电控动力转向与四轮转向系统
- 格式:ppt
- 大小:1.10 MB
- 文档页数:29
四轮转向系统简介四轮转向系统是一种汽车驾驶辅助技术,通过对车辆四个轮子的转向进行控制,改善车辆的操控性能和稳定性。
传统的汽车转向系统只控制前两个轮子的转向,而四轮转向系统可以同时控制前后轮的转向,使车辆转弯更加灵活,减少转向半径,提高车辆的稳定性和安全性。
工作原理四轮转向系统的工作原理主要在于对车辆四个轮子的转向进行独立控制。
传统的汽车转向系统是由转向柱、转向机构、转向杆等组成的,而四轮转向系统在此基础上增加了一个后轮转向系统。
后轮转向系统是通过电子控制单元(ECU)对车辆后轮进行转向控制。
具体的工作原理是,ECU通过收集车辆的各种传感器数据,包括车速、转向角度、转向力等,来判断车辆的行驶状态和转向需求。
根据这些信息,ECU会对车辆后轮进行相应的转向控制,使车辆在转弯时更加灵活和稳定。
四轮转向系统相比传统的转向系统具有以下几个优点:1.提高操控性能:四轮转向系统可以使车辆在转弯时更加敏捷和稳定。
通过控制后轮的转向角度,可以减小转弯半径,使车辆更容易进入弯道并保持稳定的操控。
2.增加安全性:四轮转向系统可以提高车辆的稳定性和抓地力。
在快速转弯或避让障碍物时,后轮转向系统可以提供额外的转向力,使车辆更容易保持控制并减少侧滑的风险。
3.提升驾乘舒适性:四轮转向系统可以在低速行驶时提供更小的转弯半径,使车辆更容易进入狭窄的空间。
此外,它还可以提供更好的转向反馈和悬挂调校,提高驾乘的舒适性和驾驶乐趣。
应用场景四轮转向系统通常应用于高性能汽车和豪华车型,以提升车辆的操控性能和安全性。
此外,四轮转向系统还可以应用于货车和工程车等特殊用途车辆,以提高车辆的转弯半径和机动性能。
四轮转向系统是一种提升汽车操控性能和安全性的重要技术。
它通过控制车辆前后轮的转向,使车辆在转弯时更加灵活、稳定和安全。
四轮转向系统在高性能汽车和豪华车型中得到广泛应用,同时也逐渐在特殊用途车辆上得到应用。
随着汽车技术的不断进步和发展,四轮转向系统将会成为未来汽车行业的重要发展方向之一。
汽车电动助力转向技术一、技术概述电动助力转向系统是把电动机的驱动力传递给转向轴或齿条,进行转向助力的机构。
该系统由转向扭矩传感器、车速传感器、控制器、电动机、离合器和减速机构组成。
比起传统的液压助力转向,它的优点是:系统中的电机只在需要转向助力时才工作,汽车大部分时间正常行驶时电机并不工作,这样能量消耗很小,而传统的液压助力转向系统由液压泵及管路和油缸组成,为保持压力,不论是否需要转向助力,系统总要处于工作状态,能耗较高。
据估计,电动助力转向只是液压助力转向能耗的1/2,前者比后者使整车油耗下降3%。
二、现状及国内外发展趋势汽车电动助力转向技术近年来发展很快,美国德尔福等国际上大的汽车零部件公司,都已开发出产品,并在一些车上装用。
三、主要研究内容主要研究内容:传感器技术;控制技术;电机、离合器、减速机构技术等。
汽车电子控制四轮驱动与四轮转向技术一、技术概述--汽车电子控制四轮驱动技术(4 Wheels Driving System 4WD)汽车的驱动力来源于轮胎对地面的附着,四轮驱动充分利用了车轮对地面的附着,当然会获得好的驱动性能。
但因转向时各轮的转弯半径不同,车轮转动的速度也就不同(内外、前后),四个轮不能通过刚性传动系统连接,必须在左右两轮间,在前后驱动轴间设置差速器。
带来的问题是四个轮的驱动力受与地面摩擦力最小的轮的限制,需要再设置差速锁。
汽车电子控制四轮驱动技术是通过传感器感知四个轮路面的情况,通过微电脑进行分析判断,通过电磁阀驱动,改变黏液偶合器的特性,在前后驱动轴之间,在左右轮上分配驱动力。
--汽车电子控制四轮转向技术(4 Wheels Steering System 4WS )汽车在行驶中转向时,由于受恻向力的作用,前轮有不足转向的特性,后轮有过度转向的倾向。
后者会引起汽车失去转向行驶的稳定性,车速越高问题越明显,甚至出现侧滑翻车。
解决措施一般是通过使后轮在与前轮相同的方向转动1-2度角进行补偿。
栏目编辑:刘玺 lx@106·September-CHINA 图12 电控液力式动力转向系的组成图13 转向控制阀1-柱塞;2-扭杆;3-凸起;4-油压反力室。
1-转向油泵;2-储油罐;3-分流阀;4-电磁阀;5-扭力杆;6-转向盘;7、10、11-销;8-转阀阀杆;9-控制阀阀体;12-转向齿轮轴;13-活塞;14-转向动力缸;15-转向齿条;16-转向齿轮;17-柱塞;18-油压反力室;19-阻尼孔。
◆文/江苏 赵宝平 刘晓雪 邓飞虎电子助力转向系及四轮转向系浅析(二)当点火开关接通时,电源加于电子控制单元上,电动助力转向系才能进行工作。
在发动机已启动时,交流发电机L 端子的电压加到电子控制单元上。
当检测到发动机处于启动状态时,动力转向系转为工作状态。
在车辆行驶时,电子控制单元按不同车速下的转向盘转矩控制电动机的电流,并完成电子助力转向和普通转向控制之间的转换。
当车速高于30km/h 时,则转换成普通的转向控制,电子控制单元没有离合器信号和电动机电流输出,离合器处于分离状态。
当车速低于27km/h 时,电子控制单元又输出离合器信号和电动机电流,普通转向控制又转换为动力转向的工作方式。
电子控制单元还具有自我修正的控制功能。
当电动动力转向系出现故障时,可自动断开电动机的输出电流,恢复到正常的转向功能;同时速度表内的电动动力转向报警灯点亮,用于通知驾驶员动力转向系统发生故障。
(接上期)二、电控液力式动力转向系的基本结构和工作原理电控液力式转向系是电子控制动力转向的另外一种型式。
它通过控制电磁阀的动作,使动力转向液压控制回路油压根据车速而变化,在低速时操纵力减轻,在中低速以上时操纵力不致过小,即保持一定的手感。
1.电控液力式动力转向系的组成如图12所示,电控液力式动力转向系主要由转向控制阀、电磁阀、分流阀、转向动力缸、转向油泵、储油罐、车速传感器和电子控制单元组成。
(1)转向控制阀转向控制阀的结构如图13所示,其基本结构是在传统的整体式动力转向控制阀的基础上,在内部增加了油压反力室和4个小柱塞,4个小柱塞位于控制阀阀体下端的油压反力室内。
(1)机械转向系统是依靠驾驶员操纵转向盘的转向力来实现车轮转向。
()(1)机械转向系统是依靠电动机驱动力来实现车轮转向。
()(1)动力转向系统借助于汽车发动机产生的液体压力或电动机驱动力来实现车轮转向。
()(1)动力转向系统借助于驾驶员操纵转向盘的转向力来实现车轮转向。
()(2)电动式EPS的电子控制单元根据转向参数和车速等信号,控制电动机扭矩的大小和方向。
()(2)电动式EPS的电子控制单元根据转向参数和车速等信号,控制转向轮扭矩的大小和方向。
()(3)电动机的扭矩由电磁离合器通过减速机构减速增大转矩后,加在汽车的转向机构上,使之得到一个与工况相适应的转向作用力。
()(3)电动机的扭矩由电磁离合器通过加速机构加速增大转矩后,加在汽车的转向机构上,使之得到一个与工况相适应的转向作用力。
()(3)电动机的扭矩由电磁阀通过加速机构加速增大转矩后,加在汽车的转向机构上,使之得到一个与工况相适应的转向作用力。
()(4)阀灵敏度控制式EPS是根据车速控制电磁阀,直接改变动力转向控制阀的油压增益来控制油压的。
()(4)阀灵敏度控制式EPS是根据扭矩控制电磁阀,直接改变动力转向控制阀的油压增益来控制油压的。
()(5)转矩传感器的作用是测量转向盘与转向器之间的相对转矩,以作为电动助力的依据之一。
()(5)转矩传感器的作用是测量转向器电机之间的相对转矩,以作为电动助力的依据之一。
()(6)电动机的工作范围限定在某一速度区域内,如果超过规定速度,则离合器使电动机停转,且离合器分离,不再起传递动力的作用。
()(6)电动机的工作范围限定在某一速度区域内,如果超过规定速度,则离合器使电动机停转,但可以传递动力。
()(7)在电动式动力转向系统发生故障时,可以应用手动控制转向。
()(7)在电动式动力转向系统发生故障时,手动控制转向方式失效。
()(8)所谓转向角比例控制就是与转向盘转向角成比例,在低速区是逆相而在中高速区是同相地对后轮进行转向操纵控制。