光学仪器的基本原理4.4[光学教程]第四版姚启钧高等教育出版社
- 格式:ppt
- 大小:460.00 KB
- 文档页数:7
《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A = P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d 由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解:7050500100.1250.02r y cm d λ-∆==⨯⨯= 由干涉条纹可见度定义: 由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干涉条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
光学教程第四版姚启钧课后题答案第一章:光的自然现象与光的波动性第一节:光的自然现象光的自然现象是我们日常生活中常见的一种现象,例如光的折射、反射、散射等。
这些现象是由于光的特性造成的,其中最基本的特性之一就是光的波动性。
第二节:光的波动性光的波动性指的是光是一种电磁波,其传播过程符合波动方程。
光的波动性是由光的电场和磁场交替变化所引起的。
根据麦克斯韦方程组,光的传播速度为真空中的光速,即约为3.00×10^8 m/s。
第三节:光的波动方程光的波动方程描述了光波在空间中的传播情况。
光的波动方程可表示为d^2E/dt^2=c^2(d^2E/dx^2),其中E为电场强度,t为时间,x为空间坐标,c为光速。
通过解光的波动方程,我们可以得到光波的传播速度、传播方向等信息。
第二章:光的几何光学第一节:光的几何模型光的几何模型是基于光的直线传播特性而建立的模型。
根据光的几何模型,光线传播遵循直线传播路径,光的传播速度在不同介质中会发生改变。
第二节:光的反射定律光的反射定律是光的几何光学中的重要定律之一。
根据光的反射定律,入射角等于反射角,同时入射光线、反射光线和法线处于同一平面上。
光的反射定律在镜面反射和平面镜成像等方面有着重要应用。
第三节:光的折射定律光的折射定律是光的几何光学中的另一个重要定律。
根据光的折射定律,入射角的正弦与折射角的正弦之比在两个介质中是常数。
光的折射定律在透明介质之间的传播中起着关键作用,例如在棱镜的折射、光的全反射等现象中都能看到光的折射定律的应用。
第三章:光的色散現象與光的干涉第一节:光的色散現象光的色散現象是指不同频率的光在透明介质中传播时速度不同而产生的现象。
色散可以分为正常色散和反常色散两种。
正常色散是指频率越高的光速度越快,反常色散则相反。
第二节:光的干涉光的干涉是指两个或多个光波相遇并产生干涉现象的过程。
根据干涉的性质,干涉可以分为构成干涉和破坏干涉。
在构成干涉的情况下,光波叠加会增强或减弱光的强度,形成明暗相间的干涉条纹。
光学教程第四版(姚启钧)期末总结第一章小结● 一、光的电磁理论● ①光是某一波段的电磁波,其速度就是电磁波的传播速度。
● ②光波中的振动矢量通常指的是电场强度。
● ③可见光在电磁波谱中只占很小的一部分,波长在 390 ~ 760 n m 的狭窄范围以内。
● ④光强(平均相对光强): I =A ^2 。
二、光的干涉:● ①干涉:满足一定条件的两列或两列以上的波在空间相遇时,相遇空间的光强从新分布:形成稳定的、非均匀的周期分布。
● ②相干条件:频率相同、振动方向相同、相位差恒定。
●③干涉光强:)cos(2122122212??-++=A A A A A 三、相位差和光程差真空中均匀介质中nr =?r n =?=1ctr cnr ===?υ光程:光程差: 12r r -=δ1122r n r n -=δ)t t (c r cr c121122=υυδ相位差:()()121222r r k r r-=-==λπδλπ()1,21==n o o ?空间角频率或角波数--=λπ2k四、干涉的分类:9.5311.17.1.b 1.109.18.1.a 25.14.11)分振动面干涉(、等倾干涉、、等厚干涉)分振幅干涉(、)分波面干涉(.五、干涉图样的形成:(1)干涉相长()()2,1,0,22:222:1212±±==-?=-?=?j j r r then j r r j if λπλππ?则:(2)干涉相消:2,1,0,212:12212:1212±±=+=-+=-+=?j j r r then j r r j if λπλππ?则六、干涉条纹的可见度:七、≥≈≈==+=条纹便可分辨一般情况模糊不清不可以分辨当清晰条纹反差最大时当,7.0V ,,0V ,I I ,1,V ,0I I I I -I V min max min minmax minmax212122121222121I I I I 2)A /A (1)A /A (2A A A 2A V +=+=+=七、半波损失的结论:当光从折射率小的光疏介质向折射率大的光密介质表面入射时,反射过程中反射光有半波损失。
目录第一章光的干涉 (3)第二章光的衍射 (15)第三章几何光学的基本原理 (27)第四章光学仪器的基本原理 (49)第五章光的偏振 (59)第六章光的吸收、散射和色散 (70)第七章光的量子性 (73)第一章光的干涉.波长为的绿光投射在间距d 为的双缝上,在距离处的光屏1nm 500cm 022.0cm 180上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为的红光投射到此双缝上,nm 700两个亮条纹之间的距离又为多少?算出这两种光第级亮纹位置的距离.2解:由条纹间距公式得λd r y y y j j 01=-=∆+cm 328.0818.0146.1cm146.1573.02cm818.0409.02cm573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=∆=⨯===⨯===⨯⨯==∆=⨯⨯==∆--y y y drj y d rj y d r y d r y j λλλλ2.在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的距离为nm 640mm 4.0.试求:(1)光屏上第亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为cm 501,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比.mm 1.0解:(1)由公式λdr y 0=∆得=λd r y 0=∆cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知52100.01sin tan 0.040.810cm 50y r r d d dr θθ--≈≈===⨯521522()0.8106.4104r r πππϕλ--∆=-=⨯⨯=⨯由公式得(3)2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆=8536.042224cos18cos 0cos 421cos 2cos42cos 422202212212020=+=+==︒⋅=∆∆==πππϕϕA A A A I I pp .把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所3在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m .解:未加玻璃片时,、到点的光程差,由公式可知为1S 2S P 2rϕπλ∆∆=Δr =215252r r λπλπ-=⨯⨯=现在发出的光束途中插入玻璃片时,点的光程差为1S P ()210022r r h nh λλϕππ'--+=∆=⨯=⎡⎤⎣⎦所以玻璃片的厚度为421510610cm 10.5r r h n λλ--====⨯-4.波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=mm122I I =22122A A=12A A =()()122122/0.94270.941/A A V A A ∴===≈+5.波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
硕士研究生入学考试大纲光学考试大纲一、考试要求光学是光学工程专业的一门基础课。
其考核目标是要求学生掌握物理光学和应用光学的基础理论和基本知识,掌握处理光学问题的基本思想和方法。
二、考试内容第一章光的干涉理解光的电磁理论,理解光相干的三个条件,掌握双光束、多光束干涉的特性,条纹分布及特点,理解单层与多层光学薄膜的干涉及其应用,掌握典型的干涉仪的结构与干涉特点,理解光的时间和空间相干性。
第二章光的衍射理解光的基本衍射理论,掌握夫琅和费(单缝和圆孔)以及菲涅耳(圆孔和圆屏)衍射的性质以及相关计算,掌握光栅的衍射理论和特点,了解晶体对伦琴射线的衍射作用。
第三章几何光学的基本原理掌握几何光学的基本定律,理解球面(平面)和球面(平面)系统中的物像关系,掌握近轴成像公式,不同放大率的关系,理解理想光学系统基本特性,了解三个基点和基面的性质,掌握理想光学系统的物像关系,放大率的计算,掌握理想光学系统组合的计算方法,掌握一般理想光具组的作图求像法。
第四章光学仪器的基本原理掌握各种光学仪器的工作原理,了解各种光学仪器的放大本领的计算,了解像差的产生及分类。
第五章光的偏振了解光的偏正特性,掌握光波的反射和折射的电磁理论处理,理解晶体中光波的传输特性,掌握单轴晶体和双轴晶体的光学性质及其图形表示,理解晶体表面的光波反射和折射理论及特点,了解相关的晶体光学器件,了解偏振光的干涉。
第六章光的传播速度了解测定光速的实验室方法,掌握光的相速度和群速度。
第七章光的吸收、散射和色散掌握光的吸收、色散以及散射的特点、相关理论及计算,并能利用理论解释相关现象。
第八章光的量子性了解黑体的经典辐射定律,掌握光电效应、康普顿效应,理解光波的波粒二象性。
第九章现代光学基础掌握原子发光的机理、光与原子之间的相互作用,了解激光产生的基本原理,掌握激光的基本特性,了解全息术的基本特点。
三、题型题型包括简答题(30分左右)、作图题(15分左右)以及计算题(105分左右)。
《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A = P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d 由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解:7050500100.1250.02r y cm d λ-∆==⨯⨯= 由干涉条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干涉条纹间距公式6、在题 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
《光学教程》(姚启钧)习题解答欧阳学文第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ=改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解: 7050500100.1250.02r y cm d λ-∆==⨯⨯= 由干涉条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆=由菲涅耳双镜干涉条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少⑶求P 点的光强度和中央点的强度之比。
解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅= ⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
《光学教程》(姚启钧)课后习题解答 - 百度文库《光学教程》(姚启钧)习题解答第一章光的干涉1 、波长为的绿光投射在间距为的双缝上,在距离处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2 级亮纹位置的距离。
解:改用两种光第二级亮纹位置的距离为:2 、在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的距离为,试求:⑴光屏上第 1 亮条纹和中央亮纹之间的距离;⑵若 P 点离中央亮纹为问两束光在 P 点的相位差是多少?⑶求 P 点的光强度和中央点的强度之比。
解:⑴⑵由光程差公式⑶中央点强度:P 点光强为:3 、把折射率为的玻璃片插入杨氏实验的一束光路中,光屏上原来第 5 级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为解:,设玻璃片的厚度为由玻璃片引起的附加光程差为:4 、波长为的单色平行光射在间距为的双缝上。
通过其中一个缝的能量为另一个的倍,在离狭缝的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解:由干涉条纹可见度定义:由题意,设,即代入上式得5 、波长为的光源与菲涅耳双镜的相交棱之间距离为,棱到光屏间的距离为,若所得干涉条纹中相邻亮条纹的间隔为,求双镜平面之间的夹角。
解:由菲涅耳双镜干涉条纹间距公式6 、在题 1.6 图所示的劳埃德镜实验中,光源 S 到观察屏的距离为,到劳埃德镜面的垂直距离为。
劳埃德镜长,置于光源和屏之间的中央。
⑴若光波波长,问条纹间距是多少?⑵确定屏上可以看见条纹的区域大小,此区域内共有几条条纹?(提示:产生干涉的区域 P 1 P 2 可由图中的几何关系求得)解:由图示可知:①②在观察屏上可以看见条纹的区域为 P 1 P 2 间即,离屏中央上方的范围内可看见条纹。
7 、试求能产生红光()的二级反射干涉条纹的肥皂膜厚度。
已知肥皂膜折射率为,且平行光与法向成 30 0 角入射。
第一章 小结● 一、 光的电磁理论● ①光是某一波段的电磁波, 其速度就是电磁波的传播速度。
● ②光波中的振动矢量通常指的是电场强度。
● ③可见光在电磁波谱中只占很小的一部分,波长在 390 ~ 760 n m 的狭窄范围以内。
● ④光强(平均相对光强): I =A ^2 。
二、光的干涉:● ①干涉:满足一定条件的两列或两列以上的波在空间相遇时,相遇空间的光强从新分布:形成稳定的、非均匀的周期分布。
● ②相干条件:频率相同 、振动方向相同、相位差恒定。
●③干涉光强:)cos(2122122212ϕϕ-++=A A A A A 三、相位差和光程差真空中 均匀介质中nr =∆r n =∆=1ctr cnr ===∆υ光程:光程差: 12r r -=δ1122r n r n -=δ)t t (c r cr c121122-=-=υυδ相位差:()()121222r r k r r-=-==∆λπδλπϕ()1,21==n o o ϕϕ空间角频率或角波数--=λπ2k四、干涉的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧9.5311.17.1.b 1.109.18.1.a 25.14.11)分振动面干涉(、等倾干涉、、等厚干涉)分振幅干涉(、)分波面干涉(.五、干涉图样的形成:(1)干涉相长()()2,1,0,22:222:1212±±==-⋅=-⋅=∆j j r r then j r r j if λπλππϕ则:(2)干涉相消:()()()()2,1,0,212:12212:1212±±=+=-+=-+=∆j j r r then j r r j if λπλππϕ则六、干涉条纹的可见度:七、⎪⎩⎪⎨⎧≥≈≈==+=条纹便可分辨一般情况模糊不清不可以分辨当清晰条纹反差最大时当,7.0V ,,0V ,I I ,1,V ,0I I I I -I V min max min minmax minmax212122121222121I I I I 2)A /A (1)A /A (2A A A 2A V +=+=+=七、半波损失的结论:当光从折射率小的光疏介质向折射率大的光密介质表面入射时,反射过程中反射光有半波损失。