△ABC中,∵∠B=60°,∠C=75°,∴∠A=45°.∵AB是⊙O的直径,⊙O与AC交于点D,∴∠DOB=2∠A=90°.故答案为:90°17.∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD,∴AD=BD,∵AB是直径,∴∠ADB=90°,∵AD=5cm,∴BD=5cm;在Rt△ABD中,2AD2=AB2,∴AB=5cm,∴圆的半径为cm.18.连接BC,∵AB是直径,∴BC⊥AC,(2分)∵AC=CP,∴AB=BP,(3分)∴∠P=∠A,(4分)∵∠A=∠D=30°,(5分)∴∠P=30°.19.连接AD.(1分)∵AB是⊙O的直径.∴∠ADB=90°.(3分)在Rt△ADB中,AD=AB•sinB=2sin45°=2×=2(6分)在Rt△ADC中,CD=,即CD 的长为m.20.(1)证明:连接BE,∵AD是△ABC的高,AE是△ABC的外接圆的直径,∴∠ADC=∠ABE=90°,∵∠C=∠E,∴△ADC∽△ABE.∴AC:AE=AD:AB,∴AC•AB=AD•AE;(2)解:∵AB=6,AC=5,AD=3,∴AE===10,∴OA=5,∴⊙O的面积为:π×52=25π21.∵AC为⊙0的直径,∴∠B=∠D=90°,∵CD∥AB,∴∠B+∠BCD=180°,∴∠BCD=90°,∴∠BCD+∠D=90°,∴AD∥BC,∴∠FAO=∠ECO,在△AOF和△COE中,,∴△AFO≌△CEO(ASA),∴OE=OF22.(1)证明:连接AD,∵AB为圆O的直径,∴AD⊥BC,∵AB=AC,∴D为BC的中点,即BD=CD,∵∠DEC为圆内接四边形ABDE的外角,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∴DE=DC,∴BD=DE;(2)解:∵∠DEC=∠B,∠C=∠C,∴△DEC∽△ABC,∴=,即=,则EC=.23.连接BC.∵AB是⊙0的直径,∴∠ACB=90°,在直角△ABC中,∠A=∠D=30°,AB=2×5=10.∴AC=AB•cosA=10×=5.24.连接OA,OB;则OA=OB,∠AOB=2∠C;(2分)∵∠C=45°,∴∠AOB=90°,∴OA2+OB2=AB2;(4分)又∵AB=4,∴2OA2=42,OA2=8;(6分)∴S⊙O=π•OA2=8π.25.①∵AB为直径,∴∠ACB=90°,∵AB=4,AC=3,∴BC===;②∵AB为直径,∴∠ADB=90°,∵CD平分∠ACB,∴∠ACD=∠BCD=45°,∵∠ABD=∠ACD,∠BCD=∠BAD,∴∠DAB=∠DBA=45°,∴AD=DB,∵AD2+BD2=AB2,∴AD=DB=2,26.(1)证明:∵OC∥AB,∴∠OCA=∠CAB,∵OA=OC,∴∠OAC=∠OCA,∴∠OAC=∠CAB,即AC平分∠DAB;(2)解∵AD是⊙O的直径,∴∠ACD=90°,∵AC=8,AC:CD=2:1,∴CD=4,在Rt△ACD中,AD==4,∴OA=AD=2,∴⊙O的半径为2.27.△ABC中,AB=8,BC=6,AC=10,∴AC2=AB2+BC2,∴∠B=90°,∴AC为直径,∴∠D=90°,Rt△ADC中,AD====2.∴AD的长为2.28.连接BC,则∠ACB=90°(圆周角定理),∵∠CBA=∠ADC=45°,∴∠CAB=90°﹣∠CBA=45°(直角三角形的两个锐角互余);∴∠CEB=∠CAB+∠ACD=45°+50°=95°(外角定理).∠CDB=∠CAB=45°.综上可得:∠CDB=45°,∠CEB=95°29.(1)∵OD⊥AB∴弧AD=弧BD∴∠DEB=∠AOD=×54°=27°…3分(2)∵OD⊥AB∴AC=AB=×8=4设⊙O的半径为R,则OC=R﹣2在Rt△AOC中,由勾股定理得:42+(R﹣2)2=R2解得:R=5∴⊙O的直径为1030.连接OE,∵AE平分∠BAC,∴∠BAE=∠CAE,∴=,∴OE⊥BC,∵AD⊥BC,∴OE∥AD,∴∠OEA=∠EAD,∵OA=OE,∴∠OEA=∠OAE,∴∠OAE=∠EAD.11。
圆周角定理综合训练一.选择题(共14小题)1.如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长 D.2CD的长2.如图,已知AB是⊙O的直径,C是⊙O上的一点,连接AC,过点C作直线CD⊥AB交AB于点D.E是OB上的一点,直线CE与⊙O交于点F,连接AF交直线CD于点G,AC=2,则AG•AF是()A.10 B.12 C.8 D.163.如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD=,且BD=5,则DE等于()A.B.C.D.4.如图,△ABC为⊙O的内接三角形,AB=1,∠C=30°,则⊙O的内接正方形的面积为()A.2 B.4 C.8 D.165.如图,四边形ABCD内接于⊙O,它的对角线把四个内角分成八个角,其中相等的角有()A.2对 B.4对 C.6对 D.8对6.已知,如图弧BC与弧AD的度数之差为20°,弦AB与CD交于点E,∠CEB=60°,则∠CAB等于()A.50°B.45°C.40°D.35°7.如图,B是线段AC的中点,过点C的直线l与AC成60°的角,在直线L上取一点P,使∠APB=30°,则满足条件的点P的个数是()A.3个 B.2个 C.1个 D.不存在8.如图,已知∠DEC=80°,弧CD的度数与弧AB的度数的差为20°,则∠DAC的度数为()A.35°B.45°C.25°D.50°9.如图,⊙O是正五边形ABCDE的外接圆,则正五边形的中心角∠AOB的度数是()A.72°B.60°C.54°D.36°10.如图,在△ABC中,∠BAC=90°,AB=AC=2,以AB为直径的圆交BC于D,则图中阴影部分的面积为()A.1 B.2 C.1+D.2﹣11.如图,已知△ABC为等腰直角三角形,D为斜边BC的中点,经过点A、D 的⊙O与边AB、AC、BC分别相交于点E、F、M.对于如下五个结论:①∠FMC=45°;②AE+AF=AB;③;④2BM2=BE•BA;⑤四边形AEMF为矩形.其中正确结论的个数是()A.2个 B.3个 C.4个 D.5个12.已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB 的弦心距为()A.B.2 C.D.13.如图,⊙O中,弦AD∥BC,DA=DC,∠AOC=160°,则∠BCO等于()A.20°B.30°C.40°D.50°14.如图,在△ABC中,AD是高,△ABC的外接圆直径AE交BC边于点G,有下列四个结论:①AD2=BD•CD;②BE2=EG•AE;③AE•AD=AB•AC;④AG•EG=BG•CG.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个二.填空题(共5小题)15.如图,⊙O是正△ABC的外接圆,点D是弧AC上一点,则∠BDC的度数是度.16.如图,点A、B、C是⊙O上的三点,若∠BOC=56°,则∠A=度.17.如图,圆内接四边形ABCD的两条对角线交于点P.已知AB=BC,CD=BD=1,设AD=x,用关于x的代数式表示PA与PC的积:PA•PC=.18.如图所示,在圆O中,弧AB=弧AC=弧CD,AB=3,AE•ED=5,则EC的长为.19.如图,△ABC内接于⊙O,AE是⊙O的直径,AE与BC交于点D,且D是OE 的中点,则tan∠ABC•tan∠ACB=.三.解答题(共7小题)20.如图,AB是⊙O的直径,AC切⊙O于点A,AD是⊙O的弦,OC⊥AD于F 交⊙O于E,连接DE,BE,BD.AE.(1)求证:∠C=∠BED;(2)如果AB=10,tan∠BAD=,求AC的长;(3)如果DE∥AB,AB=10,求四边形AEDB的面积.21.如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙O交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连接CD,G是C D的中点,连接OG.(1)判断OG与CD的位置关系,写出你的结论并证明;(2)求证:AE=BF;(3)若OG⋅DE=3(2﹣),求⊙O的面积.22.如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE 于点F.(1)求证:CF=BF;(2)若AD=2,⊙O的半径为3,求BC的长.23.如图,⊙O中,弦AB、CD相交于AB的中点E,连接AD并延长至点F,使DF=AD,连接BC、BF.(1)求证:△CBE∽△AFB;(2)当时,求的值.24.如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线CE交⊙O于点F,连接BF,与直线CD交于点G.求证:BC2=BG•BF.25.如图,点I是△ABC的内心,线段AI的延长线交△ABC的外接圆于点D,交BC边于点E.(1)求证:ID=BD;(2)设△ABC的外接圆的半径为5,ID=6,AD=x,DE=y,当点A在优弧上运动时,求y与x的函数关系式,并指出自变量x的取值范围.26.已知:如图,等边△ABC内接于⊙O,点P是劣弧上的一点(端点除外),延长BP至D,使BD=AP,连接CD.(1)若AP过圆心O,如图①,请你判断△PDC是什么三角形?并说明理由;(2)若AP不过圆心O,如图②,△PDC又是什么三角形?为什么?参考答案与试题解析一.选择题(共14小题)1.如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长 D.2CD的长【解答】解:连接AO并延长交圆于点E,连接BE.则∠C=∠E,由AE为直径,且BD⊥AC,得到∠BDC=∠ABE=90°,所以△ABE和△BCD都是直角三角形,所以∠CBD=∠EAB.又△OAM是直角三角形,∵AO=1,∴sin∠CBD=sin∠EAB==OM,即sin∠CBD的值等于OM的长.故选:A.2.如图,已知AB是⊙O的直径,C是⊙O上的一点,连接AC,过点C作直线CD⊥AB交AB于点D.E是OB上的一点,直线CE与⊙O交于点F,连接AF交直线CD于点G,AC=2,则AG•AF是()A.10 B.12 C.8 D.16【解答】解:连接BC,则∠B=∠F,∵CD⊥AB,∴∠ACD+∠CAD=90°,∵AB是直径,∴∠ACB=90°,∠CAB+∠B=90°,∴∠ACG=∠F.又∵∠CAF=∠FAC,∴△ACG∽△AFC,∴AC:AF=AG:AC,即AG•AF=AC2=(2)2=8.故选:C.3.如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD=,且BD=5,则DE等于()A.B.C.D.【解答】解法一:∵∠D=∠A,∠DCA=∠ABD,∴△AEB∽△DEC;∴=;设BE=2x,则DE=5﹣2x,EC=x,AE=2(5﹣2x);连接BC,则∠ACB=90°;Rt△BCE中,BE=2x,EC=x,则BC=x;在Rt△ABC中,AC=AE+EC=10﹣3x,BC=x;由勾股定理,得:AB2=AC2+BC2,即:72=(10﹣3x)2+(x)2,整理,得4x2﹣20x+17=0,解得x1=+,x2=﹣;由于x<,故x=﹣;则DE=5﹣2x=2.解法二:连接OD,OC,AD,∵OD=CD=OC则∠DOC=60°,∠DAC=30°又AB=7,BD=5,∴AD=2,在Rt△ADE中,∠DAC=30°,所以DE=2.故选:A.4.如图,△ABC为⊙O的内接三角形,AB=1,∠C=30°,则⊙O的内接正方形的面积为()A.2 B.4 C.8 D.16【解答】解:如图,连接BO并延长交圆于点E,连接AE,则∠E=∠C=30°,∠EAB=90°;∴直径BE==2,∵直径是圆内接正方形的对角线长,∴圆内接正方形的边长等于∴⊙O的内接正方形的面积为2.故选:A.5.如图,四边形ABCD内接于⊙O,它的对角线把四个内角分成八个角,其中相等的角有()A.2对 B.4对 C.6对 D.8对【解答】解:由圆周角定理知:∠ADB=∠ACB;∠CBD=∠CAD;∠BDC=∠BAC;∠ABD=∠ACD;由对顶角相等知:∠1=∠3;∠2=∠4;共有6对相等的角.故选:C.6.已知,如图弧BC与弧AD的度数之差为20°,弦AB与CD交于点E,∠CEB=60°,则∠CAB等于()A.50°B.45°C.40°D.35°【解答】解:由题意,弧BC与弧AD的度数之差为20°,∴两弧所对圆心角相差20°,∴2∠A﹣2∠C=20°,∴∠A﹣∠C=10°…①;∵∠CEB是△AEC的外角,∴∠A+∠C=∠CEB=60°…②;①+②,得:2∠A=70°,即∠A=35°.故选:D.7.如图,B是线段AC的中点,过点C的直线l与AC成60°的角,在直线L上取一点P,使∠APB=30°,则满足条件的点P的个数是()A.3个 B.2个 C.1个 D.不存在【解答】解:如图,分别以AC,BC为边,作等边△APC,等边△BP′C,连接BP,依题意,结合等边三角形的性质可知∠APB=∠AP′B=30°,所以满足条件的点P的个数为2个.故选:B.8.如图,已知∠DEC=80°,弧CD的度数与弧AB的度数的差为20°,则∠DAC的度数为()A.35°B.45°C.25°D.50°【解答】解:∵弧CD的度数与弧AB的度数的差为20°,∴2(∠A﹣∠D)=20°即∠A﹣∠D=10°∵∠DEC=80°∴∠DEC=∠D+∠A=80°∴∠A=45°,∠D=35°.故选:B.9.如图,⊙O是正五边形ABCDE的外接圆,则正五边形的中心角∠AOB的度数是()A.72°B.60°C.54°D.36°【解答】解:∵⊙O是正五边形ABCDE的外接圆,∴∠AOB=360°÷5=72°.故选:A.10.如图,在△ABC中,∠BAC=90°,AB=AC=2,以AB为直径的圆交BC于D,则图中阴影部分的面积为()A.1 B.2 C.1+D.2﹣【解答】解:连接AD,OD∵∠BAC=90°,AB=AC=2∴△ABC是等腰直角三角形∵AB是圆的直径∴∠ADB=90°∴AD⊥BC∴点D是BC的中点∴OD是△ABC的中位线∴∠DOA=90°∴△ODA,△ADC都是等腰直角三角形∴两个弓形的面积相等=AD2=1.∴阴影部分的面积=S△ADC故选:A.11.如图,已知△ABC为等腰直角三角形,D为斜边BC的中点,经过点A、D 的⊙O与边AB、AC、BC分别相交于点E、F、M.对于如下五个结论:①∠FMC=45°;②AE+AF=AB;③;④2BM2=BE•BA;⑤四边形AEMF为矩形.其中正确结论的个数是()A.2个 B.3个 C.4个 D.5个【解答】解:连接AM,根据等腰三角形的三线合一,得AD⊥BC,再根据90°的圆周角所对的弦是直径,得EF、AM是直径,根据对角线相等且互相平分的四边形是矩形,得四边形AEMF是矩形,∴①根据等腰直角三角形ABC的底角是45°,易得∠FMC=45°,正确;②根据矩形和等腰直角三角形的性质,得AE+AF=AB,正确;③连接FD,可以证明△EDF是等腰直角三角形,则③中左右两边的比都是等腰直角三角形的直角边和斜边的比,正确;④根据BM=BE,得左边=4BE2,故需证明AB=4BE,根据已知条件它们之间不一定有这种关系,错误;⑤正确.所以①②③⑤共4个正确.故选C.12.已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB 的弦心距为()A.B.2 C.D.【解答】解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于M,交CD于点N.在Rt△COD中,∠COD=90°,OG⊥CD;∴∠DOG=∠DCO;∵∠GOD=∠BOH,∠DCO=∠ABO,∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;即H是Rt△AOB斜边AB上的中点.同理可证得,M是Rt△COD斜边CD上的中点.设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;∵MN⊥AB,GH⊥CD;∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.故选:B.13.如图,⊙O中,弦AD∥BC,DA=DC,∠AOC=160°,则∠BCO等于()A.20°B.30°C.40°D.50°【解答】解:连接OD,∵AO=OC=OD,DA=DC,∴△ADO≌△CDO.∴∠COD=∠AOD=∠AOC=80°.∴∠ODC=∠OCD=∠ODA=∠OAD=50°.∴∠CDA=100°.∵AD∥BC,∴∠DCB=180°﹣∠CDA=180°﹣100°=80°.∴∠BCO=∠BCD﹣∠OCD=80°﹣50°=30°.故选:B.14.如图,在△ABC中,AD是高,△ABC的外接圆直径AE交BC边于点G,有下列四个结论:①AD2=BD•CD;②BE2=EG•AE;③AE•AD=AB•AC;④AG•EG=BG•CG.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:①若△ABD∽△CAD,则一定有AD:BD=CD:AD,即AD2=BD•CD,而两三角形只有一对角对应相等,不会得到另外的对应角相等,故①不正确;②若△BEG∽△AEB,则一定有BE:EG=AE:BE,即BE2=EG•AE,而两三角形只有一对公共角相等,不会得到另外的对应角相等,故②不正确;③∵∠ABD=∠AEC,∠ADB=∠ACE=90°,∴△ABD∽△AEC,∴AE:AC=AB:AD,即AE•AD=AC•AB,故③正确;∵根据相交弦定理,可直接得出AG•EG=BG•CG,故④正确.故选:B.二.填空题(共5小题)15.如图,⊙O是正△ABC的外接圆,点D是弧AC上一点,则∠BDC的度数是60度.【解答】解:∵△ABC是正三角形,∴∠BAC=60°;由圆周角定理,得:∠BDC=∠A=60°.16.如图,点A、B、C是⊙O上的三点,若∠BOC=56°,则∠A=28度.【解答】解:∵∠BOC=56°∴∠A=∠BOC=28°.17.如图,圆内接四边形ABCD的两条对角线交于点P.已知AB=BC,CD=BD=1,设AD=x,用关于x的代数式表示PA与PC的积:PA•PC=﹣x2+x.【解答】解:根据相交弦定理,可知PA•PC=BP•PD,∵CD=1,BD=2而AB=BC∴∴∠ADB=∠BDC∵∠ABD=∠ACD∴△ADB∽△PDC∴CD:BD=PD:AD而BD=2CD∴PD=x∴BP=BD﹣PD=2﹣x∴PA•PC=BP•PD=(2﹣x)×x=﹣x2+x.18.如图所示,在圆O中,弧AB=弧AC=弧CD,AB=3,AE•ED=5,则EC的长为2.【解答】解:∵弧AB=弧AC=弧CD,∴∠1=∠2=∠3=∠4;∴△AEC∽△BAC;∴CE:AC=AC:BC;∵AC=AB=3,因此CE•BC=3×3=9;∵BC=BE+CE,∴CE(BE+CE)=9,整理得:CE•BE+CE2=9 ①;由根据相交弦定理得,BE•CE=A E•ED=5 ②;②代入①得:5+CE2=9,解得:CE=2(负值舍去).19.如图,△ABC内接于⊙O,AE是⊙O的直径,AE与BC交于点D,且D是OE 的中点,则tan∠ABC•tan∠ACB=3.【解答】解:连接BE、CE,则∠ABE=∠ACE=90°.∵∠EAC=∠CBE,∠BED=∠ACB,∴△ADC∽△BDE,∴.①同理可由△ADB∽△CDE,得.②①×②,得==3.Rt△AEC中,tan∠AEC=.同理得tan∠AEB=.故tan∠AEC•tan∠AEB==3.∵∠EAC=∠CBE,∠BED=∠ACB,∴tan∠ABC•tan∠ACB=3.三.解答题(共7小题)20.如图,AB是⊙O的直径,AC切⊙O于点A,AD是⊙O的弦,OC⊥AD于F 交⊙O于E,连接DE,BE,BD.AE.(1)求证:∠C=∠BED;(2)如果AB=10,tan∠BAD=,求AC的长;(3)如果DE∥AB,AB=10,求四边形AEDB的面积.【解答】(1)证明:∵AB是⊙O的直径,CA切⊙O于A,∴∠C+∠AOC=90°;又∵0C⊥AD,∴∠OFA=90°,∴∠AOC+∠BAD=90°,∴∠C=∠BAD.又∵∠BED=∠BAD,∴∠C=∠BED.(2)解:由(1)知∠C=∠BAD,tan∠BAD=,∴tan∠C=.在Rt△OAC中,tan∠C=,且OA=AB=5,∴,解得.(3)解:∵OC⊥AD,∴,∴AE=ED,又∵DE∥AB,∴∠BAD=∠EDA,∴,∴AE=BD,∴AE=BD=DE,∴,∴∠BAD=30°,又∵AB是直径,∴∠ADB=90°,∴BD=AB=5,DE=5,在Rt△ABD中,由勾股定理得:AD=,过点D作DH⊥AB于H,∵∠HAD=30°,∴DH=AD=,∴四边形AEDB的面积=.21.如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙O交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连接CD,G是CD的中点,连接OG.(1)判断OG与CD的位置关系,写出你的结论并证明;(2)求证:AE=BF;(3)若OG⋅DE=3(2﹣),求⊙O的面积.【解答】(1)解:猜想OG⊥CD.证明:如图,连接OC、OD,∵OC=OD,G是CD的中点,∴由等腰三角形的性质,有OG⊥CD.(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,而∠CAE=∠CBF(同弧所对的圆周角相等),在Rt△ACE和Rt△BCF中,∵∠ACE=∠BCF=90°,AC=BC,∠CAE=∠CBF,∴Rt△ACE≌Rt△BCF(ASA).∴AE=BF.(3)解:如图,过点O作BD的垂线,垂足为H,则H为BD的中点.∴OH=AD,即AD=2OH,又∠CAD=∠BAD⇒CD=BD,∴OH=OG.在Rt△BDE和Rt△ADB中,∵∠DBE=∠DAC=∠BAD,∴Rt△BDE∽Rt△ADB,∴,即BD2=AD•DE.∴.又BD=FD,∴BF=2BD,∴①,设AC=x,则BC=x,AB=,∵AD是∠BAC的平分线,∴∠FAD=∠BAD.在Rt△ABD和Rt△AFD中,∵∠ADB=∠ADF=90°,AD=AD,∠FAD=∠BAD,∴Rt△ABD≌Rt△AFD(ASA).∴AF=AB=,BD=FD.∴CF=AF﹣AC=.在Rt△BCF中,由勾股定理,得②,由①、②,得,∴x2=12,解得或(舍去),∴,∴⊙O的半径长为.=π•()2=6π.∴S⊙O22.如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE 于点F.(1)求证:CF=BF;(2)若AD=2,⊙O的半径为3,求BC的长.【解答】(1)证明:连接AC,如图∵C是弧BD的中点∴∠BDC=∠DBC(1分)又∵∠BDC=∠BAC在△ABC中,∠ACB=90°,CE⊥AB∴∠BCE=∠BAC∠BCE=∠DBC(3分)∴CF=BF;(4分)(2)解:解法一:作CG⊥AD于点G,∵C是弧BD的中点∴∠CAG=∠BAC,即AC是∠BAD的角平分线.(5分)∴CE=CG,AE=AG(6分)在Rt△BCE与Rt△DCG中,CE=CG,CB=CD∴Rt△BCE≌Rt△DCG(HL)∴BE=DG(7分)∴AE=AB﹣BE=AG=AD+DG即6﹣BE=2+DG∴2BE=4,即BE=2(8分)又∵△BCE∽△BAC∴BC2=BE•AB=12(9分)BC=±2(舍去负值)∴BC=2.(10分)解法二:∵AB是⊙O的直径,CE⊥AB ∴∠BEF=∠ADB=90°,(5分在Rt△ADB与Rt△FEB中,∵∠ABD=∠FBE∴△ADB∽△FEB,则,即,∴BF=3EF(6分)又∵BF=CF,∴CF=3EF利用勾股定理得:(7分)又∵△EBC∽△ECA则,则CE2=AE•BE(8分)∴(CF+EF)2=(6﹣BE)•BE即(3EF+EF)2=(6﹣2EF)•2EF ∴EF=(9分)∴BC=.(10分)23.如图,⊙O中,弦AB、CD相交于AB的中点E,连接AD并延长至点F,使DF=AD,连接BC、BF.(1)求证:△CBE∽△AFB;(2)当时,求的值.【解答】(1)证明:∵AE=EB,AD=DF,∴ED是△ABF的中位线,∴ED∥BF,∴∠CEB=∠ABF,又∵∠C=∠A,∴△CBE∽△AFB.(2)解:由(1)知,△CBE∽△AFB,∴,又AF=2AD,∴.24.如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线CE交⊙O于点F,连接BF,与直线CD交于点G.求证:BC2=BG•BF.【解答】证明:∵AB是⊙O的直径,∠ACB=90°,又CD⊥AB于D,∴∠BCD=∠A,又∠A=∠F.∴∠F=∠BCD.在△BCG和△BFC中,,∴△BCG∽△BFC.∴.即BC2=BG•BF.25.如图,点I是△ABC的内心,线段AI的延长线交△ABC的外接圆于点D,交BC边于点E.(1)求证:ID=BD;(2)设△ABC的外接圆的半径为5,ID=6,AD=x,DE=y,当点A在优弧上运动时,求y与x的函数关系式,并指出自变量x的取值范围.【解答】(1)证明:∵点I是△ABC的内心∴∠BAD=∠CAD,∠ABI=∠CBI(2分)∵∠CBD=∠CAD∴∠BAD=∠CBD(3分)∴∠BID=∠ABI+∠BAD,∴∠ABI=∠CBI,∠BAD=∠CAD=∠CBD,∵∠IBD=∠CBI+∠CBD,∴∠BID=∠IBD∴ID=BD;(5分)(2)解:∵∠BAD=∠CBD=∠EBD,∠D=∠D∴△ABD∽△BED(7分)∴∴AD×DE=BD2=ID2(8分)∵ID=6,AD=x,DE=y∴xy=36(9分)又∵x=AD>ID=6,AD不大于圆的直径10∴6<x≤10∴y与x的函数关系式是(6<x≤10).(10分)说明:只要求对xy=36与6<x≤10,不写最后一步,不扣分.26.已知:如图,等边△ABC内接于⊙O,点P是劣弧上的一点(端点除外),延长BP至D,使BD=AP,连接CD.(1)若AP过圆心O,如图①,请你判断△PDC是什么三角形?并说明理由;(2)若AP不过圆心O,如图②,△PDC又是什么三角形?为什么?【解答】解:(1)如图①,△PDC为等边三角形.(2分)理由如下:∵△ABC为等边三角形∴AC=BC∵在⊙O中,∠PAC=∠PBC又∵AP=BD∴△APC≌△BDC∴PC=DC∵AP过圆心O,AB=AC,∠BAC=60°∴∠BAP=∠PAC=∠BAC=30°∴∠PBC=∠PAC=30°,∠BCP=∠BAP=30°∴∠CPD=∠PBC+∠BCP=30°+30°=60°∴△PDC为等边三角形;(6分)(2)如图②,△PDC仍为等边三角形.(8分)理由如下:∵△ABC为等边三角形∴AC=BC∵在⊙O中,∠PAC=∠PBC又∵AP=BD∴△APC≌△BDC∴PC=DC∵∠BAP=∠BCP,∠PBC=∠PAC∴∠CPD=∠PBC+∠BCP=∠PAC+∠BAP=60°∴△PDC为等边三角形.(12分)31 / 31。
圆周角定理中考题(含解析)一.解答题(共4小题)1.已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.2.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.3.已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.4.如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sin∠P=,求⊙O的直径.圆周角定理中考题(含解析)参考答案与试题解析一.解答题(共4小题)1.(2016•宁夏)已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.【解答】(1)证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,∴∠B=∠C,∴AB=AC;(2)方法一:解:连接AE,∵AB为直径,∴AE⊥BC,由(1)知AB=AC,∴BE=CE=BC=,∵△CDE∽△CBA,∴,∴CE•CB=CD•CA,AC=AB=4,∴•2=4CD,∴CD=.方法二:解:连接BD,∵AB为直径,∴BD⊥AC,设CD=a,由(1)知AC=AB=4,则AD=4﹣a,在Rt△ABD中,由勾股定理可得:BD2=AB2﹣AD2=42﹣(4﹣a)2在Rt△CBD中,由勾股定理可得:BD2=BC2﹣CD2=(2)2﹣a2∴42﹣(4﹣a)2=(2)2﹣a2整理得:a=,即:CD=.2.(2015•德州)如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:等边三角形;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.【解答】证明:(1)△ABC是等边三角形.证明如下:在⊙O中∵∠BAC与∠CPB是所对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)在PC上截取PD=AP,如图1,又∵∠APC=60°,∴△APD是等边三角形,∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.又∵∠APB=∠APC+∠BPC=120°,∴∠ADC=∠APB,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,又∵PD=AP,∴CP=BP+AP;(3)当点P为的中点时,四边形APBC的面积最大.理由如下,如图2,过点P作PE⊥AB,垂足为E.过点C作CF⊥AB,垂足为F.∵S△APB=AB•PE,S△ABC=AB•CF,∴S四边形APBC=AB•(PE+CF),当点P为的中点时,PE+CF=PC,PC为⊙O的直径,∴此时四边形APBC的面积最大.又∵⊙O的半径为1,∴其内接正三角形的边长AB=,∴S四边形APBC=×2×=.3.(2014•天津)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.【解答】解:(Ⅰ)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵在直角△CAB中,BC=10,AB=6,∴由勾股定理得到:AC===8.∵AD平分∠CAB,∴=,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴易求BD=CD=5;(Ⅱ)如图②,连接OB,OD.∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5.4.(2013•黔西南州)如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sin∠P=,求⊙O的直径.【解答】(1)证明:∵∠C=∠P又∵∠1=∠C∴∠1=∠P∴CB∥PD;(2)解:连接AC∵AB为⊙O的直径,∴∠ACB=90°又∵CD⊥AB,∴=,∴∠P=∠CAB,又∵sin∠P=,∴sin∠CAB=,即=,又知,BC=3,∴AB=5,∴直径为5.。
垂径定理圆心角圆周角定理一选择题:1、如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42°B.48°C.52°D.58°2.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为( )A.50° B.55° C.60° D.65°3.如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是()A.100° B.110° C.120°D.130°4.如图,⊙O的半径为5,弦AB的长为8,点M在线段AB(包括端点A,B)上移动,则OM取值范围是()A.3≤OM≤5B.3≤OM<5C.4≤OM≤5 D.4≤OM<55、如图所示,AB是⊙O的直径,AD=DE,AE与BD交于点C,则图中与∠BCE相等的角有()A.2个 B.3个 C.4个 D.5个6.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B 的读数分别为86°、30°,则∠ACB的大小为( )A.15°B.28° C.29°D.34°7.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是( )8.如图.⊙O 中,AB、AC是弦,O在∠ABO的内部,,,,则下列关系中,正确的是()A. B. C. D.9.如图,四边形ABCD内接于⊙O,BC是直径,AD=DC,∠ADB=20º,则∠ACB,∠DBC分别为()A.15º与30º B.20º与35º C.20º与40º D.30º与35º10.图中∠BOD的度数是()A.55° B.110° C.125° D.150°11.如图,点I为△ABC的内心,点O为△ABC的外心,∠O=140°,则∠I为()(A)140°(B)125°(C)130°(D)110°12.如图,弦AB∥CD,E为上一点,AE平分,则图中与相等(不包括)的角共有()A.3个 B.4个 C.5个 D.6个13、如图,已知的半径为1,锐角内接于,于点,于点,则的值等于()A.的长 B.的长 C.的长 D.的长14.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是()A.直线的一部分B.圆的一部分C.双曲线的一部分 D.抛物线的一部分15.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为()A. B. C.或 D.或或16.如图,,在以为直径的半圆上,,在上,为正方形,若正方形边长为1,,,则下列式子中,不正确的是()A. B. C. D.17.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为()A.4 B.5 C.6 D.718.如图,在△ABC中,AD是高,AE是直径,AE交BC于G,有下列四个结论:•①AD2=BD·CD;②BE2=EG·AE;③AE·AD=AB·AC;④AG·EG=BG·CG.其中正确结论的有()A.1个 B.2个 C.3个 D.4个19.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG,DE,FG,,的中点分别是M,N,P,Q。
提技能·题组训练圆周角定理及其推论1.( 滨州中考 ) 如图 , 在☉ O中, 圆心角∠ BOC=78°, 则圆周角∠ BAC的大小为 ()A.156°B.78 °C.39°【解析】选C.∠BOC是所对的圆心角D.12°, ∠ BAC是所对的圆周角,∴∠ BAC=∠ BOC=39°.2.( 海南中考 ) 如图 , 在☉ O中 , 弦 BC=1,点 A 是圆上一点 , 且∠ BAC=30°, 则☉ O的半径是 ()A.1B.2C.D.【解析】选A. 方法一 : 连接OB,OC.∵∠ BAC=30°, ∴∠ BOC=2∠ BAC=60° ,∵OB=OC,∴△ OBC是等边三角形 ,∴OB=OC=BC =1.方法二 : 作直径 CD,连接 BD.则∠ CBD=90°, ∵∠ BDC=∠ BAC=30°, ∴CD=2BC=2,∴OC=CD=1.3.( 长春中考 ) 如图 , △ABC内接于☉ O,∠ABC=71° , ∠ CAB=53° , 点 D 在上,则∠ ADB的大小为()A.45°B.53 °C.56 °D.71 °【解析】选 C.在△ ABC中, ∵∠ ABC=71° , ∠ CAB=53°,∴∠ C=180°-71 °-53 °=56° , ∴∠ ADB=∠C=56°.D,则∠ BOD=. 4.( 佛山中考 ) 图中圆心角∠ AOB=30° , 弦 CA∥ OB,延长CO与圆交于点【解析】因为圆心角∠ AOB=30°, 弦 CA∥OB,所以∠ AOB=∠CAO=30°,又 OA=OC,所以∠ CAO=∠ ACO=30° , 所以∠ AOD=∠ CAO+∠ ACO=60° =∠ AOB+∠ BOD,所以∠BOD=30°.答案 : 30°5.( 贵阳中考 ) 如图 ,AD,AC 分别为☉ O的直径和弦 , ∠CAD=30°,B 是 AC上一点 ,BO⊥AD,垂足为【解析】在Rt△AOB中 , ∠A=30° ,BO=5cm,∴AO=5cm,∵AD是直径 ,∴AD=10cm,∠C=90°, 在 Rt△ ADC中,∠A=30°,AD=10cm,∴CD=5cm.答案: 56. 如图 , 正方形ABCD的顶点都在☉O上 ,P是弧DC上的一点 , 则∠ BPC=.【解析】连接 BD,则 BD是直径 ,∴△ BCD是等腰直角三角形 ,∴∠ BDC=45°, ∴∠ BPC=∠ BDC=45°.答案 : 45°【知识归纳】圆周角与直径1.当题目中出现了直径时 , 常作辅助线 , 利用直径所对的圆周角是直角解决问题 .2.当出现 90°的圆周角时 , 常连接该圆周角所对的弦 , 则该弦为直径 .7. 如图 , 在☉ O中, 直径 AB与弦 CD相交于点 P, ∠CAB=40°, ∠APD=65° .(1)求∠B 的大小 .(2)已知 AD=6,求圆心 O到 BD的距离 .【解析】 (1) ∵∠ APD=∠C+∠CAB,∴∠ C=65°-40 °=25° .∴∠ B=∠C=25° .(2) 过点 O作 OE⊥ BD于 E, 则 DE=BE.又∵ AO=BO,∴OE= AD= ×6=3.∴圆心 O到 BD的距离为 3.圆内接四边形1. 如图 , 四边形 ABCD内接于☉ O,如果∠ BOD=130°, 则∠ BCD的度数是 ()A.115°B.130°C.65°D.50°【解析】选 A. ∵∠ BOD=130°, ∴∠ A= ∠BOD=65°, ∵∠2.( 莱芜中考 ) 如图 , 在☉ O中 , 已知∠ OAB=22.5°, 则∠C 的度数为 ()A. 135 °B.122.5 °C.115.5°D.112.5 °【解析】选 D.如图, 作所对的圆周角 .∵OA=OB,∴∠ OBA=∠ OAB=22.5° . ∴∠ AOB=180 ° - ∠ OAB-∠ OBA =180° -22.5 ° -22.5 °=135° .∴∠ D= ∠ AOB=×135°=67.5 °.∵四边形 ACBD是圆内接四边形 ,∴∠ C+∠D=180° .∴∠ C=112.5 °.【方法技巧】1. 在圆中 , 求角的度数时 , 常利用圆周角定理和圆内接四边形的对角互补来完成.2.有时需要自己作出与已知角互补的圆周角 , 才能运用圆内接四边形的性质 .3. 四边形 ABCD内接于☉ O,AD∥BC,∠ B=75° , 则∠ C=.【解析】∵AD∥ BC,∴∠ A+∠B=180° ,∴∠ A=180°-75 °=105°,答案 : 75°【变式训练】已知 , 四边形 ABCD内接于☉ O, 且∠ A∶∠ C=1∶2, 则∠ BOD= ° .【解析】∵四边形 ABCD内接于☉ O,∴∠ A+∠C=180°.又∠ A∶∠ C=1∶ 2, 得∠ A=60° .∴∠ BOD=2∠A=120°.答案 : 1204.如图 , △ ABC内接于☉ O,AD为△ ABC的外角平分线 , 交☉ O 于点 D, 连接 BD,CD,判断△DBC的形状 , 并说明理由 .【解析】△DBC为等腰三角形 . 理由如下 :∵四边形 ABCD为☉ O的内接四边形 ,∴∠ DCB+∠DAB=180°,又∠ EAD+∠DAB=180°,∴∠ EAD=∠DCB.又∠ DAC=∠DBC,∠EAD=∠DAC,∴∠ DBC=∠DCB,∴DB=DC,即△ DBC为等腰三角形 .【错在哪?】作业错例课堂实拍A,B 为☉ O上的两点 , ∠ AOB=100° , 若点 C 也在☉ O上, 且点 C不与 A,B 重合 , 求∠ACB的度数 .(1)错因 :____________________________________.(2)纠错 :____________________________________________________________ _________________________________.答案: (1) 点 C也可能在劣弧AB上,需要分情况讨论(2)当 C在优弧AB上时,∠ ACB=1∠AOB=50°,当 C 在劣弧AB上时,∠ ACB=2 180°-50 °=130°。
5.如图,已知AB 为O O 的直径,点 C 在O O 上,圆周角中考题集锦/ C=15°,则/ BOC 的度数为(、选择题)B 30C (B)CB P 40O (D) 50 AD )AA CD 45o Ao)oBooAACEDOB填空题CCoO DOBBA6. 上 15o 20o 30o B C D30° A . 上一点,则• D(A) 20 (B ) 25 (D ) 45ACB = 50°,点 D 是 BAC若/ PBO=15),C. 45 ° D . 60 °A 、B 则/ 乙APD =70,则乙B 等于 8.如图,△ ABC 内接于 O O ,AC 是O O 的直径,50°~^CP 为O O 上的点 AOB=( )若若 )1101.如图,O O 中,弦AB 、CD 相交于点P 的内接三角形ABC 是 O O ,则.AOC 的度数等于( B . 130 C . 120 DOA . 15° B. 30Z A =30B C 2.已知:点 且 PA// OB 7.如图,已知BD 是O O 的直径,O O 的弦4.如图,A 、B 、C 是O O 上的三点,已知.O =60则.C =( )3.如图,△ /ABC =70 A . 140 将量角器按如图所示的方式放置在三角形纸板 使点C 在半圆上.点A 、B 的读数分别为86 ',则/ ACB 的大小为 15° 28° 29° 34°AC_ BD 于点 E,若 AOD=60°,则.DBC 的度数为A.30 B. 40° C. 50 D. 60-谅1 q9.如图,AB 是。
0的直径,C 、D 为。
0上的两 点,若.CDB =35° ,则.ABC 的度数为14•如图,在 △ ABC 中,AB 是LI 0的直径,.B =60;, . C = 70 ,则.B O D 的度数是10.如图,点 A B C 在O O 上,.A =45°,则ZBOC= _________15.如图,/ A 是O O 的圆周角,/ A=40 °,则/OBC 的度数为 ___________ .11.如图,AB 是O 0的直径,弦DC 与AB 相交 于点 E ,若 N ACD=60°, N ADCtO ,则ZABD= _______ 0,Z CEB= ________ °.16.如图,AB 、AC 为O O 的弦,连接CO 、BO 并 延长分别交弦AB 、AC 于点E 、F 求证:CE = BF .13.如图,在等边△ ABC 中,以AB 为直径的O O 与BC 相交于点D ,连结AD ,则• DAC 的度数 为._____________ 度.三、证明题A,■ B " C .一、选择题I. C 2. C 3. A 4. C 5. B6. B7. A二、填空题8. 40°9. 55°10. 90°II. 60°,100°13. 30°14. 100 15. 50 °三、证明题16. 证明:';O B O是O O的半径.OB =OC又;B . BOE "COF .△EOB FOC.OE =OF.CE =BF。
九年级数学上册《圆周角》练习题及答案解析学校:___________姓名:___________班级:______________一、单选题1.如图,在⊙O中,AB=AC,⊙AOB=40°,则⊙ADC的度数是()A.40°B.30°C.20°D.15°2.下列说法正确的是()A.劣弧一定比优弧短B.面积相等的圆是等圆C.长度相等的弧是等弧D.如果两个圆心角相等,那么它们所对的弧也相等3.如图,⊙O的两条弦AB⊙CD,已知⊙ADC=35°,则⊙BAD的度数为()A.55°B.70°C.110°D.130°4.如图,在⊙O中,点A是BC的中点,⊙ADC=24°,则⊙AOB的度数是()A.24°B.26°C.48°D.66°5.如图,正五边形ABCDE 和正三角形AMN 都是O 的内接多边形,则BOM ∠的度数是( )A .36︒B .45︒C .48︒D .60︒6.如图,AB 是⊙O 的直径,P A 与⊙O 相切于点A ,⊙ABC =25°,OC 的延长线交P A 于点P ,则⊙P 的度数是( )A .25°B .35°C .40°D .50°7.如图,AB 是O 的直径,C ,D 是O 上的两点,若54ABD ∠=︒,则BCD ∠的度数是( )A .36°B .40°C .46°D .65°8.下列说法正确的是( )A .顶点在圆上的角是圆周角B .两边都和圆相交的角是圆周角C .圆心角是圆周角的2倍D .圆周角度数等于它所对圆心角度数的一半9.下列命题是真命题的是( )A .相等的两个角是对顶角B .相等的圆周角所对的弧相等C .若a b <,则22ac bc <D .在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是1310.如图,⊙O 是ABC 的外接圆,AC 是⊙O 的直径,点P 在⊙O 上,若40ACB ∠=︒,则BPC ∠的度数是( )A .40︒B .45︒C .50︒D .55︒11.如图,O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交O 于点E ,连接EB .若4AB =,1CD =,则EB 的长为( )A .5B .4C .3D .2.512.如图,点A ,B ,C 是O 上的点,连接,,AB AC BC ,且15ACB ∠=︒,过点O 作OD AB ∥交O 于点D .连接,AD BD ,已知O 半径为2,则图中阴影面积为( )A .2πB .3πC .4πD .23π 13.如图,ABC ∆中,AB 是O 的直径,AC 交O 于点E ,BC 交O 于点D ,点D 是BC 中点,O 的切线DF 交AC 于点F ,则下列结论中⊙A ABE ∠=∠;⊙BD DE =;⊙AB AC =;⊙F 是EC 中点,正确的个数是( )A .1B .2C .3D .4二、填空题14.如图,点A 、B 、C 、D 、E 在O 上,且弧AB 为50︒,则E C ∠+∠=________.15.如图,A 、B 、C 是⊙O 上的三点,AB =2,∠ACB =30°,那么⊙O 的半径等于_____.16.如图,AB 是⊙O 的直径,CD 为弦,AB ⊙CD ,若CD =CB =2,则阴影部分的面积是______.17.如图,在半径为1的O 上顺次取点A ,B ,C ,D ,E ,连接AB ,AE ,OB ,OC ,OD ,OE .若65BAE ∠=︒,70COD ∠=︒,则BC 与DE 的长度之和为__________.(结果保留π).18.如图,ABC内接于⊙O,AB=BC,⊙BAC=30°,AD为⊙O的直径,AD=2,则BD=________.19.如图,OE、OF分别为⊙O的弦AB、CD的弦心距,如果OE=OF,那么________(只需写一个正确的结论).20.如图,AB是⊙O的直径,C、D是⊙O上的两点,⊙AOC=120°,则⊙CDB=_____°.三、解答题21.如图.AB是⊙O的直径,点C,D在⊙O上,C是BD的中点,连接BD交AC于点E,延长AC至F,使CE=CF.(1)求证:BF 是⊙O 的切线.(2)若BF =3,1sin 3A =,求BD 的长. 22.如图,在⊙AOB 和⊙COD 中,OA =OB ,OC =OD ,若⊙AOB =⊙COD =60°.(1)求证:AC =BD .(2)求⊙APB 的度数.23.如图,已知ABCD 是某圆的内接四边形,AB BD =,BM AC ⊥于M ,求证:AM DC CM =+.24.已知AB 是⊙O 的直径,点C 在AB 的延长线上,AB =4,BC =2,P 是⊙O 上半部分的一个动点,连接OP ,CP .(1)如图⊙,⊙OPC 的最大面积是________;(2)如图⊙,延长PO 交⊙O 于点D ,连接DB ,当CP =DB 时,求证:CP 是⊙O 的切线.25.如图,,,//,//AD DB AE EC FG AB AG BC ==.利用平移或旋转的方法研究图中的线段,,DE BF FC 之间的位置关系和数量关系.参考答案及解析:1.C【详解】先由圆心角、弧、弦的关系求出⊙AOC=⊙AOB=50°,再由圆周角定理即可得出结论.解:⊙在⊙O 中,= ,⊙⊙AOC=⊙AOB ,⊙⊙AOB=40°,⊙⊙AOC=40°, ⊙⊙ADC=12⊙AOC=20°, 故选C .2.B【分析】根据圆的相关概念、圆周角定理及其推论进行逐一分析判断即可.【详解】解:A.在同圆或等圆中,劣弧一定比优弧短,故本选项说法错误,不符合题意;B.面积相等的圆是等圆,故本选项说法正确,符合题意;C.能完全重合的弧才是等弧,故本选项说法错误,不符合题意;D.必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法错误,不符合题意.故选:B .【点睛】本题主要考查了圆周角定理及其推论、等弧、等圆、以及优弧和劣弧等知识,解题关键是理解各定义的前提条件是在同圆或等圆中.3.A【分析】根据垂直定义和三角形的两锐角互余进行解答即可.【详解】解:⊙AB ⊙CD ,⊙⊙ADC +⊙BAD =90°,⊙⊙ADC =35°,⊙⊙BAD =90°﹣35°=55°,故选:A .【点睛】本题考查垂直定义、直角三角形的两锐角互余,熟练掌握直角三角形的两锐角互余是解答的关键.4.C【分析】直接利用圆周角求解.【详解】解:⊙点A 是BC 的中点,⊙AC AB =,⊙⊙AOB =2⊙ADC =2×24°=48°.故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.C【分析】如图,连接AO .利用正多边形的性质求出AOM ∠,AOB ∠,可得结论.【详解】解:如图,连接AO .AMN △是等边三角形,60ANM ∠∴=︒,2120AOM ANM ∠∠∴==︒, ABCDE 是正五边形,360725AOB ∠︒∴==︒,1207248BOM ∠∴=︒-︒=︒.故选:C .【点睛】本题考查正多边形与圆,等边三角形的性质,圆周角定理等知识,解题的关键是熟练掌握正多边形的性质,属于中考常考题型.6.C【分析】根据圆周角定理可得50AOC ∠=︒,根据切线的性质可得90PAO ∠=︒,根据直角三角形两个锐角互余即可求解.【详解】AC AC =,⊙ABC =25°,250AOC ABC ∴∠=∠=︒,AB 是⊙O 的直径,∴90PAO ∠=︒,9040P AOC ∴∠=︒-∠=︒.故选C .【点睛】本题考查了圆周角定理,切线的性质,掌握圆周角定理与切线的性质是解题的关键.7.A【分析】连接AD ,如图,根据圆周角定理得到⊙ADB =90°,⊙C =⊙A ,然后利用余角的性质计算出⊙A ,从而得到⊙C 的度数.【详解】解:如图,连接AD ,⊙AB 为⊙O 的直径,⊙⊙ADB =90°,⊙⊙A =90°−⊙ABD =90°−54°=36°,⊙⊙C =⊙A =36°.故选:A .【点睛】本题主要考查了同弦所对的圆周角相等,直径所对的圆周角是直角,解题的关键在于能够熟练掌握相关知识进行求解.8.D【详解】解:顶点在圆上,且与圆有相交的角是圆周角,则A 和B 是错误的;同弧所对的圆周角的度数等于圆心角度数的一半,故选D .9.D【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案.【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A 选项错误,不符合题意; 在同圆或等圆中,相等的圆周角所对的弧相等,故B 选项错误,不符合题意;若a b <,则22ac bc ≤,故C 选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是13,故D 选项正确,符合题意; 故选:D .【点睛】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键.10.C【分析】根据圆周角定理得到90ABC ∠=︒,BPC A ∠=∠,然后利用互余计算出⊙A 的度数,从而得到BPC ∠的度数.【详解】解:⊙AB 是⊙O 的直径,⊙90ABC ∠=︒,⊙90904050A ACB ∠=︒-∠=︒-︒=︒,⊙50BPC A ∠=∠=︒,故选:C .【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.11.C【分析】设圆O 的半径为r ,则OC =OD -CD =r -1,AE =2OA =2r ,先利用垂径定理得到AC =2,即可利用勾股定理求出半径,从而求出AE 的长,再利用勾股定理即可求出BE .【详解】解:设圆O 的半径为r ,则OC =OD -CD =r -1,AE =2OA =2r , 由垂径定理得122AC BC AB ===,在Rt ⊙OAC 中,222OA OC AC =+,⊙()22221r r =+-, ⊙52r =, ⊙AE =5,⊙AE 是圆O 的直径,⊙⊙B =90°,⊙在Rt ⊙ABE 中,3BE ,故选:C .【点睛】本题主要考查了垂径定理,勾股定理,直径所对的圆周角是直角等等,熟知垂径定理是解题的关键.12.B【分析】根据圆周角定理可得⊙AOB =30°,再由OD AB ∥,可得AOB ADB SS =,从而得到阴影面积等于扇形AOB 的面积,即可求解.【详解】解:⊙15ACB ∠=︒,⊙⊙AOB =30°, ⊙23023603AOB S ππ⨯==扇形, ⊙OD AB ∥,⊙AOB ADB S S =,⊙阴影面积等于扇形AOB 的面积,⊙阴影面积等于3π. 故选:B【点睛】本题考查了圆周角定理、扇形面积公式和同底等高的两个三角形的面积相等等知识,属于常考题型,熟练掌握上述基本知识是解题的关键.13.C【分析】连接连接OD ,AD 、DE ,根据直径所对的圆周角是直角以及等腰三角形的性质可判断结论⊙;根据同圆或等圆中,同弧所对的弦相等可得结论⊙;根据切线的性质以及三角形中位线定理可得结论⊙;因为只有ABE △是等腰直角三角形时,才能满足结论⊙.【详解】解:连接OD,AD、DE.AB是O的直径,∴∠=︒(直径所对的圆周角是直角),ADB90∴⊥,AD BC点D是BC中点,=,故⊙正确;∴∠=∠,AB ACBAD CAD∴BD DE=,∴=,故⊙正确;BD DEDF是O的切线,∴⊥,OD DF=,BD DCAO BO=,∴,OD AC//∴⊥,DF AF∴,DF BE//⊙点D是BC的中点,∴点F是EC的中点,故⊙正确;只有当ABE△是等腰直角三角形时,45∠=∠=︒,BAC ABE故⊙错误,正确的有⊙⊙⊙共3个,故选:C.【点睛】本题考查了圆周角定理,圆切线的性质,等腰三角形的性质,三角形中位线定理的应用,题目难度适中,熟练掌握相关图形的性质定理是解本题的关键.14.155︒【分析】先根据弧的度数与它所对应的圆心角的度数的关系,求得弧AB对应的圆心角的度数,再根据圆周角与圆心角的关系,则可求得E C ∠+∠.【详解】弧的度数等于它所对应的圆心角的度数,由于弧AB 为50︒,所以3=50∠︒ .顶点在圆上且两边都和圆相交的角叫做圆周角,而一条弧所对的圆周角等于它所对的圆心角的一半,所以:112E ∠=∠ ,122C ∠=∠ , ()()()11112360336050155222E C ∠+∠=∠+∠=︒-∠=︒-︒=︒.【点睛】本题考查弧、圆周角、圆心角的概念,及它们之间的关系.15.2【分析】根据题意和圆周角定理得∠O =60°,则△OAB 是等边三角形,根据AB =2即可得.【详解】解:∵OA =OB ,∠ACB =30°,OA =OB ,∴∠O =60°,∴△OAB 是等边三角形,∵AB =2,∴OA =AB =2,故答案为:2.【点睛】本题考查了等边三角形的判定与性质,圆周角定理,解题的关键是掌握这些知识点.16.23π【分析】连接OC ,设CD 与AB 的交点为E ,利用垂径定理、勾股定理判定△OBC 是等边三角形,运用扇形的面积减去△OBC 的面积即可.【详解】连接OC ,设CD 与AB 的交点为E ,⊙AB 是⊙O 的直径,AB ⊙CD ,CD =CB =2,⊙CE 1BE ==,⊙⊙ECB =30°,⊙CBE =60°,⊙CO =BO ,⊙△OBC 是等边三角形,⊙⊙BOC =60°,OC =OB =2,⊙2602123602S =π⨯⨯-⨯阴影=23π故答案为:23π 【点睛】本题考查了垂径定理,勾股定理,扇形的面积公式,等边三角形的判定和性质,熟练掌握垂径定理,扇形的面积公式是解题的关键.17.13π##3π 【分析】由圆周角定理得2130BOE BAE ∠=∠=︒,根据弧长公式分别计算出BE 与DC 的长度,相减即可得到答案.【详解】解:⊙65BAE ∠=︒,⊙2130BOE BAE ∠=∠=︒又O 的半径为1,BE 的长度=130113=18018ππ⨯,又70COD ∠=︒,⊙DC 的长度=7017=18018ππ⨯, ⊙BC 与DE 的长度之和=13761-==1818183ππππ,故答案为:13π. 【点睛】本题主要考查了计算弧长,圆周角定理,熟练掌握弧长计算公式是解答本题的关键.18【分析】根据AB =BC ,可得⊙C =⊙BAC =30°,再由圆周角定理,可得⊙D =30°,然后利用锐角三角函数,即可求解.【详解】解:⊙AB =BC ,⊙⊙C =⊙BAC =30°,⊙⊙C =⊙D ,⊙⊙D =30°,⊙AD 为⊙O 的直径,⊙⊙ABD =90°,在Rt ABD △ 中,AD =2,⊙D =30°,⊙cos302BD AD =⋅︒==.【点睛】本题主要考查了圆周角定理,锐角三角函数等知识,熟练掌握相关知识点是解题的关键.19.AB =CD (答案不唯一)【分析】根据圆心角、弧、弦、弦心距之间的关系定理的推论可以直接得到所求的结论.【详解】解:⊙OE =OF ,OE 、OF 分别为⊙O 的弦AB 、CD 的弦心距,⊙AB =CD .故答案为:AB =CD (答案不唯一)【点睛】本题主要考查了圆心角、弧、弦的关系.熟练掌握在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等是解题的关键. 20.30.【分析】先利用邻补角计算出BOC ∠,然后根据圆心周角定理得到CDB ∠的度数.【详解】⊙⊙BOC =180°﹣⊙AOC =180°﹣120°=60°,⊙⊙CDB =12⊙BOC =30°. 故答案为30.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.21.(1)见详解(2)BD=16 3【分析】(1)根据直径所对圆周角得出⊙ACB=90°,根据C是BD的中点,得出DC BC=,利用等弧所对圆周角得出⊙CAB=⊙CBD即可(2)连结OC,交BD于G,根据垂径定理得出OC⊙BD,DG=BG=12BD,由三角函数求出AF=9,利用勾股定理求出ABAB BFBCAF⋅===(1)证明:⊙AB是⊙O的直径,⊙⊙ACB=90°,⊙C是BD的中点,⊙DC BC=,⊙⊙CAB=⊙CBD,⊙CE=CF,BC⊙EF,⊙BE=BF,⊙⊙FBC=⊙CBE,⊙⊙FBC=⊙CBE=⊙CAB,⊙⊙CAB+⊙CBA=90°,⊙⊙FBC+⊙CBA=90°,⊙FB⊙AB,AB为直径,⊙BF为⊙O的切线;,(2)解:连结OC,交BD于G,⊙DC BC=,OC为半径,⊙OC⊙BD,DG=BG=12 BD,⊙BF=3,1 sin3A=,⊙31sin 3BF A AF AF ===, ⊙AF =9,在Rt △ABF 中AB⊙S △ABF =12BC ·AF =12AB ·BF ,⊙AB BF BC AF ⋅=== ⊙sin A =sin⊙CBG =13CG BC ==,⊙3CG =,在Rt ⊙BCG 中83BG ==, ⊙BD =2BG =163.【点睛】本题考查圆的切线判定,等弧所对圆周角性质,线段线段垂直平分线性质,等腰三角形等腰三角形三线合一性质,勾股定理锐角三角函数,面积等积式,本题难度不大,是中考常考试题,掌握好相关知识是解题关键.22.(1)见解析(2)60°【分析】(1)通过证明⊙AOC ⊙⊙BOD ,即可求证;(2)由(1)可得⊙OAC =⊙OBD ,从而得到⊙P AB +⊙PBA =⊙OAB +⊙OBA ,利用三角形内角和的性质即可求解.(1)证明:⊙⊙AOB =⊙COD ,⊙AOB BOC COD BOC ∠+∠∠+∠=,即⊙AOC =⊙BOD ,在⊙AOC 和⊙BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,⊙⊙AOC ⊙⊙BOD (SAS ),⊙AC =BD .(2)解:⊙⊙AOC ⊙⊙BOD ,⊙⊙OAC =⊙OBD ,⊙⊙PBA =⊙ABO +⊙OBD ,⊙OAB =⊙P AB +⊙OAC ,⊙⊙P AB +⊙PBA =⊙P AB +⊙ABO +⊙OBD =⊙P AB +⊙OAC +⊙ABO =⊙OAB +⊙OBA ,⊙OA =OB ,⊙AOB =60°,⊙⊙AOB 是等边三角形,⊙⊙OAB +⊙OBA =120°⊙⊙P AB +⊙PBA =120°,⊙()180********APB PAB PBA ∠︒-∠+∠︒-︒︒===. 【点睛】此题考查了全等三角形的判定与性质,三角形内角和定理,等边三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质.23.见解析【分析】在MA 上截取ME MC =,连接BE ,利用圆周角定理易得()ABE DBC AAS ≅,利用三角形的性质得到AE CD =即可求解.【详解】证明:在MA 上截取ME MC =,连接BE ,BM AC ⊥,BE BC ∴=,BEC BCE ∴∠=∠.AB BD =,∴AB BD =,ADB BAD ∴∠=∠,而ADB BCE ∠=∠,BCE BAD ∴∠=∠.又180BCD BAD ∠+∠=︒,180BEA BCE ∠+∠=︒,BEA BCD ∴∠=∠.BAE BDC ∠=∠,()ABE DBC AAS ∴∆≅∆,AE CD ∴=,AM AE EM DC CM ∴=+=+.【点睛】本题主要考查了圆周角定理,全等三角形的判定和性质,作出辅助线构建三角形全等是解答关键.24.(1)4(2)见解析【分析】(1)因为OC 长度确定,所以当点P 到OC 的距离最大时⊙OPC 的面积最大,当OP ⊙OC 时,当点P 到OC 的距离最大,等于圆O 的半径,求出此时的⊙OPC 的面积即可;(2)连接AP ,BP ,利用同圆中,相等的圆心角所对的弦相等,可得AP =DB ,因为CP =DB ,所以AP =CP ,可证⊙APB ⊙⊙CPO (SAS ),得到⊙OPC =90°,即可证明CP 是切线.(1)解:⊙AB =4,⊙OB =2,OC =OB +BC =4.在⊙OPC 中,设OC 边上的高为h ,⊙S △OPC 12=OC •h =2h , ⊙当h 最大时,S △OPC 取得最大值.作PH ⊙OC ,如图⊙,则PO PH >,当OP ⊙OC 时,PO PH =,此时h 最大,如答图1所示:此时h =半径=2,14242OPC S ⨯⨯==.⊙⊙OPC 的最大面积为4, 故答案为:4.(2)证明:如答图⊙,连接AP ,BP .⊙⊙AOP =⊙BOD ,⊙AP =BD ,⊙CP =DB ,⊙AP =CP ,⊙⊙A =⊙C ,在⊙APB 与⊙CPO 中, AP CPA C AB CO=⎧⎪∠=∠⎨⎪=⎩,⊙⊙APB ⊙⊙CPO (SAS ), ⊙⊙APB =⊙OPC ,⊙AB 是直径,⊙⊙APB =90°,⊙⊙OPC=90°,⊙DP⊙PC,⊙DP经过圆心,⊙PC是⊙O的切线.【点睛】本题考查了圆,熟练掌握圆的半径、切线、弦与圆心角的关系等知识是解题的关键.25.DE与BF平行且相等,DE与FC平行且相等,BF与FC相等且在一条直线上【分析】易知DE是△ABC的中位线,则DE∥BC∥AG;由此可知四边形ADEG和四边形DBFE都是平行四边形,故AG=DE=BF;由全等三角形可得AG=FC,故DE=BF=FC.【详解】解:线段DE,BF,FC之间的位置关系是DE∥BF,DE∥FC,数量关系是DE=BF=FC,∵AG∥BC(已知)∴∠G=∠EFC(两直线平行,内错角相等)∵∠AEG=∠FEC(对顶角相等),又AE=EC(已知)∴△AGE≌△CFE(AAS);∴AG=FC,FE=EG(全等三角形的对应边相等),可以看做△AGE绕点E旋转180°得到△CFE,又∵AD=DB(已知)∴DE为三角形ABC的中位线,BC,∴DE∥BC,DE=12即DE∥BF,DE∥FC,∵FG∥AB,AG∥BC(已知)∴四边形ABFG是平行四边形∴AG=BF,BC,∴BF=FC=12∴DE=BF=FC,可以看做⊙ADE沿直线AE平移得到△EFC,故线段DE,BF,FC之间的位置关系是DE∥BF,DE∥FC,BF与FC在一条直线上,数量关系是DE=BF=FC.【点睛】题考查的是三角形中位线定理、平行四边形及全等三角形的判定和性质.三角形的中位线的性质定理,为证明线段相等和平行提供了依据.第21页共21页。
1
圆周角中考题集锦
一、选择题
1. 如图,⊙O 中,弦AB 、CD 相交于点P , 若
30A ∠=︒,70APD ∠=︒,则B ∠等于( )
(A )30︒
(B )35︒ (C )40︒ (D )50︒
2. 已知:点
A 、
B 、P 为⊙O 上的点,若∠PBO=15º
,且PA ∥OB ,则∠AOB=( )
A . 15º
B . 20º
C . 30º
D . 45º
3. 如图,△ABC 是⊙O 的内接三角形,若70ABC ∠=︒ ,则AOC ∠的度数等于( ) A .140︒ B .130︒ C .120︒ D .110︒
4. 如图,A 、B 、C 是⊙O 上的三点,已知︒=∠60O ,则=∠C ( ) (A )︒20 (B )︒25 (C )︒30 (D )︒45
5. 如图,已知AB 为⊙O 的直径,点C 在⊙O 上,∠C =15°,则∠BOC 的度数为( )
A .15°
B. 30°
C. 45° D .60°
6. 将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为( ) A .15°
B .28°
C .29°
D .34°
7. 如图,已知BD 是O ⊙的直径,O ⊙的弦A C B D ⊥于点,E 若60AOD ∠=°,则DBC ∠的
度数为( ) A .30°
B. 40°
C. 50°
D. 60°
二、填空题
8. 如图,△ABC 内接于
O ⊙,AC 是O ⊙的直径,50ACB ∠=°,点D 是BAC
上一点,则D ∠=_________.
B A
C B C
D E
O
B
A
C
B
A
O
9. 如图,AB是O
⊙的直径,C D
、为O
⊙上的两
点,若35
CDB
∠=°,则ABC
∠的度数为
__________.
10. 如图,点A B C
、、在O
⊙上,45
A
∠=°,则
BOC
∠=___________.
11. 如图,AB是O
⊙的直径,弦DC与AB相交
于点E,若6050
A C D A D C
∠=∠=
°,°,则
ABD
∠=________°,CEB
∠=_________°.
13. 如图,在等边ABC
△中,以AB为直径的O
⊙
与BC相交于点D,连结AD,则DAC
∠的度数
为.
14. 如图,在ABC
△中,AB是O的直径,
6070
B C
∠=∠=
,,则B O D
∠的度数是
_____________度.
15. 如图,∠A是⊙O的圆周角,∠A=40°,则∠OBC
的度数为_______.
三、证明题
16. 如图,AB AC
、为O
⊙的弦,连接CO BO
、并
延长分别交弦AB AC
、于点E F
、,B C
∠=∠.
求证:CE BF
=.
C
B
D
A
2
3
一、选择题
1. C
2. C
3. A
4. C
5. B
6. B
7. A
二、填空题
8. 40° 9. 55° 10. 90°
11. 60100°
,° 13. 30° 14. 100 15. 50°
三、证明题
16. 证明:
O B O C 、是O ⊙的半径
OB OC ∴=
又B C ∠=∠ BOE COF ∠=∠ EOB FOC ∴△≌△ OE OF ∴= CE BF ∴=。