无机化学第三章溶液的依数性
- 格式:docx
- 大小:51.26 KB
- 文档页数:14
溶液和胶体1.什么叫稀溶液的依数性?试用分子运动论说明分子的几种依数性?答:稀溶液的某些性质主要取决于其中所含溶质粒子的数目而与溶质本身的性质无关,稀溶液的这些性质叫做依数性,它包含溶质的蒸气压下降,沸点升高,凝固点降低和椮透压。
分子运动论说明:蒸气压下降,溶剂的部分表面被溶质所占据,因此在单位时间内,溢出液面的溶剂分子就相应减少,结果达到平衡时溶液的蒸气压必然低于纯溶剂的蒸气压。
沸点升高和凝固点降低都是由于蒸气压下降而引起。
2.利用溶液的依数性设计一个测定溶质分子量的方法。
答:物质摩尔质量的测定可用沸点升高法和凝固点降低法,尤其是后者,一般说现象较明显,利用△T b=K b·m或△T b=K b·mm:溶剂的质量摩尔浓度,即1Kg溶剂所含溶质的摩尔数。
3.溶液与化合物有什么不同?溶液与普通混合物又有什么不同?答:溶液:一种物质以分子,原子或离子状态分散于另一种物质中所形成的均匀而又稳定的体系叫溶液,其特征是均匀而又稳定,这与普通混合物相区别,在溶液中,溶质与溶剂的相对含量在一定范围内可变化,这与化合物相区别。
4.试述溶质、溶剂、溶液、稀溶液、浓溶液、不饱和溶液、饱和溶液、过饱和溶液的含意。
答:在液态物质与液态物质组成的溶剂中,一般将含量较多的组分叫做溶剂,含量较少的称为溶质,溶液:一种物质以分子,原子或离子状态分散于另一种物质中所形成的均匀而又稳定的体系叫溶液,把单位体积中含少量(大量)溶质的溶液称为“稀溶液”(“浓溶液”)。
在一定条件下,不能再继续溶解某溶质的溶液叫做该溶质的饱和溶液,反之,称为不饱和溶液。
有时,溶液中所含的溶质可以超过它的溶解度这种溶液叫过饱和溶液。
5.什么叫做溶液的浓度?浓度和溶解度有什么区别和联系?固体溶解在液体中的浓度有哪些表示方法?比较各种浓度表示方法在实际使用中的优缺点。
答:溶液的浓度使溶液中各组分相对含量的一种定性描述,它是一个相对值,相对于溶液中各个组分而言,溶解度是指提定温度下,对某溶质而言,它是确定的,溶液的浓度有好多表示方法:①质量摩尔浓度,②物质的量浓度,③质量分数,④摩尔分数⑤体积分数。
溶液的依数性溶液的依数性是说溶液的某些性质与溶质的粒子数的多少有关系,与溶质本性无关。
依数性分别用拉乌尔定律、沸点升高、凝固点降低和渗透压公式定量描述。
溶液的依数性所谓“依数性”顾名思义是依赖于数量的性质。
稀溶液中溶剂的蒸气压下降、凝固点降低、沸点升高及渗透压等的数值均与稀溶液中所含溶质的数量有关,这些性质都称为稀溶液的依数性。
1.蒸气压下降对二组分稀溶液,溶剂的蒸气压下降已如式(2-67)所述Δp=p*A-pA=p*AxB即Δp的数值正比溶质的数量—溶质的摩尔分数xB,比例系数即为纯A的饱和蒸气压p*A。
2.凝固点(析出固态纯溶剂时)降低稀溶液当冷却到凝固点时析出的可能是纯溶剂,也可能是溶剂和溶质一起析出。
当只析出纯溶剂时,即与固态纯溶剂成平衡的稀溶液的凝固点Tf比相同压力下纯溶剂的凝固点T*f 低,实验结果表明,凝固点降低的数值与稀溶液中所含溶质的数量成正比,比例系数kf叫凝固点下降系数它与溶剂性质有关而与溶质性质无关。
详细推导3.沸点升高沸点是液体或溶液的蒸气压p等于外压pex时的温度。
若溶质不挥发,则溶液的蒸气压等于溶剂的蒸气压p=pA,对稀溶液pA=p*AxA,pA<p*A,所以在p—T图上稀溶液的蒸气压曲线在纯溶剂蒸气压曲线之下,由图可知,在外压pex时,溶液的沸点Tb必大于纯溶剂羝液的沸点Tb必大于纯溶剂的沸点T*b,即沸点升高。
实验结果表明,含不挥发性溶质的稀溶液的沸点升高亦可用热力学方法推出,kb叫沸点升高系数。
它与溶剂的性质有关,而与溶质性质无关。
4.渗透压若在U形管中用一种半透膜把某一稀溶液和溶剂隔开,这种膜允许溶剂但不允许溶质透过。
实验结果表明,大量溶剂将透过膜进入溶液,使溶液的液面不断上升,直到两液面达到相当大的高度差时才能达到平衡。
要使两液面不发生高度差,可在溶液液面上施加额外的压力,假定在一定温度下,当溶液的液面上施加压力为∏时,两液面可持久保持同样水平,即达到渗透平衡,这个∏值叫溶液的渗透压。
第三章 溶液和胶体溶液一、关键词(一)溶液的组成标度及其关系溶液的组成标度换算关系 ρB ωB c B b B 质量浓度ρB- ωB d c B ·M B B B B B 1b M b M ρ+ 质量分数ωBd B ρ - B B c M d B B B B 1b M b M + 物质的量浓度c BB B M ρ B B M ρω - B B B 1db b M + 质量摩尔浓度b B B B B )(M ρρd - ()B B B 1M ωω- B M c d c B B - -换算中的注意事项:如果涉及质量与体积间换算时,必须以溶液的密度为桥梁;V ρm B B =如果涉及质量与物质的量间换算时,必须以溶液的摩尔质量为桥梁。
B B B M n m =(二)稀溶液的依数性1.计算稀溶液的依数性计算公式 蒸气压下降沸点升高凝固点下降渗透压 Δp =Kb B ΔT b =K b b B f f B ΔT K b =Π= icRT2.渗透压在医学上的意义(1)渗透浓度:1L 溶液中能产生渗透效应的所有溶质微粒的总的物质的量浓度。
用符号cos 表示,常用单位为常用mmol/L 。
(2)等渗、低渗和高渗溶液:在临床上,凡是渗透浓度在280~320mmol/L 的溶液为等渗溶液;渗透浓度低于280mmol/L 的溶液为低渗溶液;渗透浓度高于320mmol/L 的溶液为高渗溶液。
(3)晶体渗透压与胶体渗透压:人体体液中电解质解离出的小离子和小分子物质产生的渗透压称为晶体渗透压,蛋白质等高分子化合物产生的渗透压称为胶体渗透压。
(三)胶体溶液溶胶、高分子溶液和溶液的性质比较溶胶高分子化合物溶液溶液胶粒直径为1~100nm分散相粒子是许多分子、原子、离子的聚集体多相不稳定体系扩散速率慢不能透过半透膜丁铎尔现象明显加入少量电解质时聚沉高分子直径为1~100nm分散相粒子是单个大分子或离子单相稳定体系扩散速率慢不能透过半透膜丁铎尔现象微弱加入大量电解质时聚沉分子或离子的直径小于1nm分散相粒子是单个分子或离子单相稳定体系扩散速率快能透过半透膜丁铎尔现象微弱电解质不影响稳定性二、学习感悟重点掌握基本概念和理论,以渗透压为例,逐渐学会由现象到本质的推理方法。
无机化学溶液的依数性
第三章稀溶液的依数性§本章摘
要§1. 溶液的饱和蒸气压下降问题的提出饱和蒸气压
拉乌尔定律
2. 沸点升高和凝固点下降
沸点和凝固点饱和蒸气压图公式应用
3. 渗透压
渗透现象渗透压渗透压公式
§1 溶液的饱和蒸气压下降
一问题的提出
水自动转移到糖水中去,
为什么?
这种转移, 只能通过蒸
气来进行. 因此, 要研究蒸气
的行为, 才能弄清楚问题的
实质.
二饱和蒸气压
1. 纯溶剂的饱和蒸气压(P0)
液体气体
在密闭容器中, 在纯溶剂的单位表面上, 单位时间里, 有N0个分子蒸发到上方空间中。
随着上方空间里溶剂分子个数的增加, 密度的增加, 分子凝聚, 回到液相的机会增加. 当密度达到一定数值时, 凝聚的分子的个数也达到N0个。
这时起, 上方空间的蒸气密度不再改变, 保持恒定。
此时, 蒸气的压强也不再改变, 称为该温度下的饱和蒸汽压, 用P0表示。
达到平衡. 当蒸气压小于P0时, 平衡右移, 继续气化; 若蒸气压大于P0时, 平衡左移, 气体液化. 譬如, 改变上方的空间体积, 即可使平衡发生移动。
2.溶液的饱和蒸气压
(P)
当溶液中溶有难挥发的溶质时, 则有部分溶液表面被这种溶质分子所占据, 如图示:
于是, 在溶液中, 单位表面在单位时间内蒸发的溶
剂分子的数目N要小于N0。
凝聚分子的个数当然与
蒸气密度有关. 当凝聚的分子数目达到N, 实现平衡
时, 蒸气压已不会改变. 这时, 平衡状态下的饱和蒸气
压为:P < P0对溶液来讲, 蒸气压大于P, 液化;蒸
气压小于P, 气化。
3. 解释实验现象
过程开始时, H2O 和糖水均以蒸发为主; 当蒸气压等于P 时, 糖水与上方蒸气达到平衡, 而P0 > P, 即H2O 并未平衡, 继续蒸发, 以致于蒸气压大于P. H2O 分子开始凝聚到糖水中, 使得蒸气压不能达到P0. 于是, H2O 分子从H2O 中蒸出而凝聚入糖水. 出现了本节开始提出的实验现象.
变化的根本原因是溶液的饱和蒸气压下降。
三拉乌尔定律(Laoult, 法国)
1. 溶液的浓度
每溶液中含溶质的摩尔数, 为摩尔浓度. 这种浓度使用方便, 唯一不足, 是和温度有关。
若用每Kg 溶剂中含溶质的摩尔数, 则称为质量摩尔浓度, 经常用m 表示。
摩尔分数:
对于稀溶液, 由于n质<< n剂,
故有:
对于稀的水溶液, 则有:
对于1000g 溶剂水, 则有:
这时, n质的意义是1000g
水中含的溶质的摩尔数, 即质
量摩尔浓度m, 故:
这是稀的水溶液中, x质与质量摩尔分数的关系, 其它溶剂, 则不是55.5, 但仍是一个已知数值。
2. 拉乌尔定律(Laoult)
在一定温度下, 溶液的饱和蒸气压等于纯溶剂的饱和蒸气压与溶剂摩尔分数之积.即: P = P0·x剂
用P表示溶液的P与纯溶剂P0之差, 则有:P = P0 - P = P0 - P0·x剂= P0 (1- x剂) 故有:P = P0·x质
对于稀的水溶液:
一定温度下, P0亦为常数, 故P0/55.5 也是常数, 令其等于k,
则有:P = k·m (对于不同溶剂, k 值不同)
稀溶液饱和蒸气压下降值, 与稀溶液的质量摩尔浓度成正比。
这是Raoult 定律的另一种表述形式。
§2 沸点升高和凝固点下降
一沸点和凝固点
蒸发: 表面气化现象称为蒸发;
沸腾: 表面和内部同时气化的现象;
沸点: 液体沸腾过程中的温度.
只有当液体的饱和蒸气压和外界大气的压强相等时, 液体的气化才能在表面和内部同时发生, 这时的温度即是沸点.
凝固点: 液体凝固成固体(严格说是晶体)是在一定温度下进行的, 这个温度称为凝固点。
凝固点的实质是, 在这个温度下, 液体和固体的饱和蒸气压相等.即为:
液体固体平衡
若P固> P液, 则固体要融化(熔解);
P固< P液, 液体要凝固;(和H2O自动向糖水转移是一个道理, 都是蒸气压在起作用)
二饱和蒸气压图
三公式
1. 沸点升高公式
用T b表示沸点升高值, 即: T b = T b- T0b ( T0b是纯溶剂的沸点, T b是溶液的沸点)。
T b是直接受P 影响的, 有: T b P, 而P = k·m, 故
T b m. 比例系数用k b表示, 则有:
T b= k b·m , kb 为沸点升高常数, 不同的溶剂, k b值不同, 最常见的溶剂是H2O, 其k b= 0.512
2. 凝固点下降公式
用T f表示凝固点降低值, 即: T f = T0f - T f
T0f是纯溶剂的凝固点, T f是溶液的凝固点.
总之, T f为正值, 且T f = k f·m,
k f : 凝固点降低常数, H2O的k f = 1.86
3. 公式的成立条件
公式由P = k·m 推出, 在推导时, 有条件: 溶质不挥发, 且n 质<< n剂, 即为稀溶液。
m(质量摩尔浓度)的大小, 要能与溶液表面上不挥发的质点的多少有定量关系, 溶质必须是非电解质. 若是NaCl, 电解产生Na+ 和Cl-, m = 1时, 质点数可能是2, 且Na+ 和Cl- 之间又有吸引, 则相当于在1-2 之间, 不好定量. Ba(OH)2体系就更加复杂了.
因而, 公式成立的条件是: 不挥发的非电解质的稀溶液。
1) 挥发性溶质: 在后续课程中讲授。
2) 电解质溶液: 离解后,
相当于多少个粒子, 定量关系不确切. 不能用此公式计算, 但同样
0.1 m 的Al2(SO4)3总比0.1m 的NaCl 产生的粒子多. 可以定性
的推理, 即仍有蒸气压下降, 沸点升高和凝固点降低等性质.3) 浓溶液: 由于分子间的作用复杂, 虽然也有升高和降低等现象, 但定量关系不准确。
例题:将1.09g 葡萄糖溶于20g 水中, 所得溶液的沸点升高了
0.156K, 求葡萄糖的分子量。
解: 先求出m.
和实际分子量180 相近
利用凝固点法, 测分子量更准确. 因为k f比k b要大, 温度差要更明显一些. 就测定方法本身来讲, 凝固点的测定比沸点测定精确度高
四应用
§3 渗透压
一渗透现象
二渗透压
渗透现象发生以后,
1. H2O柱的高度降低, 静压减小, 使右行的H2O分子数目减少;
2. 糖水柱升高,使左行的H2O分子数目增加;
3. 糖水变稀, 膜右侧的H2O分子的分数增加, 亦使左行的H2O分子
数目增加.
当过程进行到一定程度时, 右行和左行的H2O分子数目相等, 这时, 达到平衡, 即H2O柱不再下降; 同时, 糖水柱不再升高. 液面高度差造成的静压, 称为溶液的渗透压, 用表示, 单位为Pa.
三渗透压公式
具有渗透压, 是溶液的依数性质, 它产生的根本原因也是相变界面上可发生变化的分子个数不同引起的. 经过长期研究, 人们发现:
1. 温度相同时, 和溶液的体积摩尔浓度成正比;
2. 浓度相同时, 和温度T 成正比. 即:
测得比例系数和气体常数R 相同, 则公式改写成:
即: V = nRT。